|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375 |
- #pragma once
- #include "common.hpp"
- #include <algorithm> // for std::min, max
-
-
- namespace rack {
- namespace math {
-
-
- ////////////////////
- // basic integer functions
- ////////////////////
-
- /** Returns true if x is odd */
- inline bool isEven(int x) {
- return x % 2 == 0;
- }
-
- /** Returns true if x is odd */
- inline bool isOdd(int x) {
- return x % 2 != 0;
- }
-
- /** Limits `x` between `a` and `b`
- Assumes a <= b
- */
- inline int clamp(int x, int a, int b) {
- return std::min(std::max(x, a), b);
- }
-
- /** Limits `x` between `a` and `b`
- If a > b, switches the two values
- */
- inline int clampSafe(int x, int a, int b) {
- return clamp(x, std::min(a, b), std::max(a, b));
- }
-
- /** Euclidean modulus. Always returns 0 <= mod < b.
- b must be positive.
- See https://en.wikipedia.org/wiki/Euclidean_division
- */
- inline int eucMod(int a, int b) {
- int mod = a % b;
- if (mod < 0) {
- mod += b;
- }
- return mod;
- }
-
- /** Euclidean division.
- b must be positive.
- */
- inline int eucDiv(int a, int b) {
- int div = a / b;
- int mod = a % b;
- if (mod < 0) {
- div -= 1;
- }
- return div;
- }
-
- inline void eucDivMod(int a, int b, int *div, int *mod) {
- *div = a / b;
- *mod = a % b;
- if (*mod < 0) {
- *div -= 1;
- *mod += b;
- }
- }
-
- /** Returns floor(log_2(n)), or 0 if n == 1.
- */
- inline int log2(int n) {
- int i = 0;
- while (n >>= 1) {
- i++;
- }
- return i;
- }
-
- /** Returns whether `n` is a power of 2 */
- inline bool isPow2(int n) {
- return n > 0 && (n & (n - 1)) == 0;
- }
-
- ////////////////////
- // basic float functions
- ////////////////////
-
- /** Limits `x` between `a` and `b`
- Assumes a <= b
- */
- inline float clamp(float x, float a, float b) {
- return std::min(std::max(x, a), b);
- }
-
- /** Limits `x` between `a` and `b`
- If a > b, switches the two values
- */
- inline float clampSafe(float x, float a, float b) {
- return clamp(x, std::min(a, b), std::max(a, b));
- }
-
- /** Returns 1 for positive numbers, -1 for negative numbers, and 0 for zero
- See https://en.wikipedia.org/wiki/Sign_function
- */
- inline float sgn(float x) {
- return x > 0.f ? 1.f : x < 0.f ? -1.f : 0.f;
- }
-
- /** Converts -0.f to 0.f. Leaves all other values unchanged. */
- inline float normalizeZero(float x) {
- return x + 0.f;
- }
-
- /** Euclidean modulus. Always returns 0 <= mod < b.
- See https://en.wikipedia.org/wiki/Euclidean_division
- */
- inline float eucMod(float a, float base) {
- float mod = std::fmod(a, base);
- return (mod >= 0.f) ? mod : mod + base;
- }
-
- inline bool isNear(float a, float b, float epsilon = 1e-6f) {
- return std::abs(a - b) <= epsilon;
- }
-
- /** If the magnitude of x if less than epsilon, return 0 */
- inline float chop(float x, float epsilon = 1e-6f) {
- return isNear(x, 0.f, epsilon) ? 0.f : x;
- }
-
- inline float rescale(float x, float a, float b, float yMin, float yMax) {
- return yMin + (x - a) / (b - a) * (yMax - yMin);
- }
-
- inline float crossfade(float a, float b, float p) {
- return a + (b - a) * p;
- }
-
- /** Linearly interpolate an array `p` with index `x`
- Assumes that the array at `p` is of length at least floor(x)+1.
