@@ -1,157 +0,0 @@ | |||
# | |||
# "$Id: Makefile 8425 2011-02-15 15:25:53Z mike $" | |||
# | |||
# JPEG library makefile for the Fast Light Toolkit (NTK). | |||
# | |||
# Copyright 1997-2011 by Bill Spitzak and others. | |||
# | |||
# This library is free software; you can redistribute it and/or | |||
# modify it under the terms of the GNU Library General Public | |||
# License as published by the Free Software Foundation; either | |||
# version 2 of the License, or (at your option) any later version. | |||
# | |||
# This library is distributed in the hope that it will be useful, | |||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
# Library General Public License for more details. | |||
# | |||
# You should have received a copy of the GNU Library General Public | |||
# License along with this library; if not, write to the Free Software | |||
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | |||
# USA. | |||
# | |||
# Please report all bugs and problems on the following page: | |||
# | |||
# http://www.ntk.org/str.php | |||
# | |||
include ../makeinclude | |||
# | |||
# Object files... | |||
# | |||
OBJS = \ | |||
jaricom.o \ | |||
jcapimin.o \ | |||
jcapistd.o \ | |||
jcarith.o \ | |||
jccoefct.o \ | |||
jccolor.o \ | |||
jcdctmgr.o \ | |||
jchuff.o \ | |||
jcinit.o \ | |||
jcmainct.o \ | |||
jcmarker.o \ | |||
jcmaster.o \ | |||
jcomapi.o \ | |||
jcparam.o \ | |||
jcprepct.o \ | |||
jcsample.o \ | |||
jctrans.o \ | |||
jdapimin.o \ | |||
jdapistd.o \ | |||
jdarith.o \ | |||
jdatadst.o \ | |||
jdatasrc.o \ | |||
jdcoefct.o \ | |||
jdcolor.o \ | |||
jddctmgr.o \ | |||
jdhuff.o \ | |||
jdinput.o \ | |||
jdmainct.o \ | |||
jdmarker.o \ | |||
jdmaster.o \ | |||
jdmerge.o \ | |||
jdpostct.o \ | |||
jdsample.o \ | |||
jdtrans.o \ | |||
jerror.o \ | |||
jfdctflt.o \ | |||
jfdctfst.o \ | |||
jfdctint.o \ | |||
jidctflt.o \ | |||
jidctfst.o \ | |||
jidctint.o \ | |||
jmemmgr.o \ | |||
jmemnobs.o \ | |||
jquant1.o \ | |||
jquant2.o \ | |||
jutils.o | |||
LIBJPEG = ../lib/libntk_jpeg$(LIBEXT) | |||
# | |||
# Make all targets... | |||
# | |||
all: $(LIBJPEG) | |||
# | |||
# Clean all targets and object files... | |||
# | |||
clean: | |||
$(RM) $(OBJS) | |||
$(RM) $(LIBJPEG) | |||
# | |||
# Install everything... | |||
# | |||
install: $(LIBJPEG) | |||
echo "Installing $(LIBJPEG) in $(libdir)..." | |||
-$(INSTALL_DIR) $(DESTDIR)$(libdir) | |||
$(INSTALL_LIB) $(LIBJPEG) $(DESTDIR)$(libdir) | |||
$(RANLIB) $(DESTDIR)$(libdir)/libntk_jpeg$(LIBEXT) | |||
echo "Installing jpeg headers in $(includedir)/FL/images..." | |||
-$(INSTALL_DIR) $(DESTDIR)$(includedir)/FL/images | |||
$(INSTALL_DATA) jconfig.h $(DESTDIR)$(includedir)/FL/images | |||
$(INSTALL_DATA) jerror.h $(DESTDIR)$(includedir)/FL/images | |||
$(INSTALL_DATA) jmorecfg.h $(DESTDIR)$(includedir)/FL/images | |||
$(INSTALL_DATA) jpeglib.h $(DESTDIR)$(includedir)/FL/images | |||
# | |||
# Uninstall everything... | |||
# | |||
uninstall: | |||
echo "Uninstalling libntk_jpeg$(LIBEXT) in $(libdir)..." | |||
$(RM) $(libdir)/libntk_jpeg$(LIBEXT) | |||
echo "Uninstalling jpeg headers in $(includedir)/FL/images..." | |||
$(RM) $(includedir)/FL/images/jconfig.h | |||
$(RM) $(includedir)/FL/images/jerror.h | |||
$(RM) $(includedir)/FL/images/jmorecfg.h | |||
$(RM) $(includedir)/FL/images/jpeglib.h | |||
# | |||
# libntk_jpeg.a | |||
# | |||
$(LIBJPEG): $(OBJS) | |||
echo Archiving $@... | |||
$(RM) $@ | |||
$(LIBCOMMAND) $@ $(OBJS) | |||
$(RANLIB) $@ | |||
# | |||
# Make dependencies... | |||
# | |||
depend: $(OBJS:.o=.c) | |||
makedepend -Y -I.. -f makedepend $(OBJS:.o=.c) | |||
include makedepend | |||
$(OBJS): ../makeinclude | |||
# | |||
# End of "$Id: Makefile 8425 2011-02-15 15:25:53Z mike $". | |||
# |
@@ -1,326 +0,0 @@ | |||
The Independent JPEG Group's JPEG software | |||
========================================== | |||
README for release 8c of 16-Jan-2011 | |||
==================================== | |||
This distribution contains the eighth public release of the Independent JPEG | |||
Group's free JPEG software. You are welcome to redistribute this software and | |||
to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. | |||
This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone, | |||
Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson, | |||
Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers, | |||
and other members of the Independent JPEG Group. | |||
IJG is not affiliated with the official ISO JPEG standards committee. | |||
DOCUMENTATION ROADMAP | |||
===================== | |||
This file contains the following sections: | |||
OVERVIEW General description of JPEG and the IJG software. | |||
LEGAL ISSUES Copyright, lack of warranty, terms of distribution. | |||
REFERENCES Where to learn more about JPEG. | |||
ARCHIVE LOCATIONS Where to find newer versions of this software. | |||
ACKNOWLEDGMENTS Special thanks. | |||
FILE FORMAT WARS Software *not* to get. | |||
TO DO Plans for future IJG releases. | |||
Other documentation files in the distribution are: | |||
User documentation: | |||
install.txt How to configure and install the IJG software. | |||
usage.txt Usage instructions for cjpeg, djpeg, jpegtran, | |||
rdjpgcom, and wrjpgcom. | |||
*.1 Unix-style man pages for programs (same info as usage.txt). | |||
wizard.txt Advanced usage instructions for JPEG wizards only. | |||
change.log Version-to-version change highlights. | |||
Programmer and internal documentation: | |||
libjpeg.txt How to use the JPEG library in your own programs. | |||
example.c Sample code for calling the JPEG library. | |||
structure.txt Overview of the JPEG library's internal structure. | |||
filelist.txt Road map of IJG files. | |||
coderules.txt Coding style rules --- please read if you contribute code. | |||
Please read at least the files install.txt and usage.txt. Some information | |||
can also be found in the JPEG FAQ (Frequently Asked Questions) article. See | |||
ARCHIVE LOCATIONS below to find out where to obtain the FAQ article. | |||
If you want to understand how the JPEG code works, we suggest reading one or | |||
more of the REFERENCES, then looking at the documentation files (in roughly | |||
the order listed) before diving into the code. | |||
OVERVIEW | |||
======== | |||
This package contains C software to implement JPEG image encoding, decoding, | |||
and transcoding. JPEG (pronounced "jay-peg") is a standardized compression | |||
method for full-color and gray-scale images. | |||
This software implements JPEG baseline, extended-sequential, and progressive | |||
compression processes. Provision is made for supporting all variants of these | |||
processes, although some uncommon parameter settings aren't implemented yet. | |||
We have made no provision for supporting the hierarchical or lossless | |||
processes defined in the standard. | |||
We provide a set of library routines for reading and writing JPEG image files, | |||
plus two sample applications "cjpeg" and "djpeg", which use the library to | |||
perform conversion between JPEG and some other popular image file formats. | |||
The library is intended to be reused in other applications. | |||
In order to support file conversion and viewing software, we have included | |||
considerable functionality beyond the bare JPEG coding/decoding capability; | |||
for example, the color quantization modules are not strictly part of JPEG | |||
decoding, but they are essential for output to colormapped file formats or | |||
colormapped displays. These extra functions can be compiled out of the | |||
library if not required for a particular application. | |||
We have also included "jpegtran", a utility for lossless transcoding between | |||
different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple | |||
applications for inserting and extracting textual comments in JFIF files. | |||
The emphasis in designing this software has been on achieving portability and | |||
flexibility, while also making it fast enough to be useful. In particular, | |||
the software is not intended to be read as a tutorial on JPEG. (See the | |||
REFERENCES section for introductory material.) Rather, it is intended to | |||
be reliable, portable, industrial-strength code. We do not claim to have | |||
achieved that goal in every aspect of the software, but we strive for it. | |||
We welcome the use of this software as a component of commercial products. | |||
No royalty is required, but we do ask for an acknowledgement in product | |||
documentation, as described under LEGAL ISSUES. | |||
LEGAL ISSUES | |||
============ | |||
In plain English: | |||
1. We don't promise that this software works. (But if you find any bugs, | |||
please let us know!) | |||
2. You can use this software for whatever you want. You don't have to pay us. | |||
3. You may not pretend that you wrote this software. If you use it in a | |||
program, you must acknowledge somewhere in your documentation that | |||
you've used the IJG code. | |||
In legalese: | |||
The authors make NO WARRANTY or representation, either express or implied, | |||
with respect to this software, its quality, accuracy, merchantability, or | |||
fitness for a particular purpose. This software is provided "AS IS", and you, | |||
its user, assume the entire risk as to its quality and accuracy. | |||
This software is copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding. | |||
All Rights Reserved except as specified below. | |||
Permission is hereby granted to use, copy, modify, and distribute this | |||
software (or portions thereof) for any purpose, without fee, subject to these | |||
conditions: | |||
(1) If any part of the source code for this software is distributed, then this | |||
README file must be included, with this copyright and no-warranty notice | |||
unaltered; and any additions, deletions, or changes to the original files | |||
must be clearly indicated in accompanying documentation. | |||
(2) If only executable code is distributed, then the accompanying | |||
documentation must state that "this software is based in part on the work of | |||
the Independent JPEG Group". | |||
(3) Permission for use of this software is granted only if the user accepts | |||
full responsibility for any undesirable consequences; the authors accept | |||
NO LIABILITY for damages of any kind. | |||
These conditions apply to any software derived from or based on the IJG code, | |||
not just to the unmodified library. If you use our work, you ought to | |||
acknowledge us. | |||
Permission is NOT granted for the use of any IJG author's name or company name | |||
in advertising or publicity relating to this software or products derived from | |||
it. This software may be referred to only as "the Independent JPEG Group's | |||
software". | |||
We specifically permit and encourage the use of this software as the basis of | |||
commercial products, provided that all warranty or liability claims are | |||
assumed by the product vendor. | |||
ansi2knr.c is included in this distribution by permission of L. Peter Deutsch, | |||
sole proprietor of its copyright holder, Aladdin Enterprises of Menlo Park, CA. | |||
ansi2knr.c is NOT covered by the above copyright and conditions, but instead | |||
by the usual distribution terms of the Free Software Foundation; principally, | |||
that you must include source code if you redistribute it. (See the file | |||
ansi2knr.c for full details.) However, since ansi2knr.c is not needed as part | |||
of any program generated from the IJG code, this does not limit you more than | |||
the foregoing paragraphs do. | |||
The Unix configuration script "configure" was produced with GNU Autoconf. | |||
It is copyright by the Free Software Foundation but is freely distributable. | |||
The same holds for its supporting scripts (config.guess, config.sub, | |||
ltmain.sh). Another support script, install-sh, is copyright by X Consortium | |||
but is also freely distributable. | |||
The IJG distribution formerly included code to read and write GIF files. | |||
To avoid entanglement with the Unisys LZW patent, GIF reading support has | |||
been removed altogether, and the GIF writer has been simplified to produce | |||
"uncompressed GIFs". This technique does not use the LZW algorithm; the | |||
resulting GIF files are larger than usual, but are readable by all standard | |||
GIF decoders. | |||
We are required to state that | |||
"The Graphics Interchange Format(c) is the Copyright property of | |||
CompuServe Incorporated. GIF(sm) is a Service Mark property of | |||
CompuServe Incorporated." | |||
REFERENCES | |||
========== | |||
We recommend reading one or more of these references before trying to | |||
understand the innards of the JPEG software. | |||
The best short technical introduction to the JPEG compression algorithm is | |||
Wallace, Gregory K. "The JPEG Still Picture Compression Standard", | |||
Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. | |||
(Adjacent articles in that issue discuss MPEG motion picture compression, | |||
applications of JPEG, and related topics.) If you don't have the CACM issue | |||
handy, a PostScript file containing a revised version of Wallace's article is | |||
available at http://www.ijg.org/files/wallace.ps.gz. The file (actually | |||
a preprint for an article that appeared in IEEE Trans. Consumer Electronics) | |||
omits the sample images that appeared in CACM, but it includes corrections | |||
and some added material. Note: the Wallace article is copyright ACM and IEEE, | |||
and it may not be used for commercial purposes. | |||
A somewhat less technical, more leisurely introduction to JPEG can be found in | |||
"The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by | |||
M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides | |||
good explanations and example C code for a multitude of compression methods | |||
including JPEG. It is an excellent source if you are comfortable reading C | |||
code but don't know much about data compression in general. The book's JPEG | |||
sample code is far from industrial-strength, but when you are ready to look | |||
at a full implementation, you've got one here... | |||
The best currently available description of JPEG is the textbook "JPEG Still | |||
Image Data Compression Standard" by William B. Pennebaker and Joan L. | |||
Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. | |||
Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG | |||
standards (DIS 10918-1 and draft DIS 10918-2). | |||
Although this is by far the most detailed and comprehensive exposition of | |||
JPEG publicly available, we point out that it is still missing an explanation | |||
of the most essential properties and algorithms of the underlying DCT | |||
technology. | |||
If you think that you know about DCT-based JPEG after reading this book, | |||
then you are in delusion. The real fundamentals and corresponding potential | |||
of DCT-based JPEG are not publicly known so far, and that is the reason for | |||
all the mistaken developments taking place in the image coding domain. | |||
The original JPEG standard is divided into two parts, Part 1 being the actual | |||
specification, while Part 2 covers compliance testing methods. Part 1 is | |||
titled "Digital Compression and Coding of Continuous-tone Still Images, | |||
Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS | |||
10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of | |||
Continuous-tone Still Images, Part 2: Compliance testing" and has document | |||
numbers ISO/IEC IS 10918-2, ITU-T T.83. | |||
IJG JPEG 8 introduces an implementation of the JPEG SmartScale extension | |||
which is specified in a contributed document at ITU and ISO with title "ITU-T | |||
JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced Image Coding", April | |||
2006, Geneva, Switzerland. The latest version of the document is Revision 3. | |||
The JPEG standard does not specify all details of an interchangeable file | |||
format. For the omitted details we follow the "JFIF" conventions, revision | |||
1.02. JFIF 1.02 has been adopted as an Ecma International Technical Report | |||
and thus received a formal publication status. It is available as a free | |||
download in PDF format from | |||
http://www.ecma-international.org/publications/techreports/E-TR-098.htm. | |||
A PostScript version of the JFIF document is available at | |||
http://www.ijg.org/files/jfif.ps.gz. There is also a plain text version at | |||
http://www.ijg.org/files/jfif.txt.gz, but it is missing the figures. | |||
The TIFF 6.0 file format specification can be obtained by FTP from | |||
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme | |||
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. | |||
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). | |||
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 | |||
(Compression tag 7). Copies of this Note can be obtained from | |||
http://www.ijg.org/files/. It is expected that the next revision | |||
of the TIFF spec will replace the 6.0 JPEG design with the Note's design. | |||
Although IJG's own code does not support TIFF/JPEG, the free libtiff library | |||
uses our library to implement TIFF/JPEG per the Note. | |||
ARCHIVE LOCATIONS | |||
================= | |||
The "official" archive site for this software is www.ijg.org. | |||
The most recent released version can always be found there in | |||
directory "files". This particular version will be archived as | |||
http://www.ijg.org/files/jpegsrc.v8c.tar.gz, and in Windows-compatible | |||
"zip" archive format as http://www.ijg.org/files/jpegsr8c.zip. | |||
The JPEG FAQ (Frequently Asked Questions) article is a source of some | |||
general information about JPEG. | |||
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/ | |||
and other news.answers archive sites, including the official news.answers | |||
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/. | |||
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu | |||
with body | |||
send usenet/news.answers/jpeg-faq/part1 | |||
send usenet/news.answers/jpeg-faq/part2 | |||
ACKNOWLEDGMENTS | |||
=============== | |||
Thank to Juergen Bruder for providing me with a copy of the common DCT | |||
algorithm article, only to find out that I had come to the same result | |||
in a more direct and comprehensible way with a more generative approach. | |||
Thank to Istvan Sebestyen and Joan L. Mitchell for inviting me to the | |||
ITU JPEG (Study Group 16) meeting in Geneva, Switzerland. | |||
Thank to Thomas Wiegand and Gary Sullivan for inviting me to the | |||
Joint Video Team (MPEG & ITU) meeting in Geneva, Switzerland. | |||
Thank to John Korejwa and Massimo Ballerini for inviting me to | |||
fruitful consultations in Boston, MA and Milan, Italy. | |||
Thank to Hendrik Elstner, Roland Fassauer, Simone Zuck, Guenther | |||
Maier-Gerber, Walter Stoeber, Fred Schmitz, and Norbert Braunagel | |||
for corresponding business development. | |||
Thank to Nico Zschach and Dirk Stelling of the technical support team | |||
at the Digital Images company in Halle for providing me with extra | |||
equipment for configuration tests. | |||
Thank to Richard F. Lyon (then of Foveon Inc.) for fruitful | |||
communication about JPEG configuration in Sigma Photo Pro software. | |||
Thank to Andrew Finkenstadt for hosting the ijg.org site. | |||
Last but not least special thank to Thomas G. Lane for the original | |||
design and development of this singular software package. | |||
FILE FORMAT WARS | |||
================ | |||
The ISO JPEG standards committee actually promotes different formats like | |||
"JPEG 2000" or "JPEG XR" which are incompatible with original DCT-based | |||
JPEG and which are based on faulty technologies. IJG therefore does not | |||
and will not support such momentary mistakes (see REFERENCES). | |||
We have little or no sympathy for the promotion of these formats. Indeed, | |||
one of the original reasons for developing this free software was to help | |||
force convergence on common, interoperable format standards for JPEG files. | |||
Don't use an incompatible file format! | |||
(In any case, our decoder will remain capable of reading existing JPEG | |||
image files indefinitely.) | |||
TO DO | |||
===== | |||
Version 8 is the first release of a new generation JPEG standard | |||
to overcome the limitations of the original JPEG specification. | |||
More features are being prepared for coming releases... | |||
Please send bug reports, offers of help, etc. to jpeg-info@uc.ag. |
@@ -1,326 +0,0 @@ | |||
CHANGE LOG for Independent JPEG Group's JPEG software | |||
Version 8c 16-Jan-2011 | |||
----------------------- | |||
Add option to compression library and cjpeg (-block N) to use | |||
different DCT block size. | |||
All N from 1 to 16 are possible. Default is 8 (baseline format). | |||
Larger values produce higher compression, | |||
smaller values produce higher quality. | |||
SmartScale capable decoder (introduced with IJG JPEG 8) required. | |||
Version 8b 16-May-2010 | |||
----------------------- | |||
Repair problem in new memory source manager with corrupt JPEG data. | |||
Thank to Ted Campbell and Samuel Chun for the report. | |||
Repair problem in Makefile.am test target. | |||
Thank to anonymous user for the report. | |||
Support MinGW installation with automatic configure. | |||
Thank to Volker Grabsch for the suggestion. | |||
Version 8a 28-Feb-2010 | |||
----------------------- | |||
Writing tables-only datastreams via jpeg_write_tables works again. | |||
Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg. | |||
Thank to Brett Blackham for the suggestion. | |||
Improve accuracy in floating point IDCT calculation. | |||
Thank to Robert Hooke for the hint. | |||
Version 8 10-Jan-2010 | |||
---------------------- | |||
jpegtran now supports the same -scale option as djpeg for "lossless" resize. | |||
An implementation of the JPEG SmartScale extension is required for this | |||
feature. A (draft) specification of the JPEG SmartScale extension is | |||
available as a contributed document at ITU and ISO. Revision 2 or later | |||
of the document is required (latest document version is Revision 3). | |||
The SmartScale extension will enable more features beside lossless resize | |||
in future implementations, as described in the document (new compression | |||
options). | |||
Add sanity check in BMP reader module to avoid cjpeg crash for empty input | |||
image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error). | |||
Add data source and destination managers for read from and write to | |||
memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest. | |||
Thank to Roberto Boni from Italy for the suggestion. | |||
Version 7 27-Jun-2009 | |||
---------------------- | |||
New scaled DCTs implemented. | |||
djpeg now supports scalings N/8 with all N from 1 to 16. | |||
cjpeg now supports scalings 8/N with all N from 1 to 16. | |||
Scaled DCTs with size larger than 8 are now also used for resolving the | |||
common 2x2 chroma subsampling case without additional spatial resampling. | |||
Separate spatial resampling for those kind of files is now only necessary | |||
for N>8 scaling cases. | |||
Furthermore, separate scaled DCT functions are provided for direct resolving | |||
of the common asymmetric subsampling cases (2x1 and 1x2) without additional | |||
spatial resampling. | |||
cjpeg -quality option has been extended for support of separate quality | |||
settings for luminance and chrominance (or in general, for every provided | |||
quantization table slot). | |||
New API function jpeg_default_qtables() and q_scale_factor array in library. | |||
Added -nosmooth option to cjpeg, complementary to djpeg. | |||
New variable "do_fancy_downsampling" in library, complement to fancy | |||
upsampling. Fancy upsampling now uses direct DCT scaling with sizes | |||
larger than 8. The old method is not reversible and has been removed. | |||
Support arithmetic entropy encoding and decoding. | |||
Added files jaricom.c, jcarith.c, jdarith.c. | |||
Straighten the file structure: | |||
Removed files jidctred.c, jcphuff.c, jchuff.h, jdphuff.c, jdhuff.h. | |||
jpegtran has a new "lossless" cropping feature. | |||
Implement -perfect option in jpegtran, new API function | |||
jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch) | |||
Better error messages for jpegtran fopen failure. | |||
(DP 203_jpegtran_errmsg.dpatch) | |||
Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c: | |||
according to Netpbm, the de facto standard implementation of the PNM formats, | |||
the most significant byte is first. (DP 203_rdppm.dpatch) | |||
Add -raw option to rdjpgcom not to mangle the output. | |||
(DP 205_rdjpgcom_raw.dpatch) | |||
Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch) | |||
Add extern "C" to jpeglib.h. | |||
This avoids the need to put extern "C" { ... } around #include "jpeglib.h" | |||
in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the | |||
configuration prevents this. (DP 202_jpeglib.h_c++.dpatch) | |||
Version 6b 27-Mar-1998 | |||
----------------------- | |||
jpegtran has new features for lossless image transformations (rotation | |||
and flipping) as well as "lossless" reduction to grayscale. | |||
jpegtran now copies comments by default; it has a -copy switch to enable | |||
copying all APPn blocks as well, or to suppress comments. (Formerly it | |||
always suppressed comments and APPn blocks.) jpegtran now also preserves | |||
JFIF version and resolution information. | |||
New decompressor library feature: COM and APPn markers found in the input | |||
file can be saved in memory for later use by the application. (Before, | |||
you had to code this up yourself with a custom marker processor.) | |||
There is an unused field "void * client_data" now in compress and decompress | |||
parameter structs; this may be useful in some applications. | |||
JFIF version number information is now saved by the decoder and accepted by | |||
the encoder. jpegtran uses this to copy the source file's version number, | |||
to ensure "jpegtran -copy all" won't create bogus files that contain JFXX | |||
extensions but claim to be version 1.01. Applications that generate their | |||
own JFXX extension markers also (finally) have a supported way to cause the | |||
encoder to emit JFIF version number 1.02. | |||
djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather | |||
than as unknown APP0 markers. | |||
In -verbose mode, djpeg and rdjpgcom will try to print the contents of | |||
APP12 markers as text. Some digital cameras store useful text information | |||
in APP12 markers. | |||
Handling of truncated data streams is more robust: blocks beyond the one in | |||
which the error occurs will be output as uniform gray, or left unchanged | |||
if decoding a progressive JPEG. The appearance no longer depends on the | |||
Huffman tables being used. | |||
Huffman tables are checked for validity much more carefully than before. | |||
To avoid the Unisys LZW patent, djpeg's GIF output capability has been | |||
changed to produce "uncompressed GIFs", and cjpeg's GIF input capability | |||
has been removed altogether. We're not happy about it either, but there | |||
seems to be no good alternative. | |||
The configure script now supports building libjpeg as a shared library | |||
on many flavors of Unix (all the ones that GNU libtool knows how to | |||
build shared libraries for). Use "./configure --enable-shared" to | |||
try this out. | |||
New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio. | |||
Also, a jconfig file and a build script for Metrowerks CodeWarrior | |||
on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there | |||
are miscellaneous other minor improvements in the makefiles. | |||
jmemmac.c now knows how to create temporary files following Mac System 7 | |||
conventions. | |||
djpeg's -map switch is now able to read raw-format PPM files reliably. | |||
cjpeg -progressive -restart no longer generates any unnecessary DRI markers. | |||
Multiple calls to jpeg_simple_progression for a single JPEG object | |||
no longer leak memory. | |||
Version 6a 7-Feb-96 | |||
-------------------- | |||
Library initialization sequence modified to detect version mismatches | |||
and struct field packing mismatches between library and calling application. | |||
This change requires applications to be recompiled, but does not require | |||
any application source code change. | |||
All routine declarations changed to the style "GLOBAL(type) name ...", | |||
that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the | |||
routine's return type as an argument. This makes it possible to add | |||
Microsoft-style linkage keywords to all the routines by changing just | |||
these macros. Note that any application code that was using these macros | |||
will have to be changed. | |||
DCT coefficient quantization tables are now stored in normal array order | |||
rather than zigzag order. Application code that calls jpeg_add_quant_table, | |||
or otherwise manipulates quantization tables directly, will need to be | |||
changed. If you need to make such code work with either older or newer | |||
versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is | |||
recommended. | |||
djpeg's trace capability now dumps DQT tables in natural order, not zigzag | |||
order. This allows the trace output to be made into a "-qtables" file | |||
more easily. | |||
New system-dependent memory manager module for use on Apple Macintosh. | |||
Fix bug in cjpeg's -smooth option: last one or two scanlines would be | |||
duplicates of the prior line unless the image height mod 16 was 1 or 2. | |||
Repair minor problems in VMS, BCC, MC6 makefiles. | |||
New configure script based on latest GNU Autoconf. | |||
Correct the list of include files needed by MetroWerks C for ccommand(). | |||
Numerous small documentation updates. | |||
Version 6 2-Aug-95 | |||
------------------- | |||
Progressive JPEG support: library can read and write full progressive JPEG | |||
files. A "buffered image" mode supports incremental decoding for on-the-fly | |||
display of progressive images. Simply recompiling an existing IJG-v5-based | |||
decoder with v6 should allow it to read progressive files, though of course | |||
without any special progressive display. | |||
New "jpegtran" application performs lossless transcoding between different | |||
JPEG formats; primarily, it can be used to convert baseline to progressive | |||
JPEG and vice versa. In support of jpegtran, the library now allows lossless | |||
reading and writing of JPEG files as DCT coefficient arrays. This ability | |||
may be of use in other applications. | |||
Notes for programmers: | |||
* We changed jpeg_start_decompress() to be able to suspend; this makes all | |||
decoding modes available to suspending-input applications. However, | |||
existing applications that use suspending input will need to be changed | |||
to check the return value from jpeg_start_decompress(). You don't need to | |||
do anything if you don't use a suspending data source. | |||
* We changed the interface to the virtual array routines: access_virt_array | |||
routines now take a count of the number of rows to access this time. The | |||
last parameter to request_virt_array routines is now interpreted as the | |||
maximum number of rows that may be accessed at once, but not necessarily | |||
the height of every access. | |||
Version 5b 15-Mar-95 | |||
--------------------- | |||
Correct bugs with grayscale images having v_samp_factor > 1. | |||
jpeg_write_raw_data() now supports output suspension. | |||
Correct bugs in "configure" script for case of compiling in | |||
a directory other than the one containing the source files. | |||
Repair bug in jquant1.c: sometimes didn't use as many colors as it could. | |||
Borland C makefile and jconfig file work under either MS-DOS or OS/2. | |||
Miscellaneous improvements to documentation. | |||
Version 5a 7-Dec-94 | |||
-------------------- | |||
Changed color conversion roundoff behavior so that grayscale values are | |||
represented exactly. (This causes test image files to change.) | |||
Make ordered dither use 16x16 instead of 4x4 pattern for a small quality | |||
improvement. | |||
New configure script based on latest GNU Autoconf. | |||
Fix configure script to handle CFLAGS correctly. | |||
Rename *.auto files to *.cfg, so that configure script still works if | |||
file names have been truncated for DOS. | |||
Fix bug in rdbmp.c: didn't allow for extra data between header and image. | |||
Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data. | |||
Fix several bugs in rdrle.c. | |||
NEED_SHORT_EXTERNAL_NAMES option was broken. | |||
Revise jerror.h/jerror.c for more flexibility in message table. | |||
Repair oversight in jmemname.c NO_MKTEMP case: file could be there | |||
but unreadable. | |||
Version 5 24-Sep-94 | |||
-------------------- | |||
Version 5 represents a nearly complete redesign and rewrite of the IJG | |||
software. Major user-visible changes include: | |||
* Automatic configuration simplifies installation for most Unix systems. | |||
* A range of speed vs. image quality tradeoffs are supported. | |||
This includes resizing of an image during decompression: scaling down | |||
by a factor of 1/2, 1/4, or 1/8 is handled very efficiently. | |||
* New programs rdjpgcom and wrjpgcom allow insertion and extraction | |||
of text comments in a JPEG file. | |||
The application programmer's interface to the library has changed completely. | |||
Notable improvements include: | |||
* We have eliminated the use of callback routines for handling the | |||
uncompressed image data. The application now sees the library as a | |||
set of routines that it calls to read or write image data on a | |||
scanline-by-scanline basis. | |||
* The application image data is represented in a conventional interleaved- | |||
pixel format, rather than as a separate array for each color channel. | |||
This can save a copying step in many programs. | |||
* The handling of compressed data has been cleaned up: the application can | |||
supply routines to source or sink the compressed data. It is possible to | |||
suspend processing on source/sink buffer overrun, although this is not | |||
supported in all operating modes. | |||
* All static state has been eliminated from the library, so that multiple | |||
instances of compression or decompression can be active concurrently. | |||
* JPEG abbreviated datastream formats are supported, ie, quantization and | |||
Huffman tables can be stored separately from the image data. | |||
* And not only that, but the documentation of the library has improved | |||
considerably! | |||
The last widely used release before the version 5 rewrite was version 4A of | |||
18-Feb-93. Change logs before that point have been discarded, since they | |||
are not of much interest after the rewrite. |
@@ -1,118 +0,0 @@ | |||
IJG JPEG LIBRARY: CODING RULES | |||
Copyright (C) 1991-1996, Thomas G. Lane. | |||
This file is part of the Independent JPEG Group's software. | |||
For conditions of distribution and use, see the accompanying README file. | |||
Since numerous people will be contributing code and bug fixes, it's important | |||
to establish a common coding style. The goal of using similar coding styles | |||
is much more important than the details of just what that style is. | |||
In general we follow the recommendations of "Recommended C Style and Coding | |||
Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and | |||
Brader). This document is available in the IJG FTP archive (see | |||
jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl). | |||
Block comments should be laid out thusly: | |||
/* | |||
* Block comments in this style. | |||
*/ | |||
We indent statements in K&R style, e.g., | |||
if (test) { | |||
then-part; | |||
} else { | |||
else-part; | |||
} | |||
with two spaces per indentation level. (This indentation convention is | |||
handled automatically by GNU Emacs and many other text editors.) | |||
Multi-word names should be written in lower case with underscores, e.g., | |||
multi_word_name (not multiWordName). Preprocessor symbols and enum constants | |||
are similar but upper case (MULTI_WORD_NAME). Names should be unique within | |||
the first fifteen characters. (On some older systems, global names must be | |||
unique within six characters. We accommodate this without cluttering the | |||
source code by using macros to substitute shorter names.) | |||
We use function prototypes everywhere; we rely on automatic source code | |||
transformation to feed prototype-less C compilers. Transformation is done | |||
by the simple and portable tool 'ansi2knr.c' (courtesy of Ghostscript). | |||
ansi2knr is not very bright, so it imposes a format requirement on function | |||
declarations: the function name MUST BEGIN IN COLUMN 1. Thus all functions | |||
should be written in the following style: | |||
LOCAL(int *) | |||
function_name (int a, char *b) | |||
{ | |||
code... | |||
} | |||
Note that each function definition must begin with GLOBAL(type), LOCAL(type), | |||
or METHODDEF(type). These macros expand to "static type" or just "type" as | |||
appropriate. They provide a readable indication of the routine's usage and | |||
can readily be changed for special needs. (For instance, special linkage | |||
keywords can be inserted for use in Windows DLLs.) | |||
ansi2knr does not transform method declarations (function pointers in | |||
structs). We handle these with a macro JMETHOD, defined as | |||
#ifdef HAVE_PROTOTYPES | |||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist | |||
#else | |||
#define JMETHOD(type,methodname,arglist) type (*methodname) () | |||
#endif | |||
which is used like this: | |||
struct function_pointers { | |||
JMETHOD(void, init_entropy_encoder, (int somearg, jparms *jp)); | |||
JMETHOD(void, term_entropy_encoder, (void)); | |||
}; | |||
Note the set of parentheses surrounding the parameter list. | |||
A similar solution is used for forward and external function declarations | |||
(see the EXTERN and JPP macros). | |||
If the code is to work on non-ANSI compilers, we cannot rely on a prototype | |||
declaration to coerce actual parameters into the right types. Therefore, use | |||
explicit casts on actual parameters whenever the actual parameter type is not | |||
identical to the formal parameter. Beware of implicit conversions to "int". | |||
It seems there are some non-ANSI compilers in which the sizeof() operator | |||
is defined to return int, yet size_t is defined as long. Needless to say, | |||
this is brain-damaged. Always use the SIZEOF() macro in place of sizeof(), | |||
so that the result is guaranteed to be of type size_t. | |||
The JPEG library is intended to be used within larger programs. Furthermore, | |||
we want it to be reentrant so that it can be used by applications that process | |||
multiple images concurrently. The following rules support these requirements: | |||
1. Avoid direct use of file I/O, "malloc", error report printouts, etc; | |||
pass these through the common routines provided. | |||
2. Minimize global namespace pollution. Functions should be declared static | |||
wherever possible. (Note that our method-based calling conventions help this | |||
a lot: in many modules only the initialization function will ever need to be | |||
called directly, so only that function need be externally visible.) All | |||
global function names should begin with "jpeg_", and should have an | |||
abbreviated name (unique in the first six characters) substituted by macro | |||
when NEED_SHORT_EXTERNAL_NAMES is set. | |||
3. Don't use global variables; anything that must be used in another module | |||
should be in the common data structures. | |||
4. Don't use static variables except for read-only constant tables. Variables | |||
that should be private to a module can be placed into private structures (see | |||
the system architecture document, structure.txt). | |||
5. Source file names should begin with "j" for files that are part of the | |||
library proper; source files that are not part of the library, such as cjpeg.c | |||
and djpeg.c, do not begin with "j". Keep source file names to eight | |||
characters (plus ".c" or ".h", etc) to make life easy for MS-DOSers. Keep | |||
compression and decompression code in separate source files --- some | |||
applications may want only one half of the library. | |||
Note: these rules (particularly #4) are not followed religiously in the | |||
modules that are used in cjpeg/djpeg but are not part of the JPEG library | |||
proper. Those modules are not really intended to be used in other | |||
applications. |
@@ -1,215 +0,0 @@ | |||
IJG JPEG LIBRARY: FILE LIST | |||
Copyright (C) 1994-2009, Thomas G. Lane, Guido Vollbeding. | |||
This file is part of the Independent JPEG Group's software. | |||
For conditions of distribution and use, see the accompanying README file. | |||
Here is a road map to the files in the IJG JPEG distribution. The | |||
distribution includes the JPEG library proper, plus two application | |||
programs ("cjpeg" and "djpeg") which use the library to convert JPEG | |||
files to and from some other popular image formats. A third application | |||
"jpegtran" uses the library to do lossless conversion between different | |||
variants of JPEG. There are also two stand-alone applications, | |||
"rdjpgcom" and "wrjpgcom". | |||
THE JPEG LIBRARY | |||
================ | |||
Include files: | |||
jpeglib.h JPEG library's exported data and function declarations. | |||
jconfig.h Configuration declarations. Note: this file is not present | |||
in the distribution; it is generated during installation. | |||
jmorecfg.h Additional configuration declarations; need not be changed | |||
for a standard installation. | |||
jerror.h Declares JPEG library's error and trace message codes. | |||
jinclude.h Central include file used by all IJG .c files to reference | |||
system include files. | |||
jpegint.h JPEG library's internal data structures. | |||
jdct.h Private declarations for forward & reverse DCT subsystems. | |||
jmemsys.h Private declarations for memory management subsystem. | |||
jversion.h Version information. | |||
Applications using the library should include jpeglib.h (which in turn | |||
includes jconfig.h and jmorecfg.h). Optionally, jerror.h may be included | |||
if the application needs to reference individual JPEG error codes. The | |||
other include files are intended for internal use and would not normally | |||
be included by an application program. (cjpeg/djpeg/etc do use jinclude.h, | |||
since its function is to improve portability of the whole IJG distribution. | |||
Most other applications will directly include the system include files they | |||
want, and hence won't need jinclude.h.) | |||
C source code files: | |||
These files contain most of the functions intended to be called directly by | |||
an application program: | |||
jcapimin.c Application program interface: core routines for compression. | |||
jcapistd.c Application program interface: standard compression. | |||
jdapimin.c Application program interface: core routines for decompression. | |||
jdapistd.c Application program interface: standard decompression. | |||
jcomapi.c Application program interface routines common to compression | |||
and decompression. | |||
jcparam.c Compression parameter setting helper routines. | |||
jctrans.c API and library routines for transcoding compression. | |||
jdtrans.c API and library routines for transcoding decompression. | |||
Compression side of the library: | |||
jcinit.c Initialization: determines which other modules to use. | |||
jcmaster.c Master control: setup and inter-pass sequencing logic. | |||
jcmainct.c Main buffer controller (preprocessor => JPEG compressor). | |||
jcprepct.c Preprocessor buffer controller. | |||
jccoefct.c Buffer controller for DCT coefficient buffer. | |||
jccolor.c Color space conversion. | |||
jcsample.c Downsampling. | |||
jcdctmgr.c DCT manager (DCT implementation selection & control). | |||
jfdctint.c Forward DCT using slow-but-accurate integer method. | |||
jfdctfst.c Forward DCT using faster, less accurate integer method. | |||
jfdctflt.c Forward DCT using floating-point arithmetic. | |||
jchuff.c Huffman entropy coding. | |||
jcarith.c Arithmetic entropy coding. | |||
jcmarker.c JPEG marker writing. | |||
jdatadst.c Data destination managers for memory and stdio output. | |||
Decompression side of the library: | |||
jdmaster.c Master control: determines which other modules to use. | |||
jdinput.c Input controller: controls input processing modules. | |||
jdmainct.c Main buffer controller (JPEG decompressor => postprocessor). | |||
jdcoefct.c Buffer controller for DCT coefficient buffer. | |||
jdpostct.c Postprocessor buffer controller. | |||
jdmarker.c JPEG marker reading. | |||
jdhuff.c Huffman entropy decoding. | |||
jdarith.c Arithmetic entropy decoding. | |||
jddctmgr.c IDCT manager (IDCT implementation selection & control). | |||
jidctint.c Inverse DCT using slow-but-accurate integer method. | |||
jidctfst.c Inverse DCT using faster, less accurate integer method. | |||
jidctflt.c Inverse DCT using floating-point arithmetic. | |||
jdsample.c Upsampling. | |||
jdcolor.c Color space conversion. | |||
jdmerge.c Merged upsampling/color conversion (faster, lower quality). | |||
jquant1.c One-pass color quantization using a fixed-spacing colormap. | |||
jquant2.c Two-pass color quantization using a custom-generated colormap. | |||
Also handles one-pass quantization to an externally given map. | |||
jdatasrc.c Data source managers for memory and stdio input. | |||
Support files for both compression and decompression: | |||
jaricom.c Tables for common use in arithmetic entropy encoding and | |||
decoding routines. | |||
jerror.c Standard error handling routines (application replaceable). | |||
jmemmgr.c System-independent (more or less) memory management code. | |||
jutils.c Miscellaneous utility routines. | |||
jmemmgr.c relies on a system-dependent memory management module. The IJG | |||
distribution includes the following implementations of the system-dependent | |||
module: | |||
jmemnobs.c "No backing store": assumes adequate virtual memory exists. | |||
jmemansi.c Makes temporary files with ANSI-standard routine tmpfile(). | |||
jmemname.c Makes temporary files with program-generated file names. | |||
jmemdos.c Custom implementation for MS-DOS (16-bit environment only): | |||
can use extended and expanded memory as well as temp files. | |||
jmemmac.c Custom implementation for Apple Macintosh. | |||
Exactly one of the system-dependent modules should be configured into an | |||
installed JPEG library (see install.txt for hints about which one to use). | |||
On unusual systems you may find it worthwhile to make a special | |||
system-dependent memory manager. | |||
Non-C source code files: | |||
jmemdosa.asm 80x86 assembly code support for jmemdos.c; used only in | |||
MS-DOS-specific configurations of the JPEG library. | |||
CJPEG/DJPEG/JPEGTRAN | |||
==================== | |||
Include files: | |||
cdjpeg.h Declarations shared by cjpeg/djpeg/jpegtran modules. | |||
cderror.h Additional error and trace message codes for cjpeg et al. | |||
transupp.h Declarations for jpegtran support routines in transupp.c. | |||
C source code files: | |||
cjpeg.c Main program for cjpeg. | |||
djpeg.c Main program for djpeg. | |||
jpegtran.c Main program for jpegtran. | |||
cdjpeg.c Utility routines used by all three programs. | |||
rdcolmap.c Code to read a colormap file for djpeg's "-map" switch. | |||
rdswitch.c Code to process some of cjpeg's more complex switches. | |||
Also used by jpegtran. | |||
transupp.c Support code for jpegtran: lossless image manipulations. | |||
Image file reader modules for cjpeg: | |||
rdbmp.c BMP file input. | |||
rdgif.c GIF file input (now just a stub). | |||
rdppm.c PPM/PGM file input. | |||
rdrle.c Utah RLE file input. | |||
rdtarga.c Targa file input. | |||
Image file writer modules for djpeg: | |||
wrbmp.c BMP file output. | |||
wrgif.c GIF file output (a mere shadow of its former self). | |||
wrppm.c PPM/PGM file output. | |||
wrrle.c Utah RLE file output. | |||
wrtarga.c Targa file output. | |||
RDJPGCOM/WRJPGCOM | |||
================= | |||
C source code files: | |||
rdjpgcom.c Stand-alone rdjpgcom application. | |||
wrjpgcom.c Stand-alone wrjpgcom application. | |||
These programs do not depend on the IJG library. They do use | |||
jconfig.h and jinclude.h, only to improve portability. | |||
ADDITIONAL FILES | |||
================ | |||
Documentation (see README for a guide to the documentation files): | |||
README Master documentation file. | |||
*.txt Other documentation files. | |||
*.1 Documentation in Unix man page format. | |||
change.log Version-to-version change highlights. | |||
example.c Sample code for calling JPEG library. | |||
Configuration/installation files and programs (see install.txt for more info): | |||
configure Unix shell script to perform automatic configuration. | |||
configure.ac Source file for use with Autoconf to generate configure. | |||
ltmain.sh Support scripts for configure (from GNU libtool). | |||
config.guess | |||
config.sub | |||
depcomp | |||
missing | |||
install-sh Install shell script for those Unix systems lacking one. | |||
Makefile.in Makefile input for configure. | |||
Makefile.am Source file for use with Automake to generate Makefile.in. | |||
ckconfig.c Program to generate jconfig.h on non-Unix systems. | |||
jconfig.txt Template for making jconfig.h by hand. | |||
mak*.* Sample makefiles for particular systems. | |||
jconfig.* Sample jconfig.h for particular systems. | |||
libjpeg.map Script to generate shared library with versioned symbols. | |||
aclocal.m4 M4 macro definitions for use with Autoconf. | |||
ansi2knr.c De-ANSIfier for pre-ANSI C compilers (courtesy of | |||
L. Peter Deutsch and Aladdin Enterprises). | |||
Test files (see install.txt for test procedure): | |||
test*.* Source and comparison files for confidence test. | |||
These are binary image files, NOT text files. |
@@ -1,153 +0,0 @@ | |||
/* | |||
* jaricom.c | |||
* | |||
* Developed 1997-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains probability estimation tables for common use in | |||
* arithmetic entropy encoding and decoding routines. | |||
* | |||
* This data represents Table D.2 in the JPEG spec (ISO/IEC IS 10918-1 | |||
* and CCITT Recommendation ITU-T T.81) and Table 24 in the JBIG spec | |||
* (ISO/IEC IS 11544 and CCITT Recommendation ITU-T T.82). | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* The following #define specifies the packing of the four components | |||
* into the compact INT32 representation. | |||
* Note that this formula must match the actual arithmetic encoder | |||
* and decoder implementation. The implementation has to be changed | |||
* if this formula is changed. | |||
* The current organization is leaned on Markus Kuhn's JBIG | |||
* implementation (jbig_tab.c). | |||
*/ | |||
#define V(i,a,b,c,d) (((INT32)a << 16) | ((INT32)c << 8) | ((INT32)d << 7) | b) | |||
const INT32 jpeg_aritab[113+1] = { | |||
/* | |||
* Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS | |||
*/ | |||
V( 0, 0x5a1d, 1, 1, 1 ), | |||
V( 1, 0x2586, 14, 2, 0 ), | |||
V( 2, 0x1114, 16, 3, 0 ), | |||
V( 3, 0x080b, 18, 4, 0 ), | |||
V( 4, 0x03d8, 20, 5, 0 ), | |||
V( 5, 0x01da, 23, 6, 0 ), | |||
V( 6, 0x00e5, 25, 7, 0 ), | |||
V( 7, 0x006f, 28, 8, 0 ), | |||
V( 8, 0x0036, 30, 9, 0 ), | |||
V( 9, 0x001a, 33, 10, 0 ), | |||
V( 10, 0x000d, 35, 11, 0 ), | |||
V( 11, 0x0006, 9, 12, 0 ), | |||
V( 12, 0x0003, 10, 13, 0 ), | |||
V( 13, 0x0001, 12, 13, 0 ), | |||
V( 14, 0x5a7f, 15, 15, 1 ), | |||
V( 15, 0x3f25, 36, 16, 0 ), | |||
V( 16, 0x2cf2, 38, 17, 0 ), | |||
V( 17, 0x207c, 39, 18, 0 ), | |||
V( 18, 0x17b9, 40, 19, 0 ), | |||
V( 19, 0x1182, 42, 20, 0 ), | |||
V( 20, 0x0cef, 43, 21, 0 ), | |||
V( 21, 0x09a1, 45, 22, 0 ), | |||
V( 22, 0x072f, 46, 23, 0 ), | |||
V( 23, 0x055c, 48, 24, 0 ), | |||
V( 24, 0x0406, 49, 25, 0 ), | |||
V( 25, 0x0303, 51, 26, 0 ), | |||
V( 26, 0x0240, 52, 27, 0 ), | |||
V( 27, 0x01b1, 54, 28, 0 ), | |||
V( 28, 0x0144, 56, 29, 0 ), | |||
V( 29, 0x00f5, 57, 30, 0 ), | |||
V( 30, 0x00b7, 59, 31, 0 ), | |||
V( 31, 0x008a, 60, 32, 0 ), | |||
V( 32, 0x0068, 62, 33, 0 ), | |||
V( 33, 0x004e, 63, 34, 0 ), | |||
V( 34, 0x003b, 32, 35, 0 ), | |||
V( 35, 0x002c, 33, 9, 0 ), | |||
V( 36, 0x5ae1, 37, 37, 1 ), | |||
V( 37, 0x484c, 64, 38, 0 ), | |||
V( 38, 0x3a0d, 65, 39, 0 ), | |||
V( 39, 0x2ef1, 67, 40, 0 ), | |||
V( 40, 0x261f, 68, 41, 0 ), | |||
V( 41, 0x1f33, 69, 42, 0 ), | |||
V( 42, 0x19a8, 70, 43, 0 ), | |||
V( 43, 0x1518, 72, 44, 0 ), | |||
V( 44, 0x1177, 73, 45, 0 ), | |||
V( 45, 0x0e74, 74, 46, 0 ), | |||
V( 46, 0x0bfb, 75, 47, 0 ), | |||
V( 47, 0x09f8, 77, 48, 0 ), | |||
V( 48, 0x0861, 78, 49, 0 ), | |||
V( 49, 0x0706, 79, 50, 0 ), | |||
V( 50, 0x05cd, 48, 51, 0 ), | |||
V( 51, 0x04de, 50, 52, 0 ), | |||
V( 52, 0x040f, 50, 53, 0 ), | |||
V( 53, 0x0363, 51, 54, 0 ), | |||
V( 54, 0x02d4, 52, 55, 0 ), | |||
V( 55, 0x025c, 53, 56, 0 ), | |||
V( 56, 0x01f8, 54, 57, 0 ), | |||
V( 57, 0x01a4, 55, 58, 0 ), | |||
V( 58, 0x0160, 56, 59, 0 ), | |||
V( 59, 0x0125, 57, 60, 0 ), | |||
V( 60, 0x00f6, 58, 61, 0 ), | |||
V( 61, 0x00cb, 59, 62, 0 ), | |||
V( 62, 0x00ab, 61, 63, 0 ), | |||
V( 63, 0x008f, 61, 32, 0 ), | |||
V( 64, 0x5b12, 65, 65, 1 ), | |||
V( 65, 0x4d04, 80, 66, 0 ), | |||
V( 66, 0x412c, 81, 67, 0 ), | |||
V( 67, 0x37d8, 82, 68, 0 ), | |||
V( 68, 0x2fe8, 83, 69, 0 ), | |||
V( 69, 0x293c, 84, 70, 0 ), | |||
V( 70, 0x2379, 86, 71, 0 ), | |||
V( 71, 0x1edf, 87, 72, 0 ), | |||
V( 72, 0x1aa9, 87, 73, 0 ), | |||
V( 73, 0x174e, 72, 74, 0 ), | |||
V( 74, 0x1424, 72, 75, 0 ), | |||
V( 75, 0x119c, 74, 76, 0 ), | |||
V( 76, 0x0f6b, 74, 77, 0 ), | |||
V( 77, 0x0d51, 75, 78, 0 ), | |||
V( 78, 0x0bb6, 77, 79, 0 ), | |||
V( 79, 0x0a40, 77, 48, 0 ), | |||
V( 80, 0x5832, 80, 81, 1 ), | |||
V( 81, 0x4d1c, 88, 82, 0 ), | |||
V( 82, 0x438e, 89, 83, 0 ), | |||
V( 83, 0x3bdd, 90, 84, 0 ), | |||
V( 84, 0x34ee, 91, 85, 0 ), | |||
V( 85, 0x2eae, 92, 86, 0 ), | |||
V( 86, 0x299a, 93, 87, 0 ), | |||
V( 87, 0x2516, 86, 71, 0 ), | |||
V( 88, 0x5570, 88, 89, 1 ), | |||
V( 89, 0x4ca9, 95, 90, 0 ), | |||
V( 90, 0x44d9, 96, 91, 0 ), | |||
V( 91, 0x3e22, 97, 92, 0 ), | |||
V( 92, 0x3824, 99, 93, 0 ), | |||
V( 93, 0x32b4, 99, 94, 0 ), | |||
V( 94, 0x2e17, 93, 86, 0 ), | |||
V( 95, 0x56a8, 95, 96, 1 ), | |||
V( 96, 0x4f46, 101, 97, 0 ), | |||
V( 97, 0x47e5, 102, 98, 0 ), | |||
V( 98, 0x41cf, 103, 99, 0 ), | |||
V( 99, 0x3c3d, 104, 100, 0 ), | |||
V( 100, 0x375e, 99, 93, 0 ), | |||
V( 101, 0x5231, 105, 102, 0 ), | |||
V( 102, 0x4c0f, 106, 103, 0 ), | |||
V( 103, 0x4639, 107, 104, 0 ), | |||
V( 104, 0x415e, 103, 99, 0 ), | |||
V( 105, 0x5627, 105, 106, 1 ), | |||
V( 106, 0x50e7, 108, 107, 0 ), | |||
V( 107, 0x4b85, 109, 103, 0 ), | |||
V( 108, 0x5597, 110, 109, 0 ), | |||
V( 109, 0x504f, 111, 107, 0 ), | |||
V( 110, 0x5a10, 110, 111, 1 ), | |||
V( 111, 0x5522, 112, 109, 0 ), | |||
V( 112, 0x59eb, 112, 111, 1 ), | |||
/* | |||
* This last entry is used for fixed probability estimate of 0.5 | |||
* as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851. | |||
*/ | |||
V( 113, 0x5a1d, 113, 113, 0 ) | |||
}; |
@@ -1,288 +0,0 @@ | |||
/* | |||
* jcapimin.c | |||
* | |||
* Copyright (C) 1994-1998, Thomas G. Lane. | |||
