Browse Source

Add NanoWidget class, exposes all NanoVG API :D

gh-pages
falkTX 9 years ago
parent
commit
8b29f3f398
10 changed files with 14160 additions and 0 deletions
  1. +1
    -0
      dgl/Makefile
  2. +765
    -0
      dgl/NanoWidget.hpp
  3. +590
    -0
      dgl/src/NanoWidget.cpp
  4. +18
    -0
      dgl/src/nanovg/LICENSE.txt
  5. +1670
    -0
      dgl/src/nanovg/fontstash.h
  6. +2475
    -0
      dgl/src/nanovg/nanovg.c
  7. +590
    -0
      dgl/src/nanovg/nanovg.h
  8. +1311
    -0
      dgl/src/nanovg/nanovg_gl.h
  9. +4676
    -0
      dgl/src/nanovg/stb_image.c
  10. +2064
    -0
      dgl/src/nanovg/stb_truetype.h

+ 1
- 0
dgl/Makefile View File

@@ -23,6 +23,7 @@ OBJS = \
src/ImageKnob.cpp.o \
src/ImageSlider.cpp.o \
src/ImageSwitch.cpp.o \
src/NanoWidget.cpp.o \
src/Widget.cpp.o

ifeq ($(MACOS),true)


+ 765
- 0
dgl/NanoWidget.hpp View File

@@ -0,0 +1,765 @@
/*
* DISTRHO Plugin Framework (DPF)
* Copyright (C) 2012-2014 Filipe Coelho <falktx@falktx.com>
*
* Permission to use, copy, modify, and/or distribute this software for any purpose with
* or without fee is hereby granted, provided that the above copyright notice and this
* permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

#ifndef DGL_NANO_WIDGET_HPP_INCLUDED
#define DGL_NANO_WIDGET_HPP_INCLUDED

#include "Widget.hpp"

struct NVGcolor;
struct NVGcontext;
struct NVGpaint;

START_NAMESPACE_DGL

// -----------------------------------------------------------------------

/**
NanoVG Image class.

This implements NanoVG images as a C++ class where deletion is handled automatically.
Images need to be created within a NanoWidget class.
*/
class NanoImage
{
public:
/**
Destructor.
*/
~NanoImage();

/**
Get width.
*/
int getWidth() const;

/**
Get height.
*/
int getHeight() const;

/**
Get size.
*/
Size<int> getSize() const;

/**
Update image data.
*/
void updateImage(const uchar* data);

protected:
/**
Constructors are protected.
NanoImages must be created within a NanoWidget class.
*/
NanoImage(const char* filename);
NanoImage(uchar* data, int ndata);
NanoImage(int w, int h, const uchar* data);

private:
NVGcontext* const fContext;
const int fImageId;
friend class NanoWidget;

DISTRHO_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(NanoImage)
};

// -----------------------------------------------------------------------

/**
NanoVG Widget class.

This class implements the NanoVG drawing API inside a DGL Widget.
All calls should be wrapped in beginFrame() & endFrame().

@section Color utils
Colors in NanoVG are stored as uints in ABGR format.

@section State Handling
NanoVG contains state which represents how paths will be rendered.
The state contains transform, fill and stroke styles, text and font styles, and scissor clipping.

@section Render styles
Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern.
Solid color is simply defined as a color value, different kinds of paints can be created
using linearGradient(), boxGradient(), radialGradient() and imagePattern().

Current render style can be saved and restored using save() and restore().

@section Transforms
The paths, gradients, patterns and scissor region are transformed by an transformation
matrix at the time when they are passed to the API.
The current transformation matrix is a affine matrix:
[sx kx tx]
[ky sy ty]
[ 0 0 1]
Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation.
The last row is assumed to be 0,0,1 and is not stored.

Apart from resetTransform(), each transformation function first creates
specific transformation matrix and pre-multiplies the current transformation by it.

Current coordinate system (transformation) can be saved and restored using save() and restore().

@section Images
NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering.
In addition you can upload your own image. The image loading is provided by stb_image.

@section Paints
NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern.
These can be used as paints for strokes and fills.

@section Scissoring
Scissoring allows you to clip the rendering into a rectangle. This is useful for varius
user interface cases like rendering a text edit or a timeline.

@section Paths
Drawing a new shape starts with beginPath(), it clears all the currently defined paths.
Then you define one or more paths and sub-paths which describe the shape. The are functions
to draw common shapes like rectangles and circles, and lower level step-by-step functions,
which allow to define a path curve by curve.

NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise
winding and holes should have counter clockwise order. To specify winding of a path you can
call pathWinding(). This is useful especially for the common shapes, which are drawn CCW.

Finally you can fill the path using current fill style by calling fill(), and stroke it
with current stroke style by calling stroke().

The curve segments and sub-paths are transformed by the current transform.

@section Text
NanoVG allows you to load .ttf files and use the font to render text.

The appearance of the text can be defined by setting the current text style
and by specifying the fill color. Common text and font settings such as
font size, letter spacing and text align are supported. Font blur allows you
to create simple text effects such as drop shadows.

At render time the font face can be set based on the font handles or name.

Font measure functions return values in local space, the calculations are
carried in the same resolution as the final rendering. This is done because
the text glyph positions are snapped to the nearest pixels sharp rendering.

The local space means that values are not rotated or scale as per the current
transformation. For example if you set font size to 12, which would mean that
line height is 16, then regardless of the current scaling and rotation, the
returned line height is always 16. Some measures may vary because of the scaling
since aforementioned pixel snapping.

While this may sound a little odd, the setup allows you to always render the
same way regardless of scaling. I.e. following works regardless of scaling:

@code
const char* txt = "Text me up.";
textBounds(vg, x,y, txt, NULL, bounds);
beginPath(vg);
roundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]);
fill(vg);
@endcode

Note: currently only solid color fill is supported for text.
*/
class NanoWidget : public Widget
{
public:
enum Align {
// Horizontal align
ALIGN_LEFT = 1 << 0, // Align horizontally to left (default).
ALIGN_CENTER = 1 << 1, // Align horizontally to center.
ALIGN_RIGHT = 1 << 2, // Align horizontally to right.
// Vertical align
ALIGN_TOP = 1 << 3, // Align vertically to top.
ALIGN_MIDDLE = 1 << 4, // Align vertically to middle.
ALIGN_BOTTOM = 1 << 5, // Align vertically to bottom.
ALIGN_BASELINE = 1 << 6 // Align vertically to baseline (default).
};

enum Alpha {
STRAIGHT_ALPHA,
PREMULTIPLIED_ALPHA,
};

enum LineCap {
BUTT,
ROUND,
SQUARE,
BEVEL,
MITER
};

enum PatternRepeat {
REPEAT_NONE = 0x0, // No repeat
REPEAT_X = 0x1, // Repeat in X direction
REPEAT_Y = 0x2 // Repeat in Y direction
};

enum Solidity {
SOLID = 1, // CCW
HOLE = 2 // CW
};

enum Winding {
CCW = 1, // Winding for solid shapes
CW = 2 // Winding for holes
};

struct Color {
union {
float rgba[4];
struct { float r,g,b,a; };
};

Color() noexcept;
Color(const NVGcolor&) noexcept;
operator NVGcolor() const noexcept;
};

struct Paint {
float xform[6];
float extent[2];
float radius;
float feather;
Color innerColor;
Color outerColor;
int imageId;
PatternRepeat repeat;

