|
@@ -1,88 +1,58 @@ |
|
|
/* |
|
|
|
|
|
The filter DSP code has been derived from |
|
|
|
|
|
Miller Puckette's code hosted at |
|
|
|
|
|
https://github.com/ddiakopoulos/MoogLadders/blob/master/src/RKSimulationModel.h |
|
|
|
|
|
which is licensed for use under the following terms (MIT license): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Copyright (c) 2015, Miller Puckette. All rights reserved. |
|
|
|
|
|
|
|
|
|
|
|
Redistribution and use in source and binary forms, with or without |
|
|
|
|
|
modification, are permitted provided that the following conditions are met: |
|
|
|
|
|
|
|
|
|
|
|
* Redistributions of source code must retain the above copyright notice, this |
|
|
|
|
|
list of conditions and the following disclaimer. |
|
|
|
|
|
* Redistributions in binary form must reproduce the above copyright notice, |
|
|
|
|
|
this list of conditions and the following disclaimer in the documentation |
|
|
|
|
|
and/or other materials provided with the distribution. |
|
|
|
|
|
|
|
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
|
|
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
|
|
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
|
|
|
|
|
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE |
|
|
|
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
|
|
|
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
|
|
|
|
|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
|
|
|
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, |
|
|
|
|
|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
|
|
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
*/ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "Fundamental.hpp" |
|
|
#include "Fundamental.hpp" |
|
|
|
|
|
#include "dsp/functions.hpp" |
|
|
|
|
|
#include "dsp/resampler.hpp" |
|
|
|
|
|
#include "dsp/ode.hpp" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// The clipping function of a transistor pair is approximately tanh(x) |
|
|
|
|
|
// TODO: Put this in a lookup table. 5th order approx doesn't seem to cut it |
|
|
|
|
|
inline float clip(float x) { |
|
|
inline float clip(float x) { |
|
|
return tanhf(x); |
|
|
return tanhf(x); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
struct LadderFilter { |
|
|
struct LadderFilter { |
|
|
float cutoff = 1000.0f; |
|
|
|
|
|
|
|
|
float omega0; |
|
|
float resonance = 1.0f; |
|
|
float resonance = 1.0f; |
|
|
float state[4] = {}; |
|
|
|
|
|
|
|
|
|
|
|
void calculateDerivatives(float input, float *dstate, const float *state) { |
|
|
|
|
|
float cutoff2Pi = 2*M_PI * cutoff; |
|
|
|
|
|
|
|
|
|
|
|
float satstate0 = clip(state[0]); |
|
|
|
|
|
float satstate1 = clip(state[1]); |
|
|
|
|
|
float satstate2 = clip(state[2]); |
|
|
|
|
|
|
|
|
|
|
|
dstate[0] = cutoff2Pi * (clip(input - resonance * state[3]) - satstate0); |
|
|
|
|
|
dstate[1] = cutoff2Pi * (satstate0 - satstate1); |
|
|
|
|
|
dstate[2] = cutoff2Pi * (satstate1 - satstate2); |
|
|
|
|
|
dstate[3] = cutoff2Pi * (satstate2 - clip(state[3])); |
|
|
|
|
|
|
|
|
float state[4]; |
|
|
|
|
|
float input; |
|
|
|
|
|
float lowpass; |
|
|
|
|
|
float highpass; |
|
|
|
|
|
|
|
|
|
|
|
LadderFilter() { |
|
|
|
|
|
reset(); |
|
|
|
|
|
setCutoff(0.f); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void process(float input, float dt) { |
|
|
|
|
|
float deriv1[4], deriv2[4], deriv3[4], deriv4[4], tempState[4]; |
|
|
|
|
|
|
|
|
|
|
|
calculateDerivatives(input, deriv1, state); |
|
|
|
|
|
for (int i = 0; i < 4; i++) |
|
|
|
|
|
tempState[i] = state[i] + 0.5f * dt * deriv1[i]; |
|
|
|
|
|
|
|
|
|
|
|
calculateDerivatives(input, deriv2, tempState); |
|
|
|
|
|
for (int i = 0; i < 4; i++) |
|
|
|
|
|
tempState[i] = state[i] + 0.5f * dt * deriv2[i]; |
|
|
|
|
|
|
|
|
|
|
|
calculateDerivatives(input, deriv3, tempState); |
|
|
|
|
|
for (int i = 0; i < 4; i++) |
|
|
|
|
|
tempState[i] = state[i] + dt * deriv3[i]; |
|
|
|
|
|
|
|
|
|
|
|
calculateDerivatives(input, deriv4, tempState); |
|
|
|
|
|
for (int i = 0; i < 4; i++) |