* Modified 2003-2010 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains application interface code for the compression half | |||
* of the JPEG library. These are the "minimum" API routines that may be | |||
* needed in either the normal full-compression case or the transcoding-only | |||
* case. | |||
* | |||
* Most of the routines intended to be called directly by an application | |||
* are in this file or in jcapistd.c. But also see jcparam.c for | |||
* parameter-setup helper routines, jcomapi.c for routines shared by | |||
* compression and decompression, and jctrans.c for the transcoding case. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* Initialization of a JPEG compression object. | |||
* The error manager must already be set up (in case memory manager fails). | |||
*/ | |||
GLOBAL(void) | |||
jpeg_CreateCompress (j_compress_ptr cinfo, int version, size_t structsize) | |||
{ | |||
int i; | |||
/* Guard against version mismatches between library and caller. */ | |||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ | |||
if (version != JPEG_LIB_VERSION) | |||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); | |||
if (structsize != SIZEOF(struct jpeg_compress_struct)) | |||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, | |||
(int) SIZEOF(struct jpeg_compress_struct), (int) structsize); | |||
/* For debugging purposes, we zero the whole master structure. | |||
* But the application has already set the err pointer, and may have set | |||
* client_data, so we have to save and restore those fields. | |||
* Note: if application hasn't set client_data, tools like Purify may | |||
* complain here. | |||
*/ | |||
{ | |||
struct jpeg_error_mgr * err = cinfo->err; | |||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */ | |||
MEMZERO(cinfo, SIZEOF(struct jpeg_compress_struct)); | |||
cinfo->err = err; | |||
cinfo->client_data = client_data; | |||
} | |||
cinfo->is_decompressor = FALSE; | |||
/* Initialize a memory manager instance for this object */ | |||
jinit_memory_mgr((j_common_ptr) cinfo); | |||
/* Zero out pointers to permanent structures. */ | |||
cinfo->progress = NULL; | |||
cinfo->dest = NULL; | |||
cinfo->comp_info = NULL; | |||
for (i = 0; i < NUM_QUANT_TBLS; i++) { | |||
cinfo->quant_tbl_ptrs[i] = NULL; | |||
cinfo->q_scale_factor[i] = 100; | |||
} | |||
for (i = 0; i < NUM_HUFF_TBLS; i++) { | |||
cinfo->dc_huff_tbl_ptrs[i] = NULL; | |||
cinfo->ac_huff_tbl_ptrs[i] = NULL; | |||
} | |||
/* Must do it here for emit_dqt in case jpeg_write_tables is used */ | |||
cinfo->block_size = DCTSIZE; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
cinfo->script_space = NULL; | |||
cinfo->input_gamma = 1.0; /* in case application forgets */ | |||
/* OK, I'm ready */ | |||
cinfo->global_state = CSTATE_START; | |||
} | |||
/* | |||
* Destruction of a JPEG compression object | |||
*/ | |||
GLOBAL(void) | |||
jpeg_destroy_compress (j_compress_ptr cinfo) | |||
{ | |||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ | |||
} | |||
/* | |||
* Abort processing of a JPEG compression operation, | |||
* but don't destroy the object itself. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_abort_compress (j_compress_ptr cinfo) | |||
{ | |||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */ | |||
} | |||
/* | |||
* Forcibly suppress or un-suppress all quantization and Huffman tables. | |||
* Marks all currently defined tables as already written (if suppress) | |||
* or not written (if !suppress). This will control whether they get emitted | |||
* by a subsequent jpeg_start_compress call. | |||
* | |||
* This routine is exported for use by applications that want to produce | |||
* abbreviated JPEG datastreams. It logically belongs in jcparam.c, but | |||
* since it is called by jpeg_start_compress, we put it here --- otherwise | |||
* jcparam.o would be linked whether the application used it or not. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_suppress_tables (j_compress_ptr cinfo, boolean suppress) | |||
{ | |||
int i; | |||
JQUANT_TBL * qtbl; | |||
JHUFF_TBL * htbl; | |||
for (i = 0; i < NUM_QUANT_TBLS; i++) { | |||
if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) | |||
qtbl->sent_table = suppress; | |||
} | |||
for (i = 0; i < NUM_HUFF_TBLS; i++) { | |||
if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) | |||
htbl->sent_table = suppress; | |||
if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) | |||
htbl->sent_table = suppress; | |||
} | |||
} | |||
/* | |||
* Finish JPEG compression. | |||
* | |||
* If a multipass operating mode was selected, this may do a great deal of | |||
* work including most of the actual output. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_finish_compress (j_compress_ptr cinfo) | |||
{ | |||
JDIMENSION iMCU_row; | |||
if (cinfo->global_state == CSTATE_SCANNING || | |||
cinfo->global_state == CSTATE_RAW_OK) { | |||
/* Terminate first pass */ | |||
if (cinfo->next_scanline < cinfo->image_height) | |||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); | |||
(*cinfo->master->finish_pass) (cinfo); | |||
} else if (cinfo->global_state != CSTATE_WRCOEFS) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* Perform any remaining passes */ | |||
while (! cinfo->master->is_last_pass) { | |||
(*cinfo->master->prepare_for_pass) (cinfo); | |||
for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->pass_counter = (long) iMCU_row; | |||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows; | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
} | |||
/* We bypass the main controller and invoke coef controller directly; | |||
* all work is being done from the coefficient buffer. | |||
*/ | |||
if (! (*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE) NULL)) | |||
ERREXIT(cinfo, JERR_CANT_SUSPEND); | |||
} | |||
(*cinfo->master->finish_pass) (cinfo); | |||
} | |||
/* Write EOI, do final cleanup */ | |||
(*cinfo->marker->write_file_trailer) (cinfo); | |||
(*cinfo->dest->term_destination) (cinfo); | |||
/* We can use jpeg_abort to release memory and reset global_state */ | |||
jpeg_abort((j_common_ptr) cinfo); | |||
} | |||
/* | |||
* Write a special marker. | |||
* This is only recommended for writing COM or APPn markers. | |||
* Must be called after jpeg_start_compress() and before | |||
* first call to jpeg_write_scanlines() or jpeg_write_raw_data(). | |||
*/ | |||
GLOBAL(void) | |||
jpeg_write_marker (j_compress_ptr cinfo, int marker, | |||
const JOCTET *dataptr, unsigned int datalen) | |||
{ | |||
JMETHOD(void, write_marker_byte, (j_compress_ptr info, int val)); | |||
if (cinfo->next_scanline != 0 || | |||
(cinfo->global_state != CSTATE_SCANNING && | |||
cinfo->global_state != CSTATE_RAW_OK && | |||
cinfo->global_state != CSTATE_WRCOEFS)) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen); | |||
write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */ | |||
while (datalen--) { | |||
(*write_marker_byte) (cinfo, *dataptr); | |||
dataptr++; | |||
} | |||
} | |||
/* Same, but piecemeal. */ | |||
GLOBAL(void) | |||
jpeg_write_m_header (j_compress_ptr cinfo, int marker, unsigned int datalen) | |||
{ | |||
if (cinfo->next_scanline != 0 || | |||
(cinfo->global_state != CSTATE_SCANNING && | |||
cinfo->global_state != CSTATE_RAW_OK && | |||
cinfo->global_state != CSTATE_WRCOEFS)) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
(*cinfo->marker->write_marker_header) (cinfo, marker, datalen); | |||
} | |||
GLOBAL(void) | |||
jpeg_write_m_byte (j_compress_ptr cinfo, int val) | |||
{ | |||
(*cinfo->marker->write_marker_byte) (cinfo, val); | |||
} | |||
/* | |||
* Alternate compression function: just write an abbreviated table file. | |||
* Before calling this, all parameters and a data destination must be set up. | |||
* | |||
* To produce a pair of files containing abbreviated tables and abbreviated | |||
* image data, one would proceed as follows: | |||
* | |||
* initialize JPEG object | |||
* set JPEG parameters | |||
* set destination to table file | |||
* jpeg_write_tables(cinfo); | |||
* set destination to image file | |||
* jpeg_start_compress(cinfo, FALSE); | |||
* write data... | |||
* jpeg_finish_compress(cinfo); | |||
* | |||
* jpeg_write_tables has the side effect of marking all tables written | |||
* (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress | |||
* will not re-emit the tables unless it is passed write_all_tables=TRUE. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_write_tables (j_compress_ptr cinfo) | |||
{ | |||
if (cinfo->global_state != CSTATE_START) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* (Re)initialize error mgr and destination modules */ | |||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | |||
(*cinfo->dest->init_destination) (cinfo); | |||
/* Initialize the marker writer ... bit of a crock to do it here. */ | |||
jinit_marker_writer(cinfo); | |||
/* Write them tables! */ | |||
(*cinfo->marker->write_tables_only) (cinfo); | |||
/* And clean up. */ | |||
(*cinfo->dest->term_destination) (cinfo); | |||
/* | |||
* In library releases up through v6a, we called jpeg_abort() here to free | |||
* any working memory allocated by the destination manager and marker | |||
* writer. Some applications had a problem with that: they allocated space | |||
* of their own from the library memory manager, and didn't want it to go | |||
* away during write_tables. So now we do nothing. This will cause a | |||
* memory leak if an app calls write_tables repeatedly without doing a full | |||
* compression cycle or otherwise resetting the JPEG object. However, that | |||
* seems less bad than unexpectedly freeing memory in the normal case. | |||
* An app that prefers the old behavior can call jpeg_abort for itself after | |||
* each call to jpeg_write_tables(). | |||
*/ | |||
} |
@@ -1,161 +0,0 @@ | |||
/* | |||
* jcapistd.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains application interface code for the compression half | |||
* of the JPEG library. These are the "standard" API routines that are | |||
* used in the normal full-compression case. They are not used by a | |||
* transcoding-only application. Note that if an application links in | |||
* jpeg_start_compress, it will end up linking in the entire compressor. | |||
* We thus must separate this file from jcapimin.c to avoid linking the | |||
* whole compression library into a transcoder. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* Compression initialization. | |||
* Before calling this, all parameters and a data destination must be set up. | |||
* | |||
* We require a write_all_tables parameter as a failsafe check when writing | |||
* multiple datastreams from the same compression object. Since prior runs | |||
* will have left all the tables marked sent_table=TRUE, a subsequent run | |||
* would emit an abbreviated stream (no tables) by default. This may be what | |||
* is wanted, but for safety's sake it should not be the default behavior: | |||
* programmers should have to make a deliberate choice to emit abbreviated | |||
* images. Therefore the documentation and examples should encourage people | |||
* to pass write_all_tables=TRUE; then it will take active thought to do the | |||
* wrong thing. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_start_compress (j_compress_ptr cinfo, boolean write_all_tables) | |||
{ | |||
if (cinfo->global_state != CSTATE_START) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
if (write_all_tables) | |||
jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ | |||
/* (Re)initialize error mgr and destination modules */ | |||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | |||
(*cinfo->dest->init_destination) (cinfo); | |||
/* Perform master selection of active modules */ | |||
jinit_compress_master(cinfo); | |||
/* Set up for the first pass */ | |||
(*cinfo->master->prepare_for_pass) (cinfo); | |||
/* Ready for application to drive first pass through jpeg_write_scanlines | |||
* or jpeg_write_raw_data. | |||
*/ | |||
cinfo->next_scanline = 0; | |||
cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); | |||
} | |||
/* | |||
* Write some scanlines of data to the JPEG compressor. | |||
* | |||
* The return value will be the number of lines actually written. | |||
* This should be less than the supplied num_lines only in case that | |||
* the data destination module has requested suspension of the compressor, | |||
* or if more than image_height scanlines are passed in. | |||
* | |||
* Note: we warn about excess calls to jpeg_write_scanlines() since | |||
* this likely signals an application programmer error. However, | |||
* excess scanlines passed in the last valid call are *silently* ignored, | |||
* so that the application need not adjust num_lines for end-of-image | |||
* when using a multiple-scanline buffer. | |||
*/ | |||
GLOBAL(JDIMENSION) | |||
jpeg_write_scanlines (j_compress_ptr cinfo, JSAMPARRAY scanlines, | |||
JDIMENSION num_lines) | |||
{ | |||
JDIMENSION row_ctr, rows_left; | |||
if (cinfo->global_state != CSTATE_SCANNING) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
if (cinfo->next_scanline >= cinfo->image_height) | |||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | |||
/* Call progress monitor hook if present */ | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->pass_counter = (long) cinfo->next_scanline; | |||
cinfo->progress->pass_limit = (long) cinfo->image_height; | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
} | |||
/* Give master control module another chance if this is first call to | |||
* jpeg_write_scanlines. This lets output of the frame/scan headers be | |||
* delayed so that application can write COM, etc, markers between | |||
* jpeg_start_compress and jpeg_write_scanlines. | |||
*/ | |||
if (cinfo->master->call_pass_startup) | |||
(*cinfo->master->pass_startup) (cinfo); | |||
/* Ignore any extra scanlines at bottom of image. */ | |||
rows_left = cinfo->image_height - cinfo->next_scanline; | |||
if (num_lines > rows_left) | |||
num_lines = rows_left; | |||
row_ctr = 0; | |||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); | |||
cinfo->next_scanline += row_ctr; | |||
return row_ctr; | |||
} | |||
/* | |||
* Alternate entry point to write raw data. | |||
* Processes exactly one iMCU row per call, unless suspended. | |||
*/ | |||
GLOBAL(JDIMENSION) | |||
jpeg_write_raw_data (j_compress_ptr cinfo, JSAMPIMAGE data, | |||
JDIMENSION num_lines) | |||
{ | |||
JDIMENSION lines_per_iMCU_row; | |||
if (cinfo->global_state != CSTATE_RAW_OK) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
if (cinfo->next_scanline >= cinfo->image_height) { | |||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | |||
return 0; | |||
} | |||
/* Call progress monitor hook if present */ | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->pass_counter = (long) cinfo->next_scanline; | |||
cinfo->progress->pass_limit = (long) cinfo->image_height; | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
} | |||
/* Give master control module another chance if this is first call to | |||
* jpeg_write_raw_data. This lets output of the frame/scan headers be | |||
* delayed so that application can write COM, etc, markers between | |||
* jpeg_start_compress and jpeg_write_raw_data. | |||
*/ | |||
if (cinfo->master->call_pass_startup) | |||
(*cinfo->master->pass_startup) (cinfo); | |||
/* Verify that at least one iMCU row has been passed. */ | |||
lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; | |||
if (num_lines < lines_per_iMCU_row) | |||
ERREXIT(cinfo, JERR_BUFFER_SIZE); | |||
/* Directly compress the row. */ | |||
if (! (*cinfo->coef->compress_data) (cinfo, data)) { | |||
/* If compressor did not consume the whole row, suspend processing. */ | |||
return 0; | |||
} | |||
/* OK, we processed one iMCU row. */ | |||
cinfo->next_scanline += lines_per_iMCU_row; | |||
return lines_per_iMCU_row; | |||
} |
@@ -1,934 +0,0 @@ | |||
/* | |||
* jcarith.c | |||
* | |||
* Developed 1997-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains portable arithmetic entropy encoding routines for JPEG | |||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). | |||
* | |||
* Both sequential and progressive modes are supported in this single module. | |||
* | |||
* Suspension is not currently supported in this module. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Expanded entropy encoder object for arithmetic encoding. */ | |||
typedef struct { | |||
struct jpeg_entropy_encoder pub; /* public fields */ | |||
INT32 c; /* C register, base of coding interval, layout as in sec. D.1.3 */ | |||
INT32 a; /* A register, normalized size of coding interval */ | |||
INT32 sc; /* counter for stacked 0xFF values which might overflow */ | |||
INT32 zc; /* counter for pending 0x00 output values which might * | |||
* be discarded at the end ("Pacman" termination) */ | |||
int ct; /* bit shift counter, determines when next byte will be written */ | |||
int buffer; /* buffer for most recent output byte != 0xFF */ | |||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | |||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |||
int next_restart_num; /* next restart number to write (0-7) */ | |||
/* Pointers to statistics areas (these workspaces have image lifespan) */ | |||
unsigned char * dc_stats[NUM_ARITH_TBLS]; | |||
unsigned char * ac_stats[NUM_ARITH_TBLS]; | |||
/* Statistics bin for coding with fixed probability 0.5 */ | |||
unsigned char fixed_bin[4]; | |||
} arith_entropy_encoder; | |||
typedef arith_entropy_encoder * arith_entropy_ptr; | |||
/* The following two definitions specify the allocation chunk size | |||
* for the statistics area. | |||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | |||
* 49 statistics bins for DC, and 245 statistics bins for AC coding. | |||
* | |||
* We use a compact representation with 1 byte per statistics bin, | |||
* thus the numbers directly represent byte sizes. | |||
* This 1 byte per statistics bin contains the meaning of the MPS | |||
* (more probable symbol) in the highest bit (mask 0x80), and the | |||
* index into the probability estimation state machine table | |||
* in the lower bits (mask 0x7F). | |||
*/ | |||
#define DC_STAT_BINS 64 | |||
#define AC_STAT_BINS 256 | |||
/* NOTE: Uncomment the following #define if you want to use the | |||
* given formula for calculating the AC conditioning parameter Kx | |||
* for spectral selection progressive coding in section G.1.3.2 | |||
* of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). | |||
* Although the spec and P&M authors claim that this "has proven | |||
* to give good results for 8 bit precision samples", I'm not | |||
* convinced yet that this is really beneficial. | |||
* Early tests gave only very marginal compression enhancements | |||
* (a few - around 5 or so - bytes even for very large files), | |||
* which would turn out rather negative if we'd suppress the | |||
* DAC (Define Arithmetic Conditioning) marker segments for | |||
* the default parameters in the future. | |||
* Note that currently the marker writing module emits 12-byte | |||
* DAC segments for a full-component scan in a color image. | |||
* This is not worth worrying about IMHO. However, since the | |||
* spec defines the default values to be used if the tables | |||
* are omitted (unlike Huffman tables, which are required | |||
* anyway), one might optimize this behaviour in the future, | |||
* and then it would be disadvantageous to use custom tables if | |||
* they don't provide sufficient gain to exceed the DAC size. | |||
* | |||
* On the other hand, I'd consider it as a reasonable result | |||
* that the conditioning has no significant influence on the | |||
* compression performance. This means that the basic | |||
* statistical model is already rather stable. | |||
* | |||
* Thus, at the moment, we use the default conditioning values | |||
* anyway, and do not use the custom formula. | |||
* | |||
#define CALCULATE_SPECTRAL_CONDITIONING | |||
*/ | |||
/* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. | |||
* We assume that int right shift is unsigned if INT32 right shift is, | |||
* which should be safe. | |||
*/ | |||
#ifdef RIGHT_SHIFT_IS_UNSIGNED | |||
#define ISHIFT_TEMPS int ishift_temp; | |||
#define IRIGHT_SHIFT(x,shft) \ | |||
((ishift_temp = (x)) < 0 ? \ | |||
(ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ | |||
(ishift_temp >> (shft))) | |||
#else | |||
#define ISHIFT_TEMPS | |||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) | |||
#endif | |||
LOCAL(void) | |||
emit_byte (int val, j_compress_ptr cinfo) | |||
/* Write next output byte; we do not support suspension in this module. */ | |||
{ | |||
struct jpeg_destination_mgr * dest = cinfo->dest; | |||
*dest->next_output_byte++ = (JOCTET) val; | |||
if (--dest->free_in_buffer == 0) | |||
if (! (*dest->empty_output_buffer) (cinfo)) | |||
ERREXIT(cinfo, JERR_CANT_SUSPEND); | |||
} | |||
/* | |||
* Finish up at the end of an arithmetic-compressed scan. | |||
*/ | |||
METHODDEF(void) | |||
finish_pass (j_compress_ptr cinfo) | |||
{ | |||
arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | |||
INT32 temp; | |||
/* Section D.1.8: Termination of encoding */ | |||
/* Find the e->c in the coding interval with the largest | |||
* number of trailing zero bits */ | |||
if ((temp = (e->a - 1 + e->c) & 0xFFFF0000L) < e->c) | |||
e->c = temp + 0x8000L; | |||
else | |||
e->c = temp; | |||
/* Send remaining bytes to output */ | |||
e->c <<= e->ct; | |||
if (e->c & 0xF8000000L) { | |||
/* One final overflow has to be handled */ | |||
if (e->buffer >= 0) { | |||
if (e->zc) | |||
do emit_byte(0x00, cinfo); | |||
while (--e->zc); | |||
emit_byte(e->buffer + 1, cinfo); | |||
if (e->buffer + 1 == 0xFF) | |||
emit_byte(0x00, cinfo); | |||
} | |||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ | |||
e->sc = 0; | |||
} else { | |||
if (e->buffer == 0) | |||
++e->zc; | |||
else if (e->buffer >= 0) { | |||
if (e->zc) | |||
do emit_byte(0x00, cinfo); | |||
while (--e->zc); | |||
emit_byte(e->buffer, cinfo); | |||
} | |||
if (e->sc) { | |||
if (e->zc) | |||
do emit_byte(0x00, cinfo); | |||
while (--e->zc); | |||
do { | |||
emit_byte(0xFF, cinfo); | |||
emit_byte(0x00, cinfo); | |||
} while (--e->sc); | |||
} | |||
} | |||
/* Output final bytes only if they are not 0x00 */ | |||
if (e->c & 0x7FFF800L) { | |||
if (e->zc) /* output final pending zero bytes */ | |||
do emit_byte(0x00, cinfo); | |||
while (--e->zc); | |||
emit_byte((e->c >> 19) & 0xFF, cinfo); | |||
if (((e->c >> 19) & 0xFF) == 0xFF) | |||
emit_byte(0x00, cinfo); | |||
if (e->c & 0x7F800L) { | |||
emit_byte((e->c >> 11) & 0xFF, cinfo); | |||
if (((e->c >> 11) & 0xFF) == 0xFF) | |||
emit_byte(0x00, cinfo); | |||
} | |||
} | |||
} | |||
/* | |||
* The core arithmetic encoding routine (common in JPEG and JBIG). | |||
* This needs to go as fast as possible. | |||
* Machine-dependent optimization facilities | |||
* are not utilized in this portable implementation. | |||
* However, this code should be fairly efficient and | |||
* may be a good base for further optimizations anyway. | |||
* | |||
* Parameter 'val' to be encoded may be 0 or 1 (binary decision). | |||
* | |||
* Note: I've added full "Pacman" termination support to the | |||
* byte output routines, which is equivalent to the optional | |||
* Discard_final_zeros procedure (Figure D.15) in the spec. | |||
* Thus, we always produce the shortest possible output | |||
* stream compliant to the spec (no trailing zero bytes, | |||
* except for FF stuffing). | |||
* | |||
* I've also introduced a new scheme for accessing | |||
* the probability estimation state machine table, | |||
* derived from Markus Kuhn's JBIG implementation. | |||
*/ | |||
LOCAL(void) | |||
arith_encode (j_compress_ptr cinfo, unsigned char *st, int val) | |||
{ | |||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | |||
register unsigned char nl, nm; | |||
register INT32 qe, temp; | |||
register int sv; | |||
/* Fetch values from our compact representation of Table D.2: | |||
* Qe values and probability estimation state machine | |||
*/ | |||
sv = *st; | |||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ | |||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ | |||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ | |||
/* Encode & estimation procedures per sections D.1.4 & D.1.5 */ | |||
e->a -= qe; | |||
if (val != (sv >> 7)) { | |||
/* Encode the less probable symbol */ | |||
if (e->a >= qe) { | |||
/* If the interval size (qe) for the less probable symbol (LPS) | |||
* is larger than the interval size for the MPS, then exchange | |||
* the two symbols for coding efficiency, otherwise code the LPS | |||
* as usual: */ | |||
e->c += e->a; | |||
e->a = qe; | |||
} | |||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ | |||
} else { | |||
/* Encode the more probable symbol */ | |||
if (e->a >= 0x8000L) | |||
return; /* A >= 0x8000 -> ready, no renormalization required */ | |||
if (e->a < qe) { | |||
/* If the interval size (qe) for the less probable symbol (LPS) | |||
* is larger than the interval size for the MPS, then exchange | |||
* the two symbols for coding efficiency: */ | |||
e->c += e->a; | |||
e->a = qe; | |||
} | |||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ | |||
} | |||
/* Renormalization & data output per section D.1.6 */ | |||
do { | |||
e->a <<= 1; | |||
e->c <<= 1; | |||
if (--e->ct == 0) { | |||
/* Another byte is ready for output */ | |||
temp = e->c >> 19; | |||
if (temp > 0xFF) { | |||
/* Handle overflow over all stacked 0xFF bytes */ | |||
if (e->buffer >= 0) { | |||
if (e->zc) | |||
do emit_byte(0x00, cinfo); | |||
while (--e->zc); | |||
emit_byte(e->buffer + 1, cinfo); | |||
if (e->buffer + 1 == 0xFF) | |||
emit_byte(0x00, cinfo); | |||
} | |||
e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ | |||
e->sc = 0; | |||
/* Note: The 3 spacer bits in the C register guarantee | |||
* that the new buffer byte can't be 0xFF here | |||
* (see page 160 in the P&M JPEG book). */ | |||
e->buffer = temp & 0xFF; /* new output byte, might overflow later */ | |||
} else if (temp == 0xFF) { | |||
++e->sc; /* stack 0xFF byte (which might overflow later) */ | |||
} else { | |||
/* Output all stacked 0xFF bytes, they will not overflow any more */ | |||
if (e->buffer == 0) | |||
++e->zc; | |||
else if (e->buffer >= 0) { | |||
if (e->zc) | |||
do emit_byte(0x00, cinfo); | |||
while (--e->zc); | |||
emit_byte(e->buffer, cinfo); | |||
} | |||
if (e->sc) { | |||
if (e->zc) | |||
do emit_byte(0x00, cinfo); | |||
while (--e->zc); | |||
do { | |||
emit_byte(0xFF, cinfo); | |||
emit_byte(0x00, cinfo); | |||
} while (--e->sc); | |||
} | |||
e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ | |||
} | |||
e->c &= 0x7FFFFL; | |||
e->ct += 8; | |||
} | |||
} while (e->a < 0x8000L); | |||
} | |||
/* | |||
* Emit a restart marker & resynchronize predictions. | |||
*/ | |||
LOCAL(void) | |||
emit_restart (j_compress_ptr cinfo, int restart_num) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
int ci; | |||
jpeg_component_info * compptr; | |||
finish_pass(cinfo); | |||
emit_byte(0xFF, cinfo); | |||
emit_byte(JPEG_RST0 + restart_num, cinfo); | |||
/* Re-initialize statistics areas */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* DC needs no table for refinement scan */ | |||
if (cinfo->Ss == 0 && cinfo->Ah == 0) { | |||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | |||
/* Reset DC predictions to 0 */ | |||
entropy->last_dc_val[ci] = 0; | |||
entropy->dc_context[ci] = 0; | |||
} | |||
/* AC needs no table when not present */ | |||
if (cinfo->Se) { | |||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | |||
} | |||
} | |||
/* Reset arithmetic encoding variables */ | |||
entropy->c = 0; | |||
entropy->a = 0x10000L; | |||
entropy->sc = 0; | |||
entropy->zc = 0; | |||
entropy->ct = 11; | |||
entropy->buffer = -1; /* empty */ | |||
} | |||
/* | |||
* MCU encoding for DC initial scan (either spectral selection, | |||
* or first pass of successive approximation). | |||
*/ | |||
METHODDEF(boolean) | |||
encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
JBLOCKROW block; | |||
unsigned char *st; | |||
int blkn, ci, tbl; | |||
int v, v2, m; | |||
ISHIFT_TEMPS | |||
/* Emit restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) { | |||
emit_restart(cinfo, entropy->next_restart_num); | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
entropy->next_restart_num++; | |||
entropy->next_restart_num &= 7; | |||
} | |||
entropy->restarts_to_go--; | |||
} | |||
/* Encode the MCU data blocks */ | |||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |||
block = MCU_data[blkn]; | |||
ci = cinfo->MCU_membership[blkn]; | |||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | |||
/* Compute the DC value after the required point transform by Al. | |||
* This is simply an arithmetic right shift. | |||
*/ | |||
m = IRIGHT_SHIFT((int) ((*block)[0]), cinfo->Al); | |||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | |||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | |||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | |||
/* Figure F.4: Encode_DC_DIFF */ | |||
if ((v = m - entropy->last_dc_val[ci]) == 0) { | |||
arith_encode(cinfo, st, 0); | |||
entropy->dc_context[ci] = 0; /* zero diff category */ | |||
} else { | |||
entropy->last_dc_val[ci] = m; | |||
arith_encode(cinfo, st, 1); | |||
/* Figure F.6: Encoding nonzero value v */ | |||
/* Figure F.7: Encoding the sign of v */ | |||
if (v > 0) { | |||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ | |||
st += 2; /* Table F.4: SP = S0 + 2 */ | |||
entropy->dc_context[ci] = 4; /* small positive diff category */ | |||
} else { | |||
v = -v; | |||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ | |||
st += 3; /* Table F.4: SN = S0 + 3 */ | |||
entropy->dc_context[ci] = 8; /* small negative diff category */ | |||
} | |||
/* Figure F.8: Encoding the magnitude category of v */ | |||
m = 0; | |||
if (v -= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m = 1; | |||
v2 = v; | |||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | |||
while (v2 >>= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m <<= 1; | |||
st += 1; | |||
} | |||
} | |||
arith_encode(cinfo, st, 0); | |||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | |||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | |||
entropy->dc_context[ci] = 0; /* zero diff category */ | |||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | |||
entropy->dc_context[ci] += 8; /* large diff category */ | |||
/* Figure F.9: Encoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
arith_encode(cinfo, st, (m & v) ? 1 : 0); | |||
} | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* MCU encoding for AC initial scan (either spectral selection, | |||
* or first pass of successive approximation). | |||
*/ | |||
METHODDEF(boolean) | |||
encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
JBLOCKROW block; | |||
unsigned char *st; | |||
int tbl, k, ke; | |||
int v, v2, m; | |||
const int * natural_order; | |||
/* Emit restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) { | |||
emit_restart(cinfo, entropy->next_restart_num); | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
entropy->next_restart_num++; | |||
entropy->next_restart_num &= 7; | |||
} | |||
entropy->restarts_to_go--; | |||
} | |||
natural_order = cinfo->natural_order; | |||
/* Encode the MCU data block */ | |||
block = MCU_data[0]; | |||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | |||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | |||
/* Establish EOB (end-of-block) index */ | |||
for (ke = cinfo->Se; ke > 0; ke--) | |||
/* We must apply the point transform by Al. For AC coefficients this | |||
* is an integer division with rounding towards 0. To do this portably | |||
* in C, we shift after obtaining the absolute value. | |||
*/ | |||
if ((v = (*block)[natural_order[ke]]) >= 0) { | |||
if (v >>= cinfo->Al) break; | |||
} else { | |||
v = -v; | |||
if (v >>= cinfo->Al) break; | |||
} | |||
/* Figure F.5: Encode_AC_Coefficients */ | |||
for (k = cinfo->Ss; k <= ke; k++) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
arith_encode(cinfo, st, 0); /* EOB decision */ | |||
for (;;) { | |||
if ((v = (*block)[natural_order[k]]) >= 0) { | |||
if (v >>= cinfo->Al) { | |||
arith_encode(cinfo, st + 1, 1); | |||
arith_encode(cinfo, entropy->fixed_bin, 0); | |||
break; | |||
} | |||
} else { | |||
v = -v; | |||
if (v >>= cinfo->Al) { | |||
arith_encode(cinfo, st + 1, 1); | |||
arith_encode(cinfo, entropy->fixed_bin, 1); | |||
break; | |||
} | |||
} | |||
arith_encode(cinfo, st + 1, 0); st += 3; k++; | |||
} | |||
st += 2; | |||
/* Figure F.8: Encoding the magnitude category of v */ | |||
m = 0; | |||
if (v -= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m = 1; | |||
v2 = v; | |||
if (v2 >>= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m <<= 1; | |||
st = entropy->ac_stats[tbl] + | |||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | |||
while (v2 >>= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m <<= 1; | |||
st += 1; | |||
} | |||
} | |||
} | |||
arith_encode(cinfo, st, 0); | |||
/* Figure F.9: Encoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
arith_encode(cinfo, st, (m & v) ? 1 : 0); | |||
} | |||
/* Encode EOB decision only if k <= cinfo->Se */ | |||
if (k <= cinfo->Se) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
arith_encode(cinfo, st, 1); | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* MCU encoding for DC successive approximation refinement scan. | |||
*/ | |||
METHODDEF(boolean) | |||
encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
unsigned char *st; | |||
int Al, blkn; | |||
/* Emit restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) { | |||
emit_restart(cinfo, entropy->next_restart_num); | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
entropy->next_restart_num++; | |||
entropy->next_restart_num &= 7; | |||
} | |||
entropy->restarts_to_go--; | |||
} | |||
st = entropy->fixed_bin; /* use fixed probability estimation */ | |||
Al = cinfo->Al; | |||
/* Encode the MCU data blocks */ | |||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |||
/* We simply emit the Al'th bit of the DC coefficient value. */ | |||
arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* MCU encoding for AC successive approximation refinement scan. | |||
*/ | |||
METHODDEF(boolean) | |||
encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
JBLOCKROW block; | |||
unsigned char *st; | |||
int tbl, k, ke, kex; | |||
int v; | |||
const int * natural_order; | |||
/* Emit restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) { | |||
emit_restart(cinfo, entropy->next_restart_num); | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
entropy->next_restart_num++; | |||
entropy->next_restart_num &= 7; | |||
} | |||
entropy->restarts_to_go--; | |||
} | |||
natural_order = cinfo->natural_order; | |||
/* Encode the MCU data block */ | |||
block = MCU_data[0]; | |||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | |||
/* Section G.1.3.3: Encoding of AC coefficients */ | |||
/* Establish EOB (end-of-block) index */ | |||
for (ke = cinfo->Se; ke > 0; ke--) | |||
/* We must apply the point transform by Al. For AC coefficients this | |||
* is an integer division with rounding towards 0. To do this portably | |||
* in C, we shift after obtaining the absolute value. | |||
*/ | |||
if ((v = (*block)[natural_order[ke]]) >= 0) { | |||
if (v >>= cinfo->Al) break; | |||
} else { | |||
v = -v; | |||
if (v >>= cinfo->Al) break; | |||
} | |||
/* Establish EOBx (previous stage end-of-block) index */ | |||
for (kex = ke; kex > 0; kex--) | |||
if ((v = (*block)[natural_order[kex]]) >= 0) { | |||
if (v >>= cinfo->Ah) break; | |||
} else { | |||
v = -v; | |||
if (v >>= cinfo->Ah) break; | |||
} | |||
/* Figure G.10: Encode_AC_Coefficients_SA */ | |||
for (k = cinfo->Ss; k <= ke; k++) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
if (k > kex) | |||
arith_encode(cinfo, st, 0); /* EOB decision */ | |||
for (;;) { | |||
if ((v = (*block)[natural_order[k]]) >= 0) { | |||
if (v >>= cinfo->Al) { | |||
if (v >> 1) /* previously nonzero coef */ | |||
arith_encode(cinfo, st + 2, (v & 1)); | |||
else { /* newly nonzero coef */ | |||
arith_encode(cinfo, st + 1, 1); | |||
arith_encode(cinfo, entropy->fixed_bin, 0); | |||
} | |||
break; | |||
} | |||
} else { | |||
v = -v; | |||
if (v >>= cinfo->Al) { | |||
if (v >> 1) /* previously nonzero coef */ | |||
arith_encode(cinfo, st + 2, (v & 1)); | |||
else { /* newly nonzero coef */ | |||
arith_encode(cinfo, st + 1, 1); | |||
arith_encode(cinfo, entropy->fixed_bin, 1); | |||
} | |||
break; | |||
} | |||
} | |||
arith_encode(cinfo, st + 1, 0); st += 3; k++; | |||
} | |||
} | |||
/* Encode EOB decision only if k <= cinfo->Se */ | |||
if (k <= cinfo->Se) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
arith_encode(cinfo, st, 1); | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* Encode and output one MCU's worth of arithmetic-compressed coefficients. | |||
*/ | |||
METHODDEF(boolean) | |||
encode_mcu (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
jpeg_component_info * compptr; | |||
JBLOCKROW block; | |||
unsigned char *st; | |||
int blkn, ci, tbl, k, ke; | |||
int v, v2, m; | |||
const int * natural_order; | |||
/* Emit restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) { | |||
emit_restart(cinfo, entropy->next_restart_num); | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
entropy->next_restart_num++; | |||
entropy->next_restart_num &= 7; | |||
} | |||
entropy->restarts_to_go--; | |||
} | |||
natural_order = cinfo->natural_order; | |||
/* Encode the MCU data blocks */ | |||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |||
block = MCU_data[blkn]; | |||
ci = cinfo->MCU_membership[blkn]; | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ | |||
tbl = compptr->dc_tbl_no; | |||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | |||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | |||
/* Figure F.4: Encode_DC_DIFF */ | |||
if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { | |||
arith_encode(cinfo, st, 0); | |||
entropy->dc_context[ci] = 0; /* zero diff category */ | |||
} else { | |||
entropy->last_dc_val[ci] = (*block)[0]; | |||
arith_encode(cinfo, st, 1); | |||
/* Figure F.6: Encoding nonzero value v */ | |||
/* Figure F.7: Encoding the sign of v */ | |||
if (v > 0) { | |||
arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ | |||
st += 2; /* Table F.4: SP = S0 + 2 */ | |||
entropy->dc_context[ci] = 4; /* small positive diff category */ | |||
} else { | |||
v = -v; | |||
arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ | |||
st += 3; /* Table F.4: SN = S0 + 3 */ | |||
entropy->dc_context[ci] = 8; /* small negative diff category */ | |||
} | |||
/* Figure F.8: Encoding the magnitude category of v */ | |||
m = 0; | |||
if (v -= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m = 1; | |||
v2 = v; | |||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | |||
while (v2 >>= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m <<= 1; | |||
st += 1; | |||
} | |||
} | |||
arith_encode(cinfo, st, 0); | |||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | |||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | |||
entropy->dc_context[ci] = 0; /* zero diff category */ | |||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | |||
entropy->dc_context[ci] += 8; /* large diff category */ | |||
/* Figure F.9: Encoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
arith_encode(cinfo, st, (m & v) ? 1 : 0); | |||
} | |||
/* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ | |||
tbl = compptr->ac_tbl_no; | |||
/* Establish EOB (end-of-block) index */ | |||
for (ke = cinfo->lim_Se; ke > 0; ke--) | |||
if ((*block)[natural_order[ke]]) break; | |||
/* Figure F.5: Encode_AC_Coefficients */ | |||
for (k = 1; k <= ke; k++) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
arith_encode(cinfo, st, 0); /* EOB decision */ | |||
while ((v = (*block)[natural_order[k]]) == 0) { | |||
arith_encode(cinfo, st + 1, 0); st += 3; k++; | |||
} | |||
arith_encode(cinfo, st + 1, 1); | |||
/* Figure F.6: Encoding nonzero value v */ | |||
/* Figure F.7: Encoding the sign of v */ | |||
if (v > 0) { | |||
arith_encode(cinfo, entropy->fixed_bin, 0); | |||
} else { | |||
v = -v; | |||
arith_encode(cinfo, entropy->fixed_bin, 1); | |||
} | |||
st += 2; | |||
/* Figure F.8: Encoding the magnitude category of v */ | |||
m = 0; | |||
if (v -= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m = 1; | |||
v2 = v; | |||
if (v2 >>= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m <<= 1; | |||
st = entropy->ac_stats[tbl] + | |||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | |||
while (v2 >>= 1) { | |||
arith_encode(cinfo, st, 1); | |||
m <<= 1; | |||
st += 1; | |||
} | |||
} | |||
} | |||
arith_encode(cinfo, st, 0); | |||
/* Figure F.9: Encoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
arith_encode(cinfo, st, (m & v) ? 1 : 0); | |||
} | |||
/* Encode EOB decision only if k <= cinfo->lim_Se */ | |||
if (k <= cinfo->lim_Se) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
arith_encode(cinfo, st, 1); | |||
} | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* Initialize for an arithmetic-compressed scan. | |||
*/ | |||
METHODDEF(void) | |||
start_pass (j_compress_ptr cinfo, boolean gather_statistics) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
int ci, tbl; | |||
jpeg_component_info * compptr; | |||
if (gather_statistics) | |||
/* Make sure to avoid that in the master control logic! | |||
* We are fully adaptive here and need no extra | |||
* statistics gathering pass! | |||
*/ | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
/* We assume jcmaster.c already validated the progressive scan parameters. */ | |||
/* Select execution routines */ | |||
if (cinfo->progressive_mode) { | |||
if (cinfo->Ah == 0) { | |||
if (cinfo->Ss == 0) | |||
entropy->pub.encode_mcu = encode_mcu_DC_first; | |||
else | |||
entropy->pub.encode_mcu = encode_mcu_AC_first; | |||
} else { | |||
if (cinfo->Ss == 0) | |||
entropy->pub.encode_mcu = encode_mcu_DC_refine; | |||
else | |||
entropy->pub.encode_mcu = encode_mcu_AC_refine; | |||
} | |||
} else | |||
entropy->pub.encode_mcu = encode_mcu; | |||
/* Allocate & initialize requested statistics areas */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* DC needs no table for refinement scan */ | |||
if (cinfo->Ss == 0 && cinfo->Ah == 0) { | |||
tbl = compptr->dc_tbl_no; | |||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | |||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | |||
if (entropy->dc_stats[tbl] == NULL) | |||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); | |||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | |||
/* Initialize DC predictions to 0 */ | |||
entropy->last_dc_val[ci] = 0; | |||
entropy->dc_context[ci] = 0; | |||
} | |||
/* AC needs no table when not present */ | |||
if (cinfo->Se) { | |||
tbl = compptr->ac_tbl_no; | |||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | |||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | |||
if (entropy->ac_stats[tbl] == NULL) | |||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); | |||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | |||
#ifdef CALCULATE_SPECTRAL_CONDITIONING | |||
if (cinfo->progressive_mode) | |||
/* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ | |||
cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); | |||
#endif | |||
} | |||
} | |||
/* Initialize arithmetic encoding variables */ | |||
entropy->c = 0; | |||
entropy->a = 0x10000L; | |||
entropy->sc = 0; | |||
entropy->zc = 0; | |||
entropy->ct = 11; | |||
entropy->buffer = -1; /* empty */ | |||
/* Initialize restart stuff */ | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
entropy->next_restart_num = 0; | |||
} | |||
/* | |||
* Module initialization routine for arithmetic entropy encoding. | |||
*/ | |||
GLOBAL(void) | |||
jinit_arith_encoder (j_compress_ptr cinfo) | |||
{ | |||
arith_entropy_ptr entropy; | |||
int i; | |||
entropy = (arith_entropy_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(arith_entropy_encoder)); | |||
cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; | |||
entropy->pub.start_pass = start_pass; | |||
entropy->pub.finish_pass = finish_pass; | |||
/* Mark tables unallocated */ | |||
for (i = 0; i < NUM_ARITH_TBLS; i++) { | |||
entropy->dc_stats[i] = NULL; | |||
entropy->ac_stats[i] = NULL; | |||
} | |||
/* Initialize index for fixed probability estimation */ | |||
entropy->fixed_bin[0] = 113; | |||
} |
@@ -1,453 +0,0 @@ | |||
/* | |||
* jccoefct.c | |||
* | |||
* Copyright (C) 1994-1997, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the coefficient buffer controller for compression. | |||
* This controller is the top level of the JPEG compressor proper. | |||
* The coefficient buffer lies between forward-DCT and entropy encoding steps. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* We use a full-image coefficient buffer when doing Huffman optimization, | |||
* and also for writing multiple-scan JPEG files. In all cases, the DCT | |||
* step is run during the first pass, and subsequent passes need only read | |||
* the buffered coefficients. | |||
*/ | |||
#ifdef ENTROPY_OPT_SUPPORTED | |||
#define FULL_COEF_BUFFER_SUPPORTED | |||
#else | |||
#ifdef C_MULTISCAN_FILES_SUPPORTED | |||
#define FULL_COEF_BUFFER_SUPPORTED | |||
#endif | |||
#endif | |||
/* Private buffer controller object */ | |||
typedef struct { | |||
struct jpeg_c_coef_controller pub; /* public fields */ | |||
JDIMENSION iMCU_row_num; /* iMCU row # within image */ | |||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ | |||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |||
/* For single-pass compression, it's sufficient to buffer just one MCU | |||
* (although this may prove a bit slow in practice). We allocate a | |||
* workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each | |||
* MCU constructed and sent. (On 80x86, the workspace is FAR even though | |||
* it's not really very big; this is to keep the module interfaces unchanged | |||
* when a large coefficient buffer is necessary.) | |||
* In multi-pass modes, this array points to the current MCU's blocks | |||
* within the virtual arrays. | |||
*/ | |||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | |||
/* In multi-pass modes, we need a virtual block array for each component. */ | |||
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | |||
} my_coef_controller; | |||
typedef my_coef_controller * my_coef_ptr; | |||
/* Forward declarations */ | |||
METHODDEF(boolean) compress_data | |||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |||
#ifdef FULL_COEF_BUFFER_SUPPORTED | |||
METHODDEF(boolean) compress_first_pass | |||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |||
METHODDEF(boolean) compress_output | |||
JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |||
#endif | |||
LOCAL(void) | |||
start_iMCU_row (j_compress_ptr cinfo) | |||
/* Reset within-iMCU-row counters for a new row */ | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
/* In an interleaved scan, an MCU row is the same as an iMCU row. | |||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |||
* But at the bottom of the image, process only what's left. | |||
*/ | |||
if (cinfo->comps_in_scan > 1) { | |||
coef->MCU_rows_per_iMCU_row = 1; | |||
} else { | |||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | |||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |||
else | |||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |||
} | |||
coef->mcu_ctr = 0; | |||
coef->MCU_vert_offset = 0; | |||
} | |||
/* | |||
* Initialize for a processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
coef->iMCU_row_num = 0; | |||
start_iMCU_row(cinfo); | |||
switch (pass_mode) { | |||
case JBUF_PASS_THRU: | |||
if (coef->whole_image[0] != NULL) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
coef->pub.compress_data = compress_data; | |||
break; | |||
#ifdef FULL_COEF_BUFFER_SUPPORTED | |||
case JBUF_SAVE_AND_PASS: | |||
if (coef->whole_image[0] == NULL) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
coef->pub.compress_data = compress_first_pass; | |||
break; | |||
case JBUF_CRANK_DEST: | |||
if (coef->whole_image[0] == NULL) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
coef->pub.compress_data = compress_output; | |||
break; | |||
#endif | |||
default: | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
break; | |||
} | |||
} | |||
/* | |||
* Process some data in the single-pass case. | |||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |||
* per call, ie, v_samp_factor block rows for each component in the image. | |||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. | |||
* | |||
* NB: input_buf contains a plane for each component in image, | |||
* which we index according to the component's SOF position. | |||
*/ | |||
METHODDEF(boolean) | |||
compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION MCU_col_num; /* index of current MCU within row */ | |||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
int blkn, bi, ci, yindex, yoffset, blockcnt; | |||
JDIMENSION ypos, xpos; | |||
jpeg_component_info *compptr; | |||
forward_DCT_ptr forward_DCT; | |||
/* Loop to write as much as one whole iMCU row */ | |||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |||
yoffset++) { | |||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; | |||
MCU_col_num++) { | |||
/* Determine where data comes from in input_buf and do the DCT thing. | |||
* Each call on forward_DCT processes a horizontal row of DCT blocks | |||
* as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks | |||
* sequentially. Dummy blocks at the right or bottom edge are filled in | |||
* specially. The data in them does not matter for image reconstruction, | |||
* so we fill them with values that will encode to the smallest amount of | |||
* data, viz: all zeroes in the AC entries, DC entries equal to previous | |||
* block's DC value. (Thanks to Thomas Kinsman for this idea.) | |||
*/ | |||
blkn = 0; | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
forward_DCT = cinfo->fdct->forward_DCT[compptr->component_index]; | |||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |||
: compptr->last_col_width; | |||
xpos = MCU_col_num * compptr->MCU_sample_width; | |||
ypos = yoffset * compptr->DCT_v_scaled_size; | |||
/* ypos == (yoffset+yindex) * DCTSIZE */ | |||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |||
if (coef->iMCU_row_num < last_iMCU_row || | |||
yoffset+yindex < compptr->last_row_height) { | |||
(*forward_DCT) (cinfo, compptr, | |||
input_buf[compptr->component_index], | |||
coef->MCU_buffer[blkn], | |||
ypos, xpos, (JDIMENSION) blockcnt); | |||
if (blockcnt < compptr->MCU_width) { | |||
/* Create some dummy blocks at the right edge of the image. */ | |||
jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], | |||
(compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); | |||
for (bi = blockcnt; bi < compptr->MCU_width; bi++) { | |||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; | |||
} | |||
} | |||
} else { | |||
/* Create a row of dummy blocks at the bottom of the image. */ | |||
jzero_far((void FAR *) coef->MCU_buffer[blkn], | |||
compptr->MCU_width * SIZEOF(JBLOCK)); | |||
for (bi = 0; bi < compptr->MCU_width; bi++) { | |||
coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; | |||
} | |||
} | |||
blkn += compptr->MCU_width; | |||
ypos += compptr->DCT_v_scaled_size; | |||
} | |||
} | |||
/* Try to write the MCU. In event of a suspension failure, we will | |||
* re-DCT the MCU on restart (a bit inefficient, could be fixed...) | |||
*/ | |||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |||
/* Suspension forced; update state counters and exit */ | |||
coef->MCU_vert_offset = yoffset; | |||
coef->mcu_ctr = MCU_col_num; | |||
return FALSE; | |||
} | |||
} | |||
/* Completed an MCU row, but perhaps not an iMCU row */ | |||
coef->mcu_ctr = 0; | |||
} | |||
/* Completed the iMCU row, advance counters for next one */ | |||
coef->iMCU_row_num++; | |||
start_iMCU_row(cinfo); | |||
return TRUE; | |||
} | |||
#ifdef FULL_COEF_BUFFER_SUPPORTED | |||
/* | |||
* Process some data in the first pass of a multi-pass case. | |||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |||
* per call, ie, v_samp_factor block rows for each component in the image. | |||
* This amount of data is read from the source buffer, DCT'd and quantized, | |||
* and saved into the virtual arrays. We also generate suitable dummy blocks | |||
* as needed at the right and lower edges. (The dummy blocks are constructed | |||
* in the virtual arrays, which have been padded appropriately.) This makes | |||
* it possible for subsequent passes not to worry about real vs. dummy blocks. | |||
* | |||
* We must also emit the data to the entropy encoder. This is conveniently | |||
* done by calling compress_output() after we've loaded the current strip | |||
* of the virtual arrays. | |||
* | |||
* NB: input_buf contains a plane for each component in image. All | |||
* components are DCT'd and loaded into the virtual arrays in this pass. | |||
* However, it may be that only a subset of the components are emitted to | |||
* the entropy encoder during this first pass; be careful about looking | |||
* at the scan-dependent variables (MCU dimensions, etc). | |||
*/ | |||
METHODDEF(boolean) | |||
compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
JDIMENSION blocks_across, MCUs_across, MCUindex; | |||
int bi, ci, h_samp_factor, block_row, block_rows, ndummy; | |||
JCOEF lastDC; | |||
jpeg_component_info *compptr; | |||
JBLOCKARRAY buffer; | |||
JBLOCKROW thisblockrow, lastblockrow; | |||
forward_DCT_ptr forward_DCT; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Align the virtual buffer for this component. */ | |||
buffer = (*cinfo->mem->access_virt_barray) | |||
((j_common_ptr) cinfo, coef->whole_image[ci], | |||
coef->iMCU_row_num * compptr->v_samp_factor, | |||
(JDIMENSION) compptr->v_samp_factor, TRUE); | |||
/* Count non-dummy DCT block rows in this iMCU row. */ | |||
if (coef->iMCU_row_num < last_iMCU_row) | |||
block_rows = compptr->v_samp_factor; | |||
else { | |||
/* NB: can't use last_row_height here, since may not be set! */ | |||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |||
if (block_rows == 0) block_rows = compptr->v_samp_factor; | |||
} | |||
blocks_across = compptr->width_in_blocks; | |||
h_samp_factor = compptr->h_samp_factor; | |||
/* Count number of dummy blocks to be added at the right margin. */ | |||
ndummy = (int) (blocks_across % h_samp_factor); | |||
if (ndummy > 0) | |||
ndummy = h_samp_factor - ndummy; | |||
forward_DCT = cinfo->fdct->forward_DCT[ci]; | |||
/* Perform DCT for all non-dummy blocks in this iMCU row. Each call | |||
* on forward_DCT processes a complete horizontal row of DCT blocks. | |||
*/ | |||
for (block_row = 0; block_row < block_rows; block_row++) { | |||
thisblockrow = buffer[block_row]; | |||
(*forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, | |||
(JDIMENSION) (block_row * compptr->DCT_v_scaled_size), | |||
(JDIMENSION) 0, blocks_across); | |||
if (ndummy > 0) { | |||
/* Create dummy blocks at the right edge of the image. */ | |||
thisblockrow += blocks_across; /* => first dummy block */ | |||
jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); | |||
lastDC = thisblockrow[-1][0]; | |||