Paint() noexcept;
Paint(const NVGpaint&) noexcept;
operator NVGpaint() const noexcept;
};

struct GlyphPosition {
const char* str; // Position of the glyph in the input string.
float x; // The x-coordinate of the logical glyph position.
float minx, maxx; // The bounds of the glyph shape.
};

struct TextRow {
const char* start; // Pointer to the input text where the row starts.
const char* end; // Pointer to the input text where the row ends (one past the last character).
const char* next; // Pointer to the beginning of the next row.
float width; // Logical width of the row.
float minx, maxx; // Actual bounds of the row. Logical with and bounds can differ because of kerning and some parts over extending.
};

typedef int FontId;

/**
Constructor.
*/
NanoWidget(Window& parent);

/**
Destructor.
*/
~NanoWidget() override;

/**
Get the NanoVG context.
You should not need this under normal circumstances.
*/
NVGcontext* getContext() const noexcept
{
return fContext;
}

protected:
/**
Begin drawing a new frame.
@param withAlha Controls if drawing the shapes to the render target should be done using straight or pre-multiplied alpha.
*/
void beginFrame(Alpha alpha = PREMULTIPLIED_ALPHA);

/**
Ends drawing flushing remaining render state.
*/
void endFrame();

/* --------------------------------------------------------------------
* Color utils */

/**
Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f).
*/
static Color RGB(uchar r, uchar g, uchar b);

/**
Returns a color value from red, green, blue values. Alpha will be set to 1.0f.
*/
static Color RGBf(float r, float g, float b);

/**
Returns a color value from red, green, blue and alpha values.
*/
static Color RGBA(uchar r, uchar g, uchar b, uchar a);

/**
Returns a color value from red, green, blue and alpha values.
*/
static Color RGBAf(float r, float g, float b, float a);

/**
Linearly interpolates from color c0 to c1, and returns resulting color value.
*/
static Color lerpRGBA(const Color& c0, const Color& c1, float u);

/**
Returns color value specified by hue, saturation and lightness.
HSL values are all in range [0..1], alpha will be set to 255.
*/
static Color HSL(float h, float s, float l);

/**
Returns color value specified by hue, saturation and lightness and alpha.
HSL values are all in range [0..1], alpha in range [0..255]
*/
static Color HSLA(float h, float s, float l, uchar a);

/* --------------------------------------------------------------------
* State Handling */

/**
Pushes and saves the current render state into a state stack.
A matching restore() must be used to restore the state.
*/
void save();

/**
Pops and restores current render state.
*/
void restore();

/**
Resets current render state to default values. Does not affect the render state stack.
*/
void reset();

/* --------------------------------------------------------------------
* Render styles */

/**
Sets current stroke style to a solid color.
*/
void strokeColor(const Color& color);

/**
Sets current stroke style to a paint, which can be a one of the gradients or a pattern.
*/
void strokePaint(const Paint& paint);

/**
Sets current fill style to a solid color.
*/
void fillColor(const Color& color);

/**
Sets current fill style to a paint, which can be a one of the gradients or a pattern.
*/
void fillPaint(const Paint& paint);

/**
Sets the miter limit of the stroke style.
Miter limit controls when a sharp corner is beveled.
*/
void miterLimit(float limit);

/**
Sets the stroke width of the stroke style.
*/
void strokeWidth(float size);

/**
Sets how the end of the line (cap) is drawn,
Can be one of: BUTT, ROUND, SQUARE.
*/
void lineCap(LineCap cap = BUTT);

/**
Sets how sharp path corners are drawn.
Can be one of MITER, ROUND, BEVEL.
*/
void lineJoin(LineCap join = MITER);

/* --------------------------------------------------------------------
* Transforms */

/**
Resets current transform to a identity matrix.
*/
void resetTransform();

/**
Pre-multiplies current coordinate system by specified matrix.
The parameters are interpreted as matrix as follows:
[a c e]
[b d f]
[0 0 1]
*/
void transform(float a, float b, float c, float d, float e, float f);

/**
Translates current coordinate system.
*/
void translate(float x, float y);

/**
Rotates current coordinate system. Angle is specified in radians.
*/
void rotate(float angle);

/**
Skews the current coordinate system along X axis. Angle is specified in radians.
*/
void skewX(float angle);

/**
Skews the current coordinate system along Y axis. Angle is specified in radians.
*/
void skewY(float angle);

/**
Scales the current coordinate system.
*/
void scale(float x, float y);

/**
Stores the top part (a-f) of the current transformation matrix in to the specified buffer.
[a c e]
[b d f]
[0 0 1]
*/
void currentTransform(float xform[6]);

/**
The following functions can be used to make calculations on 2x3 transformation matrices.
A 2x3 matrix is represented as float[6]. */

/**
Sets the transform to identity matrix.
*/
static void transformIdentity(float dst[6]);

/**
Sets the transform to translation matrix matrix.
*/
static void transformTranslate(float dst[6], float tx, float ty);

/**
Sets the transform to scale matrix.
*/
static void transformScale(float dst[6], float sx, float sy);

/**
Sets the transform to rotate matrix. Angle is specified in radians.
*/
static void transformRotate(float dst[6], float a);

/**
Sets the transform to skew-x matrix. Angle is specified in radians.
*/
static void transformSkewX(float dst[6], float a);

/**
Sets the transform to skew-y matrix. Angle is specified in radians.
*/
static void transformSkewY(float dst[6], float a);

/**
Sets the transform to the result of multiplication of two transforms, of A = A*B.
*/
static void transformMultiply(float dst[6], const float src[6]);

/**
Sets the transform to the result of multiplication of two transforms, of A = B*A.
*/
static void transformPremultiply(float dst[6], const float src[6]);

/**
Sets the destination to inverse of specified transform.
Returns 1 if the inverse could be calculated, else 0.
*/
static int transformInverse(float dst[6], const float src[6]);

/**
Transform a point by given transform.
*/
static void transformPoint(float& dstx, float& dsty, const float xform[6], float srcx, float srcy);

/**
Convert degrees to radians.
*/
static float degToRad(float deg);

/**
Convert radians to degrees.
*/
static float radToDeg(float rad);

/* --------------------------------------------------------------------
* Images */

/**
Creates image by loading it from the disk from specified file name.
*/
NanoImage createImage(const char* filename);

/**
Creates image by loading it from the specified chunk of memory.
*/
NanoImage createImageMem(uchar* data, int ndata);

/**
Creates image from specified image data.
*/
NanoImage createImageRGBA(int w, int h, const uchar* data);

/* --------------------------------------------------------------------
* Paints */

/**
Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates
of the linear gradient, icol specifies the start color and ocol the end color.
The gradient is transformed by the current transform when it is passed to fillPaint() or strokePaint().
*/
Paint linearGradient(float sx, float sy, float ex, float ey, const Color& icol, const Color& ocol);

/**
Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering
drop shadows or highlights for boxes. Parameters (x,y) define the top-left corner of the rectangle,
(w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry
the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient.
The gradient is transformed by the current transform when it is passed to fillPaint() or strokePaint().
*/
Paint boxGradient(float x, float y, float w, float h, float r, float f, const Color& icol, const Color& ocol);

/**
Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify
the inner and outer radius of the gradient, icol specifies the start color and ocol the end color.
The gradient is transformed by the current transform when it is passed to fillPaint() or strokePaint().
*/
Paint radialGradient(float cx, float cy, float inr, float outr, const Color& icol, const Color& ocol);