- */
- inline float interpolateLinear(const float *p, float x) {
- int xi = x;
- float xf = x - xi;
- return crossfade(p[xi], p[xi+1], xf);
- }
-
- /** Complex multiply c = a * b
- Arguments may be the same pointers
- i.e. cmultf(&ar, &ai, ar, ai, br, bi)
- */
- inline void complexMult(float *cr, float *ci, float ar, float ai, float br, float bi) {
- *cr = ar * br - ai * bi;
- *ci = ar * bi + ai * br;
- }
-
- ////////////////////
- // 2D vector and rectangle
- ////////////////////
-
- struct Rect;
-
- struct Vec {
- float x = 0.f;
- float y = 0.f;
-
- Vec() {}
- Vec(float x, float y) : x(x), y(y) {}
-
- /** Negates the vector
- Equivalent to a reflection across the y=-x line.
- */
- Vec neg() const {
- return Vec(-x, -y);
- }
- Vec plus(Vec b) const {
- return Vec(x + b.x, y + b.y);
- }
- Vec minus(Vec b) const {
- return Vec(x - b.x, y - b.y);
- }
- Vec mult(float s) const {
- return Vec(x * s, y * s);
- }
- Vec mult(Vec b) const {
- return Vec(x * b.x, y * b.y);
- }
- Vec div(float s) const {
- return Vec(x / s, y / s);
- }
- Vec div(Vec b) const {
- return Vec(x / b.x, y / b.y);
- }
- float dot(Vec b) const {
- return x * b.x + y * b.y;
- }
- float norm() const {
- return std::hypotf(x, y);
- }
- float square() const {
- return x * x + y * y;
- }
- /** Rotates counterclockwise in radians */
- Vec rotate(float angle) {
- float sin = std::sin(angle);
- float cos = std::cos(angle);
- return Vec(x * cos - y * sin, x * sin + y * cos);
- }
- /** Swaps the coordinates
- Equivalent to a reflection across the y=x line.
- */
- Vec flip() const {
- return Vec(y, x);
- }
- Vec min(Vec b) const {
- return Vec(std::min(x, b.x), std::min(y, b.y));
- }
- Vec max(Vec b) const {
- return Vec(std::max(x, b.x), std::max(y, b.y));
- }
- Vec round() const {
- return Vec(std::round(x), std::round(y));
- }
- Vec floor() const {
- return Vec(std::floor(x), std::floor(y));
- }
- Vec ceil() const {
- return Vec(std::ceil(x), std::ceil(y));
- }
- bool isEqual(Vec b) const {
- return x == b.x && y == b.y;
- }
- bool isZero() const {
- return x == 0.f && y == 0.f;
- }
- bool isFinite() const {
- return std::isfinite(x) && std::isfinite(y);
- }
- Vec clamp(Rect bound) const;
- Vec clampSafe(Rect bound) const;
- Vec crossfade(Vec b, float p) {
- return this->plus(b.minus(*this).mult(p));
- }
- };
-
-
- struct Rect {
- Vec pos;
- Vec size;
-
- Rect() {}
- Rect(Vec pos, Vec size) : pos(pos), size(size) {}
- /** Constructs a Rect from the upper-left position `a` and lower-right pos `b` */
- static Rect fromMinMax(Vec a, Vec b) {
- return Rect(a, b.minus(a));
- }
-
- /** Returns whether this Rect contains an entire point, inclusive on the top/left, non-inclusive on the bottom/right */
- bool isContaining(Vec v) const {
- return pos.x <= v.x && v.x < pos.x + size.x
- && pos.y <= v.y && v.y < pos.y + size.y;
- }
- /** Returns whether this Rect contains an entire Rect */
- bool isContaining(Rect r) const {
- return pos.x <= r.pos.x && r.pos.x + r.size.x <= pos.x + size.x
- && pos.y <= r.pos.y && r.pos.y + r.size.y <= pos.y + size.y;
- }
- /** Returns whether this Rect overlaps with another Rect */
- bool isIntersecting(Rect r) const {