for (bi = 0; bi < ndummy; bi++) { | |||
thisblockrow[bi][0] = lastDC; | |||
} | |||
} | |||
} | |||
/* If at end of image, create dummy block rows as needed. | |||
* The tricky part here is that within each MCU, we want the DC values | |||
* of the dummy blocks to match the last real block's DC value. | |||
* This squeezes a few more bytes out of the resulting file... | |||
*/ | |||
if (coef->iMCU_row_num == last_iMCU_row) { | |||
blocks_across += ndummy; /* include lower right corner */ | |||
MCUs_across = blocks_across / h_samp_factor; | |||
for (block_row = block_rows; block_row < compptr->v_samp_factor; | |||
block_row++) { | |||
thisblockrow = buffer[block_row]; | |||
lastblockrow = buffer[block_row-1]; | |||
jzero_far((void FAR *) thisblockrow, | |||
(size_t) (blocks_across * SIZEOF(JBLOCK))); | |||
for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | |||
lastDC = lastblockrow[h_samp_factor-1][0]; | |||
for (bi = 0; bi < h_samp_factor; bi++) { | |||
thisblockrow[bi][0] = lastDC; | |||
} | |||
thisblockrow += h_samp_factor; /* advance to next MCU in row */ | |||
lastblockrow += h_samp_factor; | |||
} | |||
} | |||
} | |||
} | |||
/* NB: compress_output will increment iMCU_row_num if successful. | |||
* A suspension return will result in redoing all the work above next time. | |||
*/ | |||
/* Emit data to the entropy encoder, sharing code with subsequent passes */ | |||
return compress_output(cinfo, input_buf); | |||
} | |||
/* | |||
* Process some data in subsequent passes of a multi-pass case. | |||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |||
* per call, ie, v_samp_factor block rows for each component in the scan. | |||
* The data is obtained from the virtual arrays and fed to the entropy coder. | |||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. | |||
* | |||
* NB: input_buf is ignored; it is likely to be a NULL pointer. | |||
*/ | |||
METHODDEF(boolean) | |||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION MCU_col_num; /* index of current MCU within row */ | |||
int blkn, ci, xindex, yindex, yoffset; | |||
JDIMENSION start_col; | |||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |||
JBLOCKROW buffer_ptr; | |||
jpeg_component_info *compptr; | |||
/* Align the virtual buffers for the components used in this scan. | |||
* NB: during first pass, this is safe only because the buffers will | |||
* already be aligned properly, so jmemmgr.c won't need to do any I/O. | |||
*/ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
buffer[ci] = (*cinfo->mem->access_virt_barray) | |||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |||
coef->iMCU_row_num * compptr->v_samp_factor, | |||
(JDIMENSION) compptr->v_samp_factor, FALSE); | |||
} | |||
/* Loop to process one whole iMCU row */ | |||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |||
yoffset++) { | |||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; | |||
MCU_col_num++) { | |||
/* Construct list of pointers to DCT blocks belonging to this MCU */ | |||
blkn = 0; /* index of current DCT block within MCU */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
start_col = MCU_col_num * compptr->MCU_width; | |||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | |||
coef->MCU_buffer[blkn++] = buffer_ptr++; | |||
} | |||
} | |||
} | |||
/* Try to write the MCU. */ | |||
if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |||
/* Suspension forced; update state counters and exit */ | |||
coef->MCU_vert_offset = yoffset; | |||
coef->mcu_ctr = MCU_col_num; | |||
return FALSE; | |||
} | |||
} | |||
/* Completed an MCU row, but perhaps not an iMCU row */ | |||
coef->mcu_ctr = 0; | |||
} | |||
/* Completed the iMCU row, advance counters for next one */ | |||
coef->iMCU_row_num++; | |||
start_iMCU_row(cinfo); | |||
return TRUE; | |||
} | |||
#endif /* FULL_COEF_BUFFER_SUPPORTED */ | |||
/* | |||
* Initialize coefficient buffer controller. | |||
*/ | |||
GLOBAL(void) | |||
jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) | |||
{ | |||
my_coef_ptr coef; | |||
coef = (my_coef_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_coef_controller)); | |||
cinfo->coef = (struct jpeg_c_coef_controller *) coef; | |||
coef->pub.start_pass = start_pass_coef; | |||
/* Create the coefficient buffer. */ | |||
if (need_full_buffer) { | |||
#ifdef FULL_COEF_BUFFER_SUPPORTED | |||
/* Allocate a full-image virtual array for each component, */ | |||
/* padded to a multiple of samp_factor DCT blocks in each direction. */ | |||
int ci; | |||
jpeg_component_info *compptr; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | |||
(JDIMENSION) jround_up((long) compptr->width_in_blocks, | |||
(long) compptr->h_samp_factor), | |||
(JDIMENSION) jround_up((long) compptr->height_in_blocks, | |||
(long) compptr->v_samp_factor), | |||
(JDIMENSION) compptr->v_samp_factor); | |||
} | |||
#else | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
#endif | |||
} else { | |||
/* We only need a single-MCU buffer. */ | |||
JBLOCKROW buffer; | |||
int i; | |||
buffer = (JBLOCKROW) | |||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { | |||
coef->MCU_buffer[i] = buffer + i; | |||
} | |||
coef->whole_image[0] = NULL; /* flag for no virtual arrays */ | |||
} | |||
} |
@@ -1,459 +0,0 @@ | |||
/* | |||
* jccolor.c | |||
* | |||
* Copyright (C) 1991-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains input colorspace conversion routines. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Private subobject */ | |||
typedef struct { | |||
struct jpeg_color_converter pub; /* public fields */ | |||
/* Private state for RGB->YCC conversion */ | |||
INT32 * rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ | |||
} my_color_converter; | |||
typedef my_color_converter * my_cconvert_ptr; | |||
/**************** RGB -> YCbCr conversion: most common case **************/ | |||
/* | |||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are | |||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. | |||
* The conversion equations to be implemented are therefore | |||
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B | |||
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE | |||
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE | |||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) | |||
* Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, | |||
* rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and | |||
* negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) | |||
* were not represented exactly. Now we sacrifice exact representation of | |||
* maximum red and maximum blue in order to get exact grayscales. | |||
* | |||
* To avoid floating-point arithmetic, we represent the fractional constants | |||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide | |||
* the products by 2^16, with appropriate rounding, to get the correct answer. | |||
* | |||
* For even more speed, we avoid doing any multiplications in the inner loop | |||
* by precalculating the constants times R,G,B for all possible values. | |||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); | |||
* for 12-bit samples it is still acceptable. It's not very reasonable for | |||
* 16-bit samples, but if you want lossless storage you shouldn't be changing | |||
* colorspace anyway. | |||
* The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included | |||
* in the tables to save adding them separately in the inner loop. | |||
*/ | |||
#define SCALEBITS 16 /* speediest right-shift on some machines */ | |||
#define CBCR_OFFSET ((INT32) CENTERJSAMPLE << SCALEBITS) | |||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) | |||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | |||
/* We allocate one big table and divide it up into eight parts, instead of | |||
* doing eight alloc_small requests. This lets us use a single table base | |||
* address, which can be held in a register in the inner loops on many | |||
* machines (more than can hold all eight addresses, anyway). | |||
*/ | |||
#define R_Y_OFF 0 /* offset to R => Y section */ | |||
#define G_Y_OFF (1*(MAXJSAMPLE+1)) /* offset to G => Y section */ | |||
#define B_Y_OFF (2*(MAXJSAMPLE+1)) /* etc. */ | |||
#define R_CB_OFF (3*(MAXJSAMPLE+1)) | |||
#define G_CB_OFF (4*(MAXJSAMPLE+1)) | |||
#define B_CB_OFF (5*(MAXJSAMPLE+1)) | |||
#define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ | |||
#define G_CR_OFF (6*(MAXJSAMPLE+1)) | |||
#define B_CR_OFF (7*(MAXJSAMPLE+1)) | |||
#define TABLE_SIZE (8*(MAXJSAMPLE+1)) | |||
/* | |||
* Initialize for RGB->YCC colorspace conversion. | |||
*/ | |||
METHODDEF(void) | |||
rgb_ycc_start (j_compress_ptr cinfo) | |||
{ | |||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |||
INT32 * rgb_ycc_tab; | |||
INT32 i; | |||
/* Allocate and fill in the conversion tables. */ | |||
cconvert->rgb_ycc_tab = rgb_ycc_tab = (INT32 *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(TABLE_SIZE * SIZEOF(INT32))); | |||
for (i = 0; i <= MAXJSAMPLE; i++) { | |||
rgb_ycc_tab[i+R_Y_OFF] = FIX(0.29900) * i; | |||
rgb_ycc_tab[i+G_Y_OFF] = FIX(0.58700) * i; | |||
rgb_ycc_tab[i+B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; | |||
rgb_ycc_tab[i+R_CB_OFF] = (-FIX(0.16874)) * i; | |||
rgb_ycc_tab[i+G_CB_OFF] = (-FIX(0.33126)) * i; | |||
/* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. | |||
* This ensures that the maximum output will round to MAXJSAMPLE | |||
* not MAXJSAMPLE+1, and thus that we don't have to range-limit. | |||
*/ | |||
rgb_ycc_tab[i+B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; | |||
/* B=>Cb and R=>Cr tables are the same | |||
rgb_ycc_tab[i+R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF-1; | |||
*/ | |||
rgb_ycc_tab[i+G_CR_OFF] = (-FIX(0.41869)) * i; | |||
rgb_ycc_tab[i+B_CR_OFF] = (-FIX(0.08131)) * i; | |||
} | |||
} | |||
/* | |||
* Convert some rows of samples to the JPEG colorspace. | |||
* | |||
* Note that we change from the application's interleaved-pixel format | |||
* to our internal noninterleaved, one-plane-per-component format. | |||
* The input buffer is therefore three times as wide as the output buffer. | |||
* | |||
* A starting row offset is provided only for the output buffer. The caller | |||
* can easily adjust the passed input_buf value to accommodate any row | |||
* offset required on that side. | |||
*/ | |||
METHODDEF(void) | |||
rgb_ycc_convert (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |||
JDIMENSION output_row, int num_rows) | |||
{ | |||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |||
register int r, g, b; | |||
register INT32 * ctab = cconvert->rgb_ycc_tab; | |||
register JSAMPROW inptr; | |||
register JSAMPROW outptr0, outptr1, outptr2; | |||
register JDIMENSION col; | |||
JDIMENSION num_cols = cinfo->image_width; | |||
while (--num_rows >= 0) { | |||
inptr = *input_buf++; | |||
outptr0 = output_buf[0][output_row]; | |||
outptr1 = output_buf[1][output_row]; | |||
outptr2 = output_buf[2][output_row]; | |||
output_row++; | |||
for (col = 0; col < num_cols; col++) { | |||
r = GETJSAMPLE(inptr[RGB_RED]); | |||
g = GETJSAMPLE(inptr[RGB_GREEN]); | |||
b = GETJSAMPLE(inptr[RGB_BLUE]); | |||
inptr += RGB_PIXELSIZE; | |||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations | |||
* must be too; we do not need an explicit range-limiting operation. | |||
* Hence the value being shifted is never negative, and we don't | |||
* need the general RIGHT_SHIFT macro. | |||
*/ | |||
/* Y */ | |||
outptr0[col] = (JSAMPLE) | |||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | |||
>> SCALEBITS); | |||
/* Cb */ | |||
outptr1[col] = (JSAMPLE) | |||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) | |||
>> SCALEBITS); | |||
/* Cr */ | |||
outptr2[col] = (JSAMPLE) | |||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) | |||
>> SCALEBITS); | |||
} | |||
} | |||
} | |||
/**************** Cases other than RGB -> YCbCr **************/ | |||
/* | |||
* Convert some rows of samples to the JPEG colorspace. | |||
* This version handles RGB->grayscale conversion, which is the same | |||
* as the RGB->Y portion of RGB->YCbCr. | |||
* We assume rgb_ycc_start has been called (we only use the Y tables). | |||
*/ | |||
METHODDEF(void) | |||
rgb_gray_convert (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |||
JDIMENSION output_row, int num_rows) | |||
{ | |||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |||
register int r, g, b; | |||
register INT32 * ctab = cconvert->rgb_ycc_tab; | |||
register JSAMPROW inptr; | |||
register JSAMPROW outptr; | |||
register JDIMENSION col; | |||
JDIMENSION num_cols = cinfo->image_width; | |||
while (--num_rows >= 0) { | |||
inptr = *input_buf++; | |||
outptr = output_buf[0][output_row]; | |||
output_row++; | |||
for (col = 0; col < num_cols; col++) { | |||
r = GETJSAMPLE(inptr[RGB_RED]); | |||
g = GETJSAMPLE(inptr[RGB_GREEN]); | |||
b = GETJSAMPLE(inptr[RGB_BLUE]); | |||
inptr += RGB_PIXELSIZE; | |||
/* Y */ | |||
outptr[col] = (JSAMPLE) | |||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | |||
>> SCALEBITS); | |||
} | |||
} | |||
} | |||
/* | |||
* Convert some rows of samples to the JPEG colorspace. | |||
* This version handles Adobe-style CMYK->YCCK conversion, | |||
* where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same | |||
* conversion as above, while passing K (black) unchanged. | |||
* We assume rgb_ycc_start has been called. | |||
*/ | |||
METHODDEF(void) | |||
cmyk_ycck_convert (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |||
JDIMENSION output_row, int num_rows) | |||
{ | |||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |||
register int r, g, b; | |||
register INT32 * ctab = cconvert->rgb_ycc_tab; | |||
register JSAMPROW inptr; | |||
register JSAMPROW outptr0, outptr1, outptr2, outptr3; | |||
register JDIMENSION col; | |||
JDIMENSION num_cols = cinfo->image_width; | |||
while (--num_rows >= 0) { | |||
inptr = *input_buf++; | |||
outptr0 = output_buf[0][output_row]; | |||
outptr1 = output_buf[1][output_row]; | |||
outptr2 = output_buf[2][output_row]; | |||
outptr3 = output_buf[3][output_row]; | |||
output_row++; | |||
for (col = 0; col < num_cols; col++) { | |||
r = MAXJSAMPLE - GETJSAMPLE(inptr[0]); | |||
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]); | |||
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]); | |||
/* K passes through as-is */ | |||
outptr3[col] = inptr[3]; /* don't need GETJSAMPLE here */ | |||
inptr += 4; | |||
/* If the inputs are 0..MAXJSAMPLE, the outputs of these equations | |||
* must be too; we do not need an explicit range-limiting operation. | |||
* Hence the value being shifted is never negative, and we don't | |||
* need the general RIGHT_SHIFT macro. | |||
*/ | |||
/* Y */ | |||
outptr0[col] = (JSAMPLE) | |||
((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) | |||
>> SCALEBITS); | |||
/* Cb */ | |||
outptr1[col] = (JSAMPLE) | |||
((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) | |||
>> SCALEBITS); | |||
/* Cr */ | |||
outptr2[col] = (JSAMPLE) | |||
((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) | |||
>> SCALEBITS); | |||
} | |||
} | |||
} | |||
/* | |||
* Convert some rows of samples to the JPEG colorspace. | |||
* This version handles grayscale output with no conversion. | |||
* The source can be either plain grayscale or YCbCr (since Y == gray). | |||
*/ | |||
METHODDEF(void) | |||
grayscale_convert (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |||
JDIMENSION output_row, int num_rows) | |||
{ | |||
register JSAMPROW inptr; | |||
register JSAMPROW outptr; | |||
register JDIMENSION col; | |||
JDIMENSION num_cols = cinfo->image_width; | |||
int instride = cinfo->input_components; | |||
while (--num_rows >= 0) { | |||
inptr = *input_buf++; | |||
outptr = output_buf[0][output_row]; | |||
output_row++; | |||
for (col = 0; col < num_cols; col++) { | |||
outptr[col] = inptr[0]; /* don't need GETJSAMPLE() here */ | |||
inptr += instride; | |||
} | |||
} | |||
} | |||
/* | |||
* Convert some rows of samples to the JPEG colorspace. | |||
* This version handles multi-component colorspaces without conversion. | |||
* We assume input_components == num_components. | |||
*/ | |||
METHODDEF(void) | |||
null_convert (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |||
JDIMENSION output_row, int num_rows) | |||
{ | |||
register JSAMPROW inptr; | |||
register JSAMPROW outptr; | |||
register JDIMENSION col; | |||
register int ci; | |||
int nc = cinfo->num_components; | |||
JDIMENSION num_cols = cinfo->image_width; | |||
while (--num_rows >= 0) { | |||
/* It seems fastest to make a separate pass for each component. */ | |||
for (ci = 0; ci < nc; ci++) { | |||
inptr = *input_buf; | |||
outptr = output_buf[ci][output_row]; | |||
for (col = 0; col < num_cols; col++) { | |||
outptr[col] = inptr[ci]; /* don't need GETJSAMPLE() here */ | |||
inptr += nc; | |||
} | |||
} | |||
input_buf++; | |||
output_row++; | |||
} | |||
} | |||
/* | |||
* Empty method for start_pass. | |||
*/ | |||
METHODDEF(void) | |||
null_method (j_compress_ptr cinfo) | |||
{ | |||
/* no work needed */ | |||
} | |||
/* | |||
* Module initialization routine for input colorspace conversion. | |||
*/ | |||
GLOBAL(void) | |||
jinit_color_converter (j_compress_ptr cinfo) | |||
{ | |||
my_cconvert_ptr cconvert; | |||
cconvert = (my_cconvert_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_color_converter)); | |||
cinfo->cconvert = (struct jpeg_color_converter *) cconvert; | |||
/* set start_pass to null method until we find out differently */ | |||
cconvert->pub.start_pass = null_method; | |||
/* Make sure input_components agrees with in_color_space */ | |||
switch (cinfo->in_color_space) { | |||
case JCS_GRAYSCALE: | |||
if (cinfo->input_components != 1) | |||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |||
break; | |||
case JCS_RGB: | |||
#if RGB_PIXELSIZE != 3 | |||
if (cinfo->input_components != RGB_PIXELSIZE) | |||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |||
break; | |||
#endif /* else share code with YCbCr */ | |||
case JCS_YCbCr: | |||
if (cinfo->input_components != 3) | |||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |||
break; | |||
case JCS_CMYK: | |||
case JCS_YCCK: | |||
if (cinfo->input_components != 4) | |||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |||
break; | |||
default: /* JCS_UNKNOWN can be anything */ | |||
if (cinfo->input_components < 1) | |||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |||
break; | |||
} | |||
/* Check num_components, set conversion method based on requested space */ | |||
switch (cinfo->jpeg_color_space) { | |||
case JCS_GRAYSCALE: | |||
if (cinfo->num_components != 1) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
if (cinfo->in_color_space == JCS_GRAYSCALE) | |||
cconvert->pub.color_convert = grayscale_convert; | |||
else if (cinfo->in_color_space == JCS_RGB) { | |||
cconvert->pub.start_pass = rgb_ycc_start; | |||
cconvert->pub.color_convert = rgb_gray_convert; | |||
} else if (cinfo->in_color_space == JCS_YCbCr) | |||
cconvert->pub.color_convert = grayscale_convert; | |||
else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
case JCS_RGB: | |||
if (cinfo->num_components != 3) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
if (cinfo->in_color_space == JCS_RGB && RGB_PIXELSIZE == 3) | |||
cconvert->pub.color_convert = null_convert; | |||
else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
case JCS_YCbCr: | |||
if (cinfo->num_components != 3) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
if (cinfo->in_color_space == JCS_RGB) { | |||
cconvert->pub.start_pass = rgb_ycc_start; | |||
cconvert->pub.color_convert = rgb_ycc_convert; | |||
} else if (cinfo->in_color_space == JCS_YCbCr) | |||
cconvert->pub.color_convert = null_convert; | |||
else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
case JCS_CMYK: | |||
if (cinfo->num_components != 4) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
if (cinfo->in_color_space == JCS_CMYK) | |||
cconvert->pub.color_convert = null_convert; | |||
else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
case JCS_YCCK: | |||
if (cinfo->num_components != 4) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
if (cinfo->in_color_space == JCS_CMYK) { | |||
cconvert->pub.start_pass = rgb_ycc_start; | |||
cconvert->pub.color_convert = cmyk_ycck_convert; | |||
} else if (cinfo->in_color_space == JCS_YCCK) | |||
cconvert->pub.color_convert = null_convert; | |||
else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
default: /* allow null conversion of JCS_UNKNOWN */ | |||
if (cinfo->jpeg_color_space != cinfo->in_color_space || | |||
cinfo->num_components != cinfo->input_components) | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
cconvert->pub.color_convert = null_convert; | |||
break; | |||
} | |||
} |
@@ -1,482 +0,0 @@ | |||
/* | |||
* jcdctmgr.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the forward-DCT management logic. | |||
* This code selects a particular DCT implementation to be used, | |||
* and it performs related housekeeping chores including coefficient | |||
* quantization. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jdct.h" /* Private declarations for DCT subsystem */ | |||
/* Private subobject for this module */ | |||
typedef struct { | |||
struct jpeg_forward_dct pub; /* public fields */ | |||
/* Pointer to the DCT routine actually in use */ | |||
forward_DCT_method_ptr do_dct[MAX_COMPONENTS]; | |||
/* The actual post-DCT divisors --- not identical to the quant table | |||
* entries, because of scaling (especially for an unnormalized DCT). | |||
* Each table is given in normal array order. | |||
*/ | |||
DCTELEM * divisors[NUM_QUANT_TBLS]; | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
/* Same as above for the floating-point case. */ | |||
float_DCT_method_ptr do_float_dct[MAX_COMPONENTS]; | |||
FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; | |||
#endif | |||
} my_fdct_controller; | |||
typedef my_fdct_controller * my_fdct_ptr; | |||
/* The current scaled-DCT routines require ISLOW-style divisor tables, | |||
* so be sure to compile that code if either ISLOW or SCALING is requested. | |||
*/ | |||
#ifdef DCT_ISLOW_SUPPORTED | |||
#define PROVIDE_ISLOW_TABLES | |||
#else | |||
#ifdef DCT_SCALING_SUPPORTED | |||
#define PROVIDE_ISLOW_TABLES | |||
#endif | |||
#endif | |||
/* | |||
* Perform forward DCT on one or more blocks of a component. | |||
* | |||
* The input samples are taken from the sample_data[] array starting at | |||
* position start_row/start_col, and moving to the right for any additional | |||
* blocks. The quantized coefficients are returned in coef_blocks[]. | |||
*/ | |||
METHODDEF(void) | |||
forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | |||
JDIMENSION start_row, JDIMENSION start_col, | |||
JDIMENSION num_blocks) | |||
/* This version is used for integer DCT implementations. */ | |||
{ | |||
/* This routine is heavily used, so it's worth coding it tightly. */ | |||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |||
forward_DCT_method_ptr do_dct = fdct->do_dct[compptr->component_index]; | |||
DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; | |||
DCTELEM workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | |||
JDIMENSION bi; | |||
sample_data += start_row; /* fold in the vertical offset once */ | |||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | |||
/* Perform the DCT */ | |||
(*do_dct) (workspace, sample_data, start_col); | |||
/* Quantize/descale the coefficients, and store into coef_blocks[] */ | |||
{ register DCTELEM temp, qval; | |||
register int i; | |||
register JCOEFPTR output_ptr = coef_blocks[bi]; | |||
for (i = 0; i < DCTSIZE2; i++) { | |||
qval = divisors[i]; | |||
temp = workspace[i]; | |||
/* Divide the coefficient value by qval, ensuring proper rounding. | |||
* Since C does not specify the direction of rounding for negative | |||
* quotients, we have to force the dividend positive for portability. | |||
* | |||
* In most files, at least half of the output values will be zero | |||
* (at default quantization settings, more like three-quarters...) | |||
* so we should ensure that this case is fast. On many machines, | |||
* a comparison is enough cheaper than a divide to make a special test | |||
* a win. Since both inputs will be nonnegative, we need only test | |||
* for a < b to discover whether a/b is 0. | |||
* If your machine's division is fast enough, define FAST_DIVIDE. | |||
*/ | |||
#ifdef FAST_DIVIDE | |||
#define DIVIDE_BY(a,b) a /= b | |||
#else | |||
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0 | |||
#endif | |||
if (temp < 0) { | |||
temp = -temp; | |||
temp += qval>>1; /* for rounding */ | |||
DIVIDE_BY(temp, qval); | |||
temp = -temp; | |||
} else { | |||
temp += qval>>1; /* for rounding */ | |||
DIVIDE_BY(temp, qval); | |||
} | |||
output_ptr[i] = (JCOEF) temp; | |||
} | |||
} | |||
} | |||
} | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
METHODDEF(void) | |||
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | |||
JDIMENSION start_row, JDIMENSION start_col, | |||
JDIMENSION num_blocks) | |||
/* This version is used for floating-point DCT implementations. */ | |||
{ | |||
/* This routine is heavily used, so it's worth coding it tightly. */ | |||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |||
float_DCT_method_ptr do_dct = fdct->do_float_dct[compptr->component_index]; | |||
FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; | |||
FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | |||
JDIMENSION bi; | |||
sample_data += start_row; /* fold in the vertical offset once */ | |||
for (bi = 0; bi < num_blocks; bi++, start_col += compptr->DCT_h_scaled_size) { | |||
/* Perform the DCT */ | |||
(*do_dct) (workspace, sample_data, start_col); | |||
/* Quantize/descale the coefficients, and store into coef_blocks[] */ | |||
{ register FAST_FLOAT temp; | |||
register int i; | |||
register JCOEFPTR output_ptr = coef_blocks[bi]; | |||
for (i = 0; i < DCTSIZE2; i++) { | |||
/* Apply the quantization and scaling factor */ | |||
temp = workspace[i] * divisors[i]; | |||
/* Round to nearest integer. | |||
* Since C does not specify the direction of rounding for negative | |||
* quotients, we have to force the dividend positive for portability. | |||
* The maximum coefficient size is +-16K (for 12-bit data), so this | |||
* code should work for either 16-bit or 32-bit ints. | |||
*/ | |||
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | |||
} | |||
} | |||
} | |||
} | |||
#endif /* DCT_FLOAT_SUPPORTED */ | |||
/* | |||
* Initialize for a processing pass. | |||
* Verify that all referenced Q-tables are present, and set up | |||
* the divisor table for each one. | |||
* In the current implementation, DCT of all components is done during | |||
* the first pass, even if only some components will be output in the | |||
* first scan. Hence all components should be examined here. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_fdctmgr (j_compress_ptr cinfo) | |||
{ | |||
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | |||
int ci, qtblno, i; | |||
jpeg_component_info *compptr; | |||
int method = 0; | |||
JQUANT_TBL * qtbl; | |||
DCTELEM * dtbl; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Select the proper DCT routine for this component's scaling */ | |||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | |||
#ifdef DCT_SCALING_SUPPORTED | |||
case ((1 << 8) + 1): | |||
fdct->do_dct[ci] = jpeg_fdct_1x1; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((2 << 8) + 2): | |||
fdct->do_dct[ci] = jpeg_fdct_2x2; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((3 << 8) + 3): | |||
fdct->do_dct[ci] = jpeg_fdct_3x3; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((4 << 8) + 4): | |||
fdct->do_dct[ci] = jpeg_fdct_4x4; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((5 << 8) + 5): | |||
fdct->do_dct[ci] = jpeg_fdct_5x5; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((6 << 8) + 6): | |||
fdct->do_dct[ci] = jpeg_fdct_6x6; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((7 << 8) + 7): | |||
fdct->do_dct[ci] = jpeg_fdct_7x7; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((9 << 8) + 9): | |||
fdct->do_dct[ci] = jpeg_fdct_9x9; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((10 << 8) + 10): | |||
fdct->do_dct[ci] = jpeg_fdct_10x10; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((11 << 8) + 11): | |||
fdct->do_dct[ci] = jpeg_fdct_11x11; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((12 << 8) + 12): | |||
fdct->do_dct[ci] = jpeg_fdct_12x12; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((13 << 8) + 13): | |||
fdct->do_dct[ci] = jpeg_fdct_13x13; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((14 << 8) + 14): | |||
fdct->do_dct[ci] = jpeg_fdct_14x14; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((15 << 8) + 15): | |||
fdct->do_dct[ci] = jpeg_fdct_15x15; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((16 << 8) + 16): | |||
fdct->do_dct[ci] = jpeg_fdct_16x16; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((16 << 8) + 8): | |||
fdct->do_dct[ci] = jpeg_fdct_16x8; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((14 << 8) + 7): | |||
fdct->do_dct[ci] = jpeg_fdct_14x7; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((12 << 8) + 6): | |||
fdct->do_dct[ci] = jpeg_fdct_12x6; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((10 << 8) + 5): | |||
fdct->do_dct[ci] = jpeg_fdct_10x5; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((8 << 8) + 4): | |||
fdct->do_dct[ci] = jpeg_fdct_8x4; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((6 << 8) + 3): | |||
fdct->do_dct[ci] = jpeg_fdct_6x3; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((4 << 8) + 2): | |||
fdct->do_dct[ci] = jpeg_fdct_4x2; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((2 << 8) + 1): | |||
fdct->do_dct[ci] = jpeg_fdct_2x1; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((8 << 8) + 16): | |||
fdct->do_dct[ci] = jpeg_fdct_8x16; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((7 << 8) + 14): | |||
fdct->do_dct[ci] = jpeg_fdct_7x14; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((6 << 8) + 12): | |||
fdct->do_dct[ci] = jpeg_fdct_6x12; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((5 << 8) + 10): | |||
fdct->do_dct[ci] = jpeg_fdct_5x10; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((4 << 8) + 8): | |||
fdct->do_dct[ci] = jpeg_fdct_4x8; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((3 << 8) + 6): | |||
fdct->do_dct[ci] = jpeg_fdct_3x6; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((2 << 8) + 4): | |||
fdct->do_dct[ci] = jpeg_fdct_2x4; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
case ((1 << 8) + 2): | |||
fdct->do_dct[ci] = jpeg_fdct_1x2; | |||
method = JDCT_ISLOW; /* jfdctint uses islow-style table */ | |||
break; | |||
#endif | |||
case ((DCTSIZE << 8) + DCTSIZE): | |||
switch (cinfo->dct_method) { | |||
#ifdef DCT_ISLOW_SUPPORTED | |||
case JDCT_ISLOW: | |||
fdct->do_dct[ci] = jpeg_fdct_islow; | |||
method = JDCT_ISLOW; | |||
break; | |||
#endif | |||
#ifdef DCT_IFAST_SUPPORTED | |||
case JDCT_IFAST: | |||
fdct->do_dct[ci] = jpeg_fdct_ifast; | |||
method = JDCT_IFAST; | |||
break; | |||
#endif | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
case JDCT_FLOAT: | |||
fdct->do_float_dct[ci] = jpeg_fdct_float; | |||
method = JDCT_FLOAT; | |||
break; | |||
#endif | |||
default: | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
break; | |||
} | |||
break; | |||
default: | |||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | |||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); | |||
break; | |||
} | |||
qtblno = compptr->quant_tbl_no; | |||
/* Make sure specified quantization table is present */ | |||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | |||
cinfo->quant_tbl_ptrs[qtblno] == NULL) | |||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | |||
qtbl = cinfo->quant_tbl_ptrs[qtblno]; | |||
/* Compute divisors for this quant table */ | |||
/* We may do this more than once for same table, but it's not a big deal */ | |||
switch (method) { | |||
#ifdef PROVIDE_ISLOW_TABLES | |||
case JDCT_ISLOW: | |||
/* For LL&M IDCT method, divisors are equal to raw quantization | |||
* coefficients multiplied by 8 (to counteract scaling). | |||
*/ | |||
if (fdct->divisors[qtblno] == NULL) { | |||
fdct->divisors[qtblno] = (DCTELEM *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
DCTSIZE2 * SIZEOF(DCTELEM)); | |||
} | |||
dtbl = fdct->divisors[qtblno]; | |||
for (i = 0; i < DCTSIZE2; i++) { | |||
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; | |||
} | |||
fdct->pub.forward_DCT[ci] = forward_DCT; | |||
break; | |||
#endif | |||
#ifdef DCT_IFAST_SUPPORTED | |||
case JDCT_IFAST: | |||
{ | |||
/* For AA&N IDCT method, divisors are equal to quantization | |||
* coefficients scaled by scalefactor[row]*scalefactor[col], where | |||
* scalefactor[0] = 1 | |||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |||
* We apply a further scale factor of 8. | |||
*/ | |||
#define CONST_BITS 14 | |||
static const INT16 aanscales[DCTSIZE2] = { | |||
/* precomputed values scaled up by 14 bits */ | |||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | |||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | |||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | |||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | |||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | |||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | |||
}; | |||
SHIFT_TEMPS | |||
if (fdct->divisors[qtblno] == NULL) { | |||
fdct->divisors[qtblno] = (DCTELEM *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
DCTSIZE2 * SIZEOF(DCTELEM)); | |||
} | |||
dtbl = fdct->divisors[qtblno]; | |||
for (i = 0; i < DCTSIZE2; i++) { | |||
dtbl[i] = (DCTELEM) | |||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | |||
(INT32) aanscales[i]), | |||
CONST_BITS-3); | |||
} | |||
} | |||
fdct->pub.forward_DCT[ci] = forward_DCT; | |||
break; | |||
#endif | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
case JDCT_FLOAT: | |||
{ | |||
/* For float AA&N IDCT method, divisors are equal to quantization | |||
* coefficients scaled by scalefactor[row]*scalefactor[col], where | |||
* scalefactor[0] = 1 | |||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |||
* We apply a further scale factor of 8. | |||
* What's actually stored is 1/divisor so that the inner loop can | |||
* use a multiplication rather than a division. | |||
*/ | |||
FAST_FLOAT * fdtbl; | |||
int row, col; | |||
static const double aanscalefactor[DCTSIZE] = { | |||
1.0, 1.387039845, 1.306562965, 1.175875602, | |||
1.0, 0.785694958, 0.541196100, 0.275899379 | |||
}; | |||
if (fdct->float_divisors[qtblno] == NULL) { | |||
fdct->float_divisors[qtblno] = (FAST_FLOAT *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
DCTSIZE2 * SIZEOF(FAST_FLOAT)); | |||
} | |||
fdtbl = fdct->float_divisors[qtblno]; | |||
i = 0; | |||
for (row = 0; row < DCTSIZE; row++) { | |||
for (col = 0; col < DCTSIZE; col++) { | |||
fdtbl[i] = (FAST_FLOAT) | |||
(1.0 / (((double) qtbl->quantval[i] * | |||
aanscalefactor[row] * aanscalefactor[col] * 8.0))); | |||
i++; | |||
} | |||
} | |||
} | |||
fdct->pub.forward_DCT[ci] = forward_DCT_float; | |||
break; | |||
#endif | |||
default: | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
break; | |||
} | |||
} | |||
} | |||
/* | |||
* Initialize FDCT manager. | |||
*/ | |||
GLOBAL(void) | |||
jinit_forward_dct (j_compress_ptr cinfo) | |||
{ | |||
my_fdct_ptr fdct; | |||
int i; | |||
fdct = (my_fdct_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_fdct_controller)); | |||
cinfo->fdct = (struct jpeg_forward_dct *) fdct; | |||
fdct->pub.start_pass = start_pass_fdctmgr; | |||
/* Mark divisor tables unallocated */ | |||
for (i = 0; i < NUM_QUANT_TBLS; i++) { | |||
fdct->divisors[i] = NULL; | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
fdct->float_divisors[i] = NULL; | |||
#endif | |||
} | |||
} |
@@ -1,65 +0,0 @@ | |||
/* | |||
* jcinit.c | |||
* | |||
* Copyright (C) 1991-1997, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains initialization logic for the JPEG compressor. | |||
* This routine is in charge of selecting the modules to be executed and | |||
* making an initialization call to each one. | |||
* | |||
* Logically, this code belongs in jcmaster.c. It's split out because | |||
* linking this routine implies linking the entire compression library. | |||
* For a transcoding-only application, we want to be able to use jcmaster.c | |||
* without linking in the whole library. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* Master selection of compression modules. | |||
* This is done once at the start of processing an image. We determine | |||
* which modules will be used and give them appropriate initialization calls. | |||
*/ | |||
GLOBAL(void) | |||
jinit_compress_master (j_compress_ptr cinfo) | |||
{ | |||
/* Initialize master control (includes parameter checking/processing) */ | |||
jinit_c_master_control(cinfo, FALSE /* full compression */); | |||
/* Preprocessing */ | |||
if (! cinfo->raw_data_in) { | |||
jinit_color_converter(cinfo); | |||
jinit_downsampler(cinfo); | |||
jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); | |||
} | |||
/* Forward DCT */ | |||
jinit_forward_dct(cinfo); | |||
/* Entropy encoding: either Huffman or arithmetic coding. */ | |||
if (cinfo->arith_code) | |||
jinit_arith_encoder(cinfo); | |||
else { | |||
jinit_huff_encoder(cinfo); | |||
} | |||
/* Need a full-image coefficient buffer in any multi-pass mode. */ | |||
jinit_c_coef_controller(cinfo, | |||
(boolean) (cinfo->num_scans > 1 || cinfo->optimize_coding)); | |||
jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); | |||
jinit_marker_writer(cinfo); | |||
/* We can now tell the memory manager to allocate virtual arrays. */ | |||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | |||
/* Write the datastream header (SOI) immediately. | |||
* Frame and scan headers are postponed till later. | |||
* This lets application insert special markers after the SOI. | |||
*/ | |||
(*cinfo->marker->write_file_header) (cinfo); | |||
} |
@@ -1,293 +0,0 @@ | |||
/* | |||
* jcmainct.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the main buffer controller for compression. | |||
* The main buffer lies between the pre-processor and the JPEG | |||
* compressor proper; it holds downsampled data in the JPEG colorspace. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Note: currently, there is no operating mode in which a full-image buffer | |||
* is needed at this step. If there were, that mode could not be used with | |||
* "raw data" input, since this module is bypassed in that case. However, | |||
* we've left the code here for possible use in special applications. | |||
*/ | |||
#undef FULL_MAIN_BUFFER_SUPPORTED | |||
/* Private buffer controller object */ | |||
typedef struct { | |||
struct jpeg_c_main_controller pub; /* public fields */ | |||
JDIMENSION cur_iMCU_row; /* number of current iMCU row */ | |||
JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */ | |||
boolean suspended; /* remember if we suspended output */ | |||
J_BUF_MODE pass_mode; /* current operating mode */ | |||
/* If using just a strip buffer, this points to the entire set of buffers | |||
* (we allocate one for each component). In the full-image case, this | |||
* points to the currently accessible strips of the virtual arrays. | |||
*/ | |||
JSAMPARRAY buffer[MAX_COMPONENTS]; | |||
#ifdef FULL_MAIN_BUFFER_SUPPORTED | |||
/* If using full-image storage, this array holds pointers to virtual-array | |||
* control blocks for each component. Unused if not full-image storage. | |||
*/ | |||
jvirt_sarray_ptr whole_image[MAX_COMPONENTS]; | |||
#endif | |||
} my_main_controller; | |||
typedef my_main_controller * my_main_ptr; | |||
/* Forward declarations */ | |||
METHODDEF(void) process_data_simple_main | |||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, | |||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); | |||
#ifdef FULL_MAIN_BUFFER_SUPPORTED | |||
METHODDEF(void) process_data_buffer_main | |||
JPP((j_compress_ptr cinfo, JSAMPARRAY input_buf, | |||
JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail)); | |||
#endif | |||
/* | |||
* Initialize for a processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_main (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
/* Do nothing in raw-data mode. */ | |||
if (cinfo->raw_data_in) | |||
return; | |||
mainp->cur_iMCU_row = 0; /* initialize counters */ | |||
mainp->rowgroup_ctr = 0; | |||
mainp->suspended = FALSE; | |||
mainp->pass_mode = pass_mode; /* save mode for use by process_data */ | |||
switch (pass_mode) { | |||
case JBUF_PASS_THRU: | |||
#ifdef FULL_MAIN_BUFFER_SUPPORTED | |||
if (mainp->whole_image[0] != NULL) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
#endif | |||
mainp->pub.process_data = process_data_simple_main; | |||
break; | |||
#ifdef FULL_MAIN_BUFFER_SUPPORTED | |||
case JBUF_SAVE_SOURCE: | |||
case JBUF_CRANK_DEST: | |||
case JBUF_SAVE_AND_PASS: | |||
if (mainp->whole_image[0] == NULL) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
mainp->pub.process_data = process_data_buffer_main; | |||
break; | |||
#endif | |||
default: | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
break; | |||
} | |||
} | |||
/* | |||
* Process some data. | |||
* This routine handles the simple pass-through mode, | |||
* where we have only a strip buffer. | |||
*/ | |||
METHODDEF(void) | |||
process_data_simple_main (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | |||
JDIMENSION in_rows_avail) | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) { | |||
/* Read input data if we haven't filled the main buffer yet */ | |||
if (mainp->rowgroup_ctr < (JDIMENSION) cinfo->min_DCT_v_scaled_size) | |||
(*cinfo->prep->pre_process_data) (cinfo, | |||
input_buf, in_row_ctr, in_rows_avail, | |||
mainp->buffer, &mainp->rowgroup_ctr, | |||
(JDIMENSION) cinfo->min_DCT_v_scaled_size); | |||
/* If we don't have a full iMCU row buffered, return to application for | |||
* more data. Note that preprocessor will always pad to fill the iMCU row | |||
* at the bottom of the image. | |||
*/ | |||
if (mainp->rowgroup_ctr != (JDIMENSION) cinfo->min_DCT_v_scaled_size) | |||
return; | |||
/* Send the completed row to the compressor */ | |||
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) { | |||
/* If compressor did not consume the whole row, then we must need to | |||
* suspend processing and return to the application. In this situation | |||
* we pretend we didn't yet consume the last input row; otherwise, if | |||
* it happened to be the last row of the image, the application would | |||
* think we were done. | |||
*/ | |||
if (! mainp->suspended) { | |||
(*in_row_ctr)--; | |||
mainp->suspended = TRUE; | |||
} | |||
return; | |||
} | |||
/* We did finish the row. Undo our little suspension hack if a previous | |||
* call suspended; then mark the main buffer empty. | |||
*/ | |||
if (mainp->suspended) { | |||
(*in_row_ctr)++; | |||
mainp->suspended = FALSE; | |||
} | |||
mainp->rowgroup_ctr = 0; | |||
mainp->cur_iMCU_row++; | |||
} | |||
} | |||
#ifdef FULL_MAIN_BUFFER_SUPPORTED | |||
/* | |||
* Process some data. | |||
* This routine handles all of the modes that use a full-size buffer. | |||
*/ | |||
METHODDEF(void) | |||
process_data_buffer_main (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | |||
JDIMENSION in_rows_avail) | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
int ci; | |||
jpeg_component_info *compptr; | |||
boolean writing = (mainp->pass_mode != JBUF_CRANK_DEST); | |||
while (mainp->cur_iMCU_row < cinfo->total_iMCU_rows) { | |||
/* Realign the virtual buffers if at the start of an iMCU row. */ | |||
if (mainp->rowgroup_ctr == 0) { | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
mainp->buffer[ci] = (*cinfo->mem->access_virt_sarray) | |||
((j_common_ptr) cinfo, mainp->whole_image[ci], | |||
mainp->cur_iMCU_row * (compptr->v_samp_factor * DCTSIZE), | |||
(JDIMENSION) (compptr->v_samp_factor * DCTSIZE), writing); | |||
} | |||
/* In a read pass, pretend we just read some source data. */ | |||
if (! writing) { | |||
*in_row_ctr += cinfo->max_v_samp_factor * DCTSIZE; | |||
mainp->rowgroup_ctr = DCTSIZE; | |||
} | |||
} | |||
/* If a write pass, read input data until the current iMCU row is full. */ | |||
/* Note: preprocessor will pad if necessary to fill the last iMCU row. */ | |||
if (writing) { | |||
(*cinfo->prep->pre_process_data) (cinfo, | |||
input_buf, in_row_ctr, in_rows_avail, | |||
mainp->buffer, &mainp->rowgroup_ctr, | |||
(JDIMENSION) DCTSIZE); | |||
/* Return to application if we need more data to fill the iMCU row. */ | |||
if (mainp->rowgroup_ctr < DCTSIZE) | |||
return; | |||
} | |||
/* Emit data, unless this is a sink-only pass. */ | |||
if (mainp->pass_mode != JBUF_SAVE_SOURCE) { | |||
if (! (*cinfo->coef->compress_data) (cinfo, mainp->buffer)) { | |||
/* If compressor did not consume the whole row, then we must need to | |||
* suspend processing and return to the application. In this situation | |||
* we pretend we didn't yet consume the last input row; otherwise, if | |||
* it happened to be the last row of the image, the application would | |||
* think we were done. | |||
*/ | |||
if (! mainp->suspended) { | |||
(*in_row_ctr)--; | |||
mainp->suspended = TRUE; | |||
} | |||
return; | |||
} | |||
/* We did finish the row. Undo our little suspension hack if a previous | |||
* call suspended; then mark the main buffer empty. | |||
*/ | |||
if (mainp->suspended) { | |||
(*in_row_ctr)++; | |||
mainp->suspended = FALSE; | |||
} | |||
} | |||
/* If get here, we are done with this iMCU row. Mark buffer empty. */ | |||
mainp->rowgroup_ctr = 0; | |||
mainp->cur_iMCU_row++; | |||
} | |||
} | |||
#endif /* FULL_MAIN_BUFFER_SUPPORTED */ | |||
/* | |||
* Initialize main buffer controller. | |||
*/ | |||
GLOBAL(void) | |||
jinit_c_main_controller (j_compress_ptr cinfo, boolean need_full_buffer) | |||
{ | |||
my_main_ptr mainp; | |||
int ci; | |||
jpeg_component_info *compptr; | |||
mainp = (my_main_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_main_controller)); | |||
cinfo->main = (struct jpeg_c_main_controller *) mainp; | |||
mainp->pub.start_pass = start_pass_main; | |||
/* We don't need to create a buffer in raw-data mode. */ | |||
if (cinfo->raw_data_in) | |||
return; | |||
/* Create the buffer. It holds downsampled data, so each component | |||
* may be of a different size. | |||
*/ | |||
if (need_full_buffer) { | |||
#ifdef FULL_MAIN_BUFFER_SUPPORTED | |||
/* Allocate a full-image virtual array for each component */ | |||
/* Note we pad the bottom to a multiple of the iMCU height */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
mainp->whole_image[ci] = (*cinfo->mem->request_virt_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | |||
compptr->width_in_blocks * compptr->DCT_h_scaled_size, | |||
(JDIMENSION) jround_up((long) compptr->height_in_blocks, | |||
(long) compptr->v_samp_factor) * DCTSIZE, | |||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); | |||
} | |||
#else | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
#endif | |||
} else { | |||
#ifdef FULL_MAIN_BUFFER_SUPPORTED | |||
mainp->whole_image[0] = NULL; /* flag for no virtual arrays */ | |||
#endif | |||
/* Allocate a strip buffer for each component */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
compptr->width_in_blocks * compptr->DCT_h_scaled_size, | |||
(JDIMENSION) (compptr->v_samp_factor * compptr->DCT_v_scaled_size)); | |||
} | |||
} | |||
} |
@@ -1,682 +0,0 @@ | |||
/* | |||
* jcmarker.c | |||
* | |||
* Copyright (C) 1991-1998, Thomas G. Lane. | |||
* Modified 2003-2010 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains routines to write JPEG datastream markers. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
typedef enum { /* JPEG marker codes */ | |||
M_SOF0 = 0xc0, | |||
M_SOF1 = 0xc1, | |||
M_SOF2 = 0xc2, | |||
M_SOF3 = 0xc3, | |||
M_SOF5 = 0xc5, | |||
M_SOF6 = 0xc6, | |||
M_SOF7 = 0xc7, | |||
M_JPG = 0xc8, | |||
M_SOF9 = 0xc9, | |||
M_SOF10 = 0xca, | |||
M_SOF11 = 0xcb, | |||
M_SOF13 = 0xcd, | |||
M_SOF14 = 0xce, | |||
M_SOF15 = 0xcf, | |||
M_DHT = 0xc4, | |||
M_DAC = 0xcc, | |||
M_RST0 = 0xd0, | |||
M_RST1 = 0xd1, | |||
M_RST2 = 0xd2, | |||
M_RST3 = 0xd3, | |||
M_RST4 = 0xd4, | |||
M_RST5 = 0xd5, | |||
M_RST6 = 0xd6, | |||
M_RST7 = 0xd7, | |||
M_SOI = 0xd8, | |||
M_EOI = 0xd9, | |||
M_SOS = 0xda, | |||
M_DQT = 0xdb, | |||
M_DNL = 0xdc, | |||
M_DRI = 0xdd, | |||
M_DHP = 0xde, | |||
M_EXP = 0xdf, | |||
M_APP0 = 0xe0, | |||
M_APP1 = 0xe1, | |||
M_APP2 = 0xe2, | |||
M_APP3 = 0xe3, | |||
M_APP4 = 0xe4, | |||
M_APP5 = 0xe5, | |||
M_APP6 = 0xe6, | |||
M_APP7 = 0xe7, | |||
M_APP8 = 0xe8, | |||
M_APP9 = 0xe9, | |||
M_APP10 = 0xea, | |||
M_APP11 = 0xeb, | |||
M_APP12 = 0xec, | |||
M_APP13 = 0xed, | |||
M_APP14 = 0xee, | |||
M_APP15 = 0xef, | |||
M_JPG0 = 0xf0, | |||
M_JPG13 = 0xfd, | |||
M_COM = 0xfe, | |||
M_TEM = 0x01, | |||
M_ERROR = 0x100 | |||
} JPEG_MARKER; | |||
/* Private state */ | |||
typedef struct { | |||
struct jpeg_marker_writer pub; /* public fields */ | |||
unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ | |||
} my_marker_writer; | |||
typedef my_marker_writer * my_marker_ptr; | |||
/* | |||
* Basic output routines. | |||
* | |||
* Note that we do not support suspension while writing a marker. | |||
* Therefore, an application using suspension must ensure that there is | |||
* enough buffer space for the initial markers (typ. 600-700 bytes) before | |||
* calling jpeg_start_compress, and enough space to write the trailing EOI | |||
* (a few bytes) before calling jpeg_finish_compress. Multipass compression | |||
* modes are not supported at all with suspension, so those two are the only | |||
* points where markers will be written. | |||
*/ | |||
LOCAL(void) | |||
emit_byte (j_compress_ptr cinfo, int val) | |||
/* Emit a byte */ | |||
{ | |||
struct jpeg_destination_mgr * dest = cinfo->dest; | |||
*(dest->next_output_byte)++ = (JOCTET) val; | |||
if (--dest->free_in_buffer == 0) { | |||
if (! (*dest->empty_output_buffer) (cinfo)) | |||
ERREXIT(cinfo, JERR_CANT_SUSPEND); | |||
} | |||
} | |||
LOCAL(void) | |||
emit_marker (j_compress_ptr cinfo, JPEG_MARKER mark) | |||
/* Emit a marker code */ | |||
{ | |||
emit_byte(cinfo, 0xFF); | |||
emit_byte(cinfo, (int) mark); | |||
} | |||
LOCAL(void) | |||
emit_2bytes (j_compress_ptr cinfo, int value) | |||
/* Emit a 2-byte integer; these are always MSB first in JPEG files */ | |||
{ | |||
emit_byte(cinfo, (value >> 8) & 0xFF); | |||
emit_byte(cinfo, value & 0xFF); | |||
} | |||
/* | |||
* Routines to write specific marker types. | |||
*/ | |||
LOCAL(int) | |||
emit_dqt (j_compress_ptr cinfo, int index) | |||
/* Emit a DQT marker */ | |||
/* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ | |||
{ | |||
JQUANT_TBL * qtbl = cinfo->quant_tbl_ptrs[index]; | |||
int prec; | |||
int i; | |||
if (qtbl == NULL) | |||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); | |||
prec = 0; | |||
for (i = 0; i <= cinfo->lim_Se; i++) { | |||
if (qtbl->quantval[cinfo->natural_order[i]] > 255) | |||
prec = 1; | |||
} | |||
if (! qtbl->sent_table) { | |||
emit_marker(cinfo, M_DQT); | |||
emit_2bytes(cinfo, | |||
prec ? cinfo->lim_Se * 2 + 2 + 1 + 2 : cinfo->lim_Se + 1 + 1 + 2); | |||
emit_byte(cinfo, index + (prec<<4)); | |||
for (i = 0; i <= cinfo->lim_Se; i++) { | |||
/* The table entries must be emitted in zigzag order. */ | |||
unsigned int qval = qtbl->quantval[cinfo->natural_order[i]]; | |||
if (prec) | |||
emit_byte(cinfo, (int) (qval >> 8)); | |||
emit_byte(cinfo, (int) (qval & 0xFF)); | |||
} | |||
qtbl->sent_table = TRUE; | |||
} | |||
return prec; | |||
} | |||
LOCAL(void) | |||
emit_dht (j_compress_ptr cinfo, int index, boolean is_ac) | |||
/* Emit a DHT marker */ | |||
{ | |||
JHUFF_TBL * htbl; | |||
int length, i; | |||
if (is_ac) { | |||
htbl = cinfo->ac_huff_tbl_ptrs[index]; | |||
index += 0x10; /* output index has AC bit set */ | |||
} else { | |||
htbl = cinfo->dc_huff_tbl_ptrs[index]; | |||
} | |||
if (htbl == NULL) | |||
ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); | |||
if (! htbl->sent_table) { | |||
emit_marker(cinfo, M_DHT); | |||
length = 0; | |||
for (i = 1; i <= 16; i++) | |||
length += htbl->bits[i]; | |||
emit_2bytes(cinfo, length + 2 + 1 + 16); | |||
emit_byte(cinfo, index); | |||
for (i = 1; i <= 16; i++) | |||
emit_byte(cinfo, htbl->bits[i]); | |||
for (i = 0; i < length; i++) | |||
emit_byte(cinfo, htbl->huffval[i]); | |||
htbl->sent_table = TRUE; | |||
} | |||
} | |||
LOCAL(void) | |||
emit_dac (j_compress_ptr cinfo) | |||
/* Emit a DAC marker */ | |||
/* Since the useful info is so small, we want to emit all the tables in */ | |||
/* one DAC marker. Therefore this routine does its own scan of the table. */ | |||
{ | |||
#ifdef C_ARITH_CODING_SUPPORTED | |||
char dc_in_use[NUM_ARITH_TBLS]; | |||
char ac_in_use[NUM_ARITH_TBLS]; | |||
int length, i; | |||
jpeg_component_info *compptr; | |||
for (i = 0; i < NUM_ARITH_TBLS; i++) | |||
dc_in_use[i] = ac_in_use[i] = 0; | |||
for (i = 0; i < cinfo->comps_in_scan; i++) { | |||
compptr = cinfo->cur_comp_info[i]; | |||
/* DC needs no table for refinement scan */ | |||
if (cinfo->Ss == 0 && cinfo->Ah == 0) | |||
dc_in_use[compptr->dc_tbl_no] = 1; | |||
/* AC needs no table when not present */ | |||
if (cinfo->Se) | |||
ac_in_use[compptr->ac_tbl_no] = 1; | |||
} | |||
length = 0; | |||
for (i = 0; i < NUM_ARITH_TBLS; i++) | |||
length += dc_in_use[i] + ac_in_use[i]; | |||
if (length) { | |||
emit_marker(cinfo, M_DAC); | |||
emit_2bytes(cinfo, length*2 + 2); | |||
for (i = 0; i < NUM_ARITH_TBLS; i++) { | |||
if (dc_in_use[i]) { | |||
emit_byte(cinfo, i); | |||
emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i]<<4)); | |||
} | |||
if (ac_in_use[i]) { | |||
emit_byte(cinfo, i + 0x10); | |||
emit_byte(cinfo, cinfo->arith_ac_K[i]); | |||
} | |||
} | |||
} | |||
#endif /* C_ARITH_CODING_SUPPORTED */ | |||
} | |||
LOCAL(void) | |||
emit_dri (j_compress_ptr cinfo) | |||
/* Emit a DRI marker */ | |||
{ | |||
emit_marker(cinfo, M_DRI); | |||
emit_2bytes(cinfo, 4); /* fixed length */ | |||
emit_2bytes(cinfo, (int) cinfo->restart_interval); | |||
} | |||
LOCAL(void) | |||
emit_sof (j_compress_ptr cinfo, JPEG_MARKER code) | |||
/* Emit a SOF marker */ | |||
{ | |||
int ci; | |||
jpeg_component_info *compptr; | |||
emit_marker(cinfo, code); | |||
emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ | |||
/* Make sure image isn't bigger than SOF field can handle */ | |||
if ((long) cinfo->jpeg_height > 65535L || | |||
(long) cinfo->jpeg_width > 65535L) | |||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) 65535); | |||
emit_byte(cinfo, cinfo->data_precision); | |||
emit_2bytes(cinfo, (int) cinfo->jpeg_height); | |||
emit_2bytes(cinfo, (int) cinfo->jpeg_width); | |||
emit_byte(cinfo, cinfo->num_components); | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
emit_byte(cinfo, compptr->component_id); | |||
emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); | |||
emit_byte(cinfo, compptr->quant_tbl_no); | |||
} | |||
} | |||
LOCAL(void) | |||
emit_sos (j_compress_ptr cinfo) | |||
/* Emit a SOS marker */ | |||
{ | |||
int i, td, ta; | |||
jpeg_component_info *compptr; | |||
emit_marker(cinfo, M_SOS); | |||
emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ | |||
emit_byte(cinfo, cinfo->comps_in_scan); | |||
for (i = 0; i < cinfo->comps_in_scan; i++) { | |||