/**
Creates and returns an image patter. Parameters (ox,oy) specify the left-top location of the image pattern,
(ex,ey) the size of one image, angle rotation around the top-left corner, image is handle to the image to render,
and repeat tells if the image should be repeated across x or y.
The gradient is transformed by the current transform when it is passed to fillPaint() or strokePaint().
*/
Paint imagePattern(float ox, float oy, float ex, float ey, float angle, const NanoImage& image, PatternRepeat repeat);

/* --------------------------------------------------------------------
* Scissoring */

/**
Sets the current
The scissor rectangle is transformed by the current transform.
*/
void scissor(float x, float y, float w, float h);

/**
Reset and disables scissoring.
*/
void resetScissor();

/* --------------------------------------------------------------------
* Paths */

/**
Clears the current path and sub-paths.
*/
void beginPath();

/**
Starts new sub-path with specified point as first point.
*/
void moveTo(float x, float y);

/**
Adds line segment from the last point in the path to the specified point.
*/
void lineTo(float x, float y);

/**
Adds bezier segment from last point in the path via two control points to the specified point.
*/
void bezierTo(float c1x, float c1y, float c2x, float c2y, float x, float y);

/**
Adds an arc segment at the corner defined by the last path point, and two specified points.
*/
void arcTo(float x1, float y1, float x2, float y2, float radius);

/**
Closes current sub-path with a line segment.
*/
void closePath();

/**
Sets the current sub-path winding.
*/
void pathWinding(Winding dir);

/**
Creates new arc shaped sub-path.
*/
void arc(float cx, float cy, float r, float a0, float a1, Winding dir);

/**
Creates new rectangle shaped sub-path.
*/
void rect(float x, float y, float w, float h);

/**
Creates new rounded rectangle shaped sub-path.
*/
void roundedRect(float x, float y, float w, float h, float r);

/**
Creates new ellipse shaped sub-path.
*/
void ellipse(float cx, float cy, float rx, float ry);

/**
Creates new circle shaped sub-path.
*/
void circle(float cx, float cy, float r);

/**
Fills the current path with current fill style.
*/
void fill();

/**
Fills the current path with current stroke style.
*/
void stroke();

/* --------------------------------------------------------------------
* Text */

/**
Creates font by loading it from the disk from specified file name.
Returns handle to the font.
*/
FontId createFont(const char* name, const char* filename);

/**
Creates font by loading it from the specified memory chunk.
Returns handle to the font.
*/
FontId createFontMem(const char* name, uchar* data, int ndata, bool freeData);

/**
Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found.
*/
FontId findFont(const char* name);

/**
Sets the font size of current text style.
*/
void fontSize(float size);

/**
Sets the blur of current text style.
*/
void fontBlur(float blur);

/**
Sets the letter spacing of current text style.
*/
void textLetterSpacing(float spacing);

/**
Sets the proportional line height of current text style. The line height is specified as multiple of font size.
*/
void textLineHeight(float lineHeight);

/**
Sets the text align of current text style.
*/
void textAlign(Align align);

/**
Sets the font face based on specified id of current text style.
*/
void fontFaceId(FontId font);

/**
Sets the font face based on specified name of current text style.
*/
void fontFace(const char* font);

/**
Draws text string at specified location. If end is specified only the sub-string up to the end is drawn.
*/
float text(float x, float y, const char* string, const char* end);

/**
Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn.
White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
Words longer than the max width are slit at nearest character (i.e. no hyphenation).
*/
void textBox(float x, float y, float breakRowWidth, const char* string, const char* end);

/**
Measures the specified text string. Parameter bounds should be a pointer to float[4],
if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
Returns the horizontal advance of the measured text (i.e. where the next character should drawn).
Measured values are returned in local coordinate space.
*/
float textBounds(float x, float y, const char* string, const char* end, float* bounds);

/**
Measures the specified multi-text string. Parameter bounds should be a pointer to float[4],
if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
Measured values are returned in local coordinate space.
*/
void textBoxBounds(float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds);

/**
Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used.
Measured values are returned in local coordinate space.
*/
int textGlyphPositions(float x, float y, const char* string, const char* end, GlyphPosition* positions, int maxPositions);

/**
Returns the vertical metrics based on the current text style.
Measured values are returned in local coordinate space.
*/
void textMetrics(float* ascender, float* descender, float* lineh);

/**
Breaks the specified text into lines. If end is specified only the sub-string will be used.
White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
Words longer than the max width are slit at nearest character (i.e. no hyphenation).
*/
int textBreakLines(const char* string, const char* end, float breakRowWidth, TextRow* rows, int maxRows);

private:
NVGcontext* fContext;

DISTRHO_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR(NanoWidget)
};

// -----------------------------------------------------------------------

END_NAMESPACE_DGL

#endif // DGL_NANO_WIDGET_HPP_INCLUDED

+ 590
- 0
dgl/src/NanoWidget.cpp View File

@@ -0,0 +1,590 @@
/*
* DISTRHO Plugin Framework (DPF)
* Copyright (C) 2012-2014 Filipe Coelho <falktx@falktx.com>
*
* Permission to use, copy, modify, and/or distribute this software for any purpose with
* or without fee is hereby granted, provided that the above copyright notice and this
* permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
* TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN
* NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
* IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

#include "../NanoWidget.hpp"

// -----------------------------------------------------------------------

#define NANOVG_GL2_IMPLEMENTATION
#include "nanovg/nanovg_gl.h"

#if defined(NANOVG_GL2)
# define nvgCreateGL nvgCreateGL2
# define nvgDeleteGL nvgDeleteGL2
#elif defined(NANOVG_GL3)
# define nvgCreateGL nvgCreateGL3
# define nvgDeleteGL nvgDeleteGL3
#elif defined(NANOVG_GLES2)
# define nvgCreateGL nvgCreateGLES2
# define nvgDeleteGL nvgDeleteGLES2
#elif defined(NANOVG_GLES3)
# define nvgCreateGL nvgCreateGLES3
# define nvgDeleteGL nvgDeleteGLES3
#endif

START_NAMESPACE_DGL

// -----------------------------------------------------------------------
// Conversions

NanoWidget::Color::Color() noexcept
: r(1.0f), g(1.0f), b(1.0f), a(1.0f) {}

NanoWidget::Color::Color(const NVGcolor& c) noexcept
: r(c.r), g(c.g), b(c.b), a(c.a) {}

NanoWidget::Color::operator NVGcolor() const noexcept
{
NVGcolor nc = { r, g, b, a };
return nc;
}

NanoWidget::Paint::Paint() noexcept
: radius(0.0f), feather(0.0f), innerColor(), outerColor(), imageId(0), repeat(REPEAT_NONE)
{
std::memset(xform, 0, sizeof(float)*6);
std::memset(extent, 0, sizeof(float)*2);
}

NanoWidget::Paint::Paint(const NVGpaint& p) noexcept
: radius(p.radius), feather(p.feather), innerColor(p.innerColor), outerColor(p.outerColor), imageId(p.image), repeat(static_cast<PatternRepeat>(p.repeat))
{
std::memcpy(xform, p.xform, sizeof(float)*6);
std::memcpy(extent, p.extent, sizeof(float)*2);
}

NanoWidget::Paint::operator NVGpaint() const noexcept
{
NVGpaint p;
p.radius = radius;
p.feather = feather;
p.innerColor = innerColor;
p.outerColor = outerColor;
p.image = imageId;
p.repeat = repeat;
std::memcpy(p.xform, xform, sizeof(float)*6);
std::memcpy(p.extent, extent, sizeof(float)*2);
return p;
}