- return (pos.x + size.x > r.pos.x && r.pos.x + r.size.x > pos.x)
- && (pos.y + size.y > r.pos.y && r.pos.y + r.size.y > pos.y);
- }
- bool isEqual(Rect r) const {
- return pos.isEqual(r.pos) && size.isEqual(r.size);
- }
- float getLeft() const {
- return pos.x + size.x;
- }
- float getBottom() const {
- return pos.y + size.y;
- }
- Vec getCenter() const {
- return pos.plus(size.mult(0.5f));
- }
- Vec getTopLeft() const {
- return pos;
- }
- Vec getTopRight() const {
- return pos.plus(Vec(size.x, 0.f));
- }
- Vec getBottomLeft() const {
- return pos.plus(Vec(0.f, size.y));
- }
- Vec getBottomRight() const {
- return pos.plus(size);
- }
- /** Clamps the edges of the rectangle to fit within a bound */
- Rect clamp(Rect bound) const {
- Rect r;
- r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x);
- r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y);
- r.size.x = math::clamp(pos.x + size.x, bound.pos.x, bound.pos.x + bound.size.x) - r.pos.x;
- r.size.y = math::clamp(pos.y + size.y, bound.pos.y, bound.pos.y + bound.size.y) - r.pos.y;
- return r;
- }
- /** Nudges the position to fix inside a bounding box */
- Rect nudge(Rect bound) const {
- Rect r;
- r.size = size;
- r.pos.x = math::clampSafe(pos.x, bound.pos.x, bound.pos.x + bound.size.x - size.x);
- r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y);
- return r;
- }
- /** Expands this Rect to contain `b` */
- Rect expand(Rect b) const {
- Rect r;
- r.pos.x = std::min(pos.x, b.pos.x);
- r.pos.y = std::min(pos.y, b.pos.y);
- r.size.x = std::max(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x;
- r.size.y = std::max(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y;
- return r;
- }
- /** Returns the intersection of `this` and `b` */
- Rect intersect(Rect b) const {
- Rect r;
- r.pos.x = std::max(pos.x, b.pos.x);
- r.pos.y = std::max(pos.y, b.pos.y);
- r.size.x = std::min(pos.x + size.x, b.pos.x + b.size.x) - r.pos.x;
- r.size.y = std::min(pos.y + size.y, b.pos.y + b.size.y) - r.pos.y;
- return r;
- }
- /** Returns a Rect with its position set to zero */
- Rect zeroPos() const {
- return Rect(Vec(), size);
- }
- /** Expands each corner
- Use a negative delta to shrink.
- */
- Rect grow(Vec delta) const {
- Rect r;
- r.pos = pos.minus(delta);
- r.size = size.plus(delta.mult(2.f));
- return r;
- }
-
- DEPRECATED bool contains(Vec v) const {return isContaining(v);}
- DEPRECATED bool contains(Rect r) const {return isContaining(r);}
- DEPRECATED bool intersects(Rect r) const {return isIntersecting(r);}
- };
-
-
- inline Vec Vec::clamp(Rect bound) const {
- return Vec(
- math::clamp(x, bound.pos.x, bound.pos.x + bound.size.x),
- math::clamp(y, bound.pos.y, bound.pos.y + bound.size.y));
- }
-
- inline Vec Vec::clampSafe(Rect bound) const {
- return Vec(
- math::clampSafe(x, bound.pos.x, bound.pos.x + bound.size.x),
- math::clampSafe(y, bound.pos.y, bound.pos.y + bound.size.y));
- }
-
-
- /** Useful for debugging Vecs and Rects, e.g.
- printf("%f %f %f %f", RECT_ARGS(r));
- */
- #define VEC_ARGS(v) (v).x, (v).y
- #define RECT_ARGS(r) (r).pos.x, (r).pos.y, (r).size.x, (r).size.y
-
-
- } // namespace math
- } // namespace rack
|