compptr = cinfo->cur_comp_info[i]; | |||
emit_byte(cinfo, compptr->component_id); | |||
/* We emit 0 for unused field(s); this is recommended by the P&M text | |||
* but does not seem to be specified in the standard. | |||
*/ | |||
/* DC needs no table for refinement scan */ | |||
td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0; | |||
/* AC needs no table when not present */ | |||
ta = cinfo->Se ? compptr->ac_tbl_no : 0; | |||
emit_byte(cinfo, (td << 4) + ta); | |||
} | |||
emit_byte(cinfo, cinfo->Ss); | |||
emit_byte(cinfo, cinfo->Se); | |||
emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); | |||
} | |||
LOCAL(void) | |||
emit_pseudo_sos (j_compress_ptr cinfo) | |||
/* Emit a pseudo SOS marker */ | |||
{ | |||
emit_marker(cinfo, M_SOS); | |||
emit_2bytes(cinfo, 2 + 1 + 3); /* length */ | |||
emit_byte(cinfo, 0); /* Ns */ | |||
emit_byte(cinfo, 0); /* Ss */ | |||
emit_byte(cinfo, cinfo->block_size * cinfo->block_size - 1); /* Se */ | |||
emit_byte(cinfo, 0); /* Ah/Al */ | |||
} | |||
LOCAL(void) | |||
emit_jfif_app0 (j_compress_ptr cinfo) | |||
/* Emit a JFIF-compliant APP0 marker */ | |||
{ | |||
/* | |||
* Length of APP0 block (2 bytes) | |||
* Block ID (4 bytes - ASCII "JFIF") | |||
* Zero byte (1 byte to terminate the ID string) | |||
* Version Major, Minor (2 bytes - major first) | |||
* Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) | |||
* Xdpu (2 bytes - dots per unit horizontal) | |||
* Ydpu (2 bytes - dots per unit vertical) | |||
* Thumbnail X size (1 byte) | |||
* Thumbnail Y size (1 byte) | |||
*/ | |||
emit_marker(cinfo, M_APP0); | |||
emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ | |||
emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */ | |||
emit_byte(cinfo, 0x46); | |||
emit_byte(cinfo, 0x49); | |||
emit_byte(cinfo, 0x46); | |||
emit_byte(cinfo, 0); | |||
emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ | |||
emit_byte(cinfo, cinfo->JFIF_minor_version); | |||
emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ | |||
emit_2bytes(cinfo, (int) cinfo->X_density); | |||
emit_2bytes(cinfo, (int) cinfo->Y_density); | |||
emit_byte(cinfo, 0); /* No thumbnail image */ | |||
emit_byte(cinfo, 0); | |||
} | |||
LOCAL(void) | |||
emit_adobe_app14 (j_compress_ptr cinfo) | |||
/* Emit an Adobe APP14 marker */ | |||
{ | |||
/* | |||
* Length of APP14 block (2 bytes) | |||
* Block ID (5 bytes - ASCII "Adobe") | |||
* Version Number (2 bytes - currently 100) | |||
* Flags0 (2 bytes - currently 0) | |||
* Flags1 (2 bytes - currently 0) | |||
* Color transform (1 byte) | |||
* | |||
* Although Adobe TN 5116 mentions Version = 101, all the Adobe files | |||
* now in circulation seem to use Version = 100, so that's what we write. | |||
* | |||
* We write the color transform byte as 1 if the JPEG color space is | |||
* YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with | |||
* whether the encoder performed a transformation, which is pretty useless. | |||
*/ | |||
emit_marker(cinfo, M_APP14); | |||
emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ | |||
emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */ | |||
emit_byte(cinfo, 0x64); | |||
emit_byte(cinfo, 0x6F); | |||
emit_byte(cinfo, 0x62); | |||
emit_byte(cinfo, 0x65); | |||
emit_2bytes(cinfo, 100); /* Version */ | |||
emit_2bytes(cinfo, 0); /* Flags0 */ | |||
emit_2bytes(cinfo, 0); /* Flags1 */ | |||
switch (cinfo->jpeg_color_space) { | |||
case JCS_YCbCr: | |||
emit_byte(cinfo, 1); /* Color transform = 1 */ | |||
break; | |||
case JCS_YCCK: | |||
emit_byte(cinfo, 2); /* Color transform = 2 */ | |||
break; | |||
default: | |||
emit_byte(cinfo, 0); /* Color transform = 0 */ | |||
break; | |||
} | |||
} | |||
/* | |||
* These routines allow writing an arbitrary marker with parameters. | |||
* The only intended use is to emit COM or APPn markers after calling | |||
* write_file_header and before calling write_frame_header. | |||
* Other uses are not guaranteed to produce desirable results. | |||
* Counting the parameter bytes properly is the caller's responsibility. | |||
*/ | |||
METHODDEF(void) | |||
write_marker_header (j_compress_ptr cinfo, int marker, unsigned int datalen) | |||
/* Emit an arbitrary marker header */ | |||
{ | |||
if (datalen > (unsigned int) 65533) /* safety check */ | |||
ERREXIT(cinfo, JERR_BAD_LENGTH); | |||
emit_marker(cinfo, (JPEG_MARKER) marker); | |||
emit_2bytes(cinfo, (int) (datalen + 2)); /* total length */ | |||
} | |||
METHODDEF(void) | |||
write_marker_byte (j_compress_ptr cinfo, int val) | |||
/* Emit one byte of marker parameters following write_marker_header */ | |||
{ | |||
emit_byte(cinfo, val); | |||
} | |||
/* | |||
* Write datastream header. | |||
* This consists of an SOI and optional APPn markers. | |||
* We recommend use of the JFIF marker, but not the Adobe marker, | |||
* when using YCbCr or grayscale data. The JFIF marker should NOT | |||
* be used for any other JPEG colorspace. The Adobe marker is helpful | |||
* to distinguish RGB, CMYK, and YCCK colorspaces. | |||
* Note that an application can write additional header markers after | |||
* jpeg_start_compress returns. | |||
*/ | |||
METHODDEF(void) | |||
write_file_header (j_compress_ptr cinfo) | |||
{ | |||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker; | |||
emit_marker(cinfo, M_SOI); /* first the SOI */ | |||
/* SOI is defined to reset restart interval to 0 */ | |||
marker->last_restart_interval = 0; | |||
if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */ | |||
emit_jfif_app0(cinfo); | |||
if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ | |||
emit_adobe_app14(cinfo); | |||
} | |||
/* | |||
* Write frame header. | |||
* This consists of DQT and SOFn markers, and a conditional pseudo SOS marker. | |||
* Note that we do not emit the SOF until we have emitted the DQT(s). | |||
* This avoids compatibility problems with incorrect implementations that | |||
* try to error-check the quant table numbers as soon as they see the SOF. | |||
*/ | |||
METHODDEF(void) | |||
write_frame_header (j_compress_ptr cinfo) | |||
{ | |||
int ci, prec; | |||
boolean is_baseline; | |||
jpeg_component_info *compptr; | |||
/* Emit DQT for each quantization table. | |||
* Note that emit_dqt() suppresses any duplicate tables. | |||
*/ | |||
prec = 0; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
prec += emit_dqt(cinfo, compptr->quant_tbl_no); | |||
} | |||
/* now prec is nonzero iff there are any 16-bit quant tables. */ | |||
/* Check for a non-baseline specification. | |||
* Note we assume that Huffman table numbers won't be changed later. | |||
*/ | |||
if (cinfo->arith_code || cinfo->progressive_mode || | |||
cinfo->data_precision != 8 || cinfo->block_size != DCTSIZE) { | |||
is_baseline = FALSE; | |||
} else { | |||
is_baseline = TRUE; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) | |||
is_baseline = FALSE; | |||
} | |||
if (prec && is_baseline) { | |||
is_baseline = FALSE; | |||
/* If it's baseline except for quantizer size, warn the user */ | |||
TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); | |||
} | |||
} | |||
/* Emit the proper SOF marker */ | |||
if (cinfo->arith_code) { | |||
if (cinfo->progressive_mode) | |||
emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */ | |||
else | |||
emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */ | |||
} else { | |||
if (cinfo->progressive_mode) | |||
emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */ | |||
else if (is_baseline) | |||
emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */ | |||
else | |||
emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */ | |||
} | |||
/* Check to emit pseudo SOS marker */ | |||
if (cinfo->progressive_mode && cinfo->block_size != DCTSIZE) | |||
emit_pseudo_sos(cinfo); | |||
} | |||
/* | |||
* Write scan header. | |||
* This consists of DHT or DAC markers, optional DRI, and SOS. | |||
* Compressed data will be written following the SOS. | |||
*/ | |||
METHODDEF(void) | |||
write_scan_header (j_compress_ptr cinfo) | |||
{ | |||
my_marker_ptr marker = (my_marker_ptr) cinfo->marker; | |||
int i; | |||
jpeg_component_info *compptr; | |||
if (cinfo->arith_code) { | |||
/* Emit arith conditioning info. We may have some duplication | |||
* if the file has multiple scans, but it's so small it's hardly | |||
* worth worrying about. | |||
*/ | |||
emit_dac(cinfo); | |||
} else { | |||
/* Emit Huffman tables. | |||
* Note that emit_dht() suppresses any duplicate tables. | |||
*/ | |||
for (i = 0; i < cinfo->comps_in_scan; i++) { | |||
compptr = cinfo->cur_comp_info[i]; | |||
/* DC needs no table for refinement scan */ | |||
if (cinfo->Ss == 0 && cinfo->Ah == 0) | |||
emit_dht(cinfo, compptr->dc_tbl_no, FALSE); | |||
/* AC needs no table when not present */ | |||
if (cinfo->Se) | |||
emit_dht(cinfo, compptr->ac_tbl_no, TRUE); | |||
} | |||
} | |||
/* Emit DRI if required --- note that DRI value could change for each scan. | |||
* We avoid wasting space with unnecessary DRIs, however. | |||
*/ | |||
if (cinfo->restart_interval != marker->last_restart_interval) { | |||
emit_dri(cinfo); | |||
marker->last_restart_interval = cinfo->restart_interval; | |||
} | |||
emit_sos(cinfo); | |||
} | |||
/* | |||
* Write datastream trailer. | |||
*/ | |||
METHODDEF(void) | |||
write_file_trailer (j_compress_ptr cinfo) | |||
{ | |||
emit_marker(cinfo, M_EOI); | |||
} | |||
/* | |||
* Write an abbreviated table-specification datastream. | |||
* This consists of SOI, DQT and DHT tables, and EOI. | |||
* Any table that is defined and not marked sent_table = TRUE will be | |||
* emitted. Note that all tables will be marked sent_table = TRUE at exit. | |||
*/ | |||
METHODDEF(void) | |||
write_tables_only (j_compress_ptr cinfo) | |||
{ | |||
int i; | |||
emit_marker(cinfo, M_SOI); | |||
for (i = 0; i < NUM_QUANT_TBLS; i++) { | |||
if (cinfo->quant_tbl_ptrs[i] != NULL) | |||
(void) emit_dqt(cinfo, i); | |||
} | |||
if (! cinfo->arith_code) { | |||
for (i = 0; i < NUM_HUFF_TBLS; i++) { | |||
if (cinfo->dc_huff_tbl_ptrs[i] != NULL) | |||
emit_dht(cinfo, i, FALSE); | |||
if (cinfo->ac_huff_tbl_ptrs[i] != NULL) | |||
emit_dht(cinfo, i, TRUE); | |||
} | |||
} | |||
emit_marker(cinfo, M_EOI); | |||
} | |||
/* | |||
* Initialize the marker writer module. | |||
*/ | |||
GLOBAL(void) | |||
jinit_marker_writer (j_compress_ptr cinfo) | |||
{ | |||
my_marker_ptr marker; | |||
/* Create the subobject */ | |||
marker = (my_marker_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_marker_writer)); | |||
cinfo->marker = (struct jpeg_marker_writer *) marker; | |||
/* Initialize method pointers */ | |||
marker->pub.write_file_header = write_file_header; | |||
marker->pub.write_frame_header = write_frame_header; | |||
marker->pub.write_scan_header = write_scan_header; | |||
marker->pub.write_file_trailer = write_file_trailer; | |||
marker->pub.write_tables_only = write_tables_only; | |||
marker->pub.write_marker_header = write_marker_header; | |||
marker->pub.write_marker_byte = write_marker_byte; | |||
/* Initialize private state */ | |||
marker->last_restart_interval = 0; | |||
} |
@@ -1,858 +0,0 @@ | |||
/* | |||
* jcmaster.c | |||
* | |||
* Copyright (C) 1991-1997, Thomas G. Lane. | |||
* Modified 2003-2011 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains master control logic for the JPEG compressor. | |||
* These routines are concerned with parameter validation, initial setup, | |||
* and inter-pass control (determining the number of passes and the work | |||
* to be done in each pass). | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Private state */ | |||
typedef enum { | |||
main_pass, /* input data, also do first output step */ | |||
huff_opt_pass, /* Huffman code optimization pass */ | |||
output_pass /* data output pass */ | |||
} c_pass_type; | |||
typedef struct { | |||
struct jpeg_comp_master pub; /* public fields */ | |||
c_pass_type pass_type; /* the type of the current pass */ | |||
int pass_number; /* # of passes completed */ | |||
int total_passes; /* total # of passes needed */ | |||
int scan_number; /* current index in scan_info[] */ | |||
} my_comp_master; | |||
typedef my_comp_master * my_master_ptr; | |||
/* | |||
* Support routines that do various essential calculations. | |||
*/ | |||
/* | |||
* Compute JPEG image dimensions and related values. | |||
* NOTE: this is exported for possible use by application. | |||
* Hence it mustn't do anything that can't be done twice. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_calc_jpeg_dimensions (j_compress_ptr cinfo) | |||
/* Do computations that are needed before master selection phase */ | |||
{ | |||
#ifdef DCT_SCALING_SUPPORTED | |||
/* Sanity check on input image dimensions to prevent overflow in | |||
* following calculation. | |||
* We do check jpeg_width and jpeg_height in initial_setup below, | |||
* but image_width and image_height can come from arbitrary data, | |||
* and we need some space for multiplication by block_size. | |||
*/ | |||
if (((long) cinfo->image_width >> 24) || ((long) cinfo->image_height >> 24)) | |||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); | |||
/* Compute actual JPEG image dimensions and DCT scaling choices. */ | |||
if (cinfo->scale_num >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/1 scaling */ | |||
cinfo->jpeg_width = cinfo->image_width * cinfo->block_size; | |||
cinfo->jpeg_height = cinfo->image_height * cinfo->block_size; | |||
cinfo->min_DCT_h_scaled_size = 1; | |||
cinfo->min_DCT_v_scaled_size = 1; | |||
} else if (cinfo->scale_num * 2 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/2 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 2L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 2L); | |||
cinfo->min_DCT_h_scaled_size = 2; | |||
cinfo->min_DCT_v_scaled_size = 2; | |||
} else if (cinfo->scale_num * 3 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/3 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 3L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 3L); | |||
cinfo->min_DCT_h_scaled_size = 3; | |||
cinfo->min_DCT_v_scaled_size = 3; | |||
} else if (cinfo->scale_num * 4 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/4 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 4L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 4L); | |||
cinfo->min_DCT_h_scaled_size = 4; | |||
cinfo->min_DCT_v_scaled_size = 4; | |||
} else if (cinfo->scale_num * 5 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/5 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 5L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 5L); | |||
cinfo->min_DCT_h_scaled_size = 5; | |||
cinfo->min_DCT_v_scaled_size = 5; | |||
} else if (cinfo->scale_num * 6 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/6 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 6L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 6L); | |||
cinfo->min_DCT_h_scaled_size = 6; | |||
cinfo->min_DCT_v_scaled_size = 6; | |||
} else if (cinfo->scale_num * 7 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/7 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 7L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 7L); | |||
cinfo->min_DCT_h_scaled_size = 7; | |||
cinfo->min_DCT_v_scaled_size = 7; | |||
} else if (cinfo->scale_num * 8 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/8 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 8L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 8L); | |||
cinfo->min_DCT_h_scaled_size = 8; | |||
cinfo->min_DCT_v_scaled_size = 8; | |||
} else if (cinfo->scale_num * 9 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/9 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 9L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 9L); | |||
cinfo->min_DCT_h_scaled_size = 9; | |||
cinfo->min_DCT_v_scaled_size = 9; | |||
} else if (cinfo->scale_num * 10 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/10 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 10L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 10L); | |||
cinfo->min_DCT_h_scaled_size = 10; | |||
cinfo->min_DCT_v_scaled_size = 10; | |||
} else if (cinfo->scale_num * 11 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/11 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 11L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 11L); | |||
cinfo->min_DCT_h_scaled_size = 11; | |||
cinfo->min_DCT_v_scaled_size = 11; | |||
} else if (cinfo->scale_num * 12 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/12 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 12L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 12L); | |||
cinfo->min_DCT_h_scaled_size = 12; | |||
cinfo->min_DCT_v_scaled_size = 12; | |||
} else if (cinfo->scale_num * 13 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/13 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 13L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 13L); | |||
cinfo->min_DCT_h_scaled_size = 13; | |||
cinfo->min_DCT_v_scaled_size = 13; | |||
} else if (cinfo->scale_num * 14 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/14 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 14L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 14L); | |||
cinfo->min_DCT_h_scaled_size = 14; | |||
cinfo->min_DCT_v_scaled_size = 14; | |||
} else if (cinfo->scale_num * 15 >= cinfo->scale_denom * cinfo->block_size) { | |||
/* Provide block_size/15 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 15L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 15L); | |||
cinfo->min_DCT_h_scaled_size = 15; | |||
cinfo->min_DCT_v_scaled_size = 15; | |||
} else { | |||
/* Provide block_size/16 scaling */ | |||
cinfo->jpeg_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * cinfo->block_size, 16L); | |||
cinfo->jpeg_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * cinfo->block_size, 16L); | |||
cinfo->min_DCT_h_scaled_size = 16; | |||
cinfo->min_DCT_v_scaled_size = 16; | |||
} | |||
#else /* !DCT_SCALING_SUPPORTED */ | |||
/* Hardwire it to "no scaling" */ | |||
cinfo->jpeg_width = cinfo->image_width; | |||
cinfo->jpeg_height = cinfo->image_height; | |||
cinfo->min_DCT_h_scaled_size = DCTSIZE; | |||
cinfo->min_DCT_v_scaled_size = DCTSIZE; | |||
#endif /* DCT_SCALING_SUPPORTED */ | |||
} | |||
LOCAL(void) | |||
jpeg_calc_trans_dimensions (j_compress_ptr cinfo) | |||
{ | |||
if (cinfo->min_DCT_h_scaled_size != cinfo->min_DCT_v_scaled_size) | |||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | |||
cinfo->min_DCT_h_scaled_size, cinfo->min_DCT_v_scaled_size); | |||
cinfo->block_size = cinfo->min_DCT_h_scaled_size; | |||
} | |||
LOCAL(void) | |||
initial_setup (j_compress_ptr cinfo, boolean transcode_only) | |||
/* Do computations that are needed before master selection phase */ | |||
{ | |||
int ci, ssize; | |||
jpeg_component_info *compptr; | |||
long samplesperrow; | |||
JDIMENSION jd_samplesperrow; | |||
if (transcode_only) | |||
jpeg_calc_trans_dimensions(cinfo); | |||
else | |||
jpeg_calc_jpeg_dimensions(cinfo); | |||
/* Sanity check on block_size */ | |||
if (cinfo->block_size < 1 || cinfo->block_size > 16) | |||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, cinfo->block_size, cinfo->block_size); | |||
/* Derive natural_order from block_size */ | |||
switch (cinfo->block_size) { | |||
case 2: cinfo->natural_order = jpeg_natural_order2; break; | |||
case 3: cinfo->natural_order = jpeg_natural_order3; break; | |||
case 4: cinfo->natural_order = jpeg_natural_order4; break; | |||
case 5: cinfo->natural_order = jpeg_natural_order5; break; | |||
case 6: cinfo->natural_order = jpeg_natural_order6; break; | |||
case 7: cinfo->natural_order = jpeg_natural_order7; break; | |||
default: cinfo->natural_order = jpeg_natural_order; break; | |||
} | |||
/* Derive lim_Se from block_size */ | |||
cinfo->lim_Se = cinfo->block_size < DCTSIZE ? | |||
cinfo->block_size * cinfo->block_size - 1 : DCTSIZE2-1; | |||
/* Sanity check on image dimensions */ | |||
if (cinfo->jpeg_height <= 0 || cinfo->jpeg_width <= 0 || | |||
cinfo->num_components <= 0 || cinfo->input_components <= 0) | |||
ERREXIT(cinfo, JERR_EMPTY_IMAGE); | |||
/* Make sure image isn't bigger than I can handle */ | |||
if ((long) cinfo->jpeg_height > (long) JPEG_MAX_DIMENSION || | |||
(long) cinfo->jpeg_width > (long) JPEG_MAX_DIMENSION) | |||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); | |||
/* Width of an input scanline must be representable as JDIMENSION. */ | |||
samplesperrow = (long) cinfo->image_width * (long) cinfo->input_components; | |||
jd_samplesperrow = (JDIMENSION) samplesperrow; | |||
if ((long) jd_samplesperrow != samplesperrow) | |||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |||
/* For now, precision must match compiled-in value... */ | |||
if (cinfo->data_precision != BITS_IN_JSAMPLE) | |||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | |||
/* Check that number of components won't exceed internal array sizes */ | |||
if (cinfo->num_components > MAX_COMPONENTS) | |||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | |||
MAX_COMPONENTS); | |||
/* Compute maximum sampling factors; check factor validity */ | |||
cinfo->max_h_samp_factor = 1; | |||
cinfo->max_v_samp_factor = 1; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || | |||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) | |||
ERREXIT(cinfo, JERR_BAD_SAMPLING); | |||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, | |||
compptr->h_samp_factor); | |||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, | |||
compptr->v_samp_factor); | |||
} | |||
/* Compute dimensions of components */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Fill in the correct component_index value; don't rely on application */ | |||
compptr->component_index = ci; | |||
/* In selecting the actual DCT scaling for each component, we try to | |||
* scale down the chroma components via DCT scaling rather than downsampling. | |||
* This saves time if the downsampler gets to use 1:1 scaling. | |||
* Note this code adapts subsampling ratios which are powers of 2. | |||
*/ | |||
ssize = 1; | |||
#ifdef DCT_SCALING_SUPPORTED | |||
while (cinfo->min_DCT_h_scaled_size * ssize <= | |||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && | |||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) { | |||
ssize = ssize * 2; | |||
} | |||
#endif | |||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; | |||
ssize = 1; | |||
#ifdef DCT_SCALING_SUPPORTED | |||
while (cinfo->min_DCT_v_scaled_size * ssize <= | |||
(cinfo->do_fancy_downsampling ? DCTSIZE : DCTSIZE / 2) && | |||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) { | |||
ssize = ssize * 2; | |||
} | |||
#endif | |||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; | |||
/* We don't support DCT ratios larger than 2. */ | |||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) | |||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; | |||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) | |||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; | |||
/* Size in DCT blocks */ | |||
compptr->width_in_blocks = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->jpeg_width * (long) compptr->h_samp_factor, | |||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); | |||
compptr->height_in_blocks = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->jpeg_height * (long) compptr->v_samp_factor, | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
/* Size in samples */ | |||
compptr->downsampled_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->jpeg_width * | |||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), | |||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); | |||
compptr->downsampled_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->jpeg_height * | |||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
/* Mark component needed (this flag isn't actually used for compression) */ | |||
compptr->component_needed = TRUE; | |||
} | |||
/* Compute number of fully interleaved MCU rows (number of times that | |||
* main controller will call coefficient controller). | |||
*/ | |||
cinfo->total_iMCU_rows = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->jpeg_height, | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
} | |||
#ifdef C_MULTISCAN_FILES_SUPPORTED | |||
LOCAL(void) | |||
validate_script (j_compress_ptr cinfo) | |||
/* Verify that the scan script in cinfo->scan_info[] is valid; also | |||
* determine whether it uses progressive JPEG, and set cinfo->progressive_mode. | |||
*/ | |||
{ | |||
const jpeg_scan_info * scanptr; | |||
int scanno, ncomps, ci, coefi, thisi; | |||
int Ss, Se, Ah, Al; | |||
boolean component_sent[MAX_COMPONENTS]; | |||
#ifdef C_PROGRESSIVE_SUPPORTED | |||
int * last_bitpos_ptr; | |||
int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; | |||
/* -1 until that coefficient has been seen; then last Al for it */ | |||
#endif | |||
if (cinfo->num_scans <= 0) | |||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); | |||
/* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; | |||
* for progressive JPEG, no scan can have this. | |||
*/ | |||
scanptr = cinfo->scan_info; | |||
if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2-1) { | |||
#ifdef C_PROGRESSIVE_SUPPORTED | |||
cinfo->progressive_mode = TRUE; | |||
last_bitpos_ptr = & last_bitpos[0][0]; | |||
for (ci = 0; ci < cinfo->num_components; ci++) | |||
for (coefi = 0; coefi < DCTSIZE2; coefi++) | |||
*last_bitpos_ptr++ = -1; | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif | |||
} else { | |||
cinfo->progressive_mode = FALSE; | |||
for (ci = 0; ci < cinfo->num_components; ci++) | |||
component_sent[ci] = FALSE; | |||
} | |||
for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { | |||
/* Validate component indexes */ | |||
ncomps = scanptr->comps_in_scan; | |||
if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) | |||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); | |||
for (ci = 0; ci < ncomps; ci++) { | |||
thisi = scanptr->component_index[ci]; | |||
if (thisi < 0 || thisi >= cinfo->num_components) | |||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); | |||
/* Components must appear in SOF order within each scan */ | |||
if (ci > 0 && thisi <= scanptr->component_index[ci-1]) | |||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); | |||
} | |||
/* Validate progression parameters */ | |||
Ss = scanptr->Ss; | |||
Se = scanptr->Se; | |||
Ah = scanptr->Ah; | |||
Al = scanptr->Al; | |||
if (cinfo->progressive_mode) { | |||
#ifdef C_PROGRESSIVE_SUPPORTED | |||
/* The JPEG spec simply gives the ranges 0..13 for Ah and Al, but that | |||
* seems wrong: the upper bound ought to depend on data precision. | |||
* Perhaps they really meant 0..N+1 for N-bit precision. | |||
* Here we allow 0..10 for 8-bit data; Al larger than 10 results in | |||
* out-of-range reconstructed DC values during the first DC scan, | |||
* which might cause problems for some decoders. | |||
*/ | |||
#if BITS_IN_JSAMPLE == 8 | |||
#define MAX_AH_AL 10 | |||
#else | |||
#define MAX_AH_AL 13 | |||
#endif | |||
if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || | |||
Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL) | |||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | |||
if (Ss == 0) { | |||
if (Se != 0) /* DC and AC together not OK */ | |||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | |||
} else { | |||
if (ncomps != 1) /* AC scans must be for only one component */ | |||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | |||
} | |||
for (ci = 0; ci < ncomps; ci++) { | |||
last_bitpos_ptr = & last_bitpos[scanptr->component_index[ci]][0]; | |||
if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ | |||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | |||
for (coefi = Ss; coefi <= Se; coefi++) { | |||
if (last_bitpos_ptr[coefi] < 0) { | |||
/* first scan of this coefficient */ | |||
if (Ah != 0) | |||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | |||
} else { | |||
/* not first scan */ | |||
if (Ah != last_bitpos_ptr[coefi] || Al != Ah-1) | |||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | |||
} | |||
last_bitpos_ptr[coefi] = Al; | |||
} | |||
} | |||
#endif | |||
} else { | |||
/* For sequential JPEG, all progression parameters must be these: */ | |||
if (Ss != 0 || Se != DCTSIZE2-1 || Ah != 0 || Al != 0) | |||
ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); | |||
/* Make sure components are not sent twice */ | |||
for (ci = 0; ci < ncomps; ci++) { | |||
thisi = scanptr->component_index[ci]; | |||
if (component_sent[thisi]) | |||
ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); | |||
component_sent[thisi] = TRUE; | |||
} | |||
} | |||
} | |||
/* Now verify that everything got sent. */ | |||
if (cinfo->progressive_mode) { | |||
#ifdef C_PROGRESSIVE_SUPPORTED | |||
/* For progressive mode, we only check that at least some DC data | |||
* got sent for each component; the spec does not require that all bits | |||
* of all coefficients be transmitted. Would it be wiser to enforce | |||
* transmission of all coefficient bits?? | |||
*/ | |||
for (ci = 0; ci < cinfo->num_components; ci++) { | |||
if (last_bitpos[ci][0] < 0) | |||
ERREXIT(cinfo, JERR_MISSING_DATA); | |||
} | |||
#endif | |||
} else { | |||
for (ci = 0; ci < cinfo->num_components; ci++) { | |||
if (! component_sent[ci]) | |||
ERREXIT(cinfo, JERR_MISSING_DATA); | |||
} | |||
} | |||
} | |||
LOCAL(void) | |||
reduce_script (j_compress_ptr cinfo) | |||
/* Adapt scan script for use with reduced block size; | |||
* assume that script has been validated before. | |||
*/ | |||
{ | |||
jpeg_scan_info * scanptr; | |||
int idxout, idxin; | |||
/* Circumvent const declaration for this function */ | |||
scanptr = (jpeg_scan_info *) cinfo->scan_info; | |||
idxout = 0; | |||
for (idxin = 0; idxin < cinfo->num_scans; idxin++) { | |||
/* After skipping, idxout becomes smaller than idxin */ | |||
if (idxin != idxout) | |||
/* Copy rest of data; | |||
* note we stay in given chunk of allocated memory. | |||
*/ | |||
scanptr[idxout] = scanptr[idxin]; | |||
if (scanptr[idxout].Ss > cinfo->lim_Se) | |||
/* Entire scan out of range - skip this entry */ | |||
continue; | |||
if (scanptr[idxout].Se > cinfo->lim_Se) | |||
/* Limit scan to end of block */ | |||
scanptr[idxout].Se = cinfo->lim_Se; | |||
idxout++; | |||
} | |||
cinfo->num_scans = idxout; | |||
} | |||
#endif /* C_MULTISCAN_FILES_SUPPORTED */ | |||
LOCAL(void) | |||
select_scan_parameters (j_compress_ptr cinfo) | |||
/* Set up the scan parameters for the current scan */ | |||
{ | |||
int ci; | |||
#ifdef C_MULTISCAN_FILES_SUPPORTED | |||
if (cinfo->scan_info != NULL) { | |||
/* Prepare for current scan --- the script is already validated */ | |||
my_master_ptr master = (my_master_ptr) cinfo->master; | |||
const jpeg_scan_info * scanptr = cinfo->scan_info + master->scan_number; | |||
cinfo->comps_in_scan = scanptr->comps_in_scan; | |||
for (ci = 0; ci < scanptr->comps_in_scan; ci++) { | |||
cinfo->cur_comp_info[ci] = | |||
&cinfo->comp_info[scanptr->component_index[ci]]; | |||
} | |||
if (cinfo->progressive_mode) { | |||
cinfo->Ss = scanptr->Ss; | |||
cinfo->Se = scanptr->Se; | |||
cinfo->Ah = scanptr->Ah; | |||
cinfo->Al = scanptr->Al; | |||
return; | |||
} | |||
} | |||
else | |||
#endif | |||
{ | |||
/* Prepare for single sequential-JPEG scan containing all components */ | |||
if (cinfo->num_components > MAX_COMPS_IN_SCAN) | |||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | |||
MAX_COMPS_IN_SCAN); | |||
cinfo->comps_in_scan = cinfo->num_components; | |||
for (ci = 0; ci < cinfo->num_components; ci++) { | |||
cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; | |||
} | |||
} | |||
cinfo->Ss = 0; | |||
cinfo->Se = cinfo->block_size * cinfo->block_size - 1; | |||
cinfo->Ah = 0; | |||
cinfo->Al = 0; | |||
} | |||
LOCAL(void) | |||
per_scan_setup (j_compress_ptr cinfo) | |||
/* Do computations that are needed before processing a JPEG scan */ | |||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ | |||
{ | |||
int ci, mcublks, tmp; | |||
jpeg_component_info *compptr; | |||
if (cinfo->comps_in_scan == 1) { | |||
/* Noninterleaved (single-component) scan */ | |||
compptr = cinfo->cur_comp_info[0]; | |||
/* Overall image size in MCUs */ | |||
cinfo->MCUs_per_row = compptr->width_in_blocks; | |||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks; | |||
/* For noninterleaved scan, always one block per MCU */ | |||
compptr->MCU_width = 1; | |||
compptr->MCU_height = 1; | |||
compptr->MCU_blocks = 1; | |||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size; | |||
compptr->last_col_width = 1; | |||
/* For noninterleaved scans, it is convenient to define last_row_height | |||
* as the number of block rows present in the last iMCU row. | |||
*/ | |||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |||
if (tmp == 0) tmp = compptr->v_samp_factor; | |||
compptr->last_row_height = tmp; | |||
/* Prepare array describing MCU composition */ | |||
cinfo->blocks_in_MCU = 1; | |||
cinfo->MCU_membership[0] = 0; | |||
} else { | |||
/* Interleaved (multi-component) scan */ | |||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) | |||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, | |||
MAX_COMPS_IN_SCAN); | |||
/* Overall image size in MCUs */ | |||
cinfo->MCUs_per_row = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->jpeg_width, | |||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); | |||
cinfo->MCU_rows_in_scan = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->jpeg_height, | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
cinfo->blocks_in_MCU = 0; | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* Sampling factors give # of blocks of component in each MCU */ | |||
compptr->MCU_width = compptr->h_samp_factor; | |||
compptr->MCU_height = compptr->v_samp_factor; | |||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; | |||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; | |||
/* Figure number of non-dummy blocks in last MCU column & row */ | |||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); | |||
if (tmp == 0) tmp = compptr->MCU_width; | |||
compptr->last_col_width = tmp; | |||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); | |||
if (tmp == 0) tmp = compptr->MCU_height; | |||
compptr->last_row_height = tmp; | |||
/* Prepare array describing MCU composition */ | |||
mcublks = compptr->MCU_blocks; | |||
if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) | |||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE); | |||
while (mcublks-- > 0) { | |||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; | |||
} | |||
} | |||
} | |||
/* Convert restart specified in rows to actual MCU count. */ | |||
/* Note that count must fit in 16 bits, so we provide limiting. */ | |||
if (cinfo->restart_in_rows > 0) { | |||
long nominal = (long) cinfo->restart_in_rows * (long) cinfo->MCUs_per_row; | |||
cinfo->restart_interval = (unsigned int) MIN(nominal, 65535L); | |||
} | |||
} | |||
/* | |||
* Per-pass setup. | |||
* This is called at the beginning of each pass. We determine which modules | |||
* will be active during this pass and give them appropriate start_pass calls. | |||
* We also set is_last_pass to indicate whether any more passes will be | |||
* required. | |||
*/ | |||
METHODDEF(void) | |||
prepare_for_pass (j_compress_ptr cinfo) | |||
{ | |||
my_master_ptr master = (my_master_ptr) cinfo->master; | |||
switch (master->pass_type) { | |||
case main_pass: | |||
/* Initial pass: will collect input data, and do either Huffman | |||
* optimization or data output for the first scan. | |||
*/ | |||
select_scan_parameters(cinfo); | |||
per_scan_setup(cinfo); | |||
if (! cinfo->raw_data_in) { | |||
(*cinfo->cconvert->start_pass) (cinfo); | |||
(*cinfo->downsample->start_pass) (cinfo); | |||
(*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); | |||
} | |||
(*cinfo->fdct->start_pass) (cinfo); | |||
(*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); | |||
(*cinfo->coef->start_pass) (cinfo, | |||
(master->total_passes > 1 ? | |||
JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); | |||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); | |||
if (cinfo->optimize_coding) { | |||
/* No immediate data output; postpone writing frame/scan headers */ | |||
master->pub.call_pass_startup = FALSE; | |||
} else { | |||
/* Will write frame/scan headers at first jpeg_write_scanlines call */ | |||
master->pub.call_pass_startup = TRUE; | |||
} | |||
break; | |||
#ifdef ENTROPY_OPT_SUPPORTED | |||
case huff_opt_pass: | |||
/* Do Huffman optimization for a scan after the first one. */ | |||
select_scan_parameters(cinfo); | |||
per_scan_setup(cinfo); | |||
if (cinfo->Ss != 0 || cinfo->Ah == 0) { | |||
(*cinfo->entropy->start_pass) (cinfo, TRUE); | |||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); | |||
master->pub.call_pass_startup = FALSE; | |||
break; | |||
} | |||
/* Special case: Huffman DC refinement scans need no Huffman table | |||
* and therefore we can skip the optimization pass for them. | |||
*/ | |||
master->pass_type = output_pass; | |||
master->pass_number++; | |||
/*FALLTHROUGH*/ | |||
#endif | |||
case output_pass: | |||
/* Do a data-output pass. */ | |||
/* We need not repeat per-scan setup if prior optimization pass did it. */ | |||
if (! cinfo->optimize_coding) { | |||
select_scan_parameters(cinfo); | |||
per_scan_setup(cinfo); | |||
} | |||
(*cinfo->entropy->start_pass) (cinfo, FALSE); | |||
(*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); | |||
/* We emit frame/scan headers now */ | |||
if (master->scan_number == 0) | |||
(*cinfo->marker->write_frame_header) (cinfo); | |||
(*cinfo->marker->write_scan_header) (cinfo); | |||
master->pub.call_pass_startup = FALSE; | |||
break; | |||
default: | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
} | |||
master->pub.is_last_pass = (master->pass_number == master->total_passes-1); | |||
/* Set up progress monitor's pass info if present */ | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->completed_passes = master->pass_number; | |||
cinfo->progress->total_passes = master->total_passes; | |||
} | |||
} | |||
/* | |||
* Special start-of-pass hook. | |||
* This is called by jpeg_write_scanlines if call_pass_startup is TRUE. | |||
* In single-pass processing, we need this hook because we don't want to | |||
* write frame/scan headers during jpeg_start_compress; we want to let the | |||
* application write COM markers etc. between jpeg_start_compress and the | |||
* jpeg_write_scanlines loop. | |||
* In multi-pass processing, this routine is not used. | |||
*/ | |||
METHODDEF(void) | |||
pass_startup (j_compress_ptr cinfo) | |||
{ | |||
cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ | |||
(*cinfo->marker->write_frame_header) (cinfo); | |||
(*cinfo->marker->write_scan_header) (cinfo); | |||
} | |||
/* | |||
* Finish up at end of pass. | |||
*/ | |||
METHODDEF(void) | |||
finish_pass_master (j_compress_ptr cinfo) | |||
{ | |||
my_master_ptr master = (my_master_ptr) cinfo->master; | |||
/* The entropy coder always needs an end-of-pass call, | |||
* either to analyze statistics or to flush its output buffer. | |||
*/ | |||
(*cinfo->entropy->finish_pass) (cinfo); | |||
/* Update state for next pass */ | |||
switch (master->pass_type) { | |||
case main_pass: | |||
/* next pass is either output of scan 0 (after optimization) | |||
* or output of scan 1 (if no optimization). | |||
*/ | |||
master->pass_type = output_pass; | |||
if (! cinfo->optimize_coding) | |||
master->scan_number++; | |||
break; | |||
case huff_opt_pass: | |||
/* next pass is always output of current scan */ | |||
master->pass_type = output_pass; | |||
break; | |||
case output_pass: | |||
/* next pass is either optimization or output of next scan */ | |||
if (cinfo->optimize_coding) | |||
master->pass_type = huff_opt_pass; | |||
master->scan_number++; | |||
break; | |||
} | |||
master->pass_number++; | |||
} | |||
/* | |||
* Initialize master compression control. | |||
*/ | |||
GLOBAL(void) | |||
jinit_c_master_control (j_compress_ptr cinfo, boolean transcode_only) | |||
{ | |||
my_master_ptr master; | |||
master = (my_master_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_comp_master)); | |||
cinfo->master = (struct jpeg_comp_master *) master; | |||
master->pub.prepare_for_pass = prepare_for_pass; | |||
master->pub.pass_startup = pass_startup; | |||
master->pub.finish_pass = finish_pass_master; | |||
master->pub.is_last_pass = FALSE; | |||
/* Validate parameters, determine derived values */ | |||
initial_setup(cinfo, transcode_only); | |||
if (cinfo->scan_info != NULL) { | |||
#ifdef C_MULTISCAN_FILES_SUPPORTED | |||
validate_script(cinfo); | |||
if (cinfo->block_size < DCTSIZE) | |||
reduce_script(cinfo); | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif | |||
} else { | |||
cinfo->progressive_mode = FALSE; | |||
cinfo->num_scans = 1; | |||
} | |||
if ((cinfo->progressive_mode || cinfo->block_size < DCTSIZE) && | |||
!cinfo->arith_code) /* TEMPORARY HACK ??? */ | |||
/* assume default tables no good for progressive or downscale mode */ | |||
cinfo->optimize_coding = TRUE; | |||
/* Initialize my private state */ | |||
if (transcode_only) { | |||
/* no main pass in transcoding */ | |||
if (cinfo->optimize_coding) | |||
master->pass_type = huff_opt_pass; | |||
else | |||
master->pass_type = output_pass; | |||
} else { | |||
/* for normal compression, first pass is always this type: */ | |||
master->pass_type = main_pass; | |||
} | |||
master->scan_number = 0; | |||
master->pass_number = 0; | |||
if (cinfo->optimize_coding) | |||
master->total_passes = cinfo->num_scans * 2; | |||
else | |||
master->total_passes = cinfo->num_scans; | |||
} |
@@ -1,106 +0,0 @@ | |||
/* | |||
* jcomapi.c | |||
* | |||
* Copyright (C) 1994-1997, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains application interface routines that are used for both | |||
* compression and decompression. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* Abort processing of a JPEG compression or decompression operation, | |||
* but don't destroy the object itself. | |||
* | |||
* For this, we merely clean up all the nonpermanent memory pools. | |||
* Note that temp files (virtual arrays) are not allowed to belong to | |||
* the permanent pool, so we will be able to close all temp files here. | |||
* Closing a data source or destination, if necessary, is the application's | |||
* responsibility. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_abort (j_common_ptr cinfo) | |||
{ | |||
int pool; | |||
/* Do nothing if called on a not-initialized or destroyed JPEG object. */ | |||
if (cinfo->mem == NULL) | |||
return; | |||
/* Releasing pools in reverse order might help avoid fragmentation | |||
* with some (brain-damaged) malloc libraries. | |||
*/ | |||
for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) { | |||
(*cinfo->mem->free_pool) (cinfo, pool); | |||
} | |||
/* Reset overall state for possible reuse of object */ | |||
if (cinfo->is_decompressor) { | |||
cinfo->global_state = DSTATE_START; | |||
/* Try to keep application from accessing now-deleted marker list. | |||
* A bit kludgy to do it here, but this is the most central place. | |||
*/ | |||
((j_decompress_ptr) cinfo)->marker_list = NULL; | |||
} else { | |||
cinfo->global_state = CSTATE_START; | |||
} | |||
} | |||
/* | |||
* Destruction of a JPEG object. | |||
* | |||
* Everything gets deallocated except the master jpeg_compress_struct itself | |||
* and the error manager struct. Both of these are supplied by the application | |||
* and must be freed, if necessary, by the application. (Often they are on | |||
* the stack and so don't need to be freed anyway.) | |||
* Closing a data source or destination, if necessary, is the application's | |||
* responsibility. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_destroy (j_common_ptr cinfo) | |||
{ | |||
/* We need only tell the memory manager to release everything. */ | |||
/* NB: mem pointer is NULL if memory mgr failed to initialize. */ | |||
if (cinfo->mem != NULL) | |||
(*cinfo->mem->self_destruct) (cinfo); | |||
cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */ | |||
cinfo->global_state = 0; /* mark it destroyed */ | |||
} | |||
/* | |||
* Convenience routines for allocating quantization and Huffman tables. | |||
* (Would jutils.c be a more reasonable place to put these?) | |||
*/ | |||
GLOBAL(JQUANT_TBL *) | |||
jpeg_alloc_quant_table (j_common_ptr cinfo) | |||
{ | |||
JQUANT_TBL *tbl; | |||
tbl = (JQUANT_TBL *) | |||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL)); | |||
tbl->sent_table = FALSE; /* make sure this is false in any new table */ | |||
return tbl; | |||
} | |||
GLOBAL(JHUFF_TBL *) | |||
jpeg_alloc_huff_table (j_common_ptr cinfo) | |||
{ | |||
JHUFF_TBL *tbl; | |||
tbl = (JHUFF_TBL *) | |||
(*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL)); | |||
tbl->sent_table = FALSE; /* make sure this is false in any new table */ | |||
return tbl; | |||
} |
@@ -1,51 +0,0 @@ | |||
/* jconfig.cfg --- source file edited by configure script */ | |||
/* see jconfig.doc for explanations */ | |||
#define HAVE_PROTOTYPES | |||
#define HAVE_UNSIGNED_CHAR | |||
#define HAVE_UNSIGNED_SHORT | |||
#ifdef __CHAR_UNSIGNED__ | |||
# define CHAR_IS_UNSIGNED | |||
#endif /* __CHAR_UNSIGNED__ */ | |||
#define HAVE_STDLIB_H | |||
/* Define this if you get warnings about undefined structures. */ | |||
#undef INCOMPLETE_TYPES_BROKEN | |||
#if defined(WIN32) || defined(__EMX__) | |||
/* Define "boolean" as unsigned char, not int, per Windows custom */ | |||
# ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ | |||
typedef unsigned char boolean; | |||
# endif | |||
# define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ | |||
#endif /* WIN32 || __EMX__ */ | |||
#ifdef JPEG_INTERNALS | |||
#undef RIGHT_SHIFT_IS_UNSIGNED | |||
#undef INLINE | |||
/* These are for configuring the JPEG memory manager. */ | |||
#undef DEFAULT_MAX_MEM | |||
#undef NO_MKTEMP | |||
#endif /* JPEG_INTERNALS */ | |||
#ifdef JPEG_CJPEG_DJPEG | |||
#define BMP_SUPPORTED /* BMP image file format */ | |||
#define GIF_SUPPORTED /* GIF image file format */ | |||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ | |||
#undef RLE_SUPPORTED /* Utah RLE image file format */ | |||
#define TARGA_SUPPORTED /* Targa image file format */ | |||
#undef TWO_FILE_COMMANDLINE | |||
#undef NEED_SIGNAL_CATCHER | |||
#undef DONT_USE_B_MODE | |||
#if defined(WIN32) || defined(__EMX__) | |||
# define USE_SETMODE | |||
#endif /* WIN32 || __EMX__ */ | |||
/* Define this if you want percent-done progress reports from cjpeg/djpeg. */ | |||
#undef PROGRESS_REPORT | |||
#endif /* JPEG_CJPEG_DJPEG */ |
@@ -1,164 +0,0 @@ | |||
/* | |||
* jconfig.txt | |||
* | |||
* Copyright (C) 1991-1994, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file documents the configuration options that are required to | |||
* customize the JPEG software for a particular system. | |||
* | |||
* The actual configuration options for a particular installation are stored | |||
* in jconfig.h. On many machines, jconfig.h can be generated automatically | |||
* or copied from one of the "canned" jconfig files that we supply. But if | |||
* you need to generate a jconfig.h file by hand, this file tells you how. | |||
* | |||
* DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING. | |||
* EDIT A COPY NAMED JCONFIG.H. | |||
*/ | |||
/* | |||
* These symbols indicate the properties of your machine or compiler. | |||
* #define the symbol if yes, #undef it if no. | |||
*/ | |||
/* Does your compiler support function prototypes? | |||
* (If not, you also need to use ansi2knr, see install.txt) | |||
*/ | |||
#define HAVE_PROTOTYPES | |||
/* Does your compiler support the declaration "unsigned char" ? | |||
* How about "unsigned short" ? | |||
*/ | |||
#define HAVE_UNSIGNED_CHAR | |||
#define HAVE_UNSIGNED_SHORT | |||
/* Define "void" as "char" if your compiler doesn't know about type void. | |||
* NOTE: be sure to define void such that "void *" represents the most general | |||
* pointer type, e.g., that returned by malloc(). | |||
*/ | |||
/* #define void char */ | |||
/* Define "const" as empty if your compiler doesn't know the "const" keyword. | |||
*/ | |||
/* #define const */ | |||
/* Define this if an ordinary "char" type is unsigned. | |||
* If you're not sure, leaving it undefined will work at some cost in speed. | |||
* If you defined HAVE_UNSIGNED_CHAR then the speed difference is minimal. | |||
*/ | |||
#undef CHAR_IS_UNSIGNED | |||
/* Define this if your system has an ANSI-conforming <stddef.h> file. | |||
*/ | |||
#define HAVE_STDDEF_H | |||
/* Define this if your system has an ANSI-conforming <stdlib.h> file. | |||
*/ | |||
#define HAVE_STDLIB_H | |||
/* Define this if your system does not have an ANSI/SysV <string.h>, | |||
* but does have a BSD-style <strings.h>. | |||
*/ | |||
#undef NEED_BSD_STRINGS | |||
/* Define this if your system does not provide typedef size_t in any of the | |||
* ANSI-standard places (stddef.h, stdlib.h, or stdio.h), but places it in | |||
* <sys/types.h> instead. | |||
*/ | |||
#undef NEED_SYS_TYPES_H | |||
/* For 80x86 machines, you need to define NEED_FAR_POINTERS, | |||
* unless you are using a large-data memory model or 80386 flat-memory mode. | |||
* On less brain-damaged CPUs this symbol must not be defined. | |||
* (Defining this symbol causes large data structures to be referenced through | |||
* "far" pointers and to be allocated with a special version of malloc.) | |||
*/ | |||
#undef NEED_FAR_POINTERS | |||
/* Define this if your linker needs global names to be unique in less | |||
* than the first 15 characters. | |||
*/ | |||
#undef NEED_SHORT_EXTERNAL_NAMES | |||
/* Although a real ANSI C compiler can deal perfectly well with pointers to | |||
* unspecified structures (see "incomplete types" in the spec), a few pre-ANSI | |||
* and pseudo-ANSI compilers get confused. To keep one of these bozos happy, | |||
* define INCOMPLETE_TYPES_BROKEN. This is not recommended unless you | |||
* actually get "missing structure definition" warnings or errors while | |||
* compiling the JPEG code. | |||
*/ | |||
#undef INCOMPLETE_TYPES_BROKEN | |||
/* Define "boolean" as unsigned char, not int, on Windows systems. | |||
*/ | |||
#ifdef _WIN32 | |||
#ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ | |||
typedef unsigned char boolean; | |||
#endif | |||
#define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ | |||
#endif | |||
/* | |||
* The following options affect code selection within the JPEG library, | |||
* but they don't need to be visible to applications using the library. | |||
* To minimize application namespace pollution, the symbols won't be | |||
* defined unless JPEG_INTERNALS has been defined. | |||
*/ | |||
#ifdef JPEG_INTERNALS | |||
/* Define this if your compiler implements ">>" on signed values as a logical | |||
* (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift, | |||
* which is the normal and rational definition. | |||
*/ | |||
#undef RIGHT_SHIFT_IS_UNSIGNED | |||
#endif /* JPEG_INTERNALS */ | |||
/* | |||
* The remaining options do not affect the JPEG library proper, | |||
* but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c). | |||
* Other applications can ignore these. | |||
*/ | |||
#ifdef JPEG_CJPEG_DJPEG | |||
/* These defines indicate which image (non-JPEG) file formats are allowed. */ | |||
#define BMP_SUPPORTED /* BMP image file format */ | |||
#define GIF_SUPPORTED /* GIF image file format */ | |||
#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ | |||
#undef RLE_SUPPORTED /* Utah RLE image file format */ | |||
#define TARGA_SUPPORTED /* Targa image file format */ | |||
/* Define this if you want to name both input and output files on the command | |||
* line, rather than using stdout and optionally stdin. You MUST do this if | |||
* your system can't cope with binary I/O to stdin/stdout. See comments at | |||
* head of cjpeg.c or djpeg.c. | |||
*/ | |||
#undef TWO_FILE_COMMANDLINE | |||
/* Define this if your system needs explicit cleanup of temporary files. | |||
* This is crucial under MS-DOS, where the temporary "files" may be areas | |||
* of extended memory; on most other systems it's not as important. | |||
*/ | |||
#undef NEED_SIGNAL_CATCHER | |||
/* By default, we open image files with fopen(...,"rb") or fopen(...,"wb"). | |||
* This is necessary on systems that distinguish text files from binary files, | |||
* and is harmless on most systems that don't. If you have one of the rare | |||
* systems that complains about the "b" spec, define this symbol. | |||
*/ | |||
#undef DONT_USE_B_MODE | |||
/* Define this if you want percent-done progress reports from cjpeg/djpeg. | |||
*/ | |||
#undef PROGRESS_REPORT | |||
#endif /* JPEG_CJPEG_DJPEG */ |
@@ -1,632 +0,0 @@ | |||
/* | |||
* jcparam.c | |||
* | |||
* Copyright (C) 1991-1998, Thomas G. Lane. | |||
* Modified 2003-2008 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains optional default-setting code for the JPEG compressor. | |||
* Applications do not have to use this file, but those that don't use it | |||
* must know a lot more about the innards of the JPEG code. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* Quantization table setup routines | |||
*/ | |||
GLOBAL(void) | |||
jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, | |||
const unsigned int *basic_table, | |||
int scale_factor, boolean force_baseline) | |||
/* Define a quantization table equal to the basic_table times | |||
* a scale factor (given as a percentage). | |||
* If force_baseline is TRUE, the computed quantization table entries | |||
* are limited to 1..255 for JPEG baseline compatibility. | |||
*/ | |||
{ | |||
JQUANT_TBL ** qtblptr; | |||
int i; | |||
long temp; | |||
/* Safety check to ensure start_compress not called yet. */ | |||
if (cinfo->global_state != CSTATE_START) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) | |||
ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); | |||
qtblptr = & cinfo->quant_tbl_ptrs[which_tbl]; | |||
if (*qtblptr == NULL) | |||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) cinfo); | |||
for (i = 0; i < DCTSIZE2; i++) { | |||
temp = ((long) basic_table[i] * scale_factor + 50L) / 100L; | |||
/* limit the values to the valid range */ | |||
if (temp <= 0L) temp = 1L; | |||
if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ | |||
if (force_baseline && temp > 255L) | |||
temp = 255L; /* limit to baseline range if requested */ | |||
(*qtblptr)->quantval[i] = (UINT16) temp; | |||
} | |||
/* Initialize sent_table FALSE so table will be written to JPEG file. */ | |||
(*qtblptr)->sent_table = FALSE; | |||
} | |||
/* These are the sample quantization tables given in JPEG spec section K.1. | |||
* The spec says that the values given produce "good" quality, and | |||
* when divided by 2, "very good" quality. | |||
*/ | |||
static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { | |||
16, 11, 10, 16, 24, 40, 51, 61, | |||
12, 12, 14, 19, 26, 58, 60, 55, | |||
14, 13, 16, 24, 40, 57, 69, 56, | |||
14, 17, 22, 29, 51, 87, 80, 62, | |||
18, 22, 37, 56, 68, 109, 103, 77, | |||
24, 35, 55, 64, 81, 104, 113, 92, | |||
49, 64, 78, 87, 103, 121, 120, 101, | |||
72, 92, 95, 98, 112, 100, 103, 99 | |||
}; | |||
static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { | |||
17, 18, 24, 47, 99, 99, 99, 99, | |||
18, 21, 26, 66, 99, 99, 99, 99, | |||
24, 26, 56, 99, 99, 99, 99, 99, | |||
47, 66, 99, 99, 99, 99, 99, 99, | |||