// -----------------------------------------------------------------------
// NanoImage

static NVGcontext* sLastContext = nullptr;

NanoImage::NanoImage(const char* filename)
: fContext(sLastContext),
fImageId((fContext != nullptr) ? nvgCreateImage(fContext, filename) : 0) {}

NanoImage::NanoImage(uchar* data, int ndata)
: fContext(sLastContext),
fImageId((fContext != nullptr) ? nvgCreateImageMem(fContext, data, ndata) : 0) {}

NanoImage::NanoImage(int w, int h, const uchar* data)
: fContext(sLastContext),
fImageId((fContext != nullptr) ? nvgCreateImageRGBA(fContext, w, h, data) : 0) {}

NanoImage::~NanoImage()
{
if (fContext != nullptr && fImageId != 0)
nvgDeleteImage(fContext, fImageId);
}

int NanoImage::getWidth() const
{
return getSize().getWidth();
}

int NanoImage::getHeight() const
{
return getSize().getHeight();
}

Size<int> NanoImage::getSize() const
{
int w=0, h=0;

if (fContext != nullptr && fImageId != 0)
nvgImageSize(fContext, fImageId, &w, &h);

return Size<int>(w, h);
}

void NanoImage::updateImage(const uchar* data)
{
if (fContext != nullptr && fImageId != 0)
nvgUpdateImage(fContext, fImageId, data);
}

// -----------------------------------------------------------------------
// NanoWidget

NanoWidget::NanoWidget(Window& parent)
: Widget(parent),
fContext(nvgCreateGL(512, 512, NVG_ANTIALIAS))
{
DISTRHO_SAFE_ASSERT_RETURN(fContext != nullptr,);
}

NanoWidget::~NanoWidget()
{
if (fContext == nullptr)
return;

nvgDeleteGL(fContext);
}

// -----------------------------------------------------------------------

void NanoWidget::beginFrame(Alpha alpha)
{
nvgBeginFrame(fContext, getWidth(), getHeight(), 1.0f, static_cast<NVGalpha>(alpha));
}

void NanoWidget::endFrame()
{
nvgEndFrame(fContext);
}

// -----------------------------------------------------------------------
// Color utils

NanoWidget::Color NanoWidget::RGB(uchar r, uchar g, uchar b)
{
return nvgRGB(r, g, b);
}

NanoWidget::Color NanoWidget::RGBf(float r, float g, float b)
{
return nvgRGBf(r, g, b);
}

NanoWidget::Color NanoWidget::RGBA(uchar r, uchar g, uchar b, uchar a)
{
return nvgRGBA(r, g, b, a);
}

NanoWidget::Color NanoWidget::RGBAf(float r, float g, float b, float a)
{
return nvgRGBAf(r, g, b, a);
}

NanoWidget::Color NanoWidget::lerpRGBA(const Color& c0, const Color& c1, float u)
{
return nvgLerpRGBA(c0, c1, u);
}

NanoWidget::Color NanoWidget::HSL(float h, float s, float l)
{
return nvgHSL(h, s, l);
}

NanoWidget::Color NanoWidget::HSLA(float h, float s, float l, uchar a)
{
return nvgHSLA(h, s, l, a);
}

// -----------------------------------------------------------------------
// State Handling

void NanoWidget::save()
{
nvgSave(fContext);
}

void NanoWidget::restore()
{
nvgRestore(fContext);
}

void NanoWidget::reset()
{
nvgReset(fContext);
}

// -----------------------------------------------------------------------
// Render styles

void NanoWidget::strokeColor(const Color& color)
{
nvgStrokeColor(fContext, color);
}

void NanoWidget::strokePaint(const Paint& paint)
{
nvgStrokePaint(fContext, paint);
}

void NanoWidget::fillColor(const Color& color)
{
nvgFillColor(fContext, color);
}

void NanoWidget::fillPaint(const Paint& paint)
{
nvgFillPaint(fContext, paint);
}

void NanoWidget::miterLimit(float limit)
{
nvgMiterLimit(fContext, limit);
}

void NanoWidget::strokeWidth(float size)
{
nvgStrokeWidth(fContext, size);
}

void NanoWidget::lineCap(NanoWidget::LineCap cap)
{
nvgLineCap(fContext, cap);
}

void NanoWidget::lineJoin(NanoWidget::LineCap join)
{
nvgLineJoin(fContext, join);
}

// -----------------------------------------------------------------------
// Transforms

void NanoWidget::resetTransform()
{
nvgResetTransform(fContext);
}

void NanoWidget::transform(float a, float b, float c, float d, float e, float f)
{
nvgTransform(fContext, a, b, c, d, e, f);
}

void NanoWidget::translate(float x, float y)
{
nvgTranslate(fContext, x, y);
}

void NanoWidget::rotate(float angle)
{
nvgRotate(fContext, angle);
}

void NanoWidget::skewX(float angle)
{
nvgSkewX(fContext, angle);
}

void NanoWidget::skewY(float angle)
{
nvgSkewY(fContext, angle);
}

void NanoWidget::scale(float x, float y)
{
nvgScale(fContext, x, y);
}

void NanoWidget::currentTransform(float xform[6])
{
nvgCurrentTransform(fContext, xform);
}

void NanoWidget::transformIdentity(float dst[6])
{
nvgTransformIdentity(dst);
}

void NanoWidget::transformTranslate(float dst[6], float tx, float ty)
{
nvgTransformTranslate(dst, tx, ty);
}

void NanoWidget::transformScale(float dst[6], float sx, float sy)
{
nvgTransformScale(dst, sx, sy);
}

void NanoWidget::transformRotate(float dst[6], float a)
{
nvgTransformRotate(dst, a);
}

void NanoWidget::transformSkewX(float dst[6], float a)
{
nvgTransformSkewX(dst, a);
}

void NanoWidget::transformSkewY(float dst[6], float a)
{
nvgTransformSkewY(dst, a);
}

void NanoWidget::transformMultiply(float dst[6], const float src[6])
{
nvgTransformMultiply(dst, src);
}

void NanoWidget::transformPremultiply(float dst[6], const float src[6])
{
nvgTransformPremultiply(dst, src);
}

int NanoWidget::transformInverse(float dst[6], const float src[6])
{
return nvgTransformInverse(dst, src);
}

void NanoWidget::transformPoint(float& dstx, float& dsty, const float xform[6], float srcx, float srcy)
{
nvgTransformPoint(&dstx, &dsty, xform, srcx, srcy);
}

float NanoWidget::degToRad(float deg)
{
return nvgDegToRad(deg);
}

float NanoWidget::radToDeg(float rad)
{
return nvgRadToDeg(rad);
}

// -----------------------------------------------------------------------
// Images

NanoImage NanoWidget::createImage(const char* filename)
{
sLastContext = fContext;
return NanoImage(filename);
}

NanoImage NanoWidget::createImageMem(uchar* data, int ndata)
{
sLastContext = fContext;
return NanoImage(data, ndata);
}

NanoImage NanoWidget::createImageRGBA(int w, int h, const uchar* data)
{
sLastContext = fContext;
return NanoImage(w, h, data);
}

// -----------------------------------------------------------------------
// Paints

