| @@ -1,88 +1,58 @@ | |||
| /* | |||
| The filter DSP code has been derived from | |||
| Miller Puckette's code hosted at | |||
| https://github.com/ddiakopoulos/MoogLadders/blob/master/src/RKSimulationModel.h | |||
| which is licensed for use under the following terms (MIT license): | |||
| Copyright (c) 2015, Miller Puckette. All rights reserved. | |||
| Redistribution and use in source and binary forms, with or without | |||
| modification, are permitted provided that the following conditions are met: | |||
| * Redistributions of source code must retain the above copyright notice, this | |||
| list of conditions and the following disclaimer. | |||
| * Redistributions in binary form must reproduce the above copyright notice, | |||
| this list of conditions and the following disclaimer in the documentation | |||
| and/or other materials provided with the distribution. | |||
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |||
| DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |||
| FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
| DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |||
| SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |||
| OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
| */ | |||
| #include "Fundamental.hpp" | |||
| #include "dsp/functions.hpp" | |||
| #include "dsp/resampler.hpp" | |||
| #include "dsp/ode.hpp" | |||
| // The clipping function of a transistor pair is approximately tanh(x) | |||
| // TODO: Put this in a lookup table. 5th order approx doesn't seem to cut it | |||
| inline float clip(float x) { | |||
| return tanhf(x); | |||
| } | |||
| struct LadderFilter { | |||
| float cutoff = 1000.0f; | |||
| float omega0; | |||
| float resonance = 1.0f; | |||
| float state[4] = {}; | |||
| void calculateDerivatives(float input, float *dstate, const float *state) { | |||
| float cutoff2Pi = 2*M_PI * cutoff; | |||
| float satstate0 = clip(state[0]); | |||
| float satstate1 = clip(state[1]); | |||
| float satstate2 = clip(state[2]); | |||
| dstate[0] = cutoff2Pi * (clip(input - resonance * state[3]) - satstate0); | |||
| dstate[1] = cutoff2Pi * (satstate0 - satstate1); | |||
| dstate[2] = cutoff2Pi * (satstate1 - satstate2); | |||
| dstate[3] = cutoff2Pi * (satstate2 - clip(state[3])); | |||
| float state[4]; | |||
| float input; | |||
| float lowpass; | |||
| float highpass; | |||
| LadderFilter() { | |||
| reset(); | |||
| setCutoff(0.f); | |||
| } | |||
| void process(float input, float dt) { | |||
| float deriv1[4], deriv2[4], deriv3[4], deriv4[4], tempState[4]; | |||
| calculateDerivatives(input, deriv1, state); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + 0.5f * dt * deriv1[i]; | |||
| calculateDerivatives(input, deriv2, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + 0.5f * dt * deriv2[i]; | |||
| calculateDerivatives(input, deriv3, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + dt * deriv3[i]; | |||
| calculateDerivatives(input, deriv4, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| state[i] += (1.0f / 6.0f) * dt * (deriv1[i] + 2.0f * deriv2[i] + 2.0f * deriv3[i] + deriv4[i]); | |||
| } | |||
| void reset() { | |||
| for (int i = 0; i < 4; i++) { | |||
| state[i] = 0.0f; | |||
| state[i] = 0.f; | |||
| } | |||
| } | |||
| void setCutoff(float cutoff) { | |||
| omega0 = 2.f*M_PI * cutoff; | |||
| } | |||
| void process(float input, float dt) { | |||
| stepRK4(0.f, dt, state, 4, [&](float t, const float y[], float dydt[]) { | |||
| float inputc = clip(input - resonance * y[3]); | |||
| float yc0 = clip(y[0]); | |||
| float yc1 = clip(y[1]); | |||
| float yc2 = clip(y[2]); | |||
| float yc3 = clip(y[3]); | |||
| dydt[0] = omega0 * (inputc - yc0); | |||
| dydt[1] = omega0 * (yc0 - yc1); | |||
| dydt[2] = omega0 * (yc1 - yc2); | |||
| dydt[3] = omega0 * (yc2 - yc3); | |||
| }); | |||
| lowpass = state[3]; | |||
| highpass = clip((input - resonance*state[3]) - 4 * state[0] + 6*state[1] - 4*state[2] + state[3]); | |||
| } | |||
| }; | |||
| static const int UPSAMPLE = 2; | |||
| struct VCF : Module { | |||
| enum ParamIds { | |||
| FREQ_PARAM, | |||
| @@ -106,70 +76,99 @@ struct VCF : Module { | |||
| }; | |||
| LadderFilter filter; | |||
| // Upsampler<UPSAMPLE, 8> inputUpsampler; | |||
| // Decimator<UPSAMPLE, 8> lowpassDecimator; | |||
| // Decimator<UPSAMPLE, 8> highpassDecimator; | |||
| VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step() override; | |||
| void onReset() override { | |||
| filter.reset(); | |||
| } | |||
| }; | |||
| void step() override { | |||
| if (!outputs[LPF_OUTPUT].active && !outputs[HPF_OUTPUT].active) { | |||
| outputs[LPF_OUTPUT].value = 0.f; | |||
| outputs[HPF_OUTPUT].value = 0.f; | |||
| return; | |||
| } | |||
| void VCF::step() { | |||