99, 99, 99, 99, 99, 99, 99, 99, | |||
99, 99, 99, 99, 99, 99, 99, 99, | |||
99, 99, 99, 99, 99, 99, 99, 99, | |||
99, 99, 99, 99, 99, 99, 99, 99 | |||
}; | |||
GLOBAL(void) | |||
jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) | |||
/* Set or change the 'quality' (quantization) setting, using default tables | |||
* and straight percentage-scaling quality scales. | |||
* This entry point allows different scalings for luminance and chrominance. | |||
*/ | |||
{ | |||
/* Set up two quantization tables using the specified scaling */ | |||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, | |||
cinfo->q_scale_factor[0], force_baseline); | |||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, | |||
cinfo->q_scale_factor[1], force_baseline); | |||
} | |||
GLOBAL(void) | |||
jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, | |||
boolean force_baseline) | |||
/* Set or change the 'quality' (quantization) setting, using default tables | |||
* and a straight percentage-scaling quality scale. In most cases it's better | |||
* to use jpeg_set_quality (below); this entry point is provided for | |||
* applications that insist on a linear percentage scaling. | |||
*/ | |||
{ | |||
/* Set up two quantization tables using the specified scaling */ | |||
jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, | |||
scale_factor, force_baseline); | |||
jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, | |||
scale_factor, force_baseline); | |||
} | |||
GLOBAL(int) | |||
jpeg_quality_scaling (int quality) | |||
/* Convert a user-specified quality rating to a percentage scaling factor | |||
* for an underlying quantization table, using our recommended scaling curve. | |||
* The input 'quality' factor should be 0 (terrible) to 100 (very good). | |||
*/ | |||
{ | |||
/* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ | |||
if (quality <= 0) quality = 1; | |||
if (quality > 100) quality = 100; | |||
/* The basic table is used as-is (scaling 100) for a quality of 50. | |||
* Qualities 50..100 are converted to scaling percentage 200 - 2*Q; | |||
* note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table | |||
* to make all the table entries 1 (hence, minimum quantization loss). | |||
* Qualities 1..50 are converted to scaling percentage 5000/Q. | |||
*/ | |||
if (quality < 50) | |||
quality = 5000 / quality; | |||
else | |||
quality = 200 - quality*2; | |||
return quality; | |||
} | |||
GLOBAL(void) | |||
jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) | |||
/* Set or change the 'quality' (quantization) setting, using default tables. | |||
* This is the standard quality-adjusting entry point for typical user | |||
* interfaces; only those who want detailed control over quantization tables | |||
* would use the preceding three routines directly. | |||
*/ | |||
{ | |||
/* Convert user 0-100 rating to percentage scaling */ | |||
quality = jpeg_quality_scaling(quality); | |||
/* Set up standard quality tables */ | |||
jpeg_set_linear_quality(cinfo, quality, force_baseline); | |||
} | |||
/* | |||
* Huffman table setup routines | |||
*/ | |||
LOCAL(void) | |||
add_huff_table (j_compress_ptr cinfo, | |||
JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) | |||
/* Define a Huffman table */ | |||
{ | |||
int nsymbols, len; | |||
if (*htblptr == NULL) | |||
*htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | |||
/* Copy the number-of-symbols-of-each-code-length counts */ | |||
MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits)); | |||
/* Validate the counts. We do this here mainly so we can copy the right | |||
* number of symbols from the val[] array, without risking marching off | |||
* the end of memory. jchuff.c will do a more thorough test later. | |||
*/ | |||
nsymbols = 0; | |||
for (len = 1; len <= 16; len++) | |||
nsymbols += bits[len]; | |||
if (nsymbols < 1 || nsymbols > 256) | |||
ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | |||
MEMCOPY((*htblptr)->huffval, val, nsymbols * SIZEOF(UINT8)); | |||
/* Initialize sent_table FALSE so table will be written to JPEG file. */ | |||
(*htblptr)->sent_table = FALSE; | |||
} | |||
LOCAL(void) | |||
std_huff_tables (j_compress_ptr cinfo) | |||
/* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ | |||
/* IMPORTANT: these are only valid for 8-bit data precision! */ | |||
{ | |||
static const UINT8 bits_dc_luminance[17] = | |||
{ /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; | |||
static const UINT8 val_dc_luminance[] = | |||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; | |||
static const UINT8 bits_dc_chrominance[17] = | |||
{ /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; | |||
static const UINT8 val_dc_chrominance[] = | |||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; | |||
static const UINT8 bits_ac_luminance[17] = | |||
{ /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; | |||
static const UINT8 val_ac_luminance[] = | |||
{ 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, | |||
0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, | |||
0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, | |||
0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, | |||
0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, | |||
0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, | |||
0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, | |||
0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, | |||
0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, | |||
0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, | |||
0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, | |||
0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, | |||
0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, | |||
0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, | |||
0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, | |||
0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, | |||
0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, | |||
0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, | |||
0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, | |||
0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | |||
0xf9, 0xfa }; | |||
static const UINT8 bits_ac_chrominance[17] = | |||
{ /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; | |||
static const UINT8 val_ac_chrominance[] = | |||
{ 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, | |||
0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, | |||
0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, | |||
0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, | |||
0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, | |||
0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, | |||
0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, | |||
0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, | |||
0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, | |||
0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, | |||
0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, | |||
0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, | |||
0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, | |||
0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, | |||
0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, | |||
0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, | |||
0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, | |||
0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, | |||
0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, | |||
0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, | |||
0xf9, 0xfa }; | |||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[0], | |||
bits_dc_luminance, val_dc_luminance); | |||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[0], | |||
bits_ac_luminance, val_ac_luminance); | |||
add_huff_table(cinfo, &cinfo->dc_huff_tbl_ptrs[1], | |||
bits_dc_chrominance, val_dc_chrominance); | |||
add_huff_table(cinfo, &cinfo->ac_huff_tbl_ptrs[1], | |||
bits_ac_chrominance, val_ac_chrominance); | |||
} | |||
/* | |||
* Default parameter setup for compression. | |||
* | |||
* Applications that don't choose to use this routine must do their | |||
* own setup of all these parameters. Alternately, you can call this | |||
* to establish defaults and then alter parameters selectively. This | |||
* is the recommended approach since, if we add any new parameters, | |||
* your code will still work (they'll be set to reasonable defaults). | |||
*/ | |||
GLOBAL(void) | |||
jpeg_set_defaults (j_compress_ptr cinfo) | |||
{ | |||
int i; | |||
/* Safety check to ensure start_compress not called yet. */ | |||
if (cinfo->global_state != CSTATE_START) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* Allocate comp_info array large enough for maximum component count. | |||
* Array is made permanent in case application wants to compress | |||
* multiple images at same param settings. | |||
*/ | |||
if (cinfo->comp_info == NULL) | |||
cinfo->comp_info = (jpeg_component_info *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
MAX_COMPONENTS * SIZEOF(jpeg_component_info)); | |||
/* Initialize everything not dependent on the color space */ | |||
cinfo->scale_num = 1; /* 1:1 scaling */ | |||
cinfo->scale_denom = 1; | |||
cinfo->data_precision = BITS_IN_JSAMPLE; | |||
/* Set up two quantization tables using default quality of 75 */ | |||
jpeg_set_quality(cinfo, 75, TRUE); | |||
/* Set up two Huffman tables */ | |||
std_huff_tables(cinfo); | |||
/* Initialize default arithmetic coding conditioning */ | |||
for (i = 0; i < NUM_ARITH_TBLS; i++) { | |||
cinfo->arith_dc_L[i] = 0; | |||
cinfo->arith_dc_U[i] = 1; | |||
cinfo->arith_ac_K[i] = 5; | |||
} | |||
/* Default is no multiple-scan output */ | |||
cinfo->scan_info = NULL; | |||
cinfo->num_scans = 0; | |||
/* Expect normal source image, not raw downsampled data */ | |||
cinfo->raw_data_in = FALSE; | |||
/* Use Huffman coding, not arithmetic coding, by default */ | |||
cinfo->arith_code = FALSE; | |||
/* By default, don't do extra passes to optimize entropy coding */ | |||
cinfo->optimize_coding = FALSE; | |||
/* The standard Huffman tables are only valid for 8-bit data precision. | |||
* If the precision is higher, force optimization on so that usable | |||
* tables will be computed. This test can be removed if default tables | |||
* are supplied that are valid for the desired precision. | |||
*/ | |||
if (cinfo->data_precision > 8) | |||
cinfo->optimize_coding = TRUE; | |||
/* By default, use the simpler non-cosited sampling alignment */ | |||
cinfo->CCIR601_sampling = FALSE; | |||
/* By default, apply fancy downsampling */ | |||
cinfo->do_fancy_downsampling = TRUE; | |||
/* No input smoothing */ | |||
cinfo->smoothing_factor = 0; | |||
/* DCT algorithm preference */ | |||
cinfo->dct_method = JDCT_DEFAULT; | |||
/* No restart markers */ | |||
cinfo->restart_interval = 0; | |||
cinfo->restart_in_rows = 0; | |||
/* Fill in default JFIF marker parameters. Note that whether the marker | |||
* will actually be written is determined by jpeg_set_colorspace. | |||
* | |||
* By default, the library emits JFIF version code 1.01. | |||
* An application that wants to emit JFIF 1.02 extension markers should set | |||
* JFIF_minor_version to 2. We could probably get away with just defaulting | |||
* to 1.02, but there may still be some decoders in use that will complain | |||
* about that; saying 1.01 should minimize compatibility problems. | |||
*/ | |||
cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ | |||
cinfo->JFIF_minor_version = 1; | |||
cinfo->density_unit = 0; /* Pixel size is unknown by default */ | |||
cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ | |||
cinfo->Y_density = 1; | |||
/* Choose JPEG colorspace based on input space, set defaults accordingly */ | |||
jpeg_default_colorspace(cinfo); | |||
} | |||
/* | |||
* Select an appropriate JPEG colorspace for in_color_space. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_default_colorspace (j_compress_ptr cinfo) | |||
{ | |||
switch (cinfo->in_color_space) { | |||
case JCS_GRAYSCALE: | |||
jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); | |||
break; | |||
case JCS_RGB: | |||
jpeg_set_colorspace(cinfo, JCS_YCbCr); | |||
break; | |||
case JCS_YCbCr: | |||
jpeg_set_colorspace(cinfo, JCS_YCbCr); | |||
break; | |||
case JCS_CMYK: | |||
jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ | |||
break; | |||
case JCS_YCCK: | |||
jpeg_set_colorspace(cinfo, JCS_YCCK); | |||
break; | |||
case JCS_UNKNOWN: | |||
jpeg_set_colorspace(cinfo, JCS_UNKNOWN); | |||
break; | |||
default: | |||
ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); | |||
} | |||
} | |||
/* | |||
* Set the JPEG colorspace, and choose colorspace-dependent default values. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) | |||
{ | |||
jpeg_component_info * compptr; | |||
int ci; | |||
#define SET_COMP(index,id,hsamp,vsamp,quant,dctbl,actbl) \ | |||
(compptr = &cinfo->comp_info[index], \ | |||
compptr->component_id = (id), \ | |||
compptr->h_samp_factor = (hsamp), \ | |||
compptr->v_samp_factor = (vsamp), \ | |||
compptr->quant_tbl_no = (quant), \ | |||
compptr->dc_tbl_no = (dctbl), \ | |||
compptr->ac_tbl_no = (actbl) ) | |||
/* Safety check to ensure start_compress not called yet. */ | |||
if (cinfo->global_state != CSTATE_START) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* For all colorspaces, we use Q and Huff tables 0 for luminance components, | |||
* tables 1 for chrominance components. | |||
*/ | |||
cinfo->jpeg_color_space = colorspace; | |||
cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ | |||
cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ | |||
switch (colorspace) { | |||
case JCS_GRAYSCALE: | |||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | |||
cinfo->num_components = 1; | |||
/* JFIF specifies component ID 1 */ | |||
SET_COMP(0, 1, 1,1, 0, 0,0); | |||
break; | |||
case JCS_RGB: | |||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ | |||
cinfo->num_components = 3; | |||
SET_COMP(0, 0x52 /* 'R' */, 1,1, 0, 0,0); | |||
SET_COMP(1, 0x47 /* 'G' */, 1,1, 0, 0,0); | |||
SET_COMP(2, 0x42 /* 'B' */, 1,1, 0, 0,0); | |||
break; | |||
case JCS_YCbCr: | |||
cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ | |||
cinfo->num_components = 3; | |||
/* JFIF specifies component IDs 1,2,3 */ | |||
/* We default to 2x2 subsamples of chrominance */ | |||
SET_COMP(0, 1, 2,2, 0, 0,0); | |||
SET_COMP(1, 2, 1,1, 1, 1,1); | |||
SET_COMP(2, 3, 1,1, 1, 1,1); | |||
break; | |||
case JCS_CMYK: | |||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ | |||
cinfo->num_components = 4; | |||
SET_COMP(0, 0x43 /* 'C' */, 1,1, 0, 0,0); | |||
SET_COMP(1, 0x4D /* 'M' */, 1,1, 0, 0,0); | |||
SET_COMP(2, 0x59 /* 'Y' */, 1,1, 0, 0,0); | |||
SET_COMP(3, 0x4B /* 'K' */, 1,1, 0, 0,0); | |||
break; | |||
case JCS_YCCK: | |||
cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ | |||
cinfo->num_components = 4; | |||
SET_COMP(0, 1, 2,2, 0, 0,0); | |||
SET_COMP(1, 2, 1,1, 1, 1,1); | |||
SET_COMP(2, 3, 1,1, 1, 1,1); | |||
SET_COMP(3, 4, 2,2, 0, 0,0); | |||
break; | |||
case JCS_UNKNOWN: | |||
cinfo->num_components = cinfo->input_components; | |||
if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) | |||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | |||
MAX_COMPONENTS); | |||
for (ci = 0; ci < cinfo->num_components; ci++) { | |||
SET_COMP(ci, ci, 1,1, 0, 0,0); | |||
} | |||
break; | |||
default: | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
} | |||
} | |||
#ifdef C_PROGRESSIVE_SUPPORTED | |||
LOCAL(jpeg_scan_info *) | |||
fill_a_scan (jpeg_scan_info * scanptr, int ci, | |||
int Ss, int Se, int Ah, int Al) | |||
/* Support routine: generate one scan for specified component */ | |||
{ | |||
scanptr->comps_in_scan = 1; | |||
scanptr->component_index[0] = ci; | |||
scanptr->Ss = Ss; | |||
scanptr->Se = Se; | |||
scanptr->Ah = Ah; | |||
scanptr->Al = Al; | |||
scanptr++; | |||
return scanptr; | |||
} | |||
LOCAL(jpeg_scan_info *) | |||
fill_scans (jpeg_scan_info * scanptr, int ncomps, | |||
int Ss, int Se, int Ah, int Al) | |||
/* Support routine: generate one scan for each component */ | |||
{ | |||
int ci; | |||
for (ci = 0; ci < ncomps; ci++) { | |||
scanptr->comps_in_scan = 1; | |||
scanptr->component_index[0] = ci; | |||
scanptr->Ss = Ss; | |||
scanptr->Se = Se; | |||
scanptr->Ah = Ah; | |||
scanptr->Al = Al; | |||
scanptr++; | |||
} | |||
return scanptr; | |||
} | |||
LOCAL(jpeg_scan_info *) | |||
fill_dc_scans (jpeg_scan_info * scanptr, int ncomps, int Ah, int Al) | |||
/* Support routine: generate interleaved DC scan if possible, else N scans */ | |||
{ | |||
int ci; | |||
if (ncomps <= MAX_COMPS_IN_SCAN) { | |||
/* Single interleaved DC scan */ | |||
scanptr->comps_in_scan = ncomps; | |||
for (ci = 0; ci < ncomps; ci++) | |||
scanptr->component_index[ci] = ci; | |||
scanptr->Ss = scanptr->Se = 0; | |||
scanptr->Ah = Ah; | |||
scanptr->Al = Al; | |||
scanptr++; | |||
} else { | |||
/* Noninterleaved DC scan for each component */ | |||
scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); | |||
} | |||
return scanptr; | |||
} | |||
/* | |||
* Create a recommended progressive-JPEG script. | |||
* cinfo->num_components and cinfo->jpeg_color_space must be correct. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_simple_progression (j_compress_ptr cinfo) | |||
{ | |||
int ncomps = cinfo->num_components; | |||
int nscans; | |||
jpeg_scan_info * scanptr; | |||
/* Safety check to ensure start_compress not called yet. */ | |||
if (cinfo->global_state != CSTATE_START) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* Figure space needed for script. Calculation must match code below! */ | |||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { | |||
/* Custom script for YCbCr color images. */ | |||
nscans = 10; | |||
} else { | |||
/* All-purpose script for other color spaces. */ | |||
if (ncomps > MAX_COMPS_IN_SCAN) | |||
nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ | |||
else | |||
nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ | |||
} | |||
/* Allocate space for script. | |||
* We need to put it in the permanent pool in case the application performs | |||
* multiple compressions without changing the settings. To avoid a memory | |||
* leak if jpeg_simple_progression is called repeatedly for the same JPEG | |||
* object, we try to re-use previously allocated space, and we allocate | |||
* enough space to handle YCbCr even if initially asked for grayscale. | |||
*/ | |||
if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { | |||
cinfo->script_space_size = MAX(nscans, 10); | |||
cinfo->script_space = (jpeg_scan_info *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
cinfo->script_space_size * SIZEOF(jpeg_scan_info)); | |||
} | |||
scanptr = cinfo->script_space; | |||
cinfo->scan_info = scanptr; | |||
cinfo->num_scans = nscans; | |||
if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { | |||
/* Custom script for YCbCr color images. */ | |||
/* Initial DC scan */ | |||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); | |||
/* Initial AC scan: get some luma data out in a hurry */ | |||
scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); | |||
/* Chroma data is too small to be worth expending many scans on */ | |||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); | |||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); | |||
/* Complete spectral selection for luma AC */ | |||
scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); | |||
/* Refine next bit of luma AC */ | |||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); | |||
/* Finish DC successive approximation */ | |||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); | |||
/* Finish AC successive approximation */ | |||
scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); | |||
scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); | |||
/* Luma bottom bit comes last since it's usually largest scan */ | |||
scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); | |||
} else { | |||
/* All-purpose script for other color spaces. */ | |||
/* Successive approximation first pass */ | |||
scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); | |||
scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); | |||
scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); | |||
/* Successive approximation second pass */ | |||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); | |||
/* Successive approximation final pass */ | |||
scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); | |||
scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); | |||
} | |||
} | |||
#endif /* C_PROGRESSIVE_SUPPORTED */ |
@@ -1,358 +0,0 @@ | |||
/* | |||
* jcprepct.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the compression preprocessing controller. | |||
* This controller manages the color conversion, downsampling, | |||
* and edge expansion steps. | |||
* | |||
* Most of the complexity here is associated with buffering input rows | |||
* as required by the downsampler. See the comments at the head of | |||
* jcsample.c for the downsampler's needs. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* At present, jcsample.c can request context rows only for smoothing. | |||
* In the future, we might also need context rows for CCIR601 sampling | |||
* or other more-complex downsampling procedures. The code to support | |||
* context rows should be compiled only if needed. | |||
*/ | |||
#ifdef INPUT_SMOOTHING_SUPPORTED | |||
#define CONTEXT_ROWS_SUPPORTED | |||
#endif | |||
/* | |||
* For the simple (no-context-row) case, we just need to buffer one | |||
* row group's worth of pixels for the downsampling step. At the bottom of | |||
* the image, we pad to a full row group by replicating the last pixel row. | |||
* The downsampler's last output row is then replicated if needed to pad | |||
* out to a full iMCU row. | |||
* | |||
* When providing context rows, we must buffer three row groups' worth of | |||
* pixels. Three row groups are physically allocated, but the row pointer | |||
* arrays are made five row groups high, with the extra pointers above and | |||
* below "wrapping around" to point to the last and first real row groups. | |||
* This allows the downsampler to access the proper context rows. | |||
* At the top and bottom of the image, we create dummy context rows by | |||
* copying the first or last real pixel row. This copying could be avoided | |||
* by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the | |||
* trouble on the compression side. | |||
*/ | |||
/* Private buffer controller object */ | |||
typedef struct { | |||
struct jpeg_c_prep_controller pub; /* public fields */ | |||
/* Downsampling input buffer. This buffer holds color-converted data | |||
* until we have enough to do a downsample step. | |||
*/ | |||
JSAMPARRAY color_buf[MAX_COMPONENTS]; | |||
JDIMENSION rows_to_go; /* counts rows remaining in source image */ | |||
int next_buf_row; /* index of next row to store in color_buf */ | |||
#ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */ | |||
int this_row_group; /* starting row index of group to process */ | |||
int next_buf_stop; /* downsample when we reach this index */ | |||
#endif | |||
} my_prep_controller; | |||
typedef my_prep_controller * my_prep_ptr; | |||
/* | |||
* Initialize for a processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_prep (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |||
{ | |||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | |||
if (pass_mode != JBUF_PASS_THRU) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
/* Initialize total-height counter for detecting bottom of image */ | |||
prep->rows_to_go = cinfo->image_height; | |||
/* Mark the conversion buffer empty */ | |||
prep->next_buf_row = 0; | |||
#ifdef CONTEXT_ROWS_SUPPORTED | |||
/* Preset additional state variables for context mode. | |||
* These aren't used in non-context mode, so we needn't test which mode. | |||
*/ | |||
prep->this_row_group = 0; | |||
/* Set next_buf_stop to stop after two row groups have been read in. */ | |||
prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; | |||
#endif | |||
} | |||
/* | |||
* Expand an image vertically from height input_rows to height output_rows, | |||
* by duplicating the bottom row. | |||
*/ | |||
LOCAL(void) | |||
expand_bottom_edge (JSAMPARRAY image_data, JDIMENSION num_cols, | |||
int input_rows, int output_rows) | |||
{ | |||
register int row; | |||
for (row = input_rows; row < output_rows; row++) { | |||
jcopy_sample_rows(image_data, input_rows-1, image_data, row, | |||
1, num_cols); | |||
} | |||
} | |||
/* | |||
* Process some data in the simple no-context case. | |||
* | |||
* Preprocessor output data is counted in "row groups". A row group | |||
* is defined to be v_samp_factor sample rows of each component. | |||
* Downsampling will produce this much data from each max_v_samp_factor | |||
* input rows. | |||
*/ | |||
METHODDEF(void) | |||
pre_process_data (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | |||
JDIMENSION in_rows_avail, | |||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, | |||
JDIMENSION out_row_groups_avail) | |||
{ | |||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | |||
int numrows, ci; | |||
JDIMENSION inrows; | |||
jpeg_component_info * compptr; | |||
while (*in_row_ctr < in_rows_avail && | |||
*out_row_group_ctr < out_row_groups_avail) { | |||
/* Do color conversion to fill the conversion buffer. */ | |||
inrows = in_rows_avail - *in_row_ctr; | |||
numrows = cinfo->max_v_samp_factor - prep->next_buf_row; | |||
numrows = (int) MIN((JDIMENSION) numrows, inrows); | |||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, | |||
prep->color_buf, | |||
(JDIMENSION) prep->next_buf_row, | |||
numrows); | |||
*in_row_ctr += numrows; | |||
prep->next_buf_row += numrows; | |||
prep->rows_to_go -= numrows; | |||
/* If at bottom of image, pad to fill the conversion buffer. */ | |||
if (prep->rows_to_go == 0 && | |||
prep->next_buf_row < cinfo->max_v_samp_factor) { | |||
for (ci = 0; ci < cinfo->num_components; ci++) { | |||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, | |||
prep->next_buf_row, cinfo->max_v_samp_factor); | |||
} | |||
prep->next_buf_row = cinfo->max_v_samp_factor; | |||
} | |||
/* If we've filled the conversion buffer, empty it. */ | |||
if (prep->next_buf_row == cinfo->max_v_samp_factor) { | |||
(*cinfo->downsample->downsample) (cinfo, | |||
prep->color_buf, (JDIMENSION) 0, | |||
output_buf, *out_row_group_ctr); | |||
prep->next_buf_row = 0; | |||
(*out_row_group_ctr)++; | |||
} | |||
/* If at bottom of image, pad the output to a full iMCU height. | |||
* Note we assume the caller is providing a one-iMCU-height output buffer! | |||
*/ | |||
if (prep->rows_to_go == 0 && | |||
*out_row_group_ctr < out_row_groups_avail) { | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
numrows = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |||
cinfo->min_DCT_v_scaled_size; | |||
expand_bottom_edge(output_buf[ci], | |||
compptr->width_in_blocks * compptr->DCT_h_scaled_size, | |||
(int) (*out_row_group_ctr * numrows), | |||
(int) (out_row_groups_avail * numrows)); | |||
} | |||
*out_row_group_ctr = out_row_groups_avail; | |||
break; /* can exit outer loop without test */ | |||
} | |||
} | |||
} | |||
#ifdef CONTEXT_ROWS_SUPPORTED | |||
/* | |||
* Process some data in the context case. | |||
*/ | |||
METHODDEF(void) | |||
pre_process_context (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | |||
JDIMENSION in_rows_avail, | |||
JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, | |||
JDIMENSION out_row_groups_avail) | |||
{ | |||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | |||
int numrows, ci; | |||
int buf_height = cinfo->max_v_samp_factor * 3; | |||
JDIMENSION inrows; | |||
while (*out_row_group_ctr < out_row_groups_avail) { | |||
if (*in_row_ctr < in_rows_avail) { | |||
/* Do color conversion to fill the conversion buffer. */ | |||
inrows = in_rows_avail - *in_row_ctr; | |||
numrows = prep->next_buf_stop - prep->next_buf_row; | |||
numrows = (int) MIN((JDIMENSION) numrows, inrows); | |||
(*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, | |||
prep->color_buf, | |||
(JDIMENSION) prep->next_buf_row, | |||
numrows); | |||
/* Pad at top of image, if first time through */ | |||
if (prep->rows_to_go == cinfo->image_height) { | |||
for (ci = 0; ci < cinfo->num_components; ci++) { | |||
int row; | |||
for (row = 1; row <= cinfo->max_v_samp_factor; row++) { | |||
jcopy_sample_rows(prep->color_buf[ci], 0, | |||
prep->color_buf[ci], -row, | |||
1, cinfo->image_width); | |||
} | |||
} | |||
} | |||
*in_row_ctr += numrows; | |||
prep->next_buf_row += numrows; | |||
prep->rows_to_go -= numrows; | |||
} else { | |||
/* Return for more data, unless we are at the bottom of the image. */ | |||
if (prep->rows_to_go != 0) | |||
break; | |||
/* When at bottom of image, pad to fill the conversion buffer. */ | |||
if (prep->next_buf_row < prep->next_buf_stop) { | |||
for (ci = 0; ci < cinfo->num_components; ci++) { | |||
expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, | |||
prep->next_buf_row, prep->next_buf_stop); | |||
} | |||
prep->next_buf_row = prep->next_buf_stop; | |||
} | |||
} | |||
/* If we've gotten enough data, downsample a row group. */ | |||
if (prep->next_buf_row == prep->next_buf_stop) { | |||
(*cinfo->downsample->downsample) (cinfo, | |||
prep->color_buf, | |||
(JDIMENSION) prep->this_row_group, | |||
output_buf, *out_row_group_ctr); | |||
(*out_row_group_ctr)++; | |||
/* Advance pointers with wraparound as necessary. */ | |||
prep->this_row_group += cinfo->max_v_samp_factor; | |||
if (prep->this_row_group >= buf_height) | |||
prep->this_row_group = 0; | |||
if (prep->next_buf_row >= buf_height) | |||
prep->next_buf_row = 0; | |||
prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; | |||
} | |||
} | |||
} | |||
/* | |||
* Create the wrapped-around downsampling input buffer needed for context mode. | |||
*/ | |||
LOCAL(void) | |||
create_context_buffer (j_compress_ptr cinfo) | |||
{ | |||
my_prep_ptr prep = (my_prep_ptr) cinfo->prep; | |||
int rgroup_height = cinfo->max_v_samp_factor; | |||
int ci, i; | |||
jpeg_component_info * compptr; | |||
JSAMPARRAY true_buffer, fake_buffer; | |||
/* Grab enough space for fake row pointers for all the components; | |||
* we need five row groups' worth of pointers for each component. | |||
*/ | |||
fake_buffer = (JSAMPARRAY) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(cinfo->num_components * 5 * rgroup_height) * | |||
SIZEOF(JSAMPROW)); | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Allocate the actual buffer space (3 row groups) for this component. | |||
* We make the buffer wide enough to allow the downsampler to edge-expand | |||
* horizontally within the buffer, if it so chooses. | |||
*/ | |||
true_buffer = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(JDIMENSION) (((long) compptr->width_in_blocks * | |||
cinfo->min_DCT_h_scaled_size * | |||
cinfo->max_h_samp_factor) / compptr->h_samp_factor), | |||
(JDIMENSION) (3 * rgroup_height)); | |||
/* Copy true buffer row pointers into the middle of the fake row array */ | |||
MEMCOPY(fake_buffer + rgroup_height, true_buffer, | |||
3 * rgroup_height * SIZEOF(JSAMPROW)); | |||
/* Fill in the above and below wraparound pointers */ | |||
for (i = 0; i < rgroup_height; i++) { | |||
fake_buffer[i] = true_buffer[2 * rgroup_height + i]; | |||
fake_buffer[4 * rgroup_height + i] = true_buffer[i]; | |||
} | |||
prep->color_buf[ci] = fake_buffer + rgroup_height; | |||
fake_buffer += 5 * rgroup_height; /* point to space for next component */ | |||
} | |||
} | |||
#endif /* CONTEXT_ROWS_SUPPORTED */ | |||
/* | |||
* Initialize preprocessing controller. | |||
*/ | |||
GLOBAL(void) | |||
jinit_c_prep_controller (j_compress_ptr cinfo, boolean need_full_buffer) | |||
{ | |||
my_prep_ptr prep; | |||
int ci; | |||
jpeg_component_info * compptr; | |||
if (need_full_buffer) /* safety check */ | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
prep = (my_prep_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_prep_controller)); | |||
cinfo->prep = (struct jpeg_c_prep_controller *) prep; | |||
prep->pub.start_pass = start_pass_prep; | |||
/* Allocate the color conversion buffer. | |||
* We make the buffer wide enough to allow the downsampler to edge-expand | |||
* horizontally within the buffer, if it so chooses. | |||
*/ | |||
if (cinfo->downsample->need_context_rows) { | |||
/* Set up to provide context rows */ | |||
#ifdef CONTEXT_ROWS_SUPPORTED | |||
prep->pub.pre_process_data = pre_process_context; | |||
create_context_buffer(cinfo); | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif | |||
} else { | |||
/* No context, just make it tall enough for one row group */ | |||
prep->pub.pre_process_data = pre_process_data; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(JDIMENSION) (((long) compptr->width_in_blocks * | |||
cinfo->min_DCT_h_scaled_size * | |||
cinfo->max_h_samp_factor) / compptr->h_samp_factor), | |||
(JDIMENSION) cinfo->max_v_samp_factor); | |||
} | |||
} | |||
} |
@@ -1,545 +0,0 @@ | |||
/* | |||
* jcsample.c | |||
* | |||
* Copyright (C) 1991-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains downsampling routines. | |||
* | |||
* Downsampling input data is counted in "row groups". A row group | |||
* is defined to be max_v_samp_factor pixel rows of each component, | |||
* from which the downsampler produces v_samp_factor sample rows. | |||
* A single row group is processed in each call to the downsampler module. | |||
* | |||
* The downsampler is responsible for edge-expansion of its output data | |||
* to fill an integral number of DCT blocks horizontally. The source buffer | |||
* may be modified if it is helpful for this purpose (the source buffer is | |||
* allocated wide enough to correspond to the desired output width). | |||
* The caller (the prep controller) is responsible for vertical padding. | |||
* | |||
* The downsampler may request "context rows" by setting need_context_rows | |||
* during startup. In this case, the input arrays will contain at least | |||
* one row group's worth of pixels above and below the passed-in data; | |||
* the caller will create dummy rows at image top and bottom by replicating | |||
* the first or last real pixel row. | |||
* | |||
* An excellent reference for image resampling is | |||
* Digital Image Warping, George Wolberg, 1990. | |||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | |||
* | |||
* The downsampling algorithm used here is a simple average of the source | |||
* pixels covered by the output pixel. The hi-falutin sampling literature | |||
* refers to this as a "box filter". In general the characteristics of a box | |||
* filter are not very good, but for the specific cases we normally use (1:1 | |||
* and 2:1 ratios) the box is equivalent to a "triangle filter" which is not | |||
* nearly so bad. If you intend to use other sampling ratios, you'd be well | |||
* advised to improve this code. | |||
* | |||
* A simple input-smoothing capability is provided. This is mainly intended | |||
* for cleaning up color-dithered GIF input files (if you find it inadequate, | |||
* we suggest using an external filtering program such as pnmconvol). When | |||
* enabled, each input pixel P is replaced by a weighted sum of itself and its | |||
* eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, | |||
* where SF = (smoothing_factor / 1024). | |||
* Currently, smoothing is only supported for 2h2v sampling factors. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Pointer to routine to downsample a single component */ | |||
typedef JMETHOD(void, downsample1_ptr, | |||
(j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY output_data)); | |||
/* Private subobject */ | |||
typedef struct { | |||
struct jpeg_downsampler pub; /* public fields */ | |||
/* Downsampling method pointers, one per component */ | |||
downsample1_ptr methods[MAX_COMPONENTS]; | |||
/* Height of an output row group for each component. */ | |||
int rowgroup_height[MAX_COMPONENTS]; | |||
/* These arrays save pixel expansion factors so that int_downsample need not | |||
* recompute them each time. They are unused for other downsampling methods. | |||
*/ | |||
UINT8 h_expand[MAX_COMPONENTS]; | |||
UINT8 v_expand[MAX_COMPONENTS]; | |||
} my_downsampler; | |||
typedef my_downsampler * my_downsample_ptr; | |||
/* | |||
* Initialize for a downsampling pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_downsample (j_compress_ptr cinfo) | |||
{ | |||
/* no work for now */ | |||
} | |||
/* | |||
* Expand a component horizontally from width input_cols to width output_cols, | |||
* by duplicating the rightmost samples. | |||
*/ | |||
LOCAL(void) | |||
expand_right_edge (JSAMPARRAY image_data, int num_rows, | |||
JDIMENSION input_cols, JDIMENSION output_cols) | |||
{ | |||
register JSAMPROW ptr; | |||
register JSAMPLE pixval; | |||
register int count; | |||
int row; | |||
int numcols = (int) (output_cols - input_cols); | |||
if (numcols > 0) { | |||
for (row = 0; row < num_rows; row++) { | |||
ptr = image_data[row] + input_cols; | |||
pixval = ptr[-1]; /* don't need GETJSAMPLE() here */ | |||
for (count = numcols; count > 0; count--) | |||
*ptr++ = pixval; | |||
} | |||
} | |||
} | |||
/* | |||
* Do downsampling for a whole row group (all components). | |||
* | |||
* In this version we simply downsample each component independently. | |||
*/ | |||
METHODDEF(void) | |||
sep_downsample (j_compress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION in_row_index, | |||
JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) | |||
{ | |||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; | |||
int ci; | |||
jpeg_component_info * compptr; | |||
JSAMPARRAY in_ptr, out_ptr; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
in_ptr = input_buf[ci] + in_row_index; | |||
out_ptr = output_buf[ci] + | |||
(out_row_group_index * downsample->rowgroup_height[ci]); | |||
(*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); | |||
} | |||
} | |||
/* | |||
* Downsample pixel values of a single component. | |||
* One row group is processed per call. | |||
* This version handles arbitrary integral sampling ratios, without smoothing. | |||
* Note that this version is not actually used for customary sampling ratios. | |||
*/ | |||
METHODDEF(void) | |||
int_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY output_data) | |||
{ | |||
my_downsample_ptr downsample = (my_downsample_ptr) cinfo->downsample; | |||
int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; | |||
JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ | |||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |||
JSAMPROW inptr, outptr; | |||
INT32 outvalue; | |||
h_expand = downsample->h_expand[compptr->component_index]; | |||
v_expand = downsample->v_expand[compptr->component_index]; | |||
numpix = h_expand * v_expand; | |||
numpix2 = numpix/2; | |||
/* Expand input data enough to let all the output samples be generated | |||
* by the standard loop. Special-casing padded output would be more | |||
* efficient. | |||
*/ | |||
expand_right_edge(input_data, cinfo->max_v_samp_factor, | |||
cinfo->image_width, output_cols * h_expand); | |||
inrow = outrow = 0; | |||
while (inrow < cinfo->max_v_samp_factor) { | |||
outptr = output_data[outrow]; | |||
for (outcol = 0, outcol_h = 0; outcol < output_cols; | |||
outcol++, outcol_h += h_expand) { | |||
outvalue = 0; | |||
for (v = 0; v < v_expand; v++) { | |||
inptr = input_data[inrow+v] + outcol_h; | |||
for (h = 0; h < h_expand; h++) { | |||
outvalue += (INT32) GETJSAMPLE(*inptr++); | |||
} | |||
} | |||
*outptr++ = (JSAMPLE) ((outvalue + numpix2) / numpix); | |||
} | |||
inrow += v_expand; | |||
outrow++; | |||
} | |||
} | |||
/* | |||
* Downsample pixel values of a single component. | |||
* This version handles the special case of a full-size component, | |||
* without smoothing. | |||
*/ | |||
METHODDEF(void) | |||
fullsize_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY output_data) | |||
{ | |||
/* Copy the data */ | |||
jcopy_sample_rows(input_data, 0, output_data, 0, | |||
cinfo->max_v_samp_factor, cinfo->image_width); | |||
/* Edge-expand */ | |||
expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, | |||
compptr->width_in_blocks * compptr->DCT_h_scaled_size); | |||
} | |||
/* | |||
* Downsample pixel values of a single component. | |||
* This version handles the common case of 2:1 horizontal and 1:1 vertical, | |||
* without smoothing. | |||
* | |||
* A note about the "bias" calculations: when rounding fractional values to | |||
* integer, we do not want to always round 0.5 up to the next integer. | |||
* If we did that, we'd introduce a noticeable bias towards larger values. | |||
* Instead, this code is arranged so that 0.5 will be rounded up or down at | |||
* alternate pixel locations (a simple ordered dither pattern). | |||
*/ | |||
METHODDEF(void) | |||
h2v1_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY output_data) | |||
{ | |||
int inrow; | |||
JDIMENSION outcol; | |||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |||
register JSAMPROW inptr, outptr; | |||
register int bias; | |||
/* Expand input data enough to let all the output samples be generated | |||
* by the standard loop. Special-casing padded output would be more | |||
* efficient. | |||
*/ | |||
expand_right_edge(input_data, cinfo->max_v_samp_factor, | |||
cinfo->image_width, output_cols * 2); | |||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | |||
outptr = output_data[inrow]; | |||
inptr = input_data[inrow]; | |||
bias = 0; /* bias = 0,1,0,1,... for successive samples */ | |||
for (outcol = 0; outcol < output_cols; outcol++) { | |||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr) + GETJSAMPLE(inptr[1]) | |||
+ bias) >> 1); | |||
bias ^= 1; /* 0=>1, 1=>0 */ | |||
inptr += 2; | |||
} | |||
} | |||
} | |||
/* | |||
* Downsample pixel values of a single component. | |||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, | |||
* without smoothing. | |||
*/ | |||
METHODDEF(void) | |||
h2v2_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY output_data) | |||
{ | |||
int inrow, outrow; | |||
JDIMENSION outcol; | |||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |||
register JSAMPROW inptr0, inptr1, outptr; | |||
register int bias; | |||
/* Expand input data enough to let all the output samples be generated | |||
* by the standard loop. Special-casing padded output would be more | |||
* efficient. | |||
*/ | |||
expand_right_edge(input_data, cinfo->max_v_samp_factor, | |||
cinfo->image_width, output_cols * 2); | |||
inrow = outrow = 0; | |||
while (inrow < cinfo->max_v_samp_factor) { | |||
outptr = output_data[outrow]; | |||
inptr0 = input_data[inrow]; | |||
inptr1 = input_data[inrow+1]; | |||
bias = 1; /* bias = 1,2,1,2,... for successive samples */ | |||
for (outcol = 0; outcol < output_cols; outcol++) { | |||
*outptr++ = (JSAMPLE) ((GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]) | |||
+ bias) >> 2); | |||
bias ^= 3; /* 1=>2, 2=>1 */ | |||
inptr0 += 2; inptr1 += 2; | |||
} | |||
inrow += 2; | |||
outrow++; | |||
} | |||
} | |||
#ifdef INPUT_SMOOTHING_SUPPORTED | |||
/* | |||
* Downsample pixel values of a single component. | |||
* This version handles the standard case of 2:1 horizontal and 2:1 vertical, | |||
* with smoothing. One row of context is required. | |||
*/ | |||
METHODDEF(void) | |||
h2v2_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY output_data) | |||
{ | |||
int inrow, outrow; | |||
JDIMENSION colctr; | |||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |||
register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; | |||
INT32 membersum, neighsum, memberscale, neighscale; | |||
/* Expand input data enough to let all the output samples be generated | |||
* by the standard loop. Special-casing padded output would be more | |||
* efficient. | |||
*/ | |||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | |||
cinfo->image_width, output_cols * 2); | |||
/* We don't bother to form the individual "smoothed" input pixel values; | |||
* we can directly compute the output which is the average of the four | |||
* smoothed values. Each of the four member pixels contributes a fraction | |||
* (1-8*SF) to its own smoothed image and a fraction SF to each of the three | |||
* other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final | |||
* output. The four corner-adjacent neighbor pixels contribute a fraction | |||
* SF to just one smoothed pixel, or SF/4 to the final output; while the | |||
* eight edge-adjacent neighbors contribute SF to each of two smoothed | |||
* pixels, or SF/2 overall. In order to use integer arithmetic, these | |||
* factors are scaled by 2^16 = 65536. | |||
* Also recall that SF = smoothing_factor / 1024. | |||
*/ | |||
memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ | |||
neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ | |||
inrow = outrow = 0; | |||
while (inrow < cinfo->max_v_samp_factor) { | |||
outptr = output_data[outrow]; | |||
inptr0 = input_data[inrow]; | |||
inptr1 = input_data[inrow+1]; | |||
above_ptr = input_data[inrow-1]; | |||
below_ptr = input_data[inrow+2]; | |||
/* Special case for first column: pretend column -1 is same as column 0 */ | |||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |||
GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[2]) + | |||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[2]); | |||
neighsum += neighsum; | |||
neighsum += GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[2]) + | |||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[2]); | |||
membersum = membersum * memberscale + neighsum * neighscale; | |||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | |||
for (colctr = output_cols - 2; colctr > 0; colctr--) { | |||
/* sum of pixels directly mapped to this output element */ | |||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |||
/* sum of edge-neighbor pixels */ | |||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[2]) + | |||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[2]); | |||
/* The edge-neighbors count twice as much as corner-neighbors */ | |||
neighsum += neighsum; | |||
/* Add in the corner-neighbors */ | |||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[2]) + | |||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[2]); | |||
/* form final output scaled up by 2^16 */ | |||
membersum = membersum * memberscale + neighsum * neighscale; | |||
/* round, descale and output it */ | |||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |||
inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; | |||
} | |||
/* Special case for last column */ | |||
membersum = GETJSAMPLE(*inptr0) + GETJSAMPLE(inptr0[1]) + | |||
GETJSAMPLE(*inptr1) + GETJSAMPLE(inptr1[1]); | |||
neighsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(above_ptr[1]) + | |||
GETJSAMPLE(*below_ptr) + GETJSAMPLE(below_ptr[1]) + | |||
GETJSAMPLE(inptr0[-1]) + GETJSAMPLE(inptr0[1]) + | |||
GETJSAMPLE(inptr1[-1]) + GETJSAMPLE(inptr1[1]); | |||
neighsum += neighsum; | |||
neighsum += GETJSAMPLE(above_ptr[-1]) + GETJSAMPLE(above_ptr[1]) + | |||
GETJSAMPLE(below_ptr[-1]) + GETJSAMPLE(below_ptr[1]); | |||
membersum = membersum * memberscale + neighsum * neighscale; | |||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); | |||
inrow += 2; | |||
outrow++; | |||
} | |||
} | |||
/* | |||
* Downsample pixel values of a single component. | |||
* This version handles the special case of a full-size component, | |||
* with smoothing. One row of context is required. | |||
*/ | |||
METHODDEF(void) | |||
fullsize_smooth_downsample (j_compress_ptr cinfo, jpeg_component_info *compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY output_data) | |||
{ | |||
int inrow; | |||
JDIMENSION colctr; | |||
JDIMENSION output_cols = compptr->width_in_blocks * compptr->DCT_h_scaled_size; | |||
register JSAMPROW inptr, above_ptr, below_ptr, outptr; | |||
INT32 membersum, neighsum, memberscale, neighscale; | |||
int colsum, lastcolsum, nextcolsum; | |||
/* Expand input data enough to let all the output samples be generated | |||
* by the standard loop. Special-casing padded output would be more | |||
* efficient. | |||
*/ | |||
expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, | |||
cinfo->image_width, output_cols); | |||
/* Each of the eight neighbor pixels contributes a fraction SF to the | |||
* smoothed pixel, while the main pixel contributes (1-8*SF). In order | |||
* to use integer arithmetic, these factors are multiplied by 2^16 = 65536. | |||
* Also recall that SF = smoothing_factor / 1024. | |||
*/ | |||
memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ | |||
neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ | |||
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | |||
outptr = output_data[inrow]; | |||
inptr = input_data[inrow]; | |||
above_ptr = input_data[inrow-1]; | |||
below_ptr = input_data[inrow+1]; | |||
/* Special case for first column */ | |||
colsum = GETJSAMPLE(*above_ptr++) + GETJSAMPLE(*below_ptr++) + | |||
GETJSAMPLE(*inptr); | |||
membersum = GETJSAMPLE(*inptr++); | |||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | |||
GETJSAMPLE(*inptr); | |||
neighsum = colsum + (colsum - membersum) + nextcolsum; | |||
membersum = membersum * memberscale + neighsum * neighscale; | |||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |||
lastcolsum = colsum; colsum = nextcolsum; | |||
for (colctr = output_cols - 2; colctr > 0; colctr--) { | |||
membersum = GETJSAMPLE(*inptr++); | |||
above_ptr++; below_ptr++; | |||
nextcolsum = GETJSAMPLE(*above_ptr) + GETJSAMPLE(*below_ptr) + | |||
GETJSAMPLE(*inptr); | |||
neighsum = lastcolsum + (colsum - membersum) + nextcolsum; | |||
membersum = membersum * memberscale + neighsum * neighscale; | |||
*outptr++ = (JSAMPLE) ((membersum + 32768) >> 16); | |||
lastcolsum = colsum; colsum = nextcolsum; | |||
} | |||
/* Special case for last column */ | |||
membersum = GETJSAMPLE(*inptr); | |||
neighsum = lastcolsum + (colsum - membersum) + colsum; | |||
membersum = membersum * memberscale + neighsum * neighscale; | |||
*outptr = (JSAMPLE) ((membersum + 32768) >> 16); | |||
} | |||
} | |||
#endif /* INPUT_SMOOTHING_SUPPORTED */ | |||
/* | |||
* Module initialization routine for downsampling. | |||
* Note that we must select a routine for each component. | |||
*/ | |||
GLOBAL(void) | |||
jinit_downsampler (j_compress_ptr cinfo) | |||
{ | |||
my_downsample_ptr downsample; | |||
int ci; | |||
jpeg_component_info * compptr; | |||
boolean smoothok = TRUE; | |||
int h_in_group, v_in_group, h_out_group, v_out_group; | |||
downsample = (my_downsample_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_downsampler)); | |||
cinfo->downsample = (struct jpeg_downsampler *) downsample; | |||
downsample->pub.start_pass = start_pass_downsample; | |||
downsample->pub.downsample = sep_downsample; | |||
downsample->pub.need_context_rows = FALSE; | |||
if (cinfo->CCIR601_sampling) | |||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | |||
/* Verify we can handle the sampling factors, and set up method pointers */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Compute size of an "output group" for DCT scaling. This many samples | |||
* are to be converted from max_h_samp_factor * max_v_samp_factor pixels. | |||
*/ | |||
h_out_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / | |||
cinfo->min_DCT_h_scaled_size; | |||
v_out_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |||
cinfo->min_DCT_v_scaled_size; | |||
h_in_group = cinfo->max_h_samp_factor; | |||
v_in_group = cinfo->max_v_samp_factor; | |||
downsample->rowgroup_height[ci] = v_out_group; /* save for use later */ | |||
if (h_in_group == h_out_group && v_in_group == v_out_group) { | |||
#ifdef INPUT_SMOOTHING_SUPPORTED | |||
if (cinfo->smoothing_factor) { | |||
downsample->methods[ci] = fullsize_smooth_downsample; | |||
downsample->pub.need_context_rows = TRUE; | |||
} else | |||
#endif | |||
downsample->methods[ci] = fullsize_downsample; | |||
} else if (h_in_group == h_out_group * 2 && | |||
v_in_group == v_out_group) { | |||
smoothok = FALSE; | |||
downsample->methods[ci] = h2v1_downsample; | |||
} else if (h_in_group == h_out_group * 2 && | |||
v_in_group == v_out_group * 2) { | |||
#ifdef INPUT_SMOOTHING_SUPPORTED | |||
if (cinfo->smoothing_factor) { | |||
downsample->methods[ci] = h2v2_smooth_downsample; | |||
downsample->pub.need_context_rows = TRUE; | |||
} else | |||
#endif | |||
downsample->methods[ci] = h2v2_downsample; | |||
} else if ((h_in_group % h_out_group) == 0 && | |||
(v_in_group % v_out_group) == 0) { | |||
smoothok = FALSE; | |||
downsample->methods[ci] = int_downsample; | |||
downsample->h_expand[ci] = (UINT8) (h_in_group / h_out_group); | |||
downsample->v_expand[ci] = (UINT8) (v_in_group / v_out_group); | |||
} else | |||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | |||
} | |||
#ifdef INPUT_SMOOTHING_SUPPORTED | |||
if (cinfo->smoothing_factor && !smoothok) | |||
TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); | |||
#endif | |||
} |
@@ -1,382 +0,0 @@ | |||
/* | |||
* jctrans.c | |||
* | |||
* Copyright (C) 1995-1998, Thomas G. Lane. | |||
* Modified 2000-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains library routines for transcoding compression, | |||
* that is, writing raw DCT coefficient arrays to an output JPEG file. | |||
* The routines in jcapimin.c will also be needed by a transcoder. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Forward declarations */ | |||
LOCAL(void) transencode_master_selection | |||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); | |||
LOCAL(void) transencode_coef_controller | |||
JPP((j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays)); | |||
/* | |||
* Compression initialization for writing raw-coefficient data. | |||
* Before calling this, all parameters and a data destination must be set up. | |||
* Call jpeg_finish_compress() to actually write the data. | |||
* | |||
* The number of passed virtual arrays must match cinfo->num_components. | |||
* Note that the virtual arrays need not be filled or even realized at | |||
* the time write_coefficients is called; indeed, if the virtual arrays | |||
* were requested from this compression object's memory manager, they | |||
* typically will be realized during this routine and filled afterwards. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_write_coefficients (j_compress_ptr cinfo, jvirt_barray_ptr * coef_arrays) | |||
{ | |||
if (cinfo->global_state != CSTATE_START) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* Mark all tables to be written */ | |||
jpeg_suppress_tables(cinfo, FALSE); | |||
/* (Re)initialize error mgr and destination modules */ | |||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | |||
(*cinfo->dest->init_destination) (cinfo); | |||
/* Perform master selection of active modules */ | |||
transencode_master_selection(cinfo, coef_arrays); | |||
/* Wait for jpeg_finish_compress() call */ | |||
cinfo->next_scanline = 0; /* so jpeg_write_marker works */ | |||
cinfo->global_state = CSTATE_WRCOEFS; | |||
} | |||
/* | |||
* Initialize the compression object with default parameters, | |||
* then copy from the source object all parameters needed for lossless | |||
* transcoding. Parameters that can be varied without loss (such as | |||