NanoWidget::Paint NanoWidget::linearGradient(float sx, float sy, float ex, float ey, const NanoWidget::Color& icol, const NanoWidget::Color& ocol)
{
return nvgLinearGradient(fContext, sx, sy, ex, ey, icol, ocol);
}

NanoWidget::Paint NanoWidget::boxGradient(float x, float y, float w, float h, float r, float f, const NanoWidget::Color& icol, const NanoWidget::Color& ocol)
{
return nvgBoxGradient(fContext, x, y, w, h, r, f, icol, ocol);
}

NanoWidget::Paint NanoWidget::radialGradient(float cx, float cy, float inr, float outr, const NanoWidget::Color& icol, const NanoWidget::Color& ocol)
{
return nvgRadialGradient(fContext, cx, cy, inr, outr, icol, ocol);
}

NanoWidget::Paint NanoWidget::imagePattern(float ox, float oy, float ex, float ey, float angle, const NanoImage& image, NanoWidget::PatternRepeat repeat)
{
return nvgImagePattern(fContext, ox, oy, ex, ey, angle, image.fImageId, repeat);
}

// -----------------------------------------------------------------------
// Scissoring

void NanoWidget::scissor(float x, float y, float w, float h)
{
nvgScissor(fContext, x, y, w, h);
}

void NanoWidget::resetScissor()
{
nvgResetScissor(fContext);
}

// -----------------------------------------------------------------------
// Paths

void NanoWidget::beginPath()
{
nvgBeginPath(fContext);
}

void NanoWidget::moveTo(float x, float y)
{
nvgMoveTo(fContext, x, y);
}

void NanoWidget::lineTo(float x, float y)
{
nvgLineTo(fContext, x, y);
}

void NanoWidget::bezierTo(float c1x, float c1y, float c2x, float c2y, float x, float y)
{
nvgBezierTo(fContext, c1x, c1y, c2x, c2y, x, y);
}

void NanoWidget::arcTo(float x1, float y1, float x2, float y2, float radius)
{
nvgArcTo(fContext, x1, y1, x2, y2, radius);
}

void NanoWidget::closePath()
{
nvgClosePath(fContext);
}

void NanoWidget::pathWinding(NanoWidget::Winding dir)
{
nvgPathWinding(fContext, dir);
}

void NanoWidget::arc(float cx, float cy, float r, float a0, float a1, NanoWidget::Winding dir)
{
nvgArc(fContext, cx, cy, r, a0, a1, dir);
}

void NanoWidget::rect(float x, float y, float w, float h)
{
nvgRect(fContext, x, y, w, h);
}

void NanoWidget::roundedRect(float x, float y, float w, float h, float r)
{
nvgRoundedRect(fContext, x, y, w, h, r);
}

void NanoWidget::ellipse(float cx, float cy, float rx, float ry)
{
nvgEllipse(fContext, cx, cy, rx, ry);
}

void NanoWidget::circle(float cx, float cy, float r)
{
nvgCircle(fContext, cx, cy, r);
}

void NanoWidget::fill()
{
nvgFill(fContext);
}

void NanoWidget::stroke()
{
nvgStroke(fContext);
}

// -----------------------------------------------------------------------
// Text

NanoWidget::FontId NanoWidget::createFont(const char* name, const char* filename)
{
return nvgCreateFont(fContext, name, filename);
}

NanoWidget::FontId NanoWidget::createFontMem(const char* name, uchar* data, int ndata, bool freeData)
{
return nvgCreateFontMem(fContext, name, data, ndata, freeData);
}

NanoWidget::FontId NanoWidget::findFont(const char* name)
{
return nvgFindFont(fContext, name);
}

void NanoWidget::fontSize(float size)
{
nvgFontSize(fContext, size);
}

void NanoWidget::fontBlur(float blur)
{
nvgFontBlur(fContext, blur);
}

void NanoWidget::textLetterSpacing(float spacing)
{
nvgTextLetterSpacing(fContext, spacing);
}

void NanoWidget::textLineHeight(float lineHeight)
{
nvgTextLineHeight(fContext, lineHeight);
}

void NanoWidget::textAlign(NanoWidget::Align align)
{
nvgTextAlign(fContext, align);
}

void NanoWidget::fontFaceId(FontId font)
{
nvgFontFaceId(fContext, font);
}

void NanoWidget::fontFace(const char* font)
{
nvgFontFace(fContext, font);
}

float NanoWidget::text(float x, float y, const char* string, const char* end)
{
return nvgText(fContext, x, y, string, end);
}

void NanoWidget::textBox(float x, float y, float breakRowWidth, const char* string, const char* end)
{
nvgTextBox(fContext, x, y, breakRowWidth, string, end);
}

float NanoWidget::textBounds(float x, float y, const char* string, const char* end, float* bounds)
{
return nvgTextBounds(fContext, x, y, string, end, bounds);
}

void NanoWidget::textBoxBounds(float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds)
{
nvgTextBoxBounds(fContext, x, y, breakRowWidth, string, end, bounds);
}

int NanoWidget::textGlyphPositions(float x, float y, const char* string, const char* end, NanoWidget::GlyphPosition* positions, int maxPositions)
{
return nvgTextGlyphPositions(fContext, x, y, string, end, (NVGglyphPosition*)positions, maxPositions);
}

void NanoWidget::textMetrics(float* ascender, float* descender, float* lineh)
{
nvgTextMetrics(fContext, ascender, descender, lineh);
}

int NanoWidget::textBreakLines(const char* string, const char* end, float breakRowWidth, NanoWidget::TextRow* rows, int maxRows)
{
return nvgTextBreakLines(fContext, string, end, breakRowWidth, (NVGtextRow*)rows, maxRows);
}

// -----------------------------------------------------------------------

END_NAMESPACE_DGL

extern "C" {
#include "nanovg/nanovg.c"
}

// -----------------------------------------------------------------------

+ 18
- 0
dgl/src/nanovg/LICENSE.txt View File

@@ -0,0 +1,18 @@
Copyright (c) 2013 Mikko Mononen memon@inside.org
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

+ 1670
- 0
dgl/src/nanovg/fontstash.h
File diff suppressed because it is too large
View File


+ 2475
- 0
dgl/src/nanovg/nanovg.c
File diff suppressed because it is too large
View File


+ 590
- 0
dgl/src/nanovg/nanovg.h View File

@@ -0,0 +1,590 @@
//
// Copyright (c) 2013 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//