| float input = inputs[IN_INPUT].value / 5.0f; | |||
| float drive = params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.0f; | |||
| float gain = powf(100.0f, drive); | |||
| input *= gain; | |||
| // Add -60dB noise to bootstrap self-oscillation | |||
| input += 1e-6f * (2.0f*randomUniform() - 1.0f); | |||
| // Set resonance | |||
| float res = params[RES_PARAM].value + inputs[RES_INPUT].value / 5.0f; | |||
| res = 5.5f * clamp(res, 0.0f, 1.0f); | |||
| filter.resonance = res; | |||
| // Set cutoff frequency | |||
| float cutoffExp = params[FREQ_PARAM].value + params[FREQ_CV_PARAM].value * inputs[FREQ_INPUT].value / 5.0f; | |||
| cutoffExp = clamp(cutoffExp, 0.0f, 1.0f); | |||
| const float minCutoff = 15.0f; | |||
| const float maxCutoff = 8400.0f; | |||
| filter.cutoff = minCutoff * powf(maxCutoff / minCutoff, cutoffExp); | |||
| // Push a sample to the state filter | |||
| filter.process(input, 1.0f/engineGetSampleRate()); | |||
| // Set outputs | |||
| outputs[LPF_OUTPUT].value = 5.0f * filter.state[3]; | |||
| outputs[HPF_OUTPUT].value = 5.0f * (input - filter.state[3]); | |||
| } | |||
| float input = inputs[IN_INPUT].value / 5.f; | |||
| float drive = clamp(params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.f, 0.f, 1.f); | |||
| float gain = powf(1.f + drive, 5); | |||
| input *= gain; | |||
| // Add -60dB noise to bootstrap self-oscillation | |||
| input += 1e-6f * (2.f * randomUniform() - 1.f); | |||
| // Set resonance | |||
| float res = clamp(params[RES_PARAM].value + inputs[RES_INPUT].value / 10.f, 0.f, 1.f); | |||
| filter.resonance = powf(res, 2) * 10.f; | |||
| // Set cutoff frequency | |||
| float pitch = 0.f; | |||
| if (inputs[FREQ_INPUT].active) | |||
| pitch += inputs[FREQ_INPUT].value * quadraticBipolar(params[FREQ_CV_PARAM].value); | |||
| pitch += params[FREQ_PARAM].value * 10.f - 5.f; | |||
| pitch += quadraticBipolar(params[FINE_PARAM].value * 2.f - 1.f) * 7.f / 12.f; | |||
| float cutoff = 261.626f * powf(2.f, pitch); | |||
| cutoff = clamp(cutoff, 1.f, 8000.f); | |||
| filter.setCutoff(cutoff); | |||
| /* | |||
| // Process sample | |||
| float dt = engineGetSampleTime() / UPSAMPLE; | |||
| float inputBuf[UPSAMPLE]; | |||
| float lowpassBuf[UPSAMPLE]; | |||
| float highpassBuf[UPSAMPLE]; | |||
| inputUpsampler.process(input, inputBuf); | |||
| for (int i = 0; i < UPSAMPLE; i++) { | |||
| // Step the filter | |||
| filter.process(inputBuf[i], dt); | |||
| lowpassBuf[i] = filter.lowpass; | |||
| highpassBuf[i] = filter.highpass; | |||
| } | |||
| struct VCFWidget : ModuleWidget { | |||
| VCFWidget(VCF *module); | |||
| // Set outputs | |||
| if (outputs[LPF_OUTPUT].active) { | |||
| outputs[LPF_OUTPUT].value = 5.f * lowpassDecimator.process(lowpassBuf); | |||
| } | |||
| if (outputs[HPF_OUTPUT].active) { | |||
| outputs[HPF_OUTPUT].value = 5.f * highpassDecimator.process(highpassBuf); | |||
| } | |||
| */ | |||
| filter.process(input, engineGetSampleTime()); | |||
| outputs[LPF_OUTPUT].value = 5.f * filter.lowpass; | |||
| outputs[HPF_OUTPUT].value = 5.f * filter.highpass; | |||
| } | |||
| }; | |||
| VCFWidget::VCFWidget(VCF *module) : ModuleWidget(module) { | |||
| setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 365))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 365))); | |||
| addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.0f, 1.0f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.0f, 1.0f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.0f, 1.0f, 0.0f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.0f, 1.0f, 0.0f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.0f, 1.0f, 0.0f)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); | |||
| struct VCFWidget : ModuleWidget { | |||
| VCFWidget(VCF *module) : ModuleWidget(module) { | |||
| setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x - 30, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 365))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x - 30, 365))); | |||
| addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.f, 1.f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.f, 1.f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.f, 1.f, 0.f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.f, 1.f, 0.f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.f, 1.f, 0.f)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); | |||
| addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); | |||
| addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); | |||
| } | |||
| }; | |||
| addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); | |||
| addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); | |||
| } | |||
| Model *modelVCF = Model::create<VCF, VCFWidget>("Fundamental", "VCF", "VCF", FILTER_TAG); | |||