* scan script and Huffman optimization) are left in their default states. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_copy_critical_parameters (j_decompress_ptr srcinfo, | |||
j_compress_ptr dstinfo) | |||
{ | |||
JQUANT_TBL ** qtblptr; | |||
jpeg_component_info *incomp, *outcomp; | |||
JQUANT_TBL *c_quant, *slot_quant; | |||
int tblno, ci, coefi; | |||
/* Safety check to ensure start_compress not called yet. */ | |||
if (dstinfo->global_state != CSTATE_START) | |||
ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); | |||
/* Copy fundamental image dimensions */ | |||
dstinfo->image_width = srcinfo->image_width; | |||
dstinfo->image_height = srcinfo->image_height; | |||
dstinfo->input_components = srcinfo->num_components; | |||
dstinfo->in_color_space = srcinfo->jpeg_color_space; | |||
dstinfo->jpeg_width = srcinfo->output_width; | |||
dstinfo->jpeg_height = srcinfo->output_height; | |||
dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; | |||
dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; | |||
/* Initialize all parameters to default values */ | |||
jpeg_set_defaults(dstinfo); | |||
/* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. | |||
* Fix it to get the right header markers for the image colorspace. | |||
*/ | |||
jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); | |||
dstinfo->data_precision = srcinfo->data_precision; | |||
dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; | |||
/* Copy the source's quantization tables. */ | |||
for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { | |||
if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { | |||
qtblptr = & dstinfo->quant_tbl_ptrs[tblno]; | |||
if (*qtblptr == NULL) | |||
*qtblptr = jpeg_alloc_quant_table((j_common_ptr) dstinfo); | |||
MEMCOPY((*qtblptr)->quantval, | |||
srcinfo->quant_tbl_ptrs[tblno]->quantval, | |||
SIZEOF((*qtblptr)->quantval)); | |||
(*qtblptr)->sent_table = FALSE; | |||
} | |||
} | |||
/* Copy the source's per-component info. | |||
* Note we assume jpeg_set_defaults has allocated the dest comp_info array. | |||
*/ | |||
dstinfo->num_components = srcinfo->num_components; | |||
if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) | |||
ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, | |||
MAX_COMPONENTS); | |||
for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; | |||
ci < dstinfo->num_components; ci++, incomp++, outcomp++) { | |||
outcomp->component_id = incomp->component_id; | |||
outcomp->h_samp_factor = incomp->h_samp_factor; | |||
outcomp->v_samp_factor = incomp->v_samp_factor; | |||
outcomp->quant_tbl_no = incomp->quant_tbl_no; | |||
/* Make sure saved quantization table for component matches the qtable | |||
* slot. If not, the input file re-used this qtable slot. | |||
* IJG encoder currently cannot duplicate this. | |||
*/ | |||
tblno = outcomp->quant_tbl_no; | |||
if (tblno < 0 || tblno >= NUM_QUANT_TBLS || | |||
srcinfo->quant_tbl_ptrs[tblno] == NULL) | |||
ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); | |||
slot_quant = srcinfo->quant_tbl_ptrs[tblno]; | |||
c_quant = incomp->quant_table; | |||
if (c_quant != NULL) { | |||
for (coefi = 0; coefi < DCTSIZE2; coefi++) { | |||
if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) | |||
ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); | |||
} | |||
} | |||
/* Note: we do not copy the source's Huffman table assignments; | |||
* instead we rely on jpeg_set_colorspace to have made a suitable choice. | |||
*/ | |||
} | |||
/* Also copy JFIF version and resolution information, if available. | |||
* Strictly speaking this isn't "critical" info, but it's nearly | |||
* always appropriate to copy it if available. In particular, | |||
* if the application chooses to copy JFIF 1.02 extension markers from | |||
* the source file, we need to copy the version to make sure we don't | |||
* emit a file that has 1.02 extensions but a claimed version of 1.01. | |||
* We will *not*, however, copy version info from mislabeled "2.01" files. | |||
*/ | |||
if (srcinfo->saw_JFIF_marker) { | |||
if (srcinfo->JFIF_major_version == 1) { | |||
dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; | |||
dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; | |||
} | |||
dstinfo->density_unit = srcinfo->density_unit; | |||
dstinfo->X_density = srcinfo->X_density; | |||
dstinfo->Y_density = srcinfo->Y_density; | |||
} | |||
} | |||
/* | |||
* Master selection of compression modules for transcoding. | |||
* This substitutes for jcinit.c's initialization of the full compressor. | |||
*/ | |||
LOCAL(void) | |||
transencode_master_selection (j_compress_ptr cinfo, | |||
jvirt_barray_ptr * coef_arrays) | |||
{ | |||
/* Initialize master control (includes parameter checking/processing) */ | |||
jinit_c_master_control(cinfo, TRUE /* transcode only */); | |||
/* Entropy encoding: either Huffman or arithmetic coding. */ | |||
if (cinfo->arith_code) | |||
jinit_arith_encoder(cinfo); | |||
else { | |||
jinit_huff_encoder(cinfo); | |||
} | |||
/* We need a special coefficient buffer controller. */ | |||
transencode_coef_controller(cinfo, coef_arrays); | |||
jinit_marker_writer(cinfo); | |||
/* We can now tell the memory manager to allocate virtual arrays. */ | |||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | |||
/* Write the datastream header (SOI, JFIF) immediately. | |||
* Frame and scan headers are postponed till later. | |||
* This lets application insert special markers after the SOI. | |||
*/ | |||
(*cinfo->marker->write_file_header) (cinfo); | |||
} | |||
/* | |||
* The rest of this file is a special implementation of the coefficient | |||
* buffer controller. This is similar to jccoefct.c, but it handles only | |||
* output from presupplied virtual arrays. Furthermore, we generate any | |||
* dummy padding blocks on-the-fly rather than expecting them to be present | |||
* in the arrays. | |||
*/ | |||
/* Private buffer controller object */ | |||
typedef struct { | |||
struct jpeg_c_coef_controller pub; /* public fields */ | |||
JDIMENSION iMCU_row_num; /* iMCU row # within image */ | |||
JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ | |||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |||
/* Virtual block array for each component. */ | |||
jvirt_barray_ptr * whole_image; | |||
/* Workspace for constructing dummy blocks at right/bottom edges. */ | |||
JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; | |||
} my_coef_controller; | |||
typedef my_coef_controller * my_coef_ptr; | |||
LOCAL(void) | |||
start_iMCU_row (j_compress_ptr cinfo) | |||
/* Reset within-iMCU-row counters for a new row */ | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
/* In an interleaved scan, an MCU row is the same as an iMCU row. | |||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |||
* But at the bottom of the image, process only what's left. | |||
*/ | |||
if (cinfo->comps_in_scan > 1) { | |||
coef->MCU_rows_per_iMCU_row = 1; | |||
} else { | |||
if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | |||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |||
else | |||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |||
} | |||
coef->mcu_ctr = 0; | |||
coef->MCU_vert_offset = 0; | |||
} | |||
/* | |||
* Initialize for a processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
if (pass_mode != JBUF_CRANK_DEST) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
coef->iMCU_row_num = 0; | |||
start_iMCU_row(cinfo); | |||
} | |||
/* | |||
* Process some data. | |||
* We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |||
* per call, ie, v_samp_factor block rows for each component in the scan. | |||
* The data is obtained from the virtual arrays and fed to the entropy coder. | |||
* Returns TRUE if the iMCU row is completed, FALSE if suspended. | |||
* | |||
* NB: input_buf is ignored; it is likely to be a NULL pointer. | |||
*/ | |||
METHODDEF(boolean) | |||
compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION MCU_col_num; /* index of current MCU within row */ | |||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
int blkn, ci, xindex, yindex, yoffset, blockcnt; | |||
JDIMENSION start_col; | |||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |||
JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | |||
JBLOCKROW buffer_ptr; | |||
jpeg_component_info *compptr; | |||
/* Align the virtual buffers for the components used in this scan. */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
buffer[ci] = (*cinfo->mem->access_virt_barray) | |||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |||
coef->iMCU_row_num * compptr->v_samp_factor, | |||
(JDIMENSION) compptr->v_samp_factor, FALSE); | |||
} | |||
/* Loop to process one whole iMCU row */ | |||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |||
yoffset++) { | |||
for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; | |||
MCU_col_num++) { | |||
/* Construct list of pointers to DCT blocks belonging to this MCU */ | |||
blkn = 0; /* index of current DCT block within MCU */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
start_col = MCU_col_num * compptr->MCU_width; | |||
blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |||
: compptr->last_col_width; | |||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |||
if (coef->iMCU_row_num < last_iMCU_row || | |||
yindex+yoffset < compptr->last_row_height) { | |||
/* Fill in pointers to real blocks in this row */ | |||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |||
for (xindex = 0; xindex < blockcnt; xindex++) | |||
MCU_buffer[blkn++] = buffer_ptr++; | |||
} else { | |||
/* At bottom of image, need a whole row of dummy blocks */ | |||
xindex = 0; | |||
} | |||
/* Fill in any dummy blocks needed in this row. | |||
* Dummy blocks are filled in the same way as in jccoefct.c: | |||
* all zeroes in the AC entries, DC entries equal to previous | |||
* block's DC value. The init routine has already zeroed the | |||
* AC entries, so we need only set the DC entries correctly. | |||
*/ | |||
for (; xindex < compptr->MCU_width; xindex++) { | |||
MCU_buffer[blkn] = coef->dummy_buffer[blkn]; | |||
MCU_buffer[blkn][0][0] = MCU_buffer[blkn-1][0][0]; | |||
blkn++; | |||
} | |||
} | |||
} | |||
/* Try to write the MCU. */ | |||
if (! (*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { | |||
/* Suspension forced; update state counters and exit */ | |||
coef->MCU_vert_offset = yoffset; | |||
coef->mcu_ctr = MCU_col_num; | |||
return FALSE; | |||
} | |||
} | |||
/* Completed an MCU row, but perhaps not an iMCU row */ | |||
coef->mcu_ctr = 0; | |||
} | |||
/* Completed the iMCU row, advance counters for next one */ | |||
coef->iMCU_row_num++; | |||
start_iMCU_row(cinfo); | |||
return TRUE; | |||
} | |||
/* | |||
* Initialize coefficient buffer controller. | |||
* | |||
* Each passed coefficient array must be the right size for that | |||
* coefficient: width_in_blocks wide and height_in_blocks high, | |||
* with unitheight at least v_samp_factor. | |||
*/ | |||
LOCAL(void) | |||
transencode_coef_controller (j_compress_ptr cinfo, | |||
jvirt_barray_ptr * coef_arrays) | |||
{ | |||
my_coef_ptr coef; | |||
JBLOCKROW buffer; | |||
int i; | |||
coef = (my_coef_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_coef_controller)); | |||
cinfo->coef = (struct jpeg_c_coef_controller *) coef; | |||
coef->pub.start_pass = start_pass_coef; | |||
coef->pub.compress_data = compress_output; | |||
/* Save pointer to virtual arrays */ | |||
coef->whole_image = coef_arrays; | |||
/* Allocate and pre-zero space for dummy DCT blocks. */ | |||
buffer = (JBLOCKROW) | |||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |||
jzero_far((void FAR *) buffer, C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |||
for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { | |||
coef->dummy_buffer[i] = buffer + i; | |||
} | |||
} |
@@ -1,396 +0,0 @@ | |||
/* | |||
* jdapimin.c | |||
* | |||
* Copyright (C) 1994-1998, Thomas G. Lane. | |||
* Modified 2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains application interface code for the decompression half | |||
* of the JPEG library. These are the "minimum" API routines that may be | |||
* needed in either the normal full-decompression case or the | |||
* transcoding-only case. | |||
* | |||
* Most of the routines intended to be called directly by an application | |||
* are in this file or in jdapistd.c. But also see jcomapi.c for routines | |||
* shared by compression and decompression, and jdtrans.c for the transcoding | |||
* case. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* Initialization of a JPEG decompression object. | |||
* The error manager must already be set up (in case memory manager fails). | |||
*/ | |||
GLOBAL(void) | |||
jpeg_CreateDecompress (j_decompress_ptr cinfo, int version, size_t structsize) | |||
{ | |||
int i; | |||
/* Guard against version mismatches between library and caller. */ | |||
cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ | |||
if (version != JPEG_LIB_VERSION) | |||
ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); | |||
if (structsize != SIZEOF(struct jpeg_decompress_struct)) | |||
ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, | |||
(int) SIZEOF(struct jpeg_decompress_struct), (int) structsize); | |||
/* For debugging purposes, we zero the whole master structure. | |||
* But the application has already set the err pointer, and may have set | |||
* client_data, so we have to save and restore those fields. | |||
* Note: if application hasn't set client_data, tools like Purify may | |||
* complain here. | |||
*/ | |||
{ | |||
struct jpeg_error_mgr * err = cinfo->err; | |||
void * client_data = cinfo->client_data; /* ignore Purify complaint here */ | |||
MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct)); | |||
cinfo->err = err; | |||
cinfo->client_data = client_data; | |||
} | |||
cinfo->is_decompressor = TRUE; | |||
/* Initialize a memory manager instance for this object */ | |||
jinit_memory_mgr((j_common_ptr) cinfo); | |||
/* Zero out pointers to permanent structures. */ | |||
cinfo->progress = NULL; | |||
cinfo->src = NULL; | |||
for (i = 0; i < NUM_QUANT_TBLS; i++) | |||
cinfo->quant_tbl_ptrs[i] = NULL; | |||
for (i = 0; i < NUM_HUFF_TBLS; i++) { | |||
cinfo->dc_huff_tbl_ptrs[i] = NULL; | |||
cinfo->ac_huff_tbl_ptrs[i] = NULL; | |||
} | |||
/* Initialize marker processor so application can override methods | |||
* for COM, APPn markers before calling jpeg_read_header. | |||
*/ | |||
cinfo->marker_list = NULL; | |||
jinit_marker_reader(cinfo); | |||
/* And initialize the overall input controller. */ | |||
jinit_input_controller(cinfo); | |||
/* OK, I'm ready */ | |||
cinfo->global_state = DSTATE_START; | |||
} | |||
/* | |||
* Destruction of a JPEG decompression object | |||
*/ | |||
GLOBAL(void) | |||
jpeg_destroy_decompress (j_decompress_ptr cinfo) | |||
{ | |||
jpeg_destroy((j_common_ptr) cinfo); /* use common routine */ | |||
} | |||
/* | |||
* Abort processing of a JPEG decompression operation, | |||
* but don't destroy the object itself. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_abort_decompress (j_decompress_ptr cinfo) | |||
{ | |||
jpeg_abort((j_common_ptr) cinfo); /* use common routine */ | |||
} | |||
/* | |||
* Set default decompression parameters. | |||
*/ | |||
LOCAL(void) | |||
default_decompress_parms (j_decompress_ptr cinfo) | |||
{ | |||
/* Guess the input colorspace, and set output colorspace accordingly. */ | |||
/* (Wish JPEG committee had provided a real way to specify this...) */ | |||
/* Note application may override our guesses. */ | |||
switch (cinfo->num_components) { | |||
case 1: | |||
cinfo->jpeg_color_space = JCS_GRAYSCALE; | |||
cinfo->out_color_space = JCS_GRAYSCALE; | |||
break; | |||
case 3: | |||
if (cinfo->saw_JFIF_marker) { | |||
cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ | |||
} else if (cinfo->saw_Adobe_marker) { | |||
switch (cinfo->Adobe_transform) { | |||
case 0: | |||
cinfo->jpeg_color_space = JCS_RGB; | |||
break; | |||
case 1: | |||
cinfo->jpeg_color_space = JCS_YCbCr; | |||
break; | |||
default: | |||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); | |||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ | |||
break; | |||
} | |||
} else { | |||
/* Saw no special markers, try to guess from the component IDs */ | |||
int cid0 = cinfo->comp_info[0].component_id; | |||
int cid1 = cinfo->comp_info[1].component_id; | |||
int cid2 = cinfo->comp_info[2].component_id; | |||
if (cid0 == 1 && cid1 == 2 && cid2 == 3) | |||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ | |||
else if (cid0 == 82 && cid1 == 71 && cid2 == 66) | |||
cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ | |||
else { | |||
TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); | |||
cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ | |||
} | |||
} | |||
/* Always guess RGB is proper output colorspace. */ | |||
cinfo->out_color_space = JCS_RGB; | |||
break; | |||
case 4: | |||
if (cinfo->saw_Adobe_marker) { | |||
switch (cinfo->Adobe_transform) { | |||
case 0: | |||
cinfo->jpeg_color_space = JCS_CMYK; | |||
break; | |||
case 2: | |||
cinfo->jpeg_color_space = JCS_YCCK; | |||
break; | |||
default: | |||
WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); | |||
cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ | |||
break; | |||
} | |||
} else { | |||
/* No special markers, assume straight CMYK. */ | |||
cinfo->jpeg_color_space = JCS_CMYK; | |||
} | |||
cinfo->out_color_space = JCS_CMYK; | |||
break; | |||
default: | |||
cinfo->jpeg_color_space = JCS_UNKNOWN; | |||
cinfo->out_color_space = JCS_UNKNOWN; | |||
break; | |||
} | |||
/* Set defaults for other decompression parameters. */ | |||
cinfo->scale_num = cinfo->block_size; /* 1:1 scaling */ | |||
cinfo->scale_denom = cinfo->block_size; | |||
cinfo->output_gamma = 1.0; | |||
cinfo->buffered_image = FALSE; | |||
cinfo->raw_data_out = FALSE; | |||
cinfo->dct_method = JDCT_DEFAULT; | |||
cinfo->do_fancy_upsampling = TRUE; | |||
cinfo->do_block_smoothing = TRUE; | |||
cinfo->quantize_colors = FALSE; | |||
/* We set these in case application only sets quantize_colors. */ | |||
cinfo->dither_mode = JDITHER_FS; | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
cinfo->two_pass_quantize = TRUE; | |||
#else | |||
cinfo->two_pass_quantize = FALSE; | |||
#endif | |||
cinfo->desired_number_of_colors = 256; | |||
cinfo->colormap = NULL; | |||
/* Initialize for no mode change in buffered-image mode. */ | |||
cinfo->enable_1pass_quant = FALSE; | |||
cinfo->enable_external_quant = FALSE; | |||
cinfo->enable_2pass_quant = FALSE; | |||
} | |||
/* | |||
* Decompression startup: read start of JPEG datastream to see what's there. | |||
* Need only initialize JPEG object and supply a data source before calling. | |||
* | |||
* This routine will read as far as the first SOS marker (ie, actual start of | |||
* compressed data), and will save all tables and parameters in the JPEG | |||
* object. It will also initialize the decompression parameters to default | |||
* values, and finally return JPEG_HEADER_OK. On return, the application may | |||
* adjust the decompression parameters and then call jpeg_start_decompress. | |||
* (Or, if the application only wanted to determine the image parameters, | |||
* the data need not be decompressed. In that case, call jpeg_abort or | |||
* jpeg_destroy to release any temporary space.) | |||
* If an abbreviated (tables only) datastream is presented, the routine will | |||
* return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then | |||
* re-use the JPEG object to read the abbreviated image datastream(s). | |||
* It is unnecessary (but OK) to call jpeg_abort in this case. | |||
* The JPEG_SUSPENDED return code only occurs if the data source module | |||
* requests suspension of the decompressor. In this case the application | |||
* should load more source data and then re-call jpeg_read_header to resume | |||
* processing. | |||
* If a non-suspending data source is used and require_image is TRUE, then the | |||
* return code need not be inspected since only JPEG_HEADER_OK is possible. | |||
* | |||
* This routine is now just a front end to jpeg_consume_input, with some | |||
* extra error checking. | |||
*/ | |||
GLOBAL(int) | |||
jpeg_read_header (j_decompress_ptr cinfo, boolean require_image) | |||
{ | |||
int retcode; | |||
if (cinfo->global_state != DSTATE_START && | |||
cinfo->global_state != DSTATE_INHEADER) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
retcode = jpeg_consume_input(cinfo); | |||
switch (retcode) { | |||
case JPEG_REACHED_SOS: | |||
retcode = JPEG_HEADER_OK; | |||
break; | |||
case JPEG_REACHED_EOI: | |||
if (require_image) /* Complain if application wanted an image */ | |||
ERREXIT(cinfo, JERR_NO_IMAGE); | |||
/* Reset to start state; it would be safer to require the application to | |||
* call jpeg_abort, but we can't change it now for compatibility reasons. | |||
* A side effect is to free any temporary memory (there shouldn't be any). | |||
*/ | |||
jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */ | |||
retcode = JPEG_HEADER_TABLES_ONLY; | |||
break; | |||
case JPEG_SUSPENDED: | |||
/* no work */ | |||
break; | |||
} | |||
return retcode; | |||
} | |||
/* | |||
* Consume data in advance of what the decompressor requires. | |||
* This can be called at any time once the decompressor object has | |||
* been created and a data source has been set up. | |||
* | |||
* This routine is essentially a state machine that handles a couple | |||
* of critical state-transition actions, namely initial setup and | |||
* transition from header scanning to ready-for-start_decompress. | |||
* All the actual input is done via the input controller's consume_input | |||
* method. | |||
*/ | |||
GLOBAL(int) | |||
jpeg_consume_input (j_decompress_ptr cinfo) | |||
{ | |||
int retcode = JPEG_SUSPENDED; | |||
/* NB: every possible DSTATE value should be listed in this switch */ | |||
switch (cinfo->global_state) { | |||
case DSTATE_START: | |||
/* Start-of-datastream actions: reset appropriate modules */ | |||
(*cinfo->inputctl->reset_input_controller) (cinfo); | |||
/* Initialize application's data source module */ | |||
(*cinfo->src->init_source) (cinfo); | |||
cinfo->global_state = DSTATE_INHEADER; | |||
/*FALLTHROUGH*/ | |||
case DSTATE_INHEADER: | |||
retcode = (*cinfo->inputctl->consume_input) (cinfo); | |||
if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ | |||
/* Set up default parameters based on header data */ | |||
default_decompress_parms(cinfo); | |||
/* Set global state: ready for start_decompress */ | |||
cinfo->global_state = DSTATE_READY; | |||
} | |||
break; | |||
case DSTATE_READY: | |||
/* Can't advance past first SOS until start_decompress is called */ | |||
retcode = JPEG_REACHED_SOS; | |||
break; | |||
case DSTATE_PRELOAD: | |||
case DSTATE_PRESCAN: | |||
case DSTATE_SCANNING: | |||
case DSTATE_RAW_OK: | |||
case DSTATE_BUFIMAGE: | |||
case DSTATE_BUFPOST: | |||
case DSTATE_STOPPING: | |||
retcode = (*cinfo->inputctl->consume_input) (cinfo); | |||
break; | |||
default: | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
} | |||
return retcode; | |||
} | |||
/* | |||
* Have we finished reading the input file? | |||
*/ | |||
GLOBAL(boolean) | |||
jpeg_input_complete (j_decompress_ptr cinfo) | |||
{ | |||
/* Check for valid jpeg object */ | |||
if (cinfo->global_state < DSTATE_START || | |||
cinfo->global_state > DSTATE_STOPPING) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
return cinfo->inputctl->eoi_reached; | |||
} | |||
/* | |||
* Is there more than one scan? | |||
*/ | |||
GLOBAL(boolean) | |||
jpeg_has_multiple_scans (j_decompress_ptr cinfo) | |||
{ | |||
/* Only valid after jpeg_read_header completes */ | |||
if (cinfo->global_state < DSTATE_READY || | |||
cinfo->global_state > DSTATE_STOPPING) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
return cinfo->inputctl->has_multiple_scans; | |||
} | |||
/* | |||
* Finish JPEG decompression. | |||
* | |||
* This will normally just verify the file trailer and release temp storage. | |||
* | |||
* Returns FALSE if suspended. The return value need be inspected only if | |||
* a suspending data source is used. | |||
*/ | |||
GLOBAL(boolean) | |||
jpeg_finish_decompress (j_decompress_ptr cinfo) | |||
{ | |||
if ((cinfo->global_state == DSTATE_SCANNING || | |||
cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) { | |||
/* Terminate final pass of non-buffered mode */ | |||
if (cinfo->output_scanline < cinfo->output_height) | |||
ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); | |||
(*cinfo->master->finish_output_pass) (cinfo); | |||
cinfo->global_state = DSTATE_STOPPING; | |||
} else if (cinfo->global_state == DSTATE_BUFIMAGE) { | |||
/* Finishing after a buffered-image operation */ | |||
cinfo->global_state = DSTATE_STOPPING; | |||
} else if (cinfo->global_state != DSTATE_STOPPING) { | |||
/* STOPPING = repeat call after a suspension, anything else is error */ | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
} | |||
/* Read until EOI */ | |||
while (! cinfo->inputctl->eoi_reached) { | |||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) | |||
return FALSE; /* Suspend, come back later */ | |||
} | |||
/* Do final cleanup */ | |||
(*cinfo->src->term_source) (cinfo); | |||
/* We can use jpeg_abort to release memory and reset global_state */ | |||
jpeg_abort((j_common_ptr) cinfo); | |||
return TRUE; | |||
} |
@@ -1,275 +0,0 @@ | |||
/* | |||
* jdapistd.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains application interface code for the decompression half | |||
* of the JPEG library. These are the "standard" API routines that are | |||
* used in the normal full-decompression case. They are not used by a | |||
* transcoding-only application. Note that if an application links in | |||
* jpeg_start_decompress, it will end up linking in the entire decompressor. | |||
* We thus must separate this file from jdapimin.c to avoid linking the | |||
* whole decompression library into a transcoder. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Forward declarations */ | |||
LOCAL(boolean) output_pass_setup JPP((j_decompress_ptr cinfo)); | |||
/* | |||
* Decompression initialization. | |||
* jpeg_read_header must be completed before calling this. | |||
* | |||
* If a multipass operating mode was selected, this will do all but the | |||
* last pass, and thus may take a great deal of time. | |||
* | |||
* Returns FALSE if suspended. The return value need be inspected only if | |||
* a suspending data source is used. | |||
*/ | |||
GLOBAL(boolean) | |||
jpeg_start_decompress (j_decompress_ptr cinfo) | |||
{ | |||
if (cinfo->global_state == DSTATE_READY) { | |||
/* First call: initialize master control, select active modules */ | |||
jinit_master_decompress(cinfo); | |||
if (cinfo->buffered_image) { | |||
/* No more work here; expecting jpeg_start_output next */ | |||
cinfo->global_state = DSTATE_BUFIMAGE; | |||
return TRUE; | |||
} | |||
cinfo->global_state = DSTATE_PRELOAD; | |||
} | |||
if (cinfo->global_state == DSTATE_PRELOAD) { | |||
/* If file has multiple scans, absorb them all into the coef buffer */ | |||
if (cinfo->inputctl->has_multiple_scans) { | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
for (;;) { | |||
int retcode; | |||
/* Call progress monitor hook if present */ | |||
if (cinfo->progress != NULL) | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
/* Absorb some more input */ | |||
retcode = (*cinfo->inputctl->consume_input) (cinfo); | |||
if (retcode == JPEG_SUSPENDED) | |||
return FALSE; | |||
if (retcode == JPEG_REACHED_EOI) | |||
break; | |||
/* Advance progress counter if appropriate */ | |||
if (cinfo->progress != NULL && | |||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { | |||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { | |||
/* jdmaster underestimated number of scans; ratchet up one scan */ | |||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; | |||
} | |||
} | |||
} | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ | |||
} | |||
cinfo->output_scan_number = cinfo->input_scan_number; | |||
} else if (cinfo->global_state != DSTATE_PRESCAN) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* Perform any dummy output passes, and set up for the final pass */ | |||
return output_pass_setup(cinfo); | |||
} | |||
/* | |||
* Set up for an output pass, and perform any dummy pass(es) needed. | |||
* Common subroutine for jpeg_start_decompress and jpeg_start_output. | |||
* Entry: global_state = DSTATE_PRESCAN only if previously suspended. | |||
* Exit: If done, returns TRUE and sets global_state for proper output mode. | |||
* If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. | |||
*/ | |||
LOCAL(boolean) | |||
output_pass_setup (j_decompress_ptr cinfo) | |||
{ | |||
if (cinfo->global_state != DSTATE_PRESCAN) { | |||
/* First call: do pass setup */ | |||
(*cinfo->master->prepare_for_output_pass) (cinfo); | |||
cinfo->output_scanline = 0; | |||
cinfo->global_state = DSTATE_PRESCAN; | |||
} | |||
/* Loop over any required dummy passes */ | |||
while (cinfo->master->is_dummy_pass) { | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
/* Crank through the dummy pass */ | |||
while (cinfo->output_scanline < cinfo->output_height) { | |||
JDIMENSION last_scanline; | |||
/* Call progress monitor hook if present */ | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; | |||
cinfo->progress->pass_limit = (long) cinfo->output_height; | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
} | |||
/* Process some data */ | |||
last_scanline = cinfo->output_scanline; | |||
(*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL, | |||
&cinfo->output_scanline, (JDIMENSION) 0); | |||
if (cinfo->output_scanline == last_scanline) | |||
return FALSE; /* No progress made, must suspend */ | |||
} | |||
/* Finish up dummy pass, and set up for another one */ | |||
(*cinfo->master->finish_output_pass) (cinfo); | |||
(*cinfo->master->prepare_for_output_pass) (cinfo); | |||
cinfo->output_scanline = 0; | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif /* QUANT_2PASS_SUPPORTED */ | |||
} | |||
/* Ready for application to drive output pass through | |||
* jpeg_read_scanlines or jpeg_read_raw_data. | |||
*/ | |||
cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; | |||
return TRUE; | |||
} | |||
/* | |||
* Read some scanlines of data from the JPEG decompressor. | |||
* | |||
* The return value will be the number of lines actually read. | |||
* This may be less than the number requested in several cases, | |||
* including bottom of image, data source suspension, and operating | |||
* modes that emit multiple scanlines at a time. | |||
* | |||
* Note: we warn about excess calls to jpeg_read_scanlines() since | |||
* this likely signals an application programmer error. However, | |||
* an oversize buffer (max_lines > scanlines remaining) is not an error. | |||
*/ | |||
GLOBAL(JDIMENSION) | |||
jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines, | |||
JDIMENSION max_lines) | |||
{ | |||
JDIMENSION row_ctr; | |||
if (cinfo->global_state != DSTATE_SCANNING) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
if (cinfo->output_scanline >= cinfo->output_height) { | |||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | |||
return 0; | |||
} | |||
/* Call progress monitor hook if present */ | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; | |||
cinfo->progress->pass_limit = (long) cinfo->output_height; | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
} | |||
/* Process some data */ | |||
row_ctr = 0; | |||
(*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); | |||
cinfo->output_scanline += row_ctr; | |||
return row_ctr; | |||
} | |||
/* | |||
* Alternate entry point to read raw data. | |||
* Processes exactly one iMCU row per call, unless suspended. | |||
*/ | |||
GLOBAL(JDIMENSION) | |||
jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data, | |||
JDIMENSION max_lines) | |||
{ | |||
JDIMENSION lines_per_iMCU_row; | |||
if (cinfo->global_state != DSTATE_RAW_OK) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
if (cinfo->output_scanline >= cinfo->output_height) { | |||
WARNMS(cinfo, JWRN_TOO_MUCH_DATA); | |||
return 0; | |||
} | |||
/* Call progress monitor hook if present */ | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->pass_counter = (long) cinfo->output_scanline; | |||
cinfo->progress->pass_limit = (long) cinfo->output_height; | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
} | |||
/* Verify that at least one iMCU row can be returned. */ | |||
lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_v_scaled_size; | |||
if (max_lines < lines_per_iMCU_row) | |||
ERREXIT(cinfo, JERR_BUFFER_SIZE); | |||
/* Decompress directly into user's buffer. */ | |||
if (! (*cinfo->coef->decompress_data) (cinfo, data)) | |||
return 0; /* suspension forced, can do nothing more */ | |||
/* OK, we processed one iMCU row. */ | |||
cinfo->output_scanline += lines_per_iMCU_row; | |||
return lines_per_iMCU_row; | |||
} | |||
/* Additional entry points for buffered-image mode. */ | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
/* | |||
* Initialize for an output pass in buffered-image mode. | |||
*/ | |||
GLOBAL(boolean) | |||
jpeg_start_output (j_decompress_ptr cinfo, int scan_number) | |||
{ | |||
if (cinfo->global_state != DSTATE_BUFIMAGE && | |||
cinfo->global_state != DSTATE_PRESCAN) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* Limit scan number to valid range */ | |||
if (scan_number <= 0) | |||
scan_number = 1; | |||
if (cinfo->inputctl->eoi_reached && | |||
scan_number > cinfo->input_scan_number) | |||
scan_number = cinfo->input_scan_number; | |||
cinfo->output_scan_number = scan_number; | |||
/* Perform any dummy output passes, and set up for the real pass */ | |||
return output_pass_setup(cinfo); | |||
} | |||
/* | |||
* Finish up after an output pass in buffered-image mode. | |||
* | |||
* Returns FALSE if suspended. The return value need be inspected only if | |||
* a suspending data source is used. | |||
*/ | |||
GLOBAL(boolean) | |||
jpeg_finish_output (j_decompress_ptr cinfo) | |||
{ | |||
if ((cinfo->global_state == DSTATE_SCANNING || | |||
cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { | |||
/* Terminate this pass. */ | |||
/* We do not require the whole pass to have been completed. */ | |||
(*cinfo->master->finish_output_pass) (cinfo); | |||
cinfo->global_state = DSTATE_BUFPOST; | |||
} else if (cinfo->global_state != DSTATE_BUFPOST) { | |||
/* BUFPOST = repeat call after a suspension, anything else is error */ | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
} | |||
/* Read markers looking for SOS or EOI */ | |||
while (cinfo->input_scan_number <= cinfo->output_scan_number && | |||
! cinfo->inputctl->eoi_reached) { | |||
if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) | |||
return FALSE; /* Suspend, come back later */ | |||
} | |||
cinfo->global_state = DSTATE_BUFIMAGE; | |||
return TRUE; | |||
} | |||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ |
@@ -1,772 +0,0 @@ | |||
/* | |||
* jdarith.c | |||
* | |||
* Developed 1997-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains portable arithmetic entropy decoding routines for JPEG | |||
* (implementing the ISO/IEC IS 10918-1 and CCITT Recommendation ITU-T T.81). | |||
* | |||
* Both sequential and progressive modes are supported in this single module. | |||
* | |||
* Suspension is not currently supported in this module. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Expanded entropy decoder object for arithmetic decoding. */ | |||
typedef struct { | |||
struct jpeg_entropy_decoder pub; /* public fields */ | |||
INT32 c; /* C register, base of coding interval + input bit buffer */ | |||
INT32 a; /* A register, normalized size of coding interval */ | |||
int ct; /* bit shift counter, # of bits left in bit buffer part of C */ | |||
/* init: ct = -16 */ | |||
/* run: ct = 0..7 */ | |||
/* error: ct = -1 */ | |||
int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | |||
int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ | |||
unsigned int restarts_to_go; /* MCUs left in this restart interval */ | |||
/* Pointers to statistics areas (these workspaces have image lifespan) */ | |||
unsigned char * dc_stats[NUM_ARITH_TBLS]; | |||
unsigned char * ac_stats[NUM_ARITH_TBLS]; | |||
/* Statistics bin for coding with fixed probability 0.5 */ | |||
unsigned char fixed_bin[4]; | |||
} arith_entropy_decoder; | |||
typedef arith_entropy_decoder * arith_entropy_ptr; | |||
/* The following two definitions specify the allocation chunk size | |||
* for the statistics area. | |||
* According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least | |||
* 49 statistics bins for DC, and 245 statistics bins for AC coding. | |||
* | |||
* We use a compact representation with 1 byte per statistics bin, | |||
* thus the numbers directly represent byte sizes. | |||
* This 1 byte per statistics bin contains the meaning of the MPS | |||
* (more probable symbol) in the highest bit (mask 0x80), and the | |||
* index into the probability estimation state machine table | |||
* in the lower bits (mask 0x7F). | |||
*/ | |||
#define DC_STAT_BINS 64 | |||
#define AC_STAT_BINS 256 | |||
LOCAL(int) | |||
get_byte (j_decompress_ptr cinfo) | |||
/* Read next input byte; we do not support suspension in this module. */ | |||
{ | |||
struct jpeg_source_mgr * src = cinfo->src; | |||
if (src->bytes_in_buffer == 0) | |||
if (! (*src->fill_input_buffer) (cinfo)) | |||
ERREXIT(cinfo, JERR_CANT_SUSPEND); | |||
src->bytes_in_buffer--; | |||
return GETJOCTET(*src->next_input_byte++); | |||
} | |||
/* | |||
* The core arithmetic decoding routine (common in JPEG and JBIG). | |||
* This needs to go as fast as possible. | |||
* Machine-dependent optimization facilities | |||
* are not utilized in this portable implementation. | |||
* However, this code should be fairly efficient and | |||
* may be a good base for further optimizations anyway. | |||
* | |||
* Return value is 0 or 1 (binary decision). | |||
* | |||
* Note: I've changed the handling of the code base & bit | |||
* buffer register C compared to other implementations | |||
* based on the standards layout & procedures. | |||
* While it also contains both the actual base of the | |||
* coding interval (16 bits) and the next-bits buffer, | |||
* the cut-point between these two parts is floating | |||
* (instead of fixed) with the bit shift counter CT. | |||
* Thus, we also need only one (variable instead of | |||
* fixed size) shift for the LPS/MPS decision, and | |||
* we can get away with any renormalization update | |||
* of C (except for new data insertion, of course). | |||
* | |||
* I've also introduced a new scheme for accessing | |||
* the probability estimation state machine table, | |||
* derived from Markus Kuhn's JBIG implementation. | |||
*/ | |||
LOCAL(int) | |||
arith_decode (j_decompress_ptr cinfo, unsigned char *st) | |||
{ | |||
register arith_entropy_ptr e = (arith_entropy_ptr) cinfo->entropy; | |||
register unsigned char nl, nm; | |||
register INT32 qe, temp; | |||
register int sv, data; | |||
/* Renormalization & data input per section D.2.6 */ | |||
while (e->a < 0x8000L) { | |||
if (--e->ct < 0) { | |||
/* Need to fetch next data byte */ | |||
if (cinfo->unread_marker) | |||
data = 0; /* stuff zero data */ | |||
else { | |||
data = get_byte(cinfo); /* read next input byte */ | |||
if (data == 0xFF) { /* zero stuff or marker code */ | |||
do data = get_byte(cinfo); | |||
while (data == 0xFF); /* swallow extra 0xFF bytes */ | |||
if (data == 0) | |||
data = 0xFF; /* discard stuffed zero byte */ | |||
else { | |||
/* Note: Different from the Huffman decoder, hitting | |||
* a marker while processing the compressed data | |||
* segment is legal in arithmetic coding. | |||
* The convention is to supply zero data | |||
* then until decoding is complete. | |||
*/ | |||
cinfo->unread_marker = data; | |||
data = 0; | |||
} | |||
} | |||
} | |||
e->c = (e->c << 8) | data; /* insert data into C register */ | |||
if ((e->ct += 8) < 0) /* update bit shift counter */ | |||
/* Need more initial bytes */ | |||
if (++e->ct == 0) | |||
/* Got 2 initial bytes -> re-init A and exit loop */ | |||
e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ | |||
} | |||
e->a <<= 1; | |||
} | |||
/* Fetch values from our compact representation of Table D.2: | |||
* Qe values and probability estimation state machine | |||
*/ | |||
sv = *st; | |||
qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ | |||
nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ | |||
nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ | |||
/* Decode & estimation procedures per sections D.2.4 & D.2.5 */ | |||
temp = e->a - qe; | |||
e->a = temp; | |||
temp <<= e->ct; | |||
if (e->c >= temp) { | |||
e->c -= temp; | |||
/* Conditional LPS (less probable symbol) exchange */ | |||
if (e->a < qe) { | |||
e->a = qe; | |||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ | |||
} else { | |||
e->a = qe; | |||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ | |||
sv ^= 0x80; /* Exchange LPS/MPS */ | |||
} | |||
} else if (e->a < 0x8000L) { | |||
/* Conditional MPS (more probable symbol) exchange */ | |||
if (e->a < qe) { | |||
*st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ | |||
sv ^= 0x80; /* Exchange LPS/MPS */ | |||
} else { | |||
*st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ | |||
} | |||
} | |||
return sv >> 7; | |||
} | |||
/* | |||
* Check for a restart marker & resynchronize decoder. | |||
*/ | |||
LOCAL(void) | |||
process_restart (j_decompress_ptr cinfo) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
int ci; | |||
jpeg_component_info * compptr; | |||
/* Advance past the RSTn marker */ | |||
if (! (*cinfo->marker->read_restart_marker) (cinfo)) | |||
ERREXIT(cinfo, JERR_CANT_SUSPEND); | |||
/* Re-initialize statistics areas */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | |||
MEMZERO(entropy->dc_stats[compptr->dc_tbl_no], DC_STAT_BINS); | |||
/* Reset DC predictions to 0 */ | |||
entropy->last_dc_val[ci] = 0; | |||
entropy->dc_context[ci] = 0; | |||
} | |||
if ((! cinfo->progressive_mode && cinfo->lim_Se) || | |||
(cinfo->progressive_mode && cinfo->Ss)) { | |||
MEMZERO(entropy->ac_stats[compptr->ac_tbl_no], AC_STAT_BINS); | |||
} | |||
} | |||
/* Reset arithmetic decoding variables */ | |||
entropy->c = 0; | |||
entropy->a = 0; | |||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */ | |||
/* Reset restart counter */ | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
} | |||
/* | |||
* Arithmetic MCU decoding. | |||
* Each of these routines decodes and returns one MCU's worth of | |||
* arithmetic-compressed coefficients. | |||
* The coefficients are reordered from zigzag order into natural array order, | |||
* but are not dequantized. | |||
* | |||
* The i'th block of the MCU is stored into the block pointed to by | |||
* MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | |||
*/ | |||
/* | |||
* MCU decoding for DC initial scan (either spectral selection, | |||
* or first pass of successive approximation). | |||
*/ | |||
METHODDEF(boolean) | |||
decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
JBLOCKROW block; | |||
unsigned char *st; | |||
int blkn, ci, tbl, sign; | |||
int v, m; | |||
/* Process restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) | |||
process_restart(cinfo); | |||
entropy->restarts_to_go--; | |||
} | |||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |||
/* Outer loop handles each block in the MCU */ | |||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |||
block = MCU_data[blkn]; | |||
ci = cinfo->MCU_membership[blkn]; | |||
tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; | |||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | |||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | |||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | |||
/* Figure F.19: Decode_DC_DIFF */ | |||
if (arith_decode(cinfo, st) == 0) | |||
entropy->dc_context[ci] = 0; | |||
else { | |||
/* Figure F.21: Decoding nonzero value v */ | |||
/* Figure F.22: Decoding the sign of v */ | |||
sign = arith_decode(cinfo, st + 1); | |||
st += 2; st += sign; | |||
/* Figure F.23: Decoding the magnitude category of v */ | |||
if ((m = arith_decode(cinfo, st)) != 0) { | |||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | |||
while (arith_decode(cinfo, st)) { | |||
if ((m <<= 1) == 0x8000) { | |||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |||
entropy->ct = -1; /* magnitude overflow */ | |||
return TRUE; | |||
} | |||
st += 1; | |||
} | |||
} | |||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | |||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | |||
entropy->dc_context[ci] = 0; /* zero diff category */ | |||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | |||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | |||
else | |||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ | |||
v = m; | |||
/* Figure F.24: Decoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
if (arith_decode(cinfo, st)) v |= m; | |||
v += 1; if (sign) v = -v; | |||
entropy->last_dc_val[ci] += v; | |||
} | |||
/* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ | |||
(*block)[0] = (JCOEF) (entropy->last_dc_val[ci] << cinfo->Al); | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* MCU decoding for AC initial scan (either spectral selection, | |||
* or first pass of successive approximation). | |||
*/ | |||
METHODDEF(boolean) | |||
decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
JBLOCKROW block; | |||
unsigned char *st; | |||
int tbl, sign, k; | |||
int v, m; | |||
const int * natural_order; | |||
/* Process restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) | |||
process_restart(cinfo); | |||
entropy->restarts_to_go--; | |||
} | |||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |||
natural_order = cinfo->natural_order; | |||
/* There is always only one block per MCU */ | |||
block = MCU_data[0]; | |||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | |||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | |||
/* Figure F.20: Decode_AC_coefficients */ | |||
for (k = cinfo->Ss; k <= cinfo->Se; k++) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
if (arith_decode(cinfo, st)) break; /* EOB flag */ | |||
while (arith_decode(cinfo, st + 1) == 0) { | |||
st += 3; k++; | |||
if (k > cinfo->Se) { | |||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |||
entropy->ct = -1; /* spectral overflow */ | |||
return TRUE; | |||
} | |||
} | |||
/* Figure F.21: Decoding nonzero value v */ | |||
/* Figure F.22: Decoding the sign of v */ | |||
sign = arith_decode(cinfo, entropy->fixed_bin); | |||
st += 2; | |||
/* Figure F.23: Decoding the magnitude category of v */ | |||
if ((m = arith_decode(cinfo, st)) != 0) { | |||
if (arith_decode(cinfo, st)) { | |||
m <<= 1; | |||
st = entropy->ac_stats[tbl] + | |||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | |||
while (arith_decode(cinfo, st)) { | |||
if ((m <<= 1) == 0x8000) { | |||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |||
entropy->ct = -1; /* magnitude overflow */ | |||
return TRUE; | |||
} | |||
st += 1; | |||
} | |||
} | |||
} | |||
v = m; | |||
/* Figure F.24: Decoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
if (arith_decode(cinfo, st)) v |= m; | |||
v += 1; if (sign) v = -v; | |||
/* Scale and output coefficient in natural (dezigzagged) order */ | |||
(*block)[natural_order[k]] = (JCOEF) (v << cinfo->Al); | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* MCU decoding for DC successive approximation refinement scan. | |||
*/ | |||
METHODDEF(boolean) | |||
decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
unsigned char *st; | |||
int p1, blkn; | |||
/* Process restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) | |||
process_restart(cinfo); | |||
entropy->restarts_to_go--; | |||
} | |||
st = entropy->fixed_bin; /* use fixed probability estimation */ | |||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |||
/* Outer loop handles each block in the MCU */ | |||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |||
/* Encoded data is simply the next bit of the two's-complement DC value */ | |||
if (arith_decode(cinfo, st)) | |||
MCU_data[blkn][0][0] |= p1; | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* MCU decoding for AC successive approximation refinement scan. | |||
*/ | |||
METHODDEF(boolean) | |||
decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
JBLOCKROW block; | |||
JCOEFPTR thiscoef; | |||
unsigned char *st; | |||
int tbl, k, kex; | |||
int p1, m1; | |||
const int * natural_order; | |||
/* Process restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) | |||
process_restart(cinfo); | |||
entropy->restarts_to_go--; | |||
} | |||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |||
natural_order = cinfo->natural_order; | |||
/* There is always only one block per MCU */ | |||
block = MCU_data[0]; | |||
tbl = cinfo->cur_comp_info[0]->ac_tbl_no; | |||
p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ | |||
m1 = (-1) << cinfo->Al; /* -1 in the bit position being coded */ | |||
/* Establish EOBx (previous stage end-of-block) index */ | |||
for (kex = cinfo->Se; kex > 0; kex--) | |||
if ((*block)[natural_order[kex]]) break; | |||
for (k = cinfo->Ss; k <= cinfo->Se; k++) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
if (k > kex) | |||
if (arith_decode(cinfo, st)) break; /* EOB flag */ | |||
for (;;) { | |||
thiscoef = *block + natural_order[k]; | |||
if (*thiscoef) { /* previously nonzero coef */ | |||
if (arith_decode(cinfo, st + 2)) { | |||
if (*thiscoef < 0) | |||
*thiscoef += m1; | |||
else | |||
*thiscoef += p1; | |||
} | |||
break; | |||
} | |||
if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ | |||
if (arith_decode(cinfo, entropy->fixed_bin)) | |||
*thiscoef = m1; | |||
else | |||
*thiscoef = p1; | |||
break; | |||
} | |||
st += 3; k++; | |||
if (k > cinfo->Se) { | |||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |||
entropy->ct = -1; /* spectral overflow */ | |||
return TRUE; | |||
} | |||
} | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* Decode one MCU's worth of arithmetic-compressed coefficients. | |||
*/ | |||
METHODDEF(boolean) | |||
decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
jpeg_component_info * compptr; | |||
JBLOCKROW block; | |||
unsigned char *st; | |||
int blkn, ci, tbl, sign, k; | |||
int v, m; | |||
const int * natural_order; | |||
/* Process restart marker if needed */ | |||
if (cinfo->restart_interval) { | |||
if (entropy->restarts_to_go == 0) | |||
process_restart(cinfo); | |||
entropy->restarts_to_go--; | |||
} | |||
if (entropy->ct == -1) return TRUE; /* if error do nothing */ | |||
natural_order = cinfo->natural_order; | |||
/* Outer loop handles each block in the MCU */ | |||
for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | |||
block = MCU_data[blkn]; | |||
ci = cinfo->MCU_membership[blkn]; | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ | |||
tbl = compptr->dc_tbl_no; | |||
/* Table F.4: Point to statistics bin S0 for DC coefficient coding */ | |||
st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; | |||
/* Figure F.19: Decode_DC_DIFF */ | |||
if (arith_decode(cinfo, st) == 0) | |||
entropy->dc_context[ci] = 0; | |||
else { | |||
/* Figure F.21: Decoding nonzero value v */ | |||
/* Figure F.22: Decoding the sign of v */ | |||
sign = arith_decode(cinfo, st + 1); | |||
st += 2; st += sign; | |||
/* Figure F.23: Decoding the magnitude category of v */ | |||
if ((m = arith_decode(cinfo, st)) != 0) { | |||
st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ | |||
while (arith_decode(cinfo, st)) { | |||
if ((m <<= 1) == 0x8000) { | |||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |||
entropy->ct = -1; /* magnitude overflow */ | |||
return TRUE; | |||
} | |||
st += 1; | |||
} | |||
} | |||
/* Section F.1.4.4.1.2: Establish dc_context conditioning category */ | |||
if (m < (int) ((1L << cinfo->arith_dc_L[tbl]) >> 1)) | |||
entropy->dc_context[ci] = 0; /* zero diff category */ | |||
else if (m > (int) ((1L << cinfo->arith_dc_U[tbl]) >> 1)) | |||
entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ | |||
else | |||
entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ | |||
v = m; | |||
/* Figure F.24: Decoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
if (arith_decode(cinfo, st)) v |= m; | |||
v += 1; if (sign) v = -v; | |||
entropy->last_dc_val[ci] += v; | |||
} | |||
(*block)[0] = (JCOEF) entropy->last_dc_val[ci]; | |||
/* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ | |||
tbl = compptr->ac_tbl_no; | |||
/* Figure F.20: Decode_AC_coefficients */ | |||
for (k = 1; k <= cinfo->lim_Se; k++) { | |||
st = entropy->ac_stats[tbl] + 3 * (k - 1); | |||
if (arith_decode(cinfo, st)) break; /* EOB flag */ | |||
while (arith_decode(cinfo, st + 1) == 0) { | |||
st += 3; k++; | |||
if (k > cinfo->lim_Se) { | |||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |||
entropy->ct = -1; /* spectral overflow */ | |||
return TRUE; | |||
} | |||
} | |||
/* Figure F.21: Decoding nonzero value v */ | |||
/* Figure F.22: Decoding the sign of v */ | |||
sign = arith_decode(cinfo, entropy->fixed_bin); | |||
st += 2; | |||
/* Figure F.23: Decoding the magnitude category of v */ | |||
if ((m = arith_decode(cinfo, st)) != 0) { | |||
if (arith_decode(cinfo, st)) { | |||
m <<= 1; | |||
st = entropy->ac_stats[tbl] + | |||
(k <= cinfo->arith_ac_K[tbl] ? 189 : 217); | |||
while (arith_decode(cinfo, st)) { | |||
if ((m <<= 1) == 0x8000) { | |||
WARNMS(cinfo, JWRN_ARITH_BAD_CODE); | |||
entropy->ct = -1; /* magnitude overflow */ | |||
return TRUE; | |||
} | |||
st += 1; | |||
} | |||
} | |||
} | |||
v = m; | |||
/* Figure F.24: Decoding the magnitude bit pattern of v */ | |||
st += 14; | |||
while (m >>= 1) | |||
if (arith_decode(cinfo, st)) v |= m; | |||
v += 1; if (sign) v = -v; | |||
(*block)[natural_order[k]] = (JCOEF) v; | |||
} | |||
} | |||
return TRUE; | |||
} | |||
/* | |||
* Initialize for an arithmetic-compressed scan. | |||
*/ | |||
METHODDEF(void) | |||
start_pass (j_decompress_ptr cinfo) | |||
{ | |||
arith_entropy_ptr entropy = (arith_entropy_ptr) cinfo->entropy; | |||
int ci, tbl; | |||
jpeg_component_info * compptr; | |||
if (cinfo->progressive_mode) { | |||
/* Validate progressive scan parameters */ | |||
if (cinfo->Ss == 0) { | |||
if (cinfo->Se != 0) | |||
goto bad; | |||
} else { | |||
/* need not check Ss/Se < 0 since they came from unsigned bytes */ | |||
if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se) | |||
goto bad; | |||
/* AC scans may have only one component */ | |||
if (cinfo->comps_in_scan != 1) | |||
goto bad; | |||
} | |||
if (cinfo->Ah != 0) { | |||
/* Successive approximation refinement scan: must have Al = Ah-1. */ | |||
if (cinfo->Ah-1 != cinfo->Al) | |||
goto bad; | |||
} | |||
if (cinfo->Al > 13) { /* need not check for < 0 */ | |||
bad: | |||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | |||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | |||
} | |||
/* Update progression status, and verify that scan order is legal. | |||
* Note that inter-scan inconsistencies are treated as warnings | |||
* not fatal errors ... not clear if this is right way to behave. | |||
*/ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; | |||
int *coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | |||