#ifndef NANOVG_H
#define NANOVG_H

#ifdef __cplusplus
extern "C" {
#endif

#define NVG_PI 3.14159265358979323846264338327f

struct NVGcontext;

struct NVGcolor {
union {
float rgba[4];
struct {
float r,g,b,a;
};
};
};

struct NVGpaint {
float xform[6];
float extent[2];
float radius;
float feather;
struct NVGcolor innerColor;
struct NVGcolor outerColor;
int image;
int repeat;
};

enum NVGwinding {
NVG_CCW = 1, // Winding for solid shapes
NVG_CW = 2, // Winding for holes
};

enum NVGsolidity {
NVG_SOLID = 1, // CCW
NVG_HOLE = 2, // CW
};

enum NVGlineCap {
NVG_BUTT,
NVG_ROUND,
NVG_SQUARE,
NVG_BEVEL,
NVG_MITER,
};

enum NVGpatternRepeat {
NVG_REPEATX = 0x01, // Repeat image pattern in X direction
NVG_REPEATY = 0x02, // Repeat image pattern in Y direction
};

enum NVGalign {
// Horizontal align
NVG_ALIGN_LEFT = 1<<0, // Default, align text horizontally to left.
NVG_ALIGN_CENTER = 1<<1, // Align text horizontally to center.
NVG_ALIGN_RIGHT = 1<<2, // Align text horizontally to right.
// Vertical align
NVG_ALIGN_TOP = 1<<3, // Align text vertically to top.
NVG_ALIGN_MIDDLE = 1<<4, // Align text vertically to middle.
NVG_ALIGN_BOTTOM = 1<<5, // Align text vertically to bottom.
NVG_ALIGN_BASELINE = 1<<6, // Default, align text vertically to baseline.
};

enum NVGalpha {
NVG_STRAIGHT_ALPHA,
NVG_PREMULTIPLIED_ALPHA,
};

struct NVGglyphPosition {
const char* str; // Position of the glyph in the input string.
float x; // The x-coordinate of the logical glyph position.
float minx, maxx; // The bounds of the glyph shape.
};

struct NVGtextRow {
const char* start; // Pointer to the input text where the row starts.
const char* end; // Pointer to the input text where the row ends (one past the last character).
const char* next; // Pointer to the beginning of the next row.
float width; // Logical width of the row.
float minx, maxx; // Actual bounds of the row. Logical with and bounds can differ because of kerning and some parts over extending.
};


// Begin drawing a new frame
// Calls to nanovg drawing API should be wrapped in nvgBeginFrame() & nvgEndFrame()
// nvgBeginFrame() defines the size of the window to render to in relation currently
// set viewport (i.e. glViewport on GL backends). Device pixel ration allows to
// control the rendering on Hi-DPI devices.
// For example, GLFW returns two dimension for an opened window: window size and
// frame buffer size. In that case you would set windowWidth/Height to the window size
// devicePixelRatio to: frameBufferWidth / windowWidth.
// AlphaBlend controls if drawing the shapes to the render target should be done using straight or
// premultiplied alpha. If rendering directly to framebuffer you probably want to use NVG_STRAIGHT_ALPHA,
// if rendering to texture which should contain transparent regions NVG_PREMULTIPLIED_ALPHA is the
// right choice.
void nvgBeginFrame(struct NVGcontext* ctx, int windowWidth, int windowHeight, float devicePixelRatio, int alphaBlend);

// Ends drawing flushing remaining render state.
void nvgEndFrame(struct NVGcontext* ctx);

//
// Color utils
//
// Colors in NanoVG are stored as unsigned ints in ABGR format.

// Returns a color value from red, green, blue values. Alpha will be set to 255 (1.0f).
struct NVGcolor nvgRGB(unsigned char r, unsigned char g, unsigned char b);

// Returns a color value from red, green, blue values. Alpha will be set to 1.0f.
struct NVGcolor nvgRGBf(float r, float g, float b);


// Returns a color value from red, green, blue and alpha values.
struct NVGcolor nvgRGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a);

// Returns a color value from red, green, blue and alpha values.
struct NVGcolor nvgRGBAf(float r, float g, float b, float a);


// Linearly interpoaltes from color c0 to c1, and returns resulting color value.
struct NVGcolor nvgLerpRGBA(struct NVGcolor c0, struct NVGcolor c1, float u);

// Sets transparency of a color value.
struct NVGcolor nvgTransRGBA(struct NVGcolor c0, unsigned char a);

// Sets transparency of a color value.
struct NVGcolor nvgTransRGBAf(struct NVGcolor c0, float a);

// Returns color value specified by hue, saturation and lightness.
// HSL values are all in range [0..1], alpha will be set to 255.
struct NVGcolor nvgHSL(float h, float s, float l);

// Returns color value specified by hue, saturation and lightness and alpha.
// HSL values are all in range [0..1], alpha in range [0..255]
struct NVGcolor nvgHSLA(float h, float s, float l, unsigned char a);

//
// State Handling
//
// NanoVG contains state which represents how paths will be rendered.
// The state contains transform, fill and stroke styles, text and font styles,
// and scissor clipping.

// Pushes and saves the current render state into a state stack.
// A matching nvgRestore() must be used to restore the state.
void nvgSave(struct NVGcontext* ctx);

// Pops and restores current render state.
void nvgRestore(struct NVGcontext* ctx);

// Resets current render state to default values. Does not affect the render state stack.
void nvgReset(struct NVGcontext* ctx);

//
// Render styles
//
// Fill and stroke render style can be either a solid color or a paint which is a gradient or a pattern.
// Solid color is simply defined as a color value, different kinds of paints can be created
// using nvgLinearGradient(), nvgBoxGradient(), nvgRadialGradient() and nvgImagePattern().
//
// Current render style can be saved and restored using nvgSave() and nvgRestore().

// Sets current stroke style to a solid color.
void nvgStrokeColor(struct NVGcontext* ctx, struct NVGcolor color);

// Sets current stroke style to a paint, which can be a one of the gradients or a pattern.
void nvgStrokePaint(struct NVGcontext* ctx, struct NVGpaint paint);

// Sets current fill cstyle to a solid color.
void nvgFillColor(struct NVGcontext* ctx, struct NVGcolor color);

// Sets current fill style to a paint, which can be a one of the gradients or a pattern.
void nvgFillPaint(struct NVGcontext* ctx, struct NVGpaint paint);

// Sets the miter limit of the stroke style.
// Miter limit controls when a sharp corner is beveled.
void nvgMiterLimit(struct NVGcontext* ctx, float limit);

// Sets the stroke witdth of the stroke style.
void nvgStrokeWidth(struct NVGcontext* ctx, float size);

// Sets how the end of the line (cap) is drawn,
// Can be one of: NVG_BUTT (default), NVG_ROUND, NVG_SQUARE.
void nvgLineCap(struct NVGcontext* ctx, int cap);

// Sets how sharp path corners are drawn.
// Can be one of NVG_MITER (default), NVG_ROUND, NVG_BEVEL.
void nvgLineJoin(struct NVGcontext* ctx, int join);

//
// Transforms
//
// The paths, gradients, patterns and scissor region are transformed by an transformation
// matrix at the time when they are passed to the API.
// The current transformation matrix is a affine matrix:
// [sx kx tx]
// [ky sy ty]
// [ 0 0 1]
// Where: sx,sy define scaling, kx,ky skewing, and tx,ty translation.
// The last row is assumed to be 0,0,1 and is not stored.
//
// Apart from nvgResetTransform(), each transformation function first creates
// specific transformation matrix and pre-multiplies the current transformation by it.
//
// Current coordinate system (transformation) can be saved and restored using nvgSave() and nvgRestore().

// Resets current transform to a identity matrix.
void nvgResetTransform(struct NVGcontext* ctx);

// Premultiplies current coordinate system by specified matrix.
// The parameters are interpreted as matrix as follows:
// [a c e]
// [b d f]
// [0 0 1]
void nvgTransform(struct NVGcontext* ctx, float a, float b, float c, float d, float e, float f);

// Translates current coordinate system.
void nvgTranslate(struct NVGcontext* ctx, float x, float y);

// Rotates current coordinate system. Angle is specifid in radians.
void nvgRotate(struct NVGcontext* ctx, float angle);

// Skews the current coordinate system along X axis. Angle is specifid in radians.
void nvgSkewX(struct NVGcontext* ctx, float angle);

// Skews the current coordinate system along Y axis. Angle is specifid in radians.
void nvgSkewY(struct NVGcontext* ctx, float angle);

// Scales the current coordinat system.
void nvgScale(struct NVGcontext* ctx, float x, float y);

// Stores the top part (a-f) of the current transformation matrix in to the specified buffer.
// [a c e]
// [b d f]
// [0 0 1]
// There should be space for 6 floats in the return buffer for the values a-f.
void nvgCurrentTransform(struct NVGcontext* ctx, float* xform);


// The following functions can be used to make calculations on 2x3 transformation matrices.
// A 2x3 matrix is representated as float[6].

