Browse Source

Rewrite LadderFilter

tags/v1.0.1
Andrew Belt 5 years ago
parent
commit
8bad806f79
1 changed files with 66 additions and 109 deletions
  1. +66
    -109
      src/VCF.cpp

+ 66
- 109
src/VCF.cpp View File

@@ -1,126 +1,58 @@
#include "Fundamental.hpp"
#include "dsp/functions.hpp"
#include "dsp/resampler.hpp"
#include "dsp/ode.hpp"


/**
This code is derived from the algorithm described in "Modeling and Measuring a
Moog Voltage-Controlled Filter, by Effrosyni Paschou, Fabián Esqueda, Vesa Välimäki
and John Mourjopoulos, for APSIPA Annual Summit and Conference 2017.
inline float clip(float x) {
return tanhf(x);
}

It is a 0df algorithm using Newton-Raphson's method (4 iterations) for solving
implicit equations, and midpoint integration method.

Derived from the article and adapted to VCV Rack by Ivan COHEN.
*/
struct LadderFilter0dfMidPoint {
float cutoff = 1000.f;
struct LadderFilter {
float omega0;
float resonance = 1.0f;
float gainFactor = 0.2f;
float A;
/** State variables */
float lastInput = 0.f;
float lastV[4] = {};
/** Outputs */
float state[4];
float input;
float lowpass;
float highpass;


LadderFilter0dfMidPoint() {
float VT = 26e-3f;
A = gainFactor / (2.f * VT);
}

inline float clip(float x) {
return tanhf(x);
LadderFilter() {
reset();
setCutoff(0.f);
}

void process(float input, float dt) {
float F[4];
float V[4];
float wc = 2 * M_PI * cutoff / A;

input *= gainFactor;

for (int i = 0; i < 4; i++) {
V[i] = lastV[i];
}

void reset() {
for (int i = 0; i < 4; i++) {
float S0 = A * (input + lastInput + resonance * (V[3] + lastV[3])) * 0.5f;
float S1 = A * (V[0] + lastV[0]) * 0.5f;
float S2 = A * (V[1] + lastV[1]) * 0.5f;
float S3 = A * (V[2] + lastV[2]) * 0.5f;
float S4 = A * (V[3] + lastV[3]) * 0.5f;

float t0 = clip(S0);
float t1 = clip(S1);
float t2 = clip(S2);
float t3 = clip(S3);
float t4 = clip(S4);

// F function (the one for which we need to find the roots with NR)
F[0] = V[0] - lastV[0] + wc * dt * (t0 + t1);
F[1] = V[1] - lastV[1] - wc * dt * (t1 - t2);
F[2] = V[2] - lastV[2] - wc * dt * (t2 - t3);
F[3] = V[3] - lastV[3] - wc * dt * (t3 - t4);

float g = wc * dt * A * 0.5f;

// derivatives of ti
float J0 = 1 - t0 * t0;
float J1 = 1 - t1 * t1;
float J2 = 1 - t2 * t2;
float J3 = 1 - t3 * t3;
float J4 = 1 - t4 * t4;

// Jacobian matrix elements
float a11 = 1 + g * J1;
float a14 = resonance * g * J0;
float a21 = -g * J1;
float a22 = 1 + g * J2;
float a32 = -g * J2;
float a33 = 1 + g * J3;
float a43 = -g * J3;
float a44 = 1 + g * J4;

// Newton-Raphson algorithm with Jacobian inverting
float deninv = 1.f / (a11 * a22 * a33 * a44 - a14 * a21 * a32 * a43);

float delta0 = ( F[0] * a22 * a33 * a44 - F[1] * a14 * a32 * a43 + F[2] * a14 * a22 * a43 - F[3] * a14 * a22 * a33) * deninv;
float delta1 = (-F[0] * a21 * a33 * a44 + F[1] * a11 * a33 * a44 - F[2] * a14 * a21 * a43 + F[3] * a14 * a21 * a33) * deninv;
float delta2 = ( F[0] * a21 * a32 * a44 - F[1] * a11 * a32 * a44 + F[2] * a11 * a22 * a44 - F[3] * a14 * a21 * a32) * deninv;
float delta3 = (-F[0] * a21 * a32 * a43 + F[1] * a11 * a32 * a43 - F[2] * a11 * a22 * a43 + F[3] * a11 * a22 * a33) * deninv;

delta0 = isfinite(delta0) ? delta0 : 0.f;
delta1 = isfinite(delta1) ? delta1 : 0.f;
delta2 = isfinite(delta2) ? delta2 : 0.f;
delta3 = isfinite(delta3) ? delta3 : 0.f;