if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | |||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | |||
for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | |||
int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | |||
if (cinfo->Ah != expected) | |||
WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | |||
coef_bit_ptr[coefi] = cinfo->Al; | |||
} | |||
} | |||
/* Select MCU decoding routine */ | |||
if (cinfo->Ah == 0) { | |||
if (cinfo->Ss == 0) | |||
entropy->pub.decode_mcu = decode_mcu_DC_first; | |||
else | |||
entropy->pub.decode_mcu = decode_mcu_AC_first; | |||
} else { | |||
if (cinfo->Ss == 0) | |||
entropy->pub.decode_mcu = decode_mcu_DC_refine; | |||
else | |||
entropy->pub.decode_mcu = decode_mcu_AC_refine; | |||
} | |||
} else { | |||
/* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. | |||
* This ought to be an error condition, but we make it a warning. | |||
*/ | |||
if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 || | |||
(cinfo->Se < DCTSIZE2 && cinfo->Se != cinfo->lim_Se)) | |||
WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); | |||
/* Select MCU decoding routine */ | |||
entropy->pub.decode_mcu = decode_mcu; | |||
} | |||
/* Allocate & initialize requested statistics areas */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
if (! cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { | |||
tbl = compptr->dc_tbl_no; | |||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | |||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | |||
if (entropy->dc_stats[tbl] == NULL) | |||
entropy->dc_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, DC_STAT_BINS); | |||
MEMZERO(entropy->dc_stats[tbl], DC_STAT_BINS); | |||
/* Initialize DC predictions to 0 */ | |||
entropy->last_dc_val[ci] = 0; | |||
entropy->dc_context[ci] = 0; | |||
} | |||
if ((! cinfo->progressive_mode && cinfo->lim_Se) || | |||
(cinfo->progressive_mode && cinfo->Ss)) { | |||
tbl = compptr->ac_tbl_no; | |||
if (tbl < 0 || tbl >= NUM_ARITH_TBLS) | |||
ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); | |||
if (entropy->ac_stats[tbl] == NULL) | |||
entropy->ac_stats[tbl] = (unsigned char *) (*cinfo->mem->alloc_small) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, AC_STAT_BINS); | |||
MEMZERO(entropy->ac_stats[tbl], AC_STAT_BINS); | |||
} | |||
} | |||
/* Initialize arithmetic decoding variables */ | |||
entropy->c = 0; | |||
entropy->a = 0; | |||
entropy->ct = -16; /* force reading 2 initial bytes to fill C */ | |||
/* Initialize restart counter */ | |||
entropy->restarts_to_go = cinfo->restart_interval; | |||
} | |||
/* | |||
* Module initialization routine for arithmetic entropy decoding. | |||
*/ | |||
GLOBAL(void) | |||
jinit_arith_decoder (j_decompress_ptr cinfo) | |||
{ | |||
arith_entropy_ptr entropy; | |||
int i; | |||
entropy = (arith_entropy_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(arith_entropy_decoder)); | |||
cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; | |||
entropy->pub.start_pass = start_pass; | |||
/* Mark tables unallocated */ | |||
for (i = 0; i < NUM_ARITH_TBLS; i++) { | |||
entropy->dc_stats[i] = NULL; | |||
entropy->ac_stats[i] = NULL; | |||
} | |||
/* Initialize index for fixed probability estimation */ | |||
entropy->fixed_bin[0] = 113; | |||
if (cinfo->progressive_mode) { | |||
/* Create progression status table */ | |||
int *coef_bit_ptr, ci; | |||
cinfo->coef_bits = (int (*)[DCTSIZE2]) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
cinfo->num_components*DCTSIZE2*SIZEOF(int)); | |||
coef_bit_ptr = & cinfo->coef_bits[0][0]; | |||
for (ci = 0; ci < cinfo->num_components; ci++) | |||
for (i = 0; i < DCTSIZE2; i++) | |||
*coef_bit_ptr++ = -1; | |||
} | |||
} |
@@ -1,267 +0,0 @@ | |||
/* | |||
* jdatadst.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* Modified 2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains compression data destination routines for the case of | |||
* emitting JPEG data to memory or to a file (or any stdio stream). | |||
* While these routines are sufficient for most applications, | |||
* some will want to use a different destination manager. | |||
* IMPORTANT: we assume that fwrite() will correctly transcribe an array of | |||
* JOCTETs into 8-bit-wide elements on external storage. If char is wider | |||
* than 8 bits on your machine, you may need to do some tweaking. | |||
*/ | |||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jerror.h" | |||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ | |||
extern void * malloc JPP((size_t size)); | |||
extern void free JPP((void *ptr)); | |||
#endif | |||
/* Expanded data destination object for stdio output */ | |||
typedef struct { | |||
struct jpeg_destination_mgr pub; /* public fields */ | |||
FILE * outfile; /* target stream */ | |||
JOCTET * buffer; /* start of buffer */ | |||
} my_destination_mgr; | |||
typedef my_destination_mgr * my_dest_ptr; | |||
#define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ | |||
/* Expanded data destination object for memory output */ | |||
typedef struct { | |||
struct jpeg_destination_mgr pub; /* public fields */ | |||
unsigned char ** outbuffer; /* target buffer */ | |||
unsigned long * outsize; | |||
unsigned char * newbuffer; /* newly allocated buffer */ | |||
JOCTET * buffer; /* start of buffer */ | |||
size_t bufsize; | |||
} my_mem_destination_mgr; | |||
typedef my_mem_destination_mgr * my_mem_dest_ptr; | |||
/* | |||
* Initialize destination --- called by jpeg_start_compress | |||
* before any data is actually written. | |||
*/ | |||
METHODDEF(void) | |||
init_destination (j_compress_ptr cinfo) | |||
{ | |||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; | |||
/* Allocate the output buffer --- it will be released when done with image */ | |||
dest->buffer = (JOCTET *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
OUTPUT_BUF_SIZE * SIZEOF(JOCTET)); | |||
dest->pub.next_output_byte = dest->buffer; | |||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; | |||
} | |||
METHODDEF(void) | |||
init_mem_destination (j_compress_ptr cinfo) | |||
{ | |||
/* no work necessary here */ | |||
} | |||
/* | |||
* Empty the output buffer --- called whenever buffer fills up. | |||
* | |||
* In typical applications, this should write the entire output buffer | |||
* (ignoring the current state of next_output_byte & free_in_buffer), | |||
* reset the pointer & count to the start of the buffer, and return TRUE | |||
* indicating that the buffer has been dumped. | |||
* | |||
* In applications that need to be able to suspend compression due to output | |||
* overrun, a FALSE return indicates that the buffer cannot be emptied now. | |||
* In this situation, the compressor will return to its caller (possibly with | |||
* an indication that it has not accepted all the supplied scanlines). The | |||
* application should resume compression after it has made more room in the | |||
* output buffer. Note that there are substantial restrictions on the use of | |||
* suspension --- see the documentation. | |||
* | |||
* When suspending, the compressor will back up to a convenient restart point | |||
* (typically the start of the current MCU). next_output_byte & free_in_buffer | |||
* indicate where the restart point will be if the current call returns FALSE. | |||
* Data beyond this point will be regenerated after resumption, so do not | |||
* write it out when emptying the buffer externally. | |||
*/ | |||
METHODDEF(boolean) | |||
empty_output_buffer (j_compress_ptr cinfo) | |||
{ | |||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; | |||
if (JFWRITE(dest->outfile, dest->buffer, OUTPUT_BUF_SIZE) != | |||
(size_t) OUTPUT_BUF_SIZE) | |||
ERREXIT(cinfo, JERR_FILE_WRITE); | |||
dest->pub.next_output_byte = dest->buffer; | |||
dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; | |||
return TRUE; | |||
} | |||
METHODDEF(boolean) | |||
empty_mem_output_buffer (j_compress_ptr cinfo) | |||
{ | |||
size_t nextsize; | |||
JOCTET * nextbuffer; | |||
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; | |||
/* Try to allocate new buffer with double size */ | |||
nextsize = dest->bufsize * 2; | |||
nextbuffer = malloc(nextsize); | |||
if (nextbuffer == NULL) | |||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); | |||
MEMCOPY(nextbuffer, dest->buffer, dest->bufsize); | |||
if (dest->newbuffer != NULL) | |||
free(dest->newbuffer); | |||
dest->newbuffer = nextbuffer; | |||
dest->pub.next_output_byte = nextbuffer + dest->bufsize; | |||
dest->pub.free_in_buffer = dest->bufsize; | |||
dest->buffer = nextbuffer; | |||
dest->bufsize = nextsize; | |||
return TRUE; | |||
} | |||
/* | |||
* Terminate destination --- called by jpeg_finish_compress | |||
* after all data has been written. Usually needs to flush buffer. | |||
* | |||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding | |||
* application must deal with any cleanup that should happen even | |||
* for error exit. | |||
*/ | |||
METHODDEF(void) | |||
term_destination (j_compress_ptr cinfo) | |||
{ | |||
my_dest_ptr dest = (my_dest_ptr) cinfo->dest; | |||
size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; | |||
/* Write any data remaining in the buffer */ | |||
if (datacount > 0) { | |||
if (JFWRITE(dest->outfile, dest->buffer, datacount) != datacount) | |||
ERREXIT(cinfo, JERR_FILE_WRITE); | |||
} | |||
fflush(dest->outfile); | |||
/* Make sure we wrote the output file OK */ | |||
if (ferror(dest->outfile)) | |||
ERREXIT(cinfo, JERR_FILE_WRITE); | |||
} | |||
METHODDEF(void) | |||
term_mem_destination (j_compress_ptr cinfo) | |||
{ | |||
my_mem_dest_ptr dest = (my_mem_dest_ptr) cinfo->dest; | |||
*dest->outbuffer = dest->buffer; | |||
*dest->outsize = dest->bufsize - dest->pub.free_in_buffer; | |||
} | |||
/* | |||
* Prepare for output to a stdio stream. | |||
* The caller must have already opened the stream, and is responsible | |||
* for closing it after finishing compression. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_stdio_dest (j_compress_ptr cinfo, FILE * outfile) | |||
{ | |||
my_dest_ptr dest; | |||
/* The destination object is made permanent so that multiple JPEG images | |||
* can be written to the same file without re-executing jpeg_stdio_dest. | |||
* This makes it dangerous to use this manager and a different destination | |||
* manager serially with the same JPEG object, because their private object | |||
* sizes may be different. Caveat programmer. | |||
*/ | |||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */ | |||
cinfo->dest = (struct jpeg_destination_mgr *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
SIZEOF(my_destination_mgr)); | |||
} | |||
dest = (my_dest_ptr) cinfo->dest; | |||
dest->pub.init_destination = init_destination; | |||
dest->pub.empty_output_buffer = empty_output_buffer; | |||
dest->pub.term_destination = term_destination; | |||
dest->outfile = outfile; | |||
} | |||
/* | |||
* Prepare for output to a memory buffer. | |||
* The caller may supply an own initial buffer with appropriate size. | |||
* Otherwise, or when the actual data output exceeds the given size, | |||
* the library adapts the buffer size as necessary. | |||
* The standard library functions malloc/free are used for allocating | |||
* larger memory, so the buffer is available to the application after | |||
* finishing compression, and then the application is responsible for | |||
* freeing the requested memory. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_mem_dest (j_compress_ptr cinfo, | |||
unsigned char ** outbuffer, unsigned long * outsize) | |||
{ | |||
my_mem_dest_ptr dest; | |||
if (outbuffer == NULL || outsize == NULL) /* sanity check */ | |||
ERREXIT(cinfo, JERR_BUFFER_SIZE); | |||
/* The destination object is made permanent so that multiple JPEG images | |||
* can be written to the same buffer without re-executing jpeg_mem_dest. | |||
*/ | |||
if (cinfo->dest == NULL) { /* first time for this JPEG object? */ | |||
cinfo->dest = (struct jpeg_destination_mgr *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
SIZEOF(my_mem_destination_mgr)); | |||
} | |||
dest = (my_mem_dest_ptr) cinfo->dest; | |||
dest->pub.init_destination = init_mem_destination; | |||
dest->pub.empty_output_buffer = empty_mem_output_buffer; | |||
dest->pub.term_destination = term_mem_destination; | |||
dest->outbuffer = outbuffer; | |||
dest->outsize = outsize; | |||
dest->newbuffer = NULL; | |||
if (*outbuffer == NULL || *outsize == 0) { | |||
/* Allocate initial buffer */ | |||
dest->newbuffer = *outbuffer = malloc(OUTPUT_BUF_SIZE); | |||
if (dest->newbuffer == NULL) | |||
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); | |||
*outsize = OUTPUT_BUF_SIZE; | |||
} | |||
dest->pub.next_output_byte = dest->buffer = *outbuffer; | |||
dest->pub.free_in_buffer = dest->bufsize = *outsize; | |||
} |
@@ -1,274 +0,0 @@ | |||
/* | |||
* jdatasrc.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* Modified 2009-2010 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains decompression data source routines for the case of | |||
* reading JPEG data from memory or from a file (or any stdio stream). | |||
* While these routines are sufficient for most applications, | |||
* some will want to use a different source manager. | |||
* IMPORTANT: we assume that fread() will correctly transcribe an array of | |||
* JOCTETs from 8-bit-wide elements on external storage. If char is wider | |||
* than 8 bits on your machine, you may need to do some tweaking. | |||
*/ | |||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jerror.h" | |||
/* Expanded data source object for stdio input */ | |||
typedef struct { | |||
struct jpeg_source_mgr pub; /* public fields */ | |||
FILE * infile; /* source stream */ | |||
JOCTET * buffer; /* start of buffer */ | |||
boolean start_of_file; /* have we gotten any data yet? */ | |||
} my_source_mgr; | |||
typedef my_source_mgr * my_src_ptr; | |||
#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */ | |||
/* | |||
* Initialize source --- called by jpeg_read_header | |||
* before any data is actually read. | |||
*/ | |||
METHODDEF(void) | |||
init_source (j_decompress_ptr cinfo) | |||
{ | |||
my_src_ptr src = (my_src_ptr) cinfo->src; | |||
/* We reset the empty-input-file flag for each image, | |||
* but we don't clear the input buffer. | |||
* This is correct behavior for reading a series of images from one source. | |||
*/ | |||
src->start_of_file = TRUE; | |||
} | |||
METHODDEF(void) | |||
init_mem_source (j_decompress_ptr cinfo) | |||
{ | |||
/* no work necessary here */ | |||
} | |||
/* | |||
* Fill the input buffer --- called whenever buffer is emptied. | |||
* | |||
* In typical applications, this should read fresh data into the buffer | |||
* (ignoring the current state of next_input_byte & bytes_in_buffer), | |||
* reset the pointer & count to the start of the buffer, and return TRUE | |||
* indicating that the buffer has been reloaded. It is not necessary to | |||
* fill the buffer entirely, only to obtain at least one more byte. | |||
* | |||
* There is no such thing as an EOF return. If the end of the file has been | |||
* reached, the routine has a choice of ERREXIT() or inserting fake data into | |||
* the buffer. In most cases, generating a warning message and inserting a | |||
* fake EOI marker is the best course of action --- this will allow the | |||
* decompressor to output however much of the image is there. However, | |||
* the resulting error message is misleading if the real problem is an empty | |||
* input file, so we handle that case specially. | |||
* | |||
* In applications that need to be able to suspend compression due to input | |||
* not being available yet, a FALSE return indicates that no more data can be | |||
* obtained right now, but more may be forthcoming later. In this situation, | |||
* the decompressor will return to its caller (with an indication of the | |||
* number of scanlines it has read, if any). The application should resume | |||
* decompression after it has loaded more data into the input buffer. Note | |||
* that there are substantial restrictions on the use of suspension --- see | |||
* the documentation. | |||
* | |||
* When suspending, the decompressor will back up to a convenient restart point | |||
* (typically the start of the current MCU). next_input_byte & bytes_in_buffer | |||
* indicate where the restart point will be if the current call returns FALSE. | |||
* Data beyond this point must be rescanned after resumption, so move it to | |||
* the front of the buffer rather than discarding it. | |||
*/ | |||
METHODDEF(boolean) | |||
fill_input_buffer (j_decompress_ptr cinfo) | |||
{ | |||
my_src_ptr src = (my_src_ptr) cinfo->src; | |||
size_t nbytes; | |||
nbytes = JFREAD(src->infile, src->buffer, INPUT_BUF_SIZE); | |||
if (nbytes <= 0) { | |||
if (src->start_of_file) /* Treat empty input file as fatal error */ | |||
ERREXIT(cinfo, JERR_INPUT_EMPTY); | |||
WARNMS(cinfo, JWRN_JPEG_EOF); | |||
/* Insert a fake EOI marker */ | |||
src->buffer[0] = (JOCTET) 0xFF; | |||
src->buffer[1] = (JOCTET) JPEG_EOI; | |||
nbytes = 2; | |||
} | |||
src->pub.next_input_byte = src->buffer; | |||
src->pub.bytes_in_buffer = nbytes; | |||
src->start_of_file = FALSE; | |||
return TRUE; | |||
} | |||
METHODDEF(boolean) | |||
fill_mem_input_buffer (j_decompress_ptr cinfo) | |||
{ | |||
static JOCTET mybuffer[4]; | |||
/* The whole JPEG data is expected to reside in the supplied memory | |||
* buffer, so any request for more data beyond the given buffer size | |||
* is treated as an error. | |||
*/ | |||
WARNMS(cinfo, JWRN_JPEG_EOF); | |||
/* Insert a fake EOI marker */ | |||
mybuffer[0] = (JOCTET) 0xFF; | |||
mybuffer[1] = (JOCTET) JPEG_EOI; | |||
cinfo->src->next_input_byte = mybuffer; | |||
cinfo->src->bytes_in_buffer = 2; | |||
return TRUE; | |||
} | |||
/* | |||
* Skip data --- used to skip over a potentially large amount of | |||
* uninteresting data (such as an APPn marker). | |||
* | |||
* Writers of suspendable-input applications must note that skip_input_data | |||
* is not granted the right to give a suspension return. If the skip extends | |||
* beyond the data currently in the buffer, the buffer can be marked empty so | |||
* that the next read will cause a fill_input_buffer call that can suspend. | |||
* Arranging for additional bytes to be discarded before reloading the input | |||
* buffer is the application writer's problem. | |||
*/ | |||
METHODDEF(void) | |||
skip_input_data (j_decompress_ptr cinfo, long num_bytes) | |||
{ | |||
struct jpeg_source_mgr * src = cinfo->src; | |||
/* Just a dumb implementation for now. Could use fseek() except | |||
* it doesn't work on pipes. Not clear that being smart is worth | |||
* any trouble anyway --- large skips are infrequent. | |||
*/ | |||
if (num_bytes > 0) { | |||
while (num_bytes > (long) src->bytes_in_buffer) { | |||
num_bytes -= (long) src->bytes_in_buffer; | |||
(void) (*src->fill_input_buffer) (cinfo); | |||
/* note we assume that fill_input_buffer will never return FALSE, | |||
* so suspension need not be handled. | |||
*/ | |||
} | |||
src->next_input_byte += (size_t) num_bytes; | |||
src->bytes_in_buffer -= (size_t) num_bytes; | |||
} | |||
} | |||
/* | |||
* An additional method that can be provided by data source modules is the | |||
* resync_to_restart method for error recovery in the presence of RST markers. | |||
* For the moment, this source module just uses the default resync method | |||
* provided by the JPEG library. That method assumes that no backtracking | |||
* is possible. | |||
*/ | |||
/* | |||
* Terminate source --- called by jpeg_finish_decompress | |||
* after all data has been read. Often a no-op. | |||
* | |||
* NB: *not* called by jpeg_abort or jpeg_destroy; surrounding | |||
* application must deal with any cleanup that should happen even | |||
* for error exit. | |||
*/ | |||
METHODDEF(void) | |||
term_source (j_decompress_ptr cinfo) | |||
{ | |||
/* no work necessary here */ | |||
} | |||
/* | |||
* Prepare for input from a stdio stream. | |||
* The caller must have already opened the stream, and is responsible | |||
* for closing it after finishing decompression. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_stdio_src (j_decompress_ptr cinfo, FILE * infile) | |||
{ | |||
my_src_ptr src; | |||
/* The source object and input buffer are made permanent so that a series | |||
* of JPEG images can be read from the same file by calling jpeg_stdio_src | |||
* only before the first one. (If we discarded the buffer at the end of | |||
* one image, we'd likely lose the start of the next one.) | |||
* This makes it unsafe to use this manager and a different source | |||
* manager serially with the same JPEG object. Caveat programmer. | |||
*/ | |||
if (cinfo->src == NULL) { /* first time for this JPEG object? */ | |||
cinfo->src = (struct jpeg_source_mgr *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
SIZEOF(my_source_mgr)); | |||
src = (my_src_ptr) cinfo->src; | |||
src->buffer = (JOCTET *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
INPUT_BUF_SIZE * SIZEOF(JOCTET)); | |||
} | |||
src = (my_src_ptr) cinfo->src; | |||
src->pub.init_source = init_source; | |||
src->pub.fill_input_buffer = fill_input_buffer; | |||
src->pub.skip_input_data = skip_input_data; | |||
src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ | |||
src->pub.term_source = term_source; | |||
src->infile = infile; | |||
src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ | |||
src->pub.next_input_byte = NULL; /* until buffer loaded */ | |||
} | |||
/* | |||
* Prepare for input from a supplied memory buffer. | |||
* The buffer must contain the whole JPEG data. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_mem_src (j_decompress_ptr cinfo, | |||
unsigned char * inbuffer, unsigned long insize) | |||
{ | |||
struct jpeg_source_mgr * src; | |||
if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ | |||
ERREXIT(cinfo, JERR_INPUT_EMPTY); | |||
/* The source object is made permanent so that a series of JPEG images | |||
* can be read from the same buffer by calling jpeg_mem_src only before | |||
* the first one. | |||
*/ | |||
if (cinfo->src == NULL) { /* first time for this JPEG object? */ | |||
cinfo->src = (struct jpeg_source_mgr *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
SIZEOF(struct jpeg_source_mgr)); | |||
} | |||
src = cinfo->src; | |||
src->init_source = init_mem_source; | |||
src->fill_input_buffer = fill_mem_input_buffer; | |||
src->skip_input_data = skip_input_data; | |||
src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ | |||
src->term_source = term_source; | |||
src->bytes_in_buffer = (size_t) insize; | |||
src->next_input_byte = (JOCTET *) inbuffer; | |||
} |
@@ -1,736 +0,0 @@ | |||
/* | |||
* jdcoefct.c | |||
* | |||
* Copyright (C) 1994-1997, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the coefficient buffer controller for decompression. | |||
* This controller is the top level of the JPEG decompressor proper. | |||
* The coefficient buffer lies between entropy decoding and inverse-DCT steps. | |||
* | |||
* In buffered-image mode, this controller is the interface between | |||
* input-oriented processing and output-oriented processing. | |||
* Also, the input side (only) is used when reading a file for transcoding. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Block smoothing is only applicable for progressive JPEG, so: */ | |||
#ifndef D_PROGRESSIVE_SUPPORTED | |||
#undef BLOCK_SMOOTHING_SUPPORTED | |||
#endif | |||
/* Private buffer controller object */ | |||
typedef struct { | |||
struct jpeg_d_coef_controller pub; /* public fields */ | |||
/* These variables keep track of the current location of the input side. */ | |||
/* cinfo->input_iMCU_row is also used for this. */ | |||
JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ | |||
int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |||
int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |||
/* The output side's location is represented by cinfo->output_iMCU_row. */ | |||
/* In single-pass modes, it's sufficient to buffer just one MCU. | |||
* We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, | |||
* and let the entropy decoder write into that workspace each time. | |||
* (On 80x86, the workspace is FAR even though it's not really very big; | |||
* this is to keep the module interfaces unchanged when a large coefficient | |||
* buffer is necessary.) | |||
* In multi-pass modes, this array points to the current MCU's blocks | |||
* within the virtual arrays; it is used only by the input side. | |||
*/ | |||
JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
/* In multi-pass modes, we need a virtual block array for each component. */ | |||
jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | |||
#endif | |||
#ifdef BLOCK_SMOOTHING_SUPPORTED | |||
/* When doing block smoothing, we latch coefficient Al values here */ | |||
int * coef_bits_latch; | |||
#define SAVED_COEFS 6 /* we save coef_bits[0..5] */ | |||
#endif | |||
} my_coef_controller; | |||
typedef my_coef_controller * my_coef_ptr; | |||
/* Forward declarations */ | |||
METHODDEF(int) decompress_onepass | |||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
METHODDEF(int) decompress_data | |||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |||
#endif | |||
#ifdef BLOCK_SMOOTHING_SUPPORTED | |||
LOCAL(boolean) smoothing_ok JPP((j_decompress_ptr cinfo)); | |||
METHODDEF(int) decompress_smooth_data | |||
JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf)); | |||
#endif | |||
LOCAL(void) | |||
start_iMCU_row (j_decompress_ptr cinfo) | |||
/* Reset within-iMCU-row counters for a new row (input side) */ | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
/* In an interleaved scan, an MCU row is the same as an iMCU row. | |||
* In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |||
* But at the bottom of the image, process only what's left. | |||
*/ | |||
if (cinfo->comps_in_scan > 1) { | |||
coef->MCU_rows_per_iMCU_row = 1; | |||
} else { | |||
if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1)) | |||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |||
else | |||
coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |||
} | |||
coef->MCU_ctr = 0; | |||
coef->MCU_vert_offset = 0; | |||
} | |||
/* | |||
* Initialize for an input processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_input_pass (j_decompress_ptr cinfo) | |||
{ | |||
cinfo->input_iMCU_row = 0; | |||
start_iMCU_row(cinfo); | |||
} | |||
/* | |||
* Initialize for an output processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_output_pass (j_decompress_ptr cinfo) | |||
{ | |||
#ifdef BLOCK_SMOOTHING_SUPPORTED | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
/* If multipass, check to see whether to use block smoothing on this pass */ | |||
if (coef->pub.coef_arrays != NULL) { | |||
if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) | |||
coef->pub.decompress_data = decompress_smooth_data; | |||
else | |||
coef->pub.decompress_data = decompress_data; | |||
} | |||
#endif | |||
cinfo->output_iMCU_row = 0; | |||
} | |||
/* | |||
* Decompress and return some data in the single-pass case. | |||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). | |||
* Input and output must run in lockstep since we have only a one-MCU buffer. | |||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |||
* | |||
* NB: output_buf contains a plane for each component in image, | |||
* which we index according to the component's SOF position. | |||
*/ | |||
METHODDEF(int) | |||
decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION MCU_col_num; /* index of current MCU within row */ | |||
JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
int blkn, ci, xindex, yindex, yoffset, useful_width; | |||
JSAMPARRAY output_ptr; | |||
JDIMENSION start_col, output_col; | |||
jpeg_component_info *compptr; | |||
inverse_DCT_method_ptr inverse_DCT; | |||
/* Loop to process as much as one whole iMCU row */ | |||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |||
yoffset++) { | |||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; | |||
MCU_col_num++) { | |||
/* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ | |||
jzero_far((void FAR *) coef->MCU_buffer[0], | |||
(size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK))); | |||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | |||
/* Suspension forced; update state counters and exit */ | |||
coef->MCU_vert_offset = yoffset; | |||
coef->MCU_ctr = MCU_col_num; | |||
return JPEG_SUSPENDED; | |||
} | |||
/* Determine where data should go in output_buf and do the IDCT thing. | |||
* We skip dummy blocks at the right and bottom edges (but blkn gets | |||
* incremented past them!). Note the inner loop relies on having | |||
* allocated the MCU_buffer[] blocks sequentially. | |||
*/ | |||
blkn = 0; /* index of current DCT block within MCU */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* Don't bother to IDCT an uninteresting component. */ | |||
if (! compptr->component_needed) { | |||
blkn += compptr->MCU_blocks; | |||
continue; | |||
} | |||
inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; | |||
useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |||
: compptr->last_col_width; | |||
output_ptr = output_buf[compptr->component_index] + | |||
yoffset * compptr->DCT_v_scaled_size; | |||
start_col = MCU_col_num * compptr->MCU_sample_width; | |||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |||
if (cinfo->input_iMCU_row < last_iMCU_row || | |||
yoffset+yindex < compptr->last_row_height) { | |||
output_col = start_col; | |||
for (xindex = 0; xindex < useful_width; xindex++) { | |||
(*inverse_DCT) (cinfo, compptr, | |||
(JCOEFPTR) coef->MCU_buffer[blkn+xindex], | |||
output_ptr, output_col); | |||
output_col += compptr->DCT_h_scaled_size; | |||
} | |||
} | |||
blkn += compptr->MCU_width; | |||
output_ptr += compptr->DCT_v_scaled_size; | |||
} | |||
} | |||
} | |||
/* Completed an MCU row, but perhaps not an iMCU row */ | |||
coef->MCU_ctr = 0; | |||
} | |||
/* Completed the iMCU row, advance counters for next one */ | |||
cinfo->output_iMCU_row++; | |||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | |||
start_iMCU_row(cinfo); | |||
return JPEG_ROW_COMPLETED; | |||
} | |||
/* Completed the scan */ | |||
(*cinfo->inputctl->finish_input_pass) (cinfo); | |||
return JPEG_SCAN_COMPLETED; | |||
} | |||
/* | |||
* Dummy consume-input routine for single-pass operation. | |||
*/ | |||
METHODDEF(int) | |||
dummy_consume_data (j_decompress_ptr cinfo) | |||
{ | |||
return JPEG_SUSPENDED; /* Always indicate nothing was done */ | |||
} | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
/* | |||
* Consume input data and store it in the full-image coefficient buffer. | |||
* We read as much as one fully interleaved MCU row ("iMCU" row) per call, | |||
* ie, v_samp_factor block rows for each component in the scan. | |||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |||
*/ | |||
METHODDEF(int) | |||
consume_data (j_decompress_ptr cinfo) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION MCU_col_num; /* index of current MCU within row */ | |||
int blkn, ci, xindex, yindex, yoffset; | |||
JDIMENSION start_col; | |||
JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |||
JBLOCKROW buffer_ptr; | |||
jpeg_component_info *compptr; | |||
/* Align the virtual buffers for the components used in this scan. */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
buffer[ci] = (*cinfo->mem->access_virt_barray) | |||
((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |||
cinfo->input_iMCU_row * compptr->v_samp_factor, | |||
(JDIMENSION) compptr->v_samp_factor, TRUE); | |||
/* Note: entropy decoder expects buffer to be zeroed, | |||
* but this is handled automatically by the memory manager | |||
* because we requested a pre-zeroed array. | |||
*/ | |||
} | |||
/* Loop to process one whole iMCU row */ | |||
for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |||
yoffset++) { | |||
for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; | |||
MCU_col_num++) { | |||
/* Construct list of pointers to DCT blocks belonging to this MCU */ | |||
blkn = 0; /* index of current DCT block within MCU */ | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
start_col = MCU_col_num * compptr->MCU_width; | |||
for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |||
buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |||
for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | |||
coef->MCU_buffer[blkn++] = buffer_ptr++; | |||
} | |||
} | |||
} | |||
/* Try to fetch the MCU. */ | |||
if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { | |||
/* Suspension forced; update state counters and exit */ | |||
coef->MCU_vert_offset = yoffset; | |||
coef->MCU_ctr = MCU_col_num; | |||
return JPEG_SUSPENDED; | |||
} | |||
} | |||
/* Completed an MCU row, but perhaps not an iMCU row */ | |||
coef->MCU_ctr = 0; | |||
} | |||
/* Completed the iMCU row, advance counters for next one */ | |||
if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { | |||
start_iMCU_row(cinfo); | |||
return JPEG_ROW_COMPLETED; | |||
} | |||
/* Completed the scan */ | |||
(*cinfo->inputctl->finish_input_pass) (cinfo); | |||
return JPEG_SCAN_COMPLETED; | |||
} | |||
/* | |||
* Decompress and return some data in the multi-pass case. | |||
* Always attempts to emit one fully interleaved MCU row ("iMCU" row). | |||
* Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. | |||
* | |||
* NB: output_buf contains a plane for each component in image. | |||
*/ | |||
METHODDEF(int) | |||
decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
JDIMENSION block_num; | |||
int ci, block_row, block_rows; | |||
JBLOCKARRAY buffer; | |||
JBLOCKROW buffer_ptr; | |||
JSAMPARRAY output_ptr; | |||
JDIMENSION output_col; | |||
jpeg_component_info *compptr; | |||
inverse_DCT_method_ptr inverse_DCT; | |||
/* Force some input to be done if we are getting ahead of the input. */ | |||
while (cinfo->input_scan_number < cinfo->output_scan_number || | |||
(cinfo->input_scan_number == cinfo->output_scan_number && | |||
cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { | |||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | |||
return JPEG_SUSPENDED; | |||
} | |||
/* OK, output from the virtual arrays. */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Don't bother to IDCT an uninteresting component. */ | |||
if (! compptr->component_needed) | |||
continue; | |||
/* Align the virtual buffer for this component. */ | |||
buffer = (*cinfo->mem->access_virt_barray) | |||
((j_common_ptr) cinfo, coef->whole_image[ci], | |||
cinfo->output_iMCU_row * compptr->v_samp_factor, | |||
(JDIMENSION) compptr->v_samp_factor, FALSE); | |||
/* Count non-dummy DCT block rows in this iMCU row. */ | |||
if (cinfo->output_iMCU_row < last_iMCU_row) | |||
block_rows = compptr->v_samp_factor; | |||
else { | |||
/* NB: can't use last_row_height here; it is input-side-dependent! */ | |||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |||
if (block_rows == 0) block_rows = compptr->v_samp_factor; | |||
} | |||
inverse_DCT = cinfo->idct->inverse_DCT[ci]; | |||
output_ptr = output_buf[ci]; | |||
/* Loop over all DCT blocks to be processed. */ | |||
for (block_row = 0; block_row < block_rows; block_row++) { | |||
buffer_ptr = buffer[block_row]; | |||
output_col = 0; | |||
for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) { | |||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr, | |||
output_ptr, output_col); | |||
buffer_ptr++; | |||
output_col += compptr->DCT_h_scaled_size; | |||
} | |||
output_ptr += compptr->DCT_v_scaled_size; | |||
} | |||
} | |||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | |||
return JPEG_ROW_COMPLETED; | |||
return JPEG_SCAN_COMPLETED; | |||
} | |||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ | |||
#ifdef BLOCK_SMOOTHING_SUPPORTED | |||
/* | |||
* This code applies interblock smoothing as described by section K.8 | |||
* of the JPEG standard: the first 5 AC coefficients are estimated from | |||
* the DC values of a DCT block and its 8 neighboring blocks. | |||
* We apply smoothing only for progressive JPEG decoding, and only if | |||
* the coefficients it can estimate are not yet known to full precision. | |||
*/ | |||
/* Natural-order array positions of the first 5 zigzag-order coefficients */ | |||
#define Q01_POS 1 | |||
#define Q10_POS 8 | |||
#define Q20_POS 16 | |||
#define Q11_POS 9 | |||
#define Q02_POS 2 | |||
/* | |||
* Determine whether block smoothing is applicable and safe. | |||
* We also latch the current states of the coef_bits[] entries for the | |||
* AC coefficients; otherwise, if the input side of the decompressor | |||
* advances into a new scan, we might think the coefficients are known | |||
* more accurately than they really are. | |||
*/ | |||
LOCAL(boolean) | |||
smoothing_ok (j_decompress_ptr cinfo) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
boolean smoothing_useful = FALSE; | |||
int ci, coefi; | |||
jpeg_component_info *compptr; | |||
JQUANT_TBL * qtable; | |||
int * coef_bits; | |||
int * coef_bits_latch; | |||
if (! cinfo->progressive_mode || cinfo->coef_bits == NULL) | |||
return FALSE; | |||
/* Allocate latch area if not already done */ | |||
if (coef->coef_bits_latch == NULL) | |||
coef->coef_bits_latch = (int *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
cinfo->num_components * | |||
(SAVED_COEFS * SIZEOF(int))); | |||
coef_bits_latch = coef->coef_bits_latch; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* All components' quantization values must already be latched. */ | |||
if ((qtable = compptr->quant_table) == NULL) | |||
return FALSE; | |||
/* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */ | |||
if (qtable->quantval[0] == 0 || | |||
qtable->quantval[Q01_POS] == 0 || | |||
qtable->quantval[Q10_POS] == 0 || | |||
qtable->quantval[Q20_POS] == 0 || | |||
qtable->quantval[Q11_POS] == 0 || | |||
qtable->quantval[Q02_POS] == 0) | |||
return FALSE; | |||
/* DC values must be at least partly known for all components. */ | |||
coef_bits = cinfo->coef_bits[ci]; | |||
if (coef_bits[0] < 0) | |||
return FALSE; | |||
/* Block smoothing is helpful if some AC coefficients remain inaccurate. */ | |||
for (coefi = 1; coefi <= 5; coefi++) { | |||
coef_bits_latch[coefi] = coef_bits[coefi]; | |||
if (coef_bits[coefi] != 0) | |||
smoothing_useful = TRUE; | |||
} | |||
coef_bits_latch += SAVED_COEFS; | |||
} | |||
return smoothing_useful; | |||
} | |||
/* | |||
* Variant of decompress_data for use when doing block smoothing. | |||
*/ | |||
METHODDEF(int) | |||
decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf) | |||
{ | |||
my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |||
JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |||
JDIMENSION block_num, last_block_column; | |||
int ci, block_row, block_rows, access_rows; | |||
JBLOCKARRAY buffer; | |||
JBLOCKROW buffer_ptr, prev_block_row, next_block_row; | |||
JSAMPARRAY output_ptr; | |||
JDIMENSION output_col; | |||
jpeg_component_info *compptr; | |||
inverse_DCT_method_ptr inverse_DCT; | |||
boolean first_row, last_row; | |||
JBLOCK workspace; | |||
int *coef_bits; | |||
JQUANT_TBL *quanttbl; | |||
INT32 Q00,Q01,Q02,Q10,Q11,Q20, num; | |||
int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9; | |||
int Al, pred; | |||
/* Force some input to be done if we are getting ahead of the input. */ | |||
while (cinfo->input_scan_number <= cinfo->output_scan_number && | |||
! cinfo->inputctl->eoi_reached) { | |||
if (cinfo->input_scan_number == cinfo->output_scan_number) { | |||
/* If input is working on current scan, we ordinarily want it to | |||
* have completed the current row. But if input scan is DC, | |||
* we want it to keep one row ahead so that next block row's DC | |||
* values are up to date. | |||
*/ | |||
JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0; | |||
if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta) | |||
break; | |||
} | |||
if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED) | |||
return JPEG_SUSPENDED; | |||
} | |||
/* OK, output from the virtual arrays. */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Don't bother to IDCT an uninteresting component. */ | |||
if (! compptr->component_needed) | |||
continue; | |||
/* Count non-dummy DCT block rows in this iMCU row. */ | |||
if (cinfo->output_iMCU_row < last_iMCU_row) { | |||
block_rows = compptr->v_samp_factor; | |||
access_rows = block_rows * 2; /* this and next iMCU row */ | |||
last_row = FALSE; | |||
} else { | |||
/* NB: can't use last_row_height here; it is input-side-dependent! */ | |||
block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |||
if (block_rows == 0) block_rows = compptr->v_samp_factor; | |||
access_rows = block_rows; /* this iMCU row only */ | |||
last_row = TRUE; | |||
} | |||
/* Align the virtual buffer for this component. */ | |||
if (cinfo->output_iMCU_row > 0) { | |||
access_rows += compptr->v_samp_factor; /* prior iMCU row too */ | |||
buffer = (*cinfo->mem->access_virt_barray) | |||
((j_common_ptr) cinfo, coef->whole_image[ci], | |||
(cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, | |||
(JDIMENSION) access_rows, FALSE); | |||
buffer += compptr->v_samp_factor; /* point to current iMCU row */ | |||
first_row = FALSE; | |||
} else { | |||
buffer = (*cinfo->mem->access_virt_barray) | |||
((j_common_ptr) cinfo, coef->whole_image[ci], | |||
(JDIMENSION) 0, (JDIMENSION) access_rows, FALSE); | |||
first_row = TRUE; | |||
} | |||
/* Fetch component-dependent info */ | |||
coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); | |||
quanttbl = compptr->quant_table; | |||
Q00 = quanttbl->quantval[0]; | |||
Q01 = quanttbl->quantval[Q01_POS]; | |||
Q10 = quanttbl->quantval[Q10_POS]; | |||
Q20 = quanttbl->quantval[Q20_POS]; | |||
Q11 = quanttbl->quantval[Q11_POS]; | |||
Q02 = quanttbl->quantval[Q02_POS]; | |||
inverse_DCT = cinfo->idct->inverse_DCT[ci]; | |||
output_ptr = output_buf[ci]; | |||
/* Loop over all DCT blocks to be processed. */ | |||
for (block_row = 0; block_row < block_rows; block_row++) { | |||
buffer_ptr = buffer[block_row]; | |||
if (first_row && block_row == 0) | |||
prev_block_row = buffer_ptr; | |||
else | |||
prev_block_row = buffer[block_row-1]; | |||
if (last_row && block_row == block_rows-1) | |||
next_block_row = buffer_ptr; | |||
else | |||
next_block_row = buffer[block_row+1]; | |||
/* We fetch the surrounding DC values using a sliding-register approach. | |||
* Initialize all nine here so as to do the right thing on narrow pics. | |||
*/ | |||
DC1 = DC2 = DC3 = (int) prev_block_row[0][0]; | |||
DC4 = DC5 = DC6 = (int) buffer_ptr[0][0]; | |||
DC7 = DC8 = DC9 = (int) next_block_row[0][0]; | |||
output_col = 0; | |||
last_block_column = compptr->width_in_blocks - 1; | |||
for (block_num = 0; block_num <= last_block_column; block_num++) { | |||
/* Fetch current DCT block into workspace so we can modify it. */ | |||
jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1); | |||
/* Update DC values */ | |||
if (block_num < last_block_column) { | |||
DC3 = (int) prev_block_row[1][0]; | |||
DC6 = (int) buffer_ptr[1][0]; | |||
DC9 = (int) next_block_row[1][0]; | |||
} | |||
/* Compute coefficient estimates per K.8. | |||
* An estimate is applied only if coefficient is still zero, | |||
* and is not known to be fully accurate. | |||
*/ | |||
/* AC01 */ | |||
if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) { | |||
num = 36 * Q00 * (DC4 - DC6); | |||
if (num >= 0) { | |||
pred = (int) (((Q01<<7) + num) / (Q01<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
} else { | |||
pred = (int) (((Q01<<7) - num) / (Q01<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
pred = -pred; | |||
} | |||
workspace[1] = (JCOEF) pred; | |||
} | |||
/* AC10 */ | |||
if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) { | |||
num = 36 * Q00 * (DC2 - DC8); | |||
if (num >= 0) { | |||
pred = (int) (((Q10<<7) + num) / (Q10<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
} else { | |||
pred = (int) (((Q10<<7) - num) / (Q10<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
pred = -pred; | |||
} | |||
workspace[8] = (JCOEF) pred; | |||
} | |||
/* AC20 */ | |||
if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) { | |||
num = 9 * Q00 * (DC2 + DC8 - 2*DC5); | |||
if (num >= 0) { | |||
pred = (int) (((Q20<<7) + num) / (Q20<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
} else { | |||
pred = (int) (((Q20<<7) - num) / (Q20<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
pred = -pred; | |||
} | |||
workspace[16] = (JCOEF) pred; | |||
} | |||
/* AC11 */ | |||
if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) { | |||
num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9); | |||
if (num >= 0) { | |||
pred = (int) (((Q11<<7) + num) / (Q11<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
} else { | |||
pred = (int) (((Q11<<7) - num) / (Q11<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
pred = -pred; | |||
} | |||
workspace[9] = (JCOEF) pred; | |||
} | |||
/* AC02 */ | |||
if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) { | |||
num = 9 * Q00 * (DC4 + DC6 - 2*DC5); | |||
if (num >= 0) { | |||
pred = (int) (((Q02<<7) + num) / (Q02<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
} else { | |||
pred = (int) (((Q02<<7) - num) / (Q02<<8)); | |||
if (Al > 0 && pred >= (1<<Al)) | |||
pred = (1<<Al)-1; | |||
pred = -pred; | |||
} | |||
workspace[2] = (JCOEF) pred; | |||
} | |||
/* OK, do the IDCT */ | |||
(*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace, | |||
output_ptr, output_col); | |||
/* Advance for next column */ | |||
DC1 = DC2; DC2 = DC3; | |||
DC4 = DC5; DC5 = DC6; | |||
DC7 = DC8; DC8 = DC9; | |||
buffer_ptr++, prev_block_row++, next_block_row++; | |||
output_col += compptr->DCT_h_scaled_size; | |||
} | |||
output_ptr += compptr->DCT_v_scaled_size; | |||
} | |||
} | |||
if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) | |||
return JPEG_ROW_COMPLETED; | |||
return JPEG_SCAN_COMPLETED; | |||
} | |||
#endif /* BLOCK_SMOOTHING_SUPPORTED */ | |||
/* | |||
* Initialize coefficient buffer controller. | |||
*/ | |||
GLOBAL(void) | |||
jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | |||
{ | |||
my_coef_ptr coef; | |||
coef = (my_coef_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_coef_controller)); | |||
cinfo->coef = (struct jpeg_d_coef_controller *) coef; | |||
coef->pub.start_input_pass = start_input_pass; | |||
coef->pub.start_output_pass = start_output_pass; | |||
#ifdef BLOCK_SMOOTHING_SUPPORTED | |||
coef->coef_bits_latch = NULL; | |||
#endif | |||
/* Create the coefficient buffer. */ | |||
if (need_full_buffer) { | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
/* Allocate a full-image virtual array for each component, */ | |||
/* padded to a multiple of samp_factor DCT blocks in each direction. */ | |||
/* Note we ask for a pre-zeroed array. */ | |||
int ci, access_rows; | |||
jpeg_component_info *compptr; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
access_rows = compptr->v_samp_factor; | |||
#ifdef BLOCK_SMOOTHING_SUPPORTED | |||
/* If block smoothing could be used, need a bigger window */ | |||
if (cinfo->progressive_mode) | |||
access_rows *= 3; | |||
#endif | |||
coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE, | |||
(JDIMENSION) jround_up((long) compptr->width_in_blocks, | |||
(long) compptr->h_samp_factor), | |||
(JDIMENSION) jround_up((long) compptr->height_in_blocks, | |||
(long) compptr->v_samp_factor), | |||
(JDIMENSION) access_rows); | |||
} | |||
coef->pub.consume_data = consume_data; | |||
coef->pub.decompress_data = decompress_data; | |||
coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif | |||
} else { | |||
/* We only need a single-MCU buffer. */ | |||
JBLOCKROW buffer; | |||
int i; | |||
buffer = (JBLOCKROW) | |||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |||
for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { | |||
coef->MCU_buffer[i] = buffer + i; | |||
} | |||
coef->pub.consume_data = dummy_consume_data; | |||
coef->pub.decompress_data = decompress_onepass; | |||
coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ | |||
} | |||
} |
@@ -1,396 +0,0 @@ | |||
/* | |||
* jdcolor.c | |||
* | |||
* Copyright (C) 1991-1997, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains output colorspace conversion routines. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Private subobject */ | |||
typedef struct { | |||
struct jpeg_color_deconverter pub; /* public fields */ | |||
/* Private state for YCC->RGB conversion */ | |||
int * Cr_r_tab; /* => table for Cr to R conversion */ | |||
int * Cb_b_tab; /* => table for Cb to B conversion */ | |||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */ | |||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */ | |||
} my_color_deconverter; | |||
typedef my_color_deconverter * my_cconvert_ptr; | |||
/**************** YCbCr -> RGB conversion: most common case **************/ | |||
/* | |||
* YCbCr is defined per CCIR 601-1, except that Cb and Cr are | |||
* normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. | |||
* The conversion equations to be implemented are therefore | |||
* R = Y + 1.40200 * Cr | |||
* G = Y - 0.34414 * Cb - 0.71414 * Cr | |||
* B = Y + 1.77200 * Cb | |||
* where Cb and Cr represent the incoming values less CENTERJSAMPLE. | |||
* (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) | |||
* | |||
* To avoid floating-point arithmetic, we represent the fractional constants | |||
* as integers scaled up by 2^16 (about 4 digits precision); we have to divide | |||
* the products by 2^16, with appropriate rounding, to get the correct answer. | |||
* Notice that Y, being an integral input, does not contribute any fraction | |||
* so it need not participate in the rounding. | |||
* | |||
* For even more speed, we avoid doing any multiplications in the inner loop | |||
* by precalculating the constants times Cb and Cr for all possible values. | |||
* For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); | |||
* for 12-bit samples it is still acceptable. It's not very reasonable for | |||
* 16-bit samples, but if you want lossless storage you shouldn't be changing | |||
* colorspace anyway. | |||
* The Cr=>R and Cb=>B values can be rounded to integers in advance; the | |||
* values for the G calculation are left scaled up, since we must add them | |||
* together before rounding. | |||
*/ | |||
#define SCALEBITS 16 /* speediest right-shift on some machines */ | |||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) | |||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | |||
/* | |||
* Initialize tables for YCC->RGB colorspace conversion. | |||
*/ | |||
LOCAL(void) | |||
build_ycc_rgb_table (j_decompress_ptr cinfo) | |||
{ | |||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |||
int i; | |||
INT32 x; | |||
SHIFT_TEMPS | |||
cconvert->Cr_r_tab = (int *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(int)); | |||
cconvert->Cb_b_tab = (int *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(int)); | |||
cconvert->Cr_g_tab = (INT32 *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(INT32)); | |||
cconvert->Cb_g_tab = (INT32 *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(INT32)); | |||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { | |||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | |||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | |||
/* Cr=>R value is nearest int to 1.40200 * x */ | |||
cconvert->Cr_r_tab[i] = (int) | |||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); | |||
/* Cb=>B value is nearest int to 1.77200 * x */ | |||
cconvert->Cb_b_tab[i] = (int) | |||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); | |||
/* Cr=>G value is scaled-up -0.71414 * x */ | |||
cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x; | |||
/* Cb=>G value is scaled-up -0.34414 * x */ | |||
/* We also add in ONE_HALF so that need not do it in inner loop */ | |||
cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; | |||
} | |||
} | |||
/* | |||
* Convert some rows of samples to the output colorspace. | |||
* | |||
* Note that we change from noninterleaved, one-plane-per-component format | |||
* to interleaved-pixel format. The output buffer is therefore three times | |||
* as wide as the input buffer. | |||
* A starting row offset is provided only for the input buffer. The caller | |||
* can easily adjust the passed output_buf value to accommodate any row | |||
* offset required on that side. | |||
*/ | |||
METHODDEF(void) | |||
ycc_rgb_convert (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION input_row, | |||
JSAMPARRAY output_buf, int num_rows) | |||
{ | |||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |||
register int y, cb, cr; | |||
register JSAMPROW outptr; | |||
register JSAMPROW inptr0, inptr1, inptr2; | |||
register JDIMENSION col; | |||
JDIMENSION num_cols = cinfo->output_width; | |||
/* copy these pointers into registers if possible */ | |||
register JSAMPLE * range_limit = cinfo->sample_range_limit; | |||
register int * Crrtab = cconvert->Cr_r_tab; | |||
register int * Cbbtab = cconvert->Cb_b_tab; | |||
register INT32 * Crgtab = cconvert->Cr_g_tab; | |||
register INT32 * Cbgtab = cconvert->Cb_g_tab; | |||
SHIFT_TEMPS | |||
while (--num_rows >= 0) { | |||
inptr0 = input_buf[0][input_row]; | |||
inptr1 = input_buf[1][input_row]; | |||
inptr2 = input_buf[2][input_row]; | |||
input_row++; | |||
outptr = *output_buf++; | |||
for (col = 0; col < num_cols; col++) { | |||
y = GETJSAMPLE(inptr0[col]); | |||
cb = GETJSAMPLE(inptr1[col]); | |||
cr = GETJSAMPLE(inptr2[col]); | |||
/* Range-limiting is essential due to noise introduced by DCT losses. */ | |||
outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; | |||
outptr[RGB_GREEN] = range_limit[y + | |||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], | |||
SCALEBITS))]; | |||
outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; | |||
outptr += RGB_PIXELSIZE; | |||
} | |||
} | |||
} | |||
/**************** Cases other than YCbCr -> RGB **************/ | |||
/* | |||
* Color conversion for no colorspace change: just copy the data, | |||
* converting from separate-planes to interleaved representation. | |||
*/ | |||
METHODDEF(void) | |||
null_convert (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION input_row, | |||
JSAMPARRAY output_buf, int num_rows) | |||
{ | |||
register JSAMPROW inptr, outptr; | |||
register JDIMENSION count; | |||
register int num_components = cinfo->num_components; | |||
JDIMENSION num_cols = cinfo->output_width; | |||
int ci; | |||
while (--num_rows >= 0) { | |||
for (ci = 0; ci < num_components; ci++) { | |||
inptr = input_buf[ci][input_row]; | |||
outptr = output_buf[0] + ci; | |||
for (count = num_cols; count > 0; count--) { | |||
*outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */ | |||
outptr += num_components; | |||
} | |||
} | |||
input_row++; | |||
output_buf++; | |||
} | |||
} | |||
/* | |||
* Color conversion for grayscale: just copy the data. | |||
* This also works for YCbCr -> grayscale conversion, in which | |||
* we just copy the Y (luminance) component and ignore chrominance. | |||
*/ | |||
METHODDEF(void) | |||
grayscale_convert (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION input_row, | |||
JSAMPARRAY output_buf, int num_rows) | |||
{ | |||
jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0, | |||
num_rows, cinfo->output_width); | |||
} | |||