// Sets the transform to identity matrix.
void nvgTransformIdentity(float* dst);

// Sets the transform to translation matrix matrix.
void nvgTransformTranslate(float* dst, float tx, float ty);

// Sets the transform to scale matrix.
void nvgTransformScale(float* dst, float sx, float sy);

// Sets the transform to rotate matrix. Angle is specifid in radians.
void nvgTransformRotate(float* dst, float a);

// Sets the transform to skew-x matrix. Angle is specifid in radians.
void nvgTransformSkewX(float* dst, float a);

// Sets the transform to skew-y matrix. Angle is specifid in radians.
void nvgTransformSkewY(float* dst, float a);

// Sets the transform to the result of multiplication of two transforms, of A = A*B.
void nvgTransformMultiply(float* dst, const float* src);

// Sets the transform to the result of multiplication of two transforms, of A = B*A.
void nvgTransformPremultiply(float* dst, const float* src);

// Sets the destination to inverse of specified transform.
// Returns 1 if the inverse could be calculated, else 0.
int nvgTransformInverse(float* dst, const float* src);

// Transform a point by given transform.
void nvgTransformPoint(float* dstx, float* dsty, const float* xform, float srcx, float srcy);

// Converts degress to radians and vice versa.
float nvgDegToRad(float deg);
float nvgRadToDeg(float rad);

//
// Images
//
// NanoVG allows you to load jpg, png, psd, tga, pic and gif files to be used for rendering.
// In addition you can upload your own image. The image loading is provided by stb_image.

// Creates image by loading it from the disk from specified file name.
// Returns handle to the image.
int nvgCreateImage(struct NVGcontext* ctx, const char* filename);

// Creates image by loading it from the specified chunk of memory.
// Returns handle to the image.
int nvgCreateImageMem(struct NVGcontext* ctx, unsigned char* data, int ndata);

// Creates image from specified image data.
// Returns handle to the image.
int nvgCreateImageRGBA(struct NVGcontext* ctx, int w, int h, const unsigned char* data);

// Updates image data specified by image handle.
void nvgUpdateImage(struct NVGcontext* ctx, int image, const unsigned char* data);

// Returns the domensions of a created image.
void nvgImageSize(struct NVGcontext* ctx, int image, int* w, int* h);

// Deletes created image.
void nvgDeleteImage(struct NVGcontext* ctx, int image);

//
// Paints
//
// NanoVG supports four types of paints: linear gradient, box gradient, radial gradient and image pattern.
// These can be used as paints for strokes and fills.

// Creates and returns a linear gradient. Parameters (sx,sy)-(ex,ey) specify the start and end coordinates
// of the linear gradient, icol specifies the start color and ocol the end color.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
struct NVGpaint nvgLinearGradient(struct NVGcontext* ctx, float sx, float sy, float ex, float ey,
struct NVGcolor icol, struct NVGcolor ocol);

// Creates and returns a box gradient. Box gradient is a feathered rounded rectangle, it is useful for rendering
// drop shadows or hilights for boxes. Parameters (x,y) define the top-left corner of the rectangle,
// (w,h) define the size of the rectangle, r defines the corner radius, and f feather. Feather defines how blurry
// the border of the rectangle is. Parameter icol specifies the inner color and ocol the outer color of the gradient.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
struct NVGpaint nvgBoxGradient(struct NVGcontext* ctx, float x, float y, float w, float h,
float r, float f, struct NVGcolor icol, struct NVGcolor ocol);

// Creates and returns a radial gradient. Parameters (cx,cy) specify the center, inr and outr specify
// the inner and outer radius of the gradient, icol specifies the start color and ocol the end color.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
struct NVGpaint nvgRadialGradient(struct NVGcontext* ctx, float cx, float cy, float inr, float outr,
struct NVGcolor icol, struct NVGcolor ocol);

// Creates and returns an image patter. Parameters (ox,oy) specify the left-top location of the image pattern,
// (ex,ey) the size of one image, angle rotation around the top-left corner, image is handle to the image to render,
// and repeat is combination of NVG_REPEATX and NVG_REPEATY which tells if the image should be repeated across x or y.
// The gradient is transformed by the current transform when it is passed to nvgFillPaint() or nvgStrokePaint().
struct NVGpaint nvgImagePattern(struct NVGcontext* ctx, float ox, float oy, float ex, float ey,
float angle, int image, int repeat);

//
// Scissoring
//
// Scissoring allows you to clip the rendering into a rectangle. This is useful for varius
// user interface cases like rendering a text edit or a timeline.

// Sets the current
// The scissor rectangle is transformed by the current transform.
void nvgScissor(struct NVGcontext* ctx, float x, float y, float w, float h);

// Reset and disables scissoring.
void nvgResetScissor(struct NVGcontext* ctx);

//
// Paths
//
// Drawing a new shape starts with nvgBeginPath(), it clears all the currently defined paths.
// Then you define one or more paths and sub-paths which describe the shape. The are functions
// to draw common shapes like rectangles and circles, and lower level step-by-step functions,
// which allow to define a path curve by curve.
//
// NanoVG uses even-odd fill rule to draw the shapes. Solid shapes should have counter clockwise
// winding and holes should have counter clockwise order. To specify winding of a path you can
// call nvgPathWinding(). This is useful especially for the common shapes, which are drawn CCW.
//
// Finally you can fill the path using current fill style by calling nvgFill(), and stroke it
// with current stroke style by calling nvgStroke().
//
// The curve segments and sub-paths are transformed by the current transform.

// Clears the current path and sub-paths.
void nvgBeginPath(struct NVGcontext* ctx);

// Starts new sub-path with specified point as first point.
void nvgMoveTo(struct NVGcontext* ctx, float x, float y);

// Adds line segment from the last point in the path to the specified point.
void nvgLineTo(struct NVGcontext* ctx, float x, float y);

// Adds bezier segment from last point in the path via two control points to the specified point.
void nvgBezierTo(struct NVGcontext* ctx, float c1x, float c1y, float c2x, float c2y, float x, float y);

// Adds an arc segment at the corner defined by the last path point, and two specified points.
void nvgArcTo(struct NVGcontext* ctx, float x1, float y1, float x2, float y2, float radius);

// Closes current sub-path with a line segment.
void nvgClosePath(struct NVGcontext* ctx);

// Sets the current sub-path winding, see NVGwinding and NVGsolidity.
void nvgPathWinding(struct NVGcontext* ctx, int dir);

// Creates new arc shaped sub-path.
void nvgArc(struct NVGcontext* ctx, float cx, float cy, float r, float a0, float a1, int dir);

// Creates new rectangle shaped sub-path.
void nvgRect(struct NVGcontext* ctx, float x, float y, float w, float h);

// Creates new rounded rectangle shaped sub-path.
void nvgRoundedRect(struct NVGcontext* ctx, float x, float y, float w, float h, float r);