|
|
|
|
|
state[i] += (1.0f / 6.0f) * dt * (deriv1[i] + 2.0f * deriv2[i] + 2.0f * deriv3[i] + deriv4[i]); |
|
|
|
|
|
} |
|
|
|
|
|
void reset() { |
|
|
void reset() { |
|
|
for (int i = 0; i < 4; i++) { |
|
|
for (int i = 0; i < 4; i++) { |
|
|
state[i] = 0.0f; |
|
|
|
|
|
|
|
|
state[i] = 0.f; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void setCutoff(float cutoff) { |
|
|
|
|
|
omega0 = 2.f*M_PI * cutoff; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
void process(float input, float dt) { |
|
|
|
|
|
stepRK4(0.f, dt, state, 4, [&](float t, const float y[], float dydt[]) { |
|
|
|
|
|
float inputc = clip(input - resonance * y[3]); |
|
|
|
|
|
float yc0 = clip(y[0]); |
|
|
|
|
|
float yc1 = clip(y[1]); |
|
|
|
|
|
float yc2 = clip(y[2]); |
|
|
|
|
|
float yc3 = clip(y[3]); |
|
|
|
|
|
|
|
|
|
|
|
dydt[0] = omega0 * (inputc - yc0); |
|
|
|
|
|
dydt[1] = omega0 * (yc0 - yc1); |
|
|
|
|
|
dydt[2] = omega0 * (yc1 - yc2); |
|
|
|
|
|
dydt[3] = omega0 * (yc2 - yc3); |
|
|
|
|
|
}); |
|
|
|
|
|
|
|
|
|
|
|
lowpass = state[3]; |
|
|
|
|
|
highpass = clip((input - resonance*state[3]) - 4 * state[0] + 6*state[1] - 4*state[2] + state[3]); |
|
|
|
|
|
} |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static const int UPSAMPLE = 2; |
|
|
|
|
|
|
|
|
struct VCF : Module { |
|
|
struct VCF : Module { |
|
|
enum ParamIds { |
|
|
enum ParamIds { |
|
|
FREQ_PARAM, |
|
|
FREQ_PARAM, |
|
@@ -106,70 +76,99 @@ struct VCF : Module { |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
LadderFilter filter; |
|
|
LadderFilter filter; |
|
|
|
|
|
// Upsampler<UPSAMPLE, 8> inputUpsampler; |
|
|
|
|
|
// Decimator<UPSAMPLE, 8> lowpassDecimator; |
|
|
|
|
|
// Decimator<UPSAMPLE, 8> highpassDecimator; |
|
|
|
|
|
|
|
|
VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} |
|
|
VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} |
|
|
void step() override; |
|
|
|
|
|
|
|
|
|
|
|
void onReset() override { |
|
|
void onReset() override { |
|
|
filter.reset(); |
|
|
filter.reset(); |
|
|
} |
|
|
} |
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void step() override { |
|
|
|
|
|
if (!outputs[LPF_OUTPUT].active && !outputs[HPF_OUTPUT].active) { |
|
|
|
|
|
outputs[LPF_OUTPUT].value = 0.f; |
|
|
|
|
|
outputs[HPF_OUTPUT].value = 0.f; |
|
|
|
|
|
return; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
void VCF::step() { |
|
|
|
|
|
float input = inputs[IN_INPUT].value / 5.0f; |
|
|
|
|
|
float drive = params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.0f; |
|
|
|
|
|
float gain = powf(100.0f, drive); |
|
|
|
|
|
input *= gain; |
|
|
|
|
|
// Add -60dB noise to bootstrap self-oscillation |
|
|
|
|
|
input += 1e-6f * (2.0f*randomUniform() - 1.0f); |
|
|
|
|
|
|
|
|
|
|
|
// Set resonance |
|
|
|
|
|
float res = params[RES_PARAM].value + inputs[RES_INPUT].value / 5.0f; |
|
|
|
|
|
res = 5.5f * clamp(res, 0.0f, 1.0f); |
|
|
|
|
|
filter.resonance = res; |
|
|
|
|
|
|
|
|
|
|
|
// Set cutoff frequency |
|
|
|
|
|
float cutoffExp = params[FREQ_PARAM].value + params[FREQ_CV_PARAM].value * inputs[FREQ_INPUT].value / 5.0f; |
|
|
|
|
|
cutoffExp = clamp(cutoffExp, 0.0f, 1.0f); |
|
|
|
|
|
const float minCutoff = 15.0f; |
|
|
|
|
|
const float maxCutoff = 8400.0f; |
|
|
|
|
|
filter.cutoff = minCutoff * powf(maxCutoff / minCutoff, cutoffExp); |
|
|
|
|
|
|
|
|
|
|
|
// Push a sample to the state filter |
|
|
|
|
|
filter.process(input, 1.0f/engineGetSampleRate()); |
|
|
|
|
|
|
|
|
|
|
|
// Set outputs |
|
|
|
|
|
outputs[LPF_OUTPUT].value = 5.0f * filter.state[3]; |
|
|
|
|
|
outputs[HPF_OUTPUT].value = 5.0f * (input - filter.state[3]); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
float input = inputs[IN_INPUT].value / 5.f; |
|
|
|
|
|
float drive = clamp(params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.f, 0.f, 1.f); |
|
|
|
|
|
float gain = powf(1.f + drive, 5); |
|
|
|
|
|
input *= gain; |
|
|
|
|
|
|
|
|
|
|
|
// Add -60dB noise to bootstrap self-oscillation |
|
|
|
|
|