V[0] -= delta0;
V[1] -= delta1;
V[2] -= delta2;
V[3] -= delta3;
state[i] = 0.f;
}
}

lastInput = input;
for (int i = 0; i < 4; i++)
lastV[i] = V[i];

// outputs are inverted
lowpass = -clip(V[3] / gainFactor);
highpass = -clip(((input + resonance * V[3]) + 4 * V[0] - 6 * V[1] + 4 * V[2] - V[3]) / gainFactor);
void setCutoff(float cutoff) {
omega0 = 2.f*M_PI * cutoff;
}

void reset() {
for (int i = 0; i < 4; i++) {
lastV[i] = 0.f;
}
lastInput = 0.f;
void process(float input, float dt) {
stepRK4(0.f, dt, state, 4, [&](float t, const float y[], float dydt[]) {
float inputc = clip(input - resonance * y[3]);
float yc0 = clip(y[0]);
float yc1 = clip(y[1]);
float yc2 = clip(y[2]);
float yc3 = clip(y[3]);

dydt[0] = omega0 * (inputc - yc0);
dydt[1] = omega0 * (yc0 - yc1);
dydt[2] = omega0 * (yc1 - yc2);
dydt[3] = omega0 * (yc2 - yc3);
});

lowpass = state[3];
highpass = clip((input - resonance*state[3]) - 4 * state[0] + 6*state[1] - 4*state[2] + state[3]);
}
};


static const int UPSAMPLE = 2;

struct VCF : Module {
enum ParamIds {
FREQ_PARAM,
@@ -143,7 +75,10 @@ struct VCF : Module {
NUM_OUTPUTS
};

LadderFilter0dfMidPoint filter;
LadderFilter filter;
// Upsampler<UPSAMPLE, 8> inputUpsampler;
// Decimator<UPSAMPLE, 8> lowpassDecimator;
// Decimator<UPSAMPLE, 8> highpassDecimator;

VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {}

@@ -171,16 +106,38 @@ struct VCF : Module {
filter.resonance = powf(res, 2) * 10.f;

// Set cutoff frequency
float pitch = inputs[FREQ_INPUT].value * quadraticBipolar(params[FREQ_CV_PARAM].value);
pitch += params[FREQ_PARAM].value * 10.f - 3.f;
float pitch = 0.f;
if (inputs[FREQ_INPUT].active)
pitch += inputs[FREQ_INPUT].value * quadraticBipolar(params[FREQ_CV_PARAM].value);
pitch += params[FREQ_PARAM].value * 10.f - 5.f;
pitch += quadraticBipolar(params[FINE_PARAM].value * 2.f - 1.f) * 7.f / 12.f;
float cutoff = 261.626f * powf(2.f, pitch);
filter.cutoff = clamp(cutoff, 1.f, 20000.f);

// Step the filter
filter.process(input, engineGetSampleTime());
cutoff = clamp(cutoff, 1.f, 8000.f);
filter.setCutoff(cutoff);

/*
// Process sample
float dt = engineGetSampleTime() / UPSAMPLE;
float inputBuf[UPSAMPLE];
float lowpassBuf[UPSAMPLE];
float highpassBuf[UPSAMPLE];
inputUpsampler.process(input, inputBuf);
for (int i = 0; i < UPSAMPLE; i++) {
// Step the filter
filter.process(inputBuf[i], dt);
lowpassBuf[i] = filter.lowpass;
highpassBuf[i] = filter.highpass;
}

// Set outputs
if (outputs[LPF_OUTPUT].active) {
outputs[LPF_OUTPUT].value = 5.f * lowpassDecimator.process(lowpassBuf);
}
if (outputs[HPF_OUTPUT].active) {
outputs[HPF_OUTPUT].value = 5.f * highpassDecimator.process(highpassBuf);
}
*/
filter.process(input, engineGetSampleTime());
outputs[LPF_OUTPUT].value = 5.f * filter.lowpass;
outputs[HPF_OUTPUT].value = 5.f * filter.highpass;
}


Loading…
Cancel
Save