// Creates new ellipse shaped sub-path.
void nvgEllipse(struct NVGcontext* ctx, float cx, float cy, float rx, float ry);

// Creates new circle shaped sub-path.
void nvgCircle(struct NVGcontext* ctx, float cx, float cy, float r);

// Fills the current path with current fill style.
void nvgFill(struct NVGcontext* ctx);

// Fills the current path with current stroke style.
void nvgStroke(struct NVGcontext* ctx);


//
// Text
//
// NanoVG allows you to load .ttf files and use the font to render text.
//
// The appearance of the text can be defined by setting the current text style
// and by specifying the fill color. Common text and font settings such as
// font size, letter spacing and text align are supported. Font blur allows you
// to create simple text effects such as drop shadows.
//
// At render time the font face can be set based on the font handles or name.
//
// Font measure functions return values in local space, the calculations are
// carried in the same resolution as the final rendering. This is done because
// the text glyph positions are snapped to the nearest pixels sharp rendering.
//
// The local space means that values are not rotated or scale as per the current
// transformation. For example if you set font size to 12, which would mean that
// line height is 16, then regardless of the current scaling and rotation, the
// returned line height is always 16. Some measures may vary because of the scaling
// since aforementioned pixel snapping.
//
// While this may sound a little odd, the setup allows you to always render the
// same way regardless of scaling. I.e. following works regardless of scaling:
//
// const char* txt = "Text me up.";
// nvgTextBounds(vg, x,y, txt, NULL, bounds);
// nvgBeginPath(vg);
// nvgRoundedRect(vg, bounds[0],bounds[1], bounds[2]-bounds[0], bounds[3]-bounds[1]);
// nvgFill(vg);
//
// Note: currently only solid color fill is supported for text.

// Creates font by loading it from the disk from specified file name.
// Returns handle to the font.
int nvgCreateFont(struct NVGcontext* ctx, const char* name, const char* filename);

// Creates image by loading it from the specified memory chunk.
// Returns handle to the font.
int nvgCreateFontMem(struct NVGcontext* ctx, const char* name, unsigned char* data, int ndata, int freeData);

// Finds a loaded font of specified name, and returns handle to it, or -1 if the font is not found.
int nvgFindFont(struct NVGcontext* ctx, const char* name);

// Sets the font size of current text style.
void nvgFontSize(struct NVGcontext* ctx, float size);

// Sets the blur of current text style.
void nvgFontBlur(struct NVGcontext* ctx, float blur);

// Sets the letter spacing of current text style.
void nvgTextLetterSpacing(struct NVGcontext* ctx, float spacing);

// Sets the proportional line height of current text style. The line height is specified as multiple of font size.
void nvgTextLineHeight(struct NVGcontext* ctx, float lineHeight);

// Sets the text align of current text style, see NVGaling for options.
void nvgTextAlign(struct NVGcontext* ctx, int align);

// Sets the font face based on specified id of current text style.
void nvgFontFaceId(struct NVGcontext* ctx, int font);

// Sets the font face based on specified name of current text style.
void nvgFontFace(struct NVGcontext* ctx, const char* font);

// Draws text string at specified location. If end is specified only the sub-string up to the end is drawn.
float nvgText(struct NVGcontext* ctx, float x, float y, const char* string, const char* end);

// Draws multi-line text string at specified location wrapped at the specified width. If end is specified only the sub-string up to the end is drawn.
// White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
// Words longer than the max width are slit at nearest character (i.e. no hyphenation).
void nvgTextBox(struct NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end);

// Measures the specified text string. Parameter bounds should be a pointer to float[4],
// if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
// Returns the horizontal advance of the measured text (i.e. where the next character should drawn).
// Measured values are returned in local coordinate space.
float nvgTextBounds(struct NVGcontext* ctx, float x, float y, const char* string, const char* end, float* bounds);

// Measures the specified multi-text string. Parameter bounds should be a pointer to float[4],
// if the bounding box of the text should be returned. The bounds value are [xmin,ymin, xmax,ymax]
// Measured values are returned in local coordinate space.
void nvgTextBoxBounds(struct NVGcontext* ctx, float x, float y, float breakRowWidth, const char* string, const char* end, float* bounds);

// Calculates the glyph x positions of the specified text. If end is specified only the sub-string will be used.
// Measured values are returned in local coordinate space.
int nvgTextGlyphPositions(struct NVGcontext* ctx, float x, float y, const char* string, const char* end, struct NVGglyphPosition* positions, int maxPositions);

// Returns the vertical metrics based on the current text style.
// Measured values are returned in local coordinate space.
void nvgTextMetrics(struct NVGcontext* ctx, float* ascender, float* descender, float* lineh);

// Breaks the specified text into lines. If end is specified only the sub-string will be used.
// White space is stripped at the beginning of the rows, the text is split at word boundaries or when new-line characters are encountered.
// Words longer than the max width are slit at nearest character (i.e. no hyphenation).
int nvgTextBreakLines(struct NVGcontext* ctx, const char* string, const char* end, float breakRowWidth, struct NVGtextRow* rows, int maxRows);

//
// Internal Render API
//
enum NVGtexture {
NVG_TEXTURE_ALPHA = 0x01,
NVG_TEXTURE_RGBA = 0x02,
};

struct NVGscissor
{
float xform[6];
float extent[2];
};

struct NVGvertex {
float x,y,u,v;
};

struct NVGpath {
int first;
int count;
unsigned char closed;
int nbevel;
struct NVGvertex* fill;
int nfill;
struct NVGvertex* stroke;
int nstroke;
int winding;
int convex;
};

struct NVGparams {
void* userPtr;
int atlasWidth, atlasHeight;
int edgeAntiAlias;
int (*renderCreate)(void* uptr);
int (*renderCreateTexture)(void* uptr, int type, int w, int h, const unsigned char* data);
int (*renderDeleteTexture)(void* uptr, int image);
int (*renderUpdateTexture)(void* uptr, int image, int x, int y, int w, int h, const unsigned char* data);
int (*renderGetTextureSize)(void* uptr, int image, int* w, int* h);
void (*renderViewport)(void* uptr, int width, int height, int alphaBlend);
void (*renderFlush)(void* uptr, int alphaBlend);
void (*renderFill)(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, float fringe, const float* bounds, const struct NVGpath* paths, int npaths);
void (*renderStroke)(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, float fringe, float strokeWidth, const struct NVGpath* paths, int npaths);
void (*renderTriangles)(void* uptr, struct NVGpaint* paint, struct NVGscissor* scissor, const struct NVGvertex* verts, int nverts);
void (*renderDelete)(void* uptr);
};

// Contructor and destructor, called by the render back-end.
struct NVGcontext* nvgCreateInternal(struct NVGparams* params);
void nvgDeleteInternal(struct NVGcontext* ctx);

// Debug function to dump cached path data.
void nvgDebugDumpPathCache(struct NVGcontext* ctx);

#define NVG_NOTUSED(v) do { (void)(1 ? (void)0 : ( (void)(v) ) ); } while(0)

#ifdef __cplusplus
}
#endif

#endif // NANOVG_H

+ 1311
- 0
dgl/src/nanovg/nanovg_gl.h
File diff suppressed because it is too large
View File


+ 4676
- 0
dgl/src/nanovg/stb_image.c
File diff suppressed because it is too large
View File


+ 2064
- 0
dgl/src/nanovg/stb_truetype.h
File diff suppressed because it is too large
View File


Loading…
Cancel
Save