input += 1e-6f * (2.f * randomUniform() - 1.f); |
|
|
|
|
|
|
|
|
|
|
|
// Set resonance |
|
|
|
|
|
float res = clamp(params[RES_PARAM].value + inputs[RES_INPUT].value / 10.f, 0.f, 1.f); |
|
|
|
|
|
filter.resonance = powf(res, 2) * 10.f; |
|
|
|
|
|
|
|
|
|
|
|
// Set cutoff frequency |
|
|
|
|
|
float pitch = 0.f; |
|
|
|
|
|
if (inputs[FREQ_INPUT].active) |
|
|
|
|
|
pitch += inputs[FREQ_INPUT].value * quadraticBipolar(params[FREQ_CV_PARAM].value); |
|
|
|
|
|
pitch += params[FREQ_PARAM].value * 10.f - 5.f; |
|
|
|
|
|
pitch += quadraticBipolar(params[FINE_PARAM].value * 2.f - 1.f) * 7.f / 12.f; |
|
|
|
|
|
float cutoff = 261.626f * powf(2.f, pitch); |
|
|
|
|
|
cutoff = clamp(cutoff, 1.f, 8000.f); |
|
|
|
|
|
filter.setCutoff(cutoff); |
|
|
|
|
|
|
|
|
|
|
|
/* |
|
|
|
|
|
// Process sample |
|
|
|
|
|
float dt = engineGetSampleTime() / UPSAMPLE; |
|
|
|
|
|
float inputBuf[UPSAMPLE]; |
|
|
|
|
|
float lowpassBuf[UPSAMPLE]; |
|
|
|
|
|
float highpassBuf[UPSAMPLE]; |
|
|
|
|
|
inputUpsampler.process(input, inputBuf); |
|
|
|
|
|
for (int i = 0; i < UPSAMPLE; i++) { |
|
|
|
|
|
// Step the filter |
|
|
|
|
|
filter.process(inputBuf[i], dt); |
|
|
|
|
|
lowpassBuf[i] = filter.lowpass; |
|
|
|
|
|
highpassBuf[i] = filter.highpass; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
struct VCFWidget : ModuleWidget { |
|
|
|
|
|
VCFWidget(VCF *module); |
|
|
|
|
|
|
|
|
// Set outputs |
|
|
|
|
|
if (outputs[LPF_OUTPUT].active) { |
|
|
|
|
|
outputs[LPF_OUTPUT].value = 5.f * lowpassDecimator.process(lowpassBuf); |
|
|
|
|
|
} |
|
|
|
|
|
if (outputs[HPF_OUTPUT].active) { |
|
|
|
|
|
outputs[HPF_OUTPUT].value = 5.f * highpassDecimator.process(highpassBuf); |
|
|
|
|
|
} |
|
|
|
|
|
*/ |
|
|
|
|
|
filter.process(input, engineGetSampleTime()); |
|
|
|
|
|
outputs[LPF_OUTPUT].value = 5.f * filter.lowpass; |
|
|
|
|
|
outputs[HPF_OUTPUT].value = 5.f * filter.highpass; |
|
|
|
|
|
} |
|
|
}; |
|
|
}; |
|
|
|
|
|
|
|
|
VCFWidget::VCFWidget(VCF *module) : ModuleWidget(module) { |
|
|
|
|
|
setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); |
|
|
|
|
|
|
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 365))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 365))); |
|
|
|
|
|
|
|
|
|
|
|
addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.0f, 1.0f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.0f, 1.0f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.0f, 1.0f, 0.0f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.0f, 1.0f, 0.0f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.0f, 1.0f, 0.0f)); |
|
|
|
|
|
|
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); |
|
|
|
|
|
|
|
|
struct VCFWidget : ModuleWidget { |
|
|
|
|
|
VCFWidget(VCF *module) : ModuleWidget(module) { |
|
|
|
|
|
setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); |
|
|
|
|
|
|
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x - 30, 0))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(15, 365))); |
|
|
|
|
|
addChild(Widget::create<ScrewSilver>(Vec(box.size.x - 30, 365))); |
|
|
|
|
|
|
|
|
|
|
|
addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.f, 1.f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.f, 1.f, 0.5f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.f, 1.f, 0.f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.f, 1.f, 0.f)); |
|
|
|
|
|
addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.f, 1.f, 0.f)); |
|
|
|
|
|
|
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); |
|
|
|
|
|
addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); |
|
|
|
|
|
|
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); |
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); |
|
|
|
|
|
} |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); |
|
|
|
|
|
addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Model *modelVCF = Model::create<VCF, VCFWidget>("Fundamental", "VCF", "VCF", FILTER_TAG); |
|
|
Model *modelVCF = Model::create<VCF, VCFWidget>("Fundamental", "VCF", "VCF", FILTER_TAG); |