/* | |||
* Convert grayscale to RGB: just duplicate the graylevel three times. | |||
* This is provided to support applications that don't want to cope | |||
* with grayscale as a separate case. | |||
*/ | |||
METHODDEF(void) | |||
gray_rgb_convert (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION input_row, | |||
JSAMPARRAY output_buf, int num_rows) | |||
{ | |||
register JSAMPROW inptr, outptr; | |||
register JDIMENSION col; | |||
JDIMENSION num_cols = cinfo->output_width; | |||
while (--num_rows >= 0) { | |||
inptr = input_buf[0][input_row++]; | |||
outptr = *output_buf++; | |||
for (col = 0; col < num_cols; col++) { | |||
/* We can dispense with GETJSAMPLE() here */ | |||
outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; | |||
outptr += RGB_PIXELSIZE; | |||
} | |||
} | |||
} | |||
/* | |||
* Adobe-style YCCK->CMYK conversion. | |||
* We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same | |||
* conversion as above, while passing K (black) unchanged. | |||
* We assume build_ycc_rgb_table has been called. | |||
*/ | |||
METHODDEF(void) | |||
ycck_cmyk_convert (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION input_row, | |||
JSAMPARRAY output_buf, int num_rows) | |||
{ | |||
my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert; | |||
register int y, cb, cr; | |||
register JSAMPROW outptr; | |||
register JSAMPROW inptr0, inptr1, inptr2, inptr3; | |||
register JDIMENSION col; | |||
JDIMENSION num_cols = cinfo->output_width; | |||
/* copy these pointers into registers if possible */ | |||
register JSAMPLE * range_limit = cinfo->sample_range_limit; | |||
register int * Crrtab = cconvert->Cr_r_tab; | |||
register int * Cbbtab = cconvert->Cb_b_tab; | |||
register INT32 * Crgtab = cconvert->Cr_g_tab; | |||
register INT32 * Cbgtab = cconvert->Cb_g_tab; | |||
SHIFT_TEMPS | |||
while (--num_rows >= 0) { | |||
inptr0 = input_buf[0][input_row]; | |||
inptr1 = input_buf[1][input_row]; | |||
inptr2 = input_buf[2][input_row]; | |||
inptr3 = input_buf[3][input_row]; | |||
input_row++; | |||
outptr = *output_buf++; | |||
for (col = 0; col < num_cols; col++) { | |||
y = GETJSAMPLE(inptr0[col]); | |||
cb = GETJSAMPLE(inptr1[col]); | |||
cr = GETJSAMPLE(inptr2[col]); | |||
/* Range-limiting is essential due to noise introduced by DCT losses. */ | |||
outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ | |||
outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ | |||
((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], | |||
SCALEBITS)))]; | |||
outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ | |||
/* K passes through unchanged */ | |||
outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */ | |||
outptr += 4; | |||
} | |||
} | |||
} | |||
/* | |||
* Empty method for start_pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_dcolor (j_decompress_ptr cinfo) | |||
{ | |||
/* no work needed */ | |||
} | |||
/* | |||
* Module initialization routine for output colorspace conversion. | |||
*/ | |||
GLOBAL(void) | |||
jinit_color_deconverter (j_decompress_ptr cinfo) | |||
{ | |||
my_cconvert_ptr cconvert; | |||
int ci; | |||
cconvert = (my_cconvert_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_color_deconverter)); | |||
cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert; | |||
cconvert->pub.start_pass = start_pass_dcolor; | |||
/* Make sure num_components agrees with jpeg_color_space */ | |||
switch (cinfo->jpeg_color_space) { | |||
case JCS_GRAYSCALE: | |||
if (cinfo->num_components != 1) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
break; | |||
case JCS_RGB: | |||
case JCS_YCbCr: | |||
if (cinfo->num_components != 3) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
break; | |||
case JCS_CMYK: | |||
case JCS_YCCK: | |||
if (cinfo->num_components != 4) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
break; | |||
default: /* JCS_UNKNOWN can be anything */ | |||
if (cinfo->num_components < 1) | |||
ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); | |||
break; | |||
} | |||
/* Set out_color_components and conversion method based on requested space. | |||
* Also clear the component_needed flags for any unused components, | |||
* so that earlier pipeline stages can avoid useless computation. | |||
*/ | |||
switch (cinfo->out_color_space) { | |||
case JCS_GRAYSCALE: | |||
cinfo->out_color_components = 1; | |||
if (cinfo->jpeg_color_space == JCS_GRAYSCALE || | |||
cinfo->jpeg_color_space == JCS_YCbCr) { | |||
cconvert->pub.color_convert = grayscale_convert; | |||
/* For color->grayscale conversion, only the Y (0) component is needed */ | |||
for (ci = 1; ci < cinfo->num_components; ci++) | |||
cinfo->comp_info[ci].component_needed = FALSE; | |||
} else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
case JCS_RGB: | |||
cinfo->out_color_components = RGB_PIXELSIZE; | |||
if (cinfo->jpeg_color_space == JCS_YCbCr) { | |||
cconvert->pub.color_convert = ycc_rgb_convert; | |||
build_ycc_rgb_table(cinfo); | |||
} else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { | |||
cconvert->pub.color_convert = gray_rgb_convert; | |||
} else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) { | |||
cconvert->pub.color_convert = null_convert; | |||
} else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
case JCS_CMYK: | |||
cinfo->out_color_components = 4; | |||
if (cinfo->jpeg_color_space == JCS_YCCK) { | |||
cconvert->pub.color_convert = ycck_cmyk_convert; | |||
build_ycc_rgb_table(cinfo); | |||
} else if (cinfo->jpeg_color_space == JCS_CMYK) { | |||
cconvert->pub.color_convert = null_convert; | |||
} else | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
default: | |||
/* Permit null conversion to same output space */ | |||
if (cinfo->out_color_space == cinfo->jpeg_color_space) { | |||
cinfo->out_color_components = cinfo->num_components; | |||
cconvert->pub.color_convert = null_convert; | |||
} else /* unsupported non-null conversion */ | |||
ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); | |||
break; | |||
} | |||
if (cinfo->quantize_colors) | |||
cinfo->output_components = 1; /* single colormapped output component */ | |||
else | |||
cinfo->output_components = cinfo->out_color_components; | |||
} |
@@ -1,393 +0,0 @@ | |||
/* | |||
* jdct.h | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This include file contains common declarations for the forward and | |||
* inverse DCT modules. These declarations are private to the DCT managers | |||
* (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. | |||
* The individual DCT algorithms are kept in separate files to ease | |||
* machine-dependent tuning (e.g., assembly coding). | |||
*/ | |||
/* | |||
* A forward DCT routine is given a pointer to an input sample array and | |||
* a pointer to a work area of type DCTELEM[]; the DCT is to be performed | |||
* in-place in that buffer. Type DCTELEM is int for 8-bit samples, INT32 | |||
* for 12-bit samples. (NOTE: Floating-point DCT implementations use an | |||
* array of type FAST_FLOAT, instead.) | |||
* The input data is to be fetched from the sample array starting at a | |||
* specified column. (Any row offset needed will be applied to the array | |||
* pointer before it is passed to the FDCT code.) | |||
* Note that the number of samples fetched by the FDCT routine is | |||
* DCT_h_scaled_size * DCT_v_scaled_size. | |||
* The DCT outputs are returned scaled up by a factor of 8; they therefore | |||
* have a range of +-8K for 8-bit data, +-128K for 12-bit data. This | |||
* convention improves accuracy in integer implementations and saves some | |||
* work in floating-point ones. | |||
* Quantization of the output coefficients is done by jcdctmgr.c. | |||
*/ | |||
#if BITS_IN_JSAMPLE == 8 | |||
typedef int DCTELEM; /* 16 or 32 bits is fine */ | |||
#else | |||
typedef INT32 DCTELEM; /* must have 32 bits */ | |||
#endif | |||
typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data, | |||
JSAMPARRAY sample_data, | |||
JDIMENSION start_col)); | |||
typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data, | |||
JSAMPARRAY sample_data, | |||
JDIMENSION start_col)); | |||
/* | |||
* An inverse DCT routine is given a pointer to the input JBLOCK and a pointer | |||
* to an output sample array. The routine must dequantize the input data as | |||
* well as perform the IDCT; for dequantization, it uses the multiplier table | |||
* pointed to by compptr->dct_table. The output data is to be placed into the | |||
* sample array starting at a specified column. (Any row offset needed will | |||
* be applied to the array pointer before it is passed to the IDCT code.) | |||
* Note that the number of samples emitted by the IDCT routine is | |||
* DCT_h_scaled_size * DCT_v_scaled_size. | |||
*/ | |||
/* typedef inverse_DCT_method_ptr is declared in jpegint.h */ | |||
/* | |||
* Each IDCT routine has its own ideas about the best dct_table element type. | |||
*/ | |||
typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ | |||
#if BITS_IN_JSAMPLE == 8 | |||
typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ | |||
#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ | |||
#else | |||
typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ | |||
#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ | |||
#endif | |||
typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ | |||
/* | |||
* Each IDCT routine is responsible for range-limiting its results and | |||
* converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could | |||
* be quite far out of range if the input data is corrupt, so a bulletproof | |||
* range-limiting step is required. We use a mask-and-table-lookup method | |||
* to do the combined operations quickly. See the comments with | |||
* prepare_range_limit_table (in jdmaster.c) for more info. | |||
*/ | |||
#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) | |||
#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ | |||
/* Short forms of external names for systems with brain-damaged linkers. */ | |||
#ifdef NEED_SHORT_EXTERNAL_NAMES | |||
#define jpeg_fdct_islow jFDislow | |||
#define jpeg_fdct_ifast jFDifast | |||
#define jpeg_fdct_float jFDfloat | |||
#define jpeg_fdct_7x7 jFD7x7 | |||
#define jpeg_fdct_6x6 jFD6x6 | |||
#define jpeg_fdct_5x5 jFD5x5 | |||
#define jpeg_fdct_4x4 jFD4x4 | |||
#define jpeg_fdct_3x3 jFD3x3 | |||
#define jpeg_fdct_2x2 jFD2x2 | |||
#define jpeg_fdct_1x1 jFD1x1 | |||
#define jpeg_fdct_9x9 jFD9x9 | |||
#define jpeg_fdct_10x10 jFD10x10 | |||
#define jpeg_fdct_11x11 jFD11x11 | |||
#define jpeg_fdct_12x12 jFD12x12 | |||
#define jpeg_fdct_13x13 jFD13x13 | |||
#define jpeg_fdct_14x14 jFD14x14 | |||
#define jpeg_fdct_15x15 jFD15x15 | |||
#define jpeg_fdct_16x16 jFD16x16 | |||
#define jpeg_fdct_16x8 jFD16x8 | |||
#define jpeg_fdct_14x7 jFD14x7 | |||
#define jpeg_fdct_12x6 jFD12x6 | |||
#define jpeg_fdct_10x5 jFD10x5 | |||
#define jpeg_fdct_8x4 jFD8x4 | |||
#define jpeg_fdct_6x3 jFD6x3 | |||
#define jpeg_fdct_4x2 jFD4x2 | |||
#define jpeg_fdct_2x1 jFD2x1 | |||
#define jpeg_fdct_8x16 jFD8x16 | |||
#define jpeg_fdct_7x14 jFD7x14 | |||
#define jpeg_fdct_6x12 jFD6x12 | |||
#define jpeg_fdct_5x10 jFD5x10 | |||
#define jpeg_fdct_4x8 jFD4x8 | |||
#define jpeg_fdct_3x6 jFD3x6 | |||
#define jpeg_fdct_2x4 jFD2x4 | |||
#define jpeg_fdct_1x2 jFD1x2 | |||
#define jpeg_idct_islow jRDislow | |||
#define jpeg_idct_ifast jRDifast | |||
#define jpeg_idct_float jRDfloat | |||
#define jpeg_idct_7x7 jRD7x7 | |||
#define jpeg_idct_6x6 jRD6x6 | |||
#define jpeg_idct_5x5 jRD5x5 | |||
#define jpeg_idct_4x4 jRD4x4 | |||
#define jpeg_idct_3x3 jRD3x3 | |||
#define jpeg_idct_2x2 jRD2x2 | |||
#define jpeg_idct_1x1 jRD1x1 | |||
#define jpeg_idct_9x9 jRD9x9 | |||
#define jpeg_idct_10x10 jRD10x10 | |||
#define jpeg_idct_11x11 jRD11x11 | |||
#define jpeg_idct_12x12 jRD12x12 | |||
#define jpeg_idct_13x13 jRD13x13 | |||
#define jpeg_idct_14x14 jRD14x14 | |||
#define jpeg_idct_15x15 jRD15x15 | |||
#define jpeg_idct_16x16 jRD16x16 | |||
#define jpeg_idct_16x8 jRD16x8 | |||
#define jpeg_idct_14x7 jRD14x7 | |||
#define jpeg_idct_12x6 jRD12x6 | |||
#define jpeg_idct_10x5 jRD10x5 | |||
#define jpeg_idct_8x4 jRD8x4 | |||
#define jpeg_idct_6x3 jRD6x3 | |||
#define jpeg_idct_4x2 jRD4x2 | |||
#define jpeg_idct_2x1 jRD2x1 | |||
#define jpeg_idct_8x16 jRD8x16 | |||
#define jpeg_idct_7x14 jRD7x14 | |||
#define jpeg_idct_6x12 jRD6x12 | |||
#define jpeg_idct_5x10 jRD5x10 | |||
#define jpeg_idct_4x8 jRD4x8 | |||
#define jpeg_idct_3x6 jRD3x8 | |||
#define jpeg_idct_2x4 jRD2x4 | |||
#define jpeg_idct_1x2 jRD1x2 | |||
#endif /* NEED_SHORT_EXTERNAL_NAMES */ | |||
/* Extern declarations for the forward and inverse DCT routines. */ | |||
EXTERN(void) jpeg_fdct_islow | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_ifast | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_float | |||
JPP((FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_7x7 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_6x6 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_5x5 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_4x4 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_3x3 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_2x2 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_1x1 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_9x9 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_10x10 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_11x11 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_12x12 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_13x13 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_14x14 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_15x15 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_16x16 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_16x8 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_14x7 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_12x6 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_10x5 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_8x4 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_6x3 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_4x2 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_2x1 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_8x16 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_7x14 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_6x12 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_5x10 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_4x8 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_3x6 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_2x4 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_fdct_1x2 | |||
JPP((DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)); | |||
EXTERN(void) jpeg_idct_islow | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_ifast | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_float | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_7x7 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_6x6 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_5x5 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_4x4 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_3x3 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_2x2 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_1x1 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_9x9 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_10x10 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_11x11 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_12x12 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_13x13 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_14x14 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_15x15 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_16x16 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_16x8 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_14x7 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_12x6 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_10x5 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_8x4 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_6x3 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_4x2 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_2x1 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_8x16 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_7x14 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_6x12 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_5x10 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_4x8 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_3x6 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_2x4 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
EXTERN(void) jpeg_idct_1x2 | |||
JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
/* | |||
* Macros for handling fixed-point arithmetic; these are used by many | |||
* but not all of the DCT/IDCT modules. | |||
* | |||
* All values are expected to be of type INT32. | |||
* Fractional constants are scaled left by CONST_BITS bits. | |||
* CONST_BITS is defined within each module using these macros, | |||
* and may differ from one module to the next. | |||
*/ | |||
#define ONE ((INT32) 1) | |||
#define CONST_SCALE (ONE << CONST_BITS) | |||
/* Convert a positive real constant to an integer scaled by CONST_SCALE. | |||
* Caution: some C compilers fail to reduce "FIX(constant)" at compile time, | |||
* thus causing a lot of useless floating-point operations at run time. | |||
*/ | |||
#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5)) | |||
/* Descale and correctly round an INT32 value that's scaled by N bits. | |||
* We assume RIGHT_SHIFT rounds towards minus infinity, so adding | |||
* the fudge factor is correct for either sign of X. | |||
*/ | |||
#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n) | |||
/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |||
* This macro is used only when the two inputs will actually be no more than | |||
* 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a | |||
* full 32x32 multiply. This provides a useful speedup on many machines. | |||
* Unfortunately there is no way to specify a 16x16->32 multiply portably | |||
* in C, but some C compilers will do the right thing if you provide the | |||
* correct combination of casts. | |||
*/ | |||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const))) | |||
#endif | |||
#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ | |||
#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const))) | |||
#endif | |||
#ifndef MULTIPLY16C16 /* default definition */ | |||
#define MULTIPLY16C16(var,const) ((var) * (const)) | |||
#endif | |||
/* Same except both inputs are variables. */ | |||
#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ | |||
#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2))) | |||
#endif | |||
#ifndef MULTIPLY16V16 /* default definition */ | |||
#define MULTIPLY16V16(var1,var2) ((var1) * (var2)) | |||
#endif |
@@ -1,384 +0,0 @@ | |||
/* | |||
* jddctmgr.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* Modified 2002-2010 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the inverse-DCT management logic. | |||
* This code selects a particular IDCT implementation to be used, | |||
* and it performs related housekeeping chores. No code in this file | |||
* is executed per IDCT step, only during output pass setup. | |||
* | |||
* Note that the IDCT routines are responsible for performing coefficient | |||
* dequantization as well as the IDCT proper. This module sets up the | |||
* dequantization multiplier table needed by the IDCT routine. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jdct.h" /* Private declarations for DCT subsystem */ | |||
/* | |||
* The decompressor input side (jdinput.c) saves away the appropriate | |||
* quantization table for each component at the start of the first scan | |||
* involving that component. (This is necessary in order to correctly | |||
* decode files that reuse Q-table slots.) | |||
* When we are ready to make an output pass, the saved Q-table is converted | |||
* to a multiplier table that will actually be used by the IDCT routine. | |||
* The multiplier table contents are IDCT-method-dependent. To support | |||
* application changes in IDCT method between scans, we can remake the | |||
* multiplier tables if necessary. | |||
* In buffered-image mode, the first output pass may occur before any data | |||
* has been seen for some components, and thus before their Q-tables have | |||
* been saved away. To handle this case, multiplier tables are preset | |||
* to zeroes; the result of the IDCT will be a neutral gray level. | |||
*/ | |||
/* Private subobject for this module */ | |||
typedef struct { | |||
struct jpeg_inverse_dct pub; /* public fields */ | |||
/* This array contains the IDCT method code that each multiplier table | |||
* is currently set up for, or -1 if it's not yet set up. | |||
* The actual multiplier tables are pointed to by dct_table in the | |||
* per-component comp_info structures. | |||
*/ | |||
int cur_method[MAX_COMPONENTS]; | |||
} my_idct_controller; | |||
typedef my_idct_controller * my_idct_ptr; | |||
/* Allocated multiplier tables: big enough for any supported variant */ | |||
typedef union { | |||
ISLOW_MULT_TYPE islow_array[DCTSIZE2]; | |||
#ifdef DCT_IFAST_SUPPORTED | |||
IFAST_MULT_TYPE ifast_array[DCTSIZE2]; | |||
#endif | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
FLOAT_MULT_TYPE float_array[DCTSIZE2]; | |||
#endif | |||
} multiplier_table; | |||
/* The current scaled-IDCT routines require ISLOW-style multiplier tables, | |||
* so be sure to compile that code if either ISLOW or SCALING is requested. | |||
*/ | |||
#ifdef DCT_ISLOW_SUPPORTED | |||
#define PROVIDE_ISLOW_TABLES | |||
#else | |||
#ifdef IDCT_SCALING_SUPPORTED | |||
#define PROVIDE_ISLOW_TABLES | |||
#endif | |||
#endif | |||
/* | |||
* Prepare for an output pass. | |||
* Here we select the proper IDCT routine for each component and build | |||
* a matching multiplier table. | |||
*/ | |||
METHODDEF(void) | |||
start_pass (j_decompress_ptr cinfo) | |||
{ | |||
my_idct_ptr idct = (my_idct_ptr) cinfo->idct; | |||
int ci, i; | |||
jpeg_component_info *compptr; | |||
int method = 0; | |||
inverse_DCT_method_ptr method_ptr = NULL; | |||
JQUANT_TBL * qtbl; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Select the proper IDCT routine for this component's scaling */ | |||
switch ((compptr->DCT_h_scaled_size << 8) + compptr->DCT_v_scaled_size) { | |||
#ifdef IDCT_SCALING_SUPPORTED | |||
case ((1 << 8) + 1): | |||
method_ptr = jpeg_idct_1x1; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((2 << 8) + 2): | |||
method_ptr = jpeg_idct_2x2; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((3 << 8) + 3): | |||
method_ptr = jpeg_idct_3x3; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((4 << 8) + 4): | |||
method_ptr = jpeg_idct_4x4; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((5 << 8) + 5): | |||
method_ptr = jpeg_idct_5x5; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((6 << 8) + 6): | |||
method_ptr = jpeg_idct_6x6; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((7 << 8) + 7): | |||
method_ptr = jpeg_idct_7x7; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((9 << 8) + 9): | |||
method_ptr = jpeg_idct_9x9; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((10 << 8) + 10): | |||
method_ptr = jpeg_idct_10x10; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((11 << 8) + 11): | |||
method_ptr = jpeg_idct_11x11; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((12 << 8) + 12): | |||
method_ptr = jpeg_idct_12x12; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((13 << 8) + 13): | |||
method_ptr = jpeg_idct_13x13; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((14 << 8) + 14): | |||
method_ptr = jpeg_idct_14x14; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((15 << 8) + 15): | |||
method_ptr = jpeg_idct_15x15; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((16 << 8) + 16): | |||
method_ptr = jpeg_idct_16x16; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((16 << 8) + 8): | |||
method_ptr = jpeg_idct_16x8; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((14 << 8) + 7): | |||
method_ptr = jpeg_idct_14x7; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((12 << 8) + 6): | |||
method_ptr = jpeg_idct_12x6; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((10 << 8) + 5): | |||
method_ptr = jpeg_idct_10x5; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((8 << 8) + 4): | |||
method_ptr = jpeg_idct_8x4; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((6 << 8) + 3): | |||
method_ptr = jpeg_idct_6x3; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((4 << 8) + 2): | |||
method_ptr = jpeg_idct_4x2; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((2 << 8) + 1): | |||
method_ptr = jpeg_idct_2x1; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((8 << 8) + 16): | |||
method_ptr = jpeg_idct_8x16; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((7 << 8) + 14): | |||
method_ptr = jpeg_idct_7x14; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((6 << 8) + 12): | |||
method_ptr = jpeg_idct_6x12; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((5 << 8) + 10): | |||
method_ptr = jpeg_idct_5x10; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((4 << 8) + 8): | |||
method_ptr = jpeg_idct_4x8; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((3 << 8) + 6): | |||
method_ptr = jpeg_idct_3x6; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((2 << 8) + 4): | |||
method_ptr = jpeg_idct_2x4; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
case ((1 << 8) + 2): | |||
method_ptr = jpeg_idct_1x2; | |||
method = JDCT_ISLOW; /* jidctint uses islow-style table */ | |||
break; | |||
#endif | |||
case ((DCTSIZE << 8) + DCTSIZE): | |||
switch (cinfo->dct_method) { | |||
#ifdef DCT_ISLOW_SUPPORTED | |||
case JDCT_ISLOW: | |||
method_ptr = jpeg_idct_islow; | |||
method = JDCT_ISLOW; | |||
break; | |||
#endif | |||
#ifdef DCT_IFAST_SUPPORTED | |||
case JDCT_IFAST: | |||
method_ptr = jpeg_idct_ifast; | |||
method = JDCT_IFAST; | |||
break; | |||
#endif | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
case JDCT_FLOAT: | |||
method_ptr = jpeg_idct_float; | |||
method = JDCT_FLOAT; | |||
break; | |||
#endif | |||
default: | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
break; | |||
} | |||
break; | |||
default: | |||
ERREXIT2(cinfo, JERR_BAD_DCTSIZE, | |||
compptr->DCT_h_scaled_size, compptr->DCT_v_scaled_size); | |||
break; | |||
} | |||
idct->pub.inverse_DCT[ci] = method_ptr; | |||
/* Create multiplier table from quant table. | |||
* However, we can skip this if the component is uninteresting | |||
* or if we already built the table. Also, if no quant table | |||
* has yet been saved for the component, we leave the | |||
* multiplier table all-zero; we'll be reading zeroes from the | |||
* coefficient controller's buffer anyway. | |||
*/ | |||
if (! compptr->component_needed || idct->cur_method[ci] == method) | |||
continue; | |||
qtbl = compptr->quant_table; | |||
if (qtbl == NULL) /* happens if no data yet for component */ | |||
continue; | |||
idct->cur_method[ci] = method; | |||
switch (method) { | |||
#ifdef PROVIDE_ISLOW_TABLES | |||
case JDCT_ISLOW: | |||
{ | |||
/* For LL&M IDCT method, multipliers are equal to raw quantization | |||
* coefficients, but are stored as ints to ensure access efficiency. | |||
*/ | |||
ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; | |||
for (i = 0; i < DCTSIZE2; i++) { | |||
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; | |||
} | |||
} | |||
break; | |||
#endif | |||
#ifdef DCT_IFAST_SUPPORTED | |||
case JDCT_IFAST: | |||
{ | |||
/* For AA&N IDCT method, multipliers are equal to quantization | |||
* coefficients scaled by scalefactor[row]*scalefactor[col], where | |||
* scalefactor[0] = 1 | |||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |||
* For integer operation, the multiplier table is to be scaled by | |||
* IFAST_SCALE_BITS. | |||
*/ | |||
IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; | |||
#define CONST_BITS 14 | |||
static const INT16 aanscales[DCTSIZE2] = { | |||
/* precomputed values scaled up by 14 bits */ | |||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |||
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, | |||
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, | |||
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, | |||
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, | |||
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, | |||
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, | |||
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 | |||
}; | |||
SHIFT_TEMPS | |||
for (i = 0; i < DCTSIZE2; i++) { | |||
ifmtbl[i] = (IFAST_MULT_TYPE) | |||
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | |||
(INT32) aanscales[i]), | |||
CONST_BITS-IFAST_SCALE_BITS); | |||
} | |||
} | |||
break; | |||
#endif | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
case JDCT_FLOAT: | |||
{ | |||
/* For float AA&N IDCT method, multipliers are equal to quantization | |||
* coefficients scaled by scalefactor[row]*scalefactor[col], where | |||
* scalefactor[0] = 1 | |||
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 | |||
* We apply a further scale factor of 1/8. | |||
*/ | |||
FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; | |||
int row, col; | |||
static const double aanscalefactor[DCTSIZE] = { | |||
1.0, 1.387039845, 1.306562965, 1.175875602, | |||
1.0, 0.785694958, 0.541196100, 0.275899379 | |||
}; | |||
i = 0; | |||
for (row = 0; row < DCTSIZE; row++) { | |||
for (col = 0; col < DCTSIZE; col++) { | |||
fmtbl[i] = (FLOAT_MULT_TYPE) | |||
((double) qtbl->quantval[i] * | |||
aanscalefactor[row] * aanscalefactor[col] * 0.125); | |||
i++; | |||
} | |||
} | |||
} | |||
break; | |||
#endif | |||
default: | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
break; | |||
} | |||
} | |||
} | |||
/* | |||
* Initialize IDCT manager. | |||
*/ | |||
GLOBAL(void) | |||
jinit_inverse_dct (j_decompress_ptr cinfo) | |||
{ | |||
my_idct_ptr idct; | |||
int ci; | |||
jpeg_component_info *compptr; | |||
idct = (my_idct_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_idct_controller)); | |||
cinfo->idct = (struct jpeg_inverse_dct *) idct; | |||
idct->pub.start_pass = start_pass; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Allocate and pre-zero a multiplier table for each component */ | |||
compptr->dct_table = | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(multiplier_table)); | |||
MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); | |||
/* Mark multiplier table not yet set up for any method */ | |||
idct->cur_method[ci] = -1; | |||
} | |||
} |
@@ -1,661 +0,0 @@ | |||
/* | |||
* jdinput.c | |||
* | |||
* Copyright (C) 1991-1997, Thomas G. Lane. | |||
* Modified 2002-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains input control logic for the JPEG decompressor. | |||
* These routines are concerned with controlling the decompressor's input | |||
* processing (marker reading and coefficient decoding). The actual input | |||
* reading is done in jdmarker.c, jdhuff.c, and jdarith.c. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Private state */ | |||
typedef struct { | |||
struct jpeg_input_controller pub; /* public fields */ | |||
int inheaders; /* Nonzero until first SOS is reached */ | |||
} my_input_controller; | |||
typedef my_input_controller * my_inputctl_ptr; | |||
/* Forward declarations */ | |||
METHODDEF(int) consume_markers JPP((j_decompress_ptr cinfo)); | |||
/* | |||
* Routines to calculate various quantities related to the size of the image. | |||
*/ | |||
/* | |||
* Compute output image dimensions and related values. | |||
* NOTE: this is exported for possible use by application. | |||
* Hence it mustn't do anything that can't be done twice. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_core_output_dimensions (j_decompress_ptr cinfo) | |||
/* Do computations that are needed before master selection phase. | |||
* This function is used for transcoding and full decompression. | |||
*/ | |||
{ | |||
#ifdef IDCT_SCALING_SUPPORTED | |||
int ci; | |||
jpeg_component_info *compptr; | |||
/* Compute actual output image dimensions and DCT scaling choices. */ | |||
if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom) { | |||
/* Provide 1/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 1; | |||
cinfo->min_DCT_v_scaled_size = 1; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 2) { | |||
/* Provide 2/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 2L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 2L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 2; | |||
cinfo->min_DCT_v_scaled_size = 2; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 3) { | |||
/* Provide 3/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 3L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 3L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 3; | |||
cinfo->min_DCT_v_scaled_size = 3; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 4) { | |||
/* Provide 4/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 4L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 4L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 4; | |||
cinfo->min_DCT_v_scaled_size = 4; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 5) { | |||
/* Provide 5/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 5L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 5L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 5; | |||
cinfo->min_DCT_v_scaled_size = 5; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 6) { | |||
/* Provide 6/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 6L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 6L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 6; | |||
cinfo->min_DCT_v_scaled_size = 6; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 7) { | |||
/* Provide 7/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 7L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 7L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 7; | |||
cinfo->min_DCT_v_scaled_size = 7; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 8) { | |||
/* Provide 8/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 8L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 8L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 8; | |||
cinfo->min_DCT_v_scaled_size = 8; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 9) { | |||
/* Provide 9/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 9L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 9L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 9; | |||
cinfo->min_DCT_v_scaled_size = 9; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 10) { | |||
/* Provide 10/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 10L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 10L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 10; | |||
cinfo->min_DCT_v_scaled_size = 10; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 11) { | |||
/* Provide 11/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 11L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 11L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 11; | |||
cinfo->min_DCT_v_scaled_size = 11; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 12) { | |||
/* Provide 12/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 12L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 12L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 12; | |||
cinfo->min_DCT_v_scaled_size = 12; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 13) { | |||
/* Provide 13/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 13L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 13L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 13; | |||
cinfo->min_DCT_v_scaled_size = 13; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 14) { | |||
/* Provide 14/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 14L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 14L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 14; | |||
cinfo->min_DCT_v_scaled_size = 14; | |||
} else if (cinfo->scale_num * cinfo->block_size <= cinfo->scale_denom * 15) { | |||
/* Provide 15/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 15L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 15L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 15; | |||
cinfo->min_DCT_v_scaled_size = 15; | |||
} else { | |||
/* Provide 16/block_size scaling */ | |||
cinfo->output_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * 16L, (long) cinfo->block_size); | |||
cinfo->output_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * 16L, (long) cinfo->block_size); | |||
cinfo->min_DCT_h_scaled_size = 16; | |||
cinfo->min_DCT_v_scaled_size = 16; | |||
} | |||
/* Recompute dimensions of components */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size; | |||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size; | |||
} | |||
#else /* !IDCT_SCALING_SUPPORTED */ | |||
/* Hardwire it to "no scaling" */ | |||
cinfo->output_width = cinfo->image_width; | |||
cinfo->output_height = cinfo->image_height; | |||
/* jdinput.c has already initialized DCT_scaled_size, | |||
* and has computed unscaled downsampled_width and downsampled_height. | |||
*/ | |||
#endif /* IDCT_SCALING_SUPPORTED */ | |||
} | |||
LOCAL(void) | |||
initial_setup (j_decompress_ptr cinfo) | |||
/* Called once, when first SOS marker is reached */ | |||
{ | |||
int ci; | |||
jpeg_component_info *compptr; | |||
/* Make sure image isn't bigger than I can handle */ | |||
if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION || | |||
(long) cinfo->image_width > (long) JPEG_MAX_DIMENSION) | |||
ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION); | |||
/* For now, precision must match compiled-in value... */ | |||
if (cinfo->data_precision != BITS_IN_JSAMPLE) | |||
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); | |||
/* Check that number of components won't exceed internal array sizes */ | |||
if (cinfo->num_components > MAX_COMPONENTS) | |||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, | |||
MAX_COMPONENTS); | |||
/* Compute maximum sampling factors; check factor validity */ | |||
cinfo->max_h_samp_factor = 1; | |||
cinfo->max_v_samp_factor = 1; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR || | |||
compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR) | |||
ERREXIT(cinfo, JERR_BAD_SAMPLING); | |||
cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, | |||
compptr->h_samp_factor); | |||
cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, | |||
compptr->v_samp_factor); | |||
} | |||
/* Derive block_size, natural_order, and lim_Se */ | |||
if (cinfo->is_baseline || (cinfo->progressive_mode && | |||
cinfo->comps_in_scan)) { /* no pseudo SOS marker */ | |||
cinfo->block_size = DCTSIZE; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
} else | |||
switch (cinfo->Se) { | |||
case (1*1-1): | |||
cinfo->block_size = 1; | |||
cinfo->natural_order = jpeg_natural_order; /* not needed */ | |||
cinfo->lim_Se = cinfo->Se; | |||
break; | |||
case (2*2-1): | |||
cinfo->block_size = 2; | |||
cinfo->natural_order = jpeg_natural_order2; | |||
cinfo->lim_Se = cinfo->Se; | |||
break; | |||
case (3*3-1): | |||
cinfo->block_size = 3; | |||
cinfo->natural_order = jpeg_natural_order3; | |||
cinfo->lim_Se = cinfo->Se; | |||
break; | |||
case (4*4-1): | |||
cinfo->block_size = 4; | |||
cinfo->natural_order = jpeg_natural_order4; | |||
cinfo->lim_Se = cinfo->Se; | |||
break; | |||
case (5*5-1): | |||
cinfo->block_size = 5; | |||
cinfo->natural_order = jpeg_natural_order5; | |||
cinfo->lim_Se = cinfo->Se; | |||
break; | |||
case (6*6-1): | |||
cinfo->block_size = 6; | |||
cinfo->natural_order = jpeg_natural_order6; | |||
cinfo->lim_Se = cinfo->Se; | |||
break; | |||
case (7*7-1): | |||
cinfo->block_size = 7; | |||
cinfo->natural_order = jpeg_natural_order7; | |||
cinfo->lim_Se = cinfo->Se; | |||
break; | |||
case (8*8-1): | |||
cinfo->block_size = 8; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (9*9-1): | |||
cinfo->block_size = 9; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (10*10-1): | |||
cinfo->block_size = 10; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (11*11-1): | |||
cinfo->block_size = 11; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (12*12-1): | |||
cinfo->block_size = 12; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (13*13-1): | |||
cinfo->block_size = 13; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (14*14-1): | |||
cinfo->block_size = 14; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (15*15-1): | |||
cinfo->block_size = 15; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
case (16*16-1): | |||
cinfo->block_size = 16; | |||
cinfo->natural_order = jpeg_natural_order; | |||
cinfo->lim_Se = DCTSIZE2-1; | |||
break; | |||
default: | |||
ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | |||
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | |||
break; | |||
} | |||
/* We initialize DCT_scaled_size and min_DCT_scaled_size to block_size. | |||
* In the full decompressor, | |||
* this will be overridden by jpeg_calc_output_dimensions in jdmaster.c; | |||
* but in the transcoder, | |||
* jpeg_calc_output_dimensions is not used, so we must do it here. | |||
*/ | |||
cinfo->min_DCT_h_scaled_size = cinfo->block_size; | |||
cinfo->min_DCT_v_scaled_size = cinfo->block_size; | |||
/* Compute dimensions of components */ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
compptr->DCT_h_scaled_size = cinfo->block_size; | |||
compptr->DCT_v_scaled_size = cinfo->block_size; | |||
/* Size in DCT blocks */ | |||
compptr->width_in_blocks = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, | |||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); | |||
compptr->height_in_blocks = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
/* downsampled_width and downsampled_height will also be overridden by | |||
* jdmaster.c if we are doing full decompression. The transcoder library | |||
* doesn't use these values, but the calling application might. | |||
*/ | |||
/* Size in samples */ | |||
compptr->downsampled_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor, | |||
(long) cinfo->max_h_samp_factor); | |||
compptr->downsampled_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor, | |||
(long) cinfo->max_v_samp_factor); | |||
/* Mark component needed, until color conversion says otherwise */ | |||
compptr->component_needed = TRUE; | |||
/* Mark no quantization table yet saved for component */ | |||
compptr->quant_table = NULL; | |||
} | |||
/* Compute number of fully interleaved MCU rows. */ | |||
cinfo->total_iMCU_rows = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height, | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
/* Decide whether file contains multiple scans */ | |||
if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) | |||
cinfo->inputctl->has_multiple_scans = TRUE; | |||
else | |||
cinfo->inputctl->has_multiple_scans = FALSE; | |||
} | |||
LOCAL(void) | |||
per_scan_setup (j_decompress_ptr cinfo) | |||
/* Do computations that are needed before processing a JPEG scan */ | |||
/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ | |||
{ | |||
int ci, mcublks, tmp; | |||
jpeg_component_info *compptr; | |||
if (cinfo->comps_in_scan == 1) { | |||
/* Noninterleaved (single-component) scan */ | |||
compptr = cinfo->cur_comp_info[0]; | |||
/* Overall image size in MCUs */ | |||
cinfo->MCUs_per_row = compptr->width_in_blocks; | |||
cinfo->MCU_rows_in_scan = compptr->height_in_blocks; | |||
/* For noninterleaved scan, always one block per MCU */ | |||
compptr->MCU_width = 1; | |||
compptr->MCU_height = 1; | |||
compptr->MCU_blocks = 1; | |||
compptr->MCU_sample_width = compptr->DCT_h_scaled_size; | |||
compptr->last_col_width = 1; | |||
/* For noninterleaved scans, it is convenient to define last_row_height | |||
* as the number of block rows present in the last iMCU row. | |||
*/ | |||
tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |||
if (tmp == 0) tmp = compptr->v_samp_factor; | |||
compptr->last_row_height = tmp; | |||
/* Prepare array describing MCU composition */ | |||
cinfo->blocks_in_MCU = 1; | |||
cinfo->MCU_membership[0] = 0; | |||
} else { | |||
/* Interleaved (multi-component) scan */ | |||
if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) | |||
ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, | |||
MAX_COMPS_IN_SCAN); | |||
/* Overall image size in MCUs */ | |||
cinfo->MCUs_per_row = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width, | |||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); | |||
cinfo->MCU_rows_in_scan = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height, | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
cinfo->blocks_in_MCU = 0; | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* Sampling factors give # of blocks of component in each MCU */ | |||
compptr->MCU_width = compptr->h_samp_factor; | |||
compptr->MCU_height = compptr->v_samp_factor; | |||
compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; | |||
compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_h_scaled_size; | |||
/* Figure number of non-dummy blocks in last MCU column & row */ | |||
tmp = (int) (compptr->width_in_blocks % compptr->MCU_width); | |||
if (tmp == 0) tmp = compptr->MCU_width; | |||
compptr->last_col_width = tmp; | |||
tmp = (int) (compptr->height_in_blocks % compptr->MCU_height); | |||
if (tmp == 0) tmp = compptr->MCU_height; | |||
compptr->last_row_height = tmp; | |||
/* Prepare array describing MCU composition */ | |||
mcublks = compptr->MCU_blocks; | |||
if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) | |||
ERREXIT(cinfo, JERR_BAD_MCU_SIZE); | |||
while (mcublks-- > 0) { | |||
cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; | |||
} | |||
} | |||
} | |||
} | |||
/* | |||
* Save away a copy of the Q-table referenced by each component present | |||
* in the current scan, unless already saved during a prior scan. | |||
* | |||
* In a multiple-scan JPEG file, the encoder could assign different components | |||
* the same Q-table slot number, but change table definitions between scans | |||
* so that each component uses a different Q-table. (The IJG encoder is not | |||
* currently capable of doing this, but other encoders might.) Since we want | |||
* to be able to dequantize all the components at the end of the file, this | |||
* means that we have to save away the table actually used for each component. | |||
* We do this by copying the table at the start of the first scan containing | |||
* the component. | |||
* The JPEG spec prohibits the encoder from changing the contents of a Q-table | |||
* slot between scans of a component using that slot. If the encoder does so | |||
* anyway, this decoder will simply use the Q-table values that were current | |||
* at the start of the first scan for the component. | |||
* | |||
* The decompressor output side looks only at the saved quant tables, | |||
* not at the current Q-table slots. | |||
*/ | |||
LOCAL(void) | |||
latch_quant_tables (j_decompress_ptr cinfo) | |||
{ | |||
int ci, qtblno; | |||
jpeg_component_info *compptr; | |||
JQUANT_TBL * qtbl; | |||
for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |||
compptr = cinfo->cur_comp_info[ci]; | |||
/* No work if we already saved Q-table for this component */ | |||
if (compptr->quant_table != NULL) | |||
continue; | |||
/* Make sure specified quantization table is present */ | |||
qtblno = compptr->quant_tbl_no; | |||
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | |||
cinfo->quant_tbl_ptrs[qtblno] == NULL) | |||
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | |||
/* OK, save away the quantization table */ | |||
qtbl = (JQUANT_TBL *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(JQUANT_TBL)); | |||
MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL)); | |||
compptr->quant_table = qtbl; | |||
} | |||
} | |||
/* | |||
* Initialize the input modules to read a scan of compressed data. | |||
* The first call to this is done by jdmaster.c after initializing | |||
* the entire decompressor (during jpeg_start_decompress). | |||
* Subsequent calls come from consume_markers, below. | |||
*/ | |||
METHODDEF(void) | |||
start_input_pass (j_decompress_ptr cinfo) | |||
{ | |||
per_scan_setup(cinfo); | |||
latch_quant_tables(cinfo); | |||
(*cinfo->entropy->start_pass) (cinfo); | |||
(*cinfo->coef->start_input_pass) (cinfo); | |||
cinfo->inputctl->consume_input = cinfo->coef->consume_data; | |||
} | |||
/* | |||
* Finish up after inputting a compressed-data scan. | |||
* This is called by the coefficient controller after it's read all | |||
* the expected data of the scan. | |||
*/ | |||
METHODDEF(void) | |||
finish_input_pass (j_decompress_ptr cinfo) | |||
{ | |||
cinfo->inputctl->consume_input = consume_markers; | |||
} | |||
/* | |||
* Read JPEG markers before, between, or after compressed-data scans. | |||
* Change state as necessary when a new scan is reached. | |||
* Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. | |||
* | |||
* The consume_input method pointer points either here or to the | |||
* coefficient controller's consume_data routine, depending on whether | |||
* we are reading a compressed data segment or inter-segment markers. | |||
* | |||
* Note: This function should NOT return a pseudo SOS marker (with zero | |||
* component number) to the caller. A pseudo marker received by | |||
* read_markers is processed and then skipped for other markers. | |||
*/ | |||
METHODDEF(int) | |||
consume_markers (j_decompress_ptr cinfo) | |||
{ | |||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; | |||
int val; | |||
if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ | |||
return JPEG_REACHED_EOI; | |||
for (;;) { /* Loop to pass pseudo SOS marker */ | |||
val = (*cinfo->marker->read_markers) (cinfo); | |||
switch (val) { | |||
case JPEG_REACHED_SOS: /* Found SOS */ | |||
if (inputctl->inheaders) { /* 1st SOS */ | |||
if (inputctl->inheaders == 1) | |||
initial_setup(cinfo); | |||
if (cinfo->comps_in_scan == 0) { /* pseudo SOS marker */ | |||
inputctl->inheaders = 2; | |||
break; | |||
} | |||
inputctl->inheaders = 0; | |||
/* Note: start_input_pass must be called by jdmaster.c | |||
* before any more input can be consumed. jdapimin.c is | |||
* responsible for enforcing this sequencing. | |||
*/ | |||
} else { /* 2nd or later SOS marker */ | |||
if (! inputctl->pub.has_multiple_scans) | |||
ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ | |||
if (cinfo->comps_in_scan == 0) /* unexpected pseudo SOS marker */ | |||
break; | |||
start_input_pass(cinfo); | |||
} | |||
return val; | |||
case JPEG_REACHED_EOI: /* Found EOI */ | |||
inputctl->pub.eoi_reached = TRUE; | |||
if (inputctl->inheaders) { /* Tables-only datastream, apparently */ | |||
if (cinfo->marker->saw_SOF) | |||
ERREXIT(cinfo, JERR_SOF_NO_SOS); | |||
} else { | |||
/* Prevent infinite loop in coef ctlr's decompress_data routine | |||
* if user set output_scan_number larger than number of scans. | |||
*/ | |||
if (cinfo->output_scan_number > cinfo->input_scan_number) | |||
cinfo->output_scan_number = cinfo->input_scan_number; | |||
} | |||
return val; | |||
case JPEG_SUSPENDED: | |||
return val; | |||
default: | |||
return val; | |||
} | |||
} | |||
} | |||
/* | |||
* Reset state to begin a fresh datastream. | |||
*/ | |||
METHODDEF(void) | |||
reset_input_controller (j_decompress_ptr cinfo) | |||
{ | |||
my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl; | |||
inputctl->pub.consume_input = consume_markers; | |||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ | |||
inputctl->pub.eoi_reached = FALSE; | |||
inputctl->inheaders = 1; | |||
/* Reset other modules */ | |||
(*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo); | |||
(*cinfo->marker->reset_marker_reader) (cinfo); | |||
/* Reset progression state -- would be cleaner if entropy decoder did this */ | |||
cinfo->coef_bits = NULL; | |||
} | |||
/* | |||
* Initialize the input controller module. | |||
* This is called only once, when the decompression object is created. | |||
*/ | |||
GLOBAL(void) | |||
jinit_input_controller (j_decompress_ptr cinfo) | |||
{ | |||
my_inputctl_ptr inputctl; | |||
/* Create subobject in permanent pool */ | |||
inputctl = (my_inputctl_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT, | |||
SIZEOF(my_input_controller)); | |||
cinfo->inputctl = (struct jpeg_input_controller *) inputctl; | |||
/* Initialize method pointers */ | |||
inputctl->pub.consume_input = consume_markers; | |||
inputctl->pub.reset_input_controller = reset_input_controller; | |||
inputctl->pub.start_input_pass = start_input_pass; | |||
inputctl->pub.finish_input_pass = finish_input_pass; | |||
/* Initialize state: can't use reset_input_controller since we don't | |||
* want to try to reset other modules yet. | |||
*/ | |||
inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ | |||
inputctl->pub.eoi_reached = FALSE; | |||
inputctl->inheaders = 1; | |||
} |
@@ -1,512 +0,0 @@ | |||
/* | |||
* jdmainct.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the main buffer controller for decompression. | |||
* The main buffer lies between the JPEG decompressor proper and the | |||
* post-processor; it holds downsampled data in the JPEG colorspace. | |||
* | |||
* Note that this code is bypassed in raw-data mode, since the application | |||
* supplies the equivalent of the main buffer in that case. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* In the current system design, the main buffer need never be a full-image | |||
* buffer; any full-height buffers will be found inside the coefficient or | |||
* postprocessing controllers. Nonetheless, the main controller is not | |||
* trivial. Its responsibility is to provide context rows for upsampling/ | |||
* rescaling, and doing this in an efficient fashion is a bit tricky. | |||
* | |||
* Postprocessor input data is counted in "row groups". A row group | |||
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) | |||
* sample rows of each component. (We require DCT_scaled_size values to be | |||
* chosen such that these numbers are integers. In practice DCT_scaled_size | |||
* values will likely be powers of two, so we actually have the stronger | |||
* condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) | |||
* Upsampling will typically produce max_v_samp_factor pixel rows from each | |||
* row group (times any additional scale factor that the upsampler is | |||
* applying). | |||
* | |||
* The coefficient controller will deliver data to us one iMCU row at a time; | |||
* each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or | |||
* exactly min_DCT_scaled_size row groups. (This amount of data corresponds | |||
* to one row of MCUs when the image is fully interleaved.) Note that the | |||
* number of sample rows varies across components, but the number of row | |||
* groups does not. Some garbage sample rows may be included in the last iMCU | |||
* row at the bottom of the image. | |||
* | |||
* Depending on the vertical scaling algorithm used, the upsampler may need | |||
* access to the sample row(s) above and below its current input row group. | |||
* The upsampler is required to set need_context_rows TRUE at global selection | |||
* time if so. When need_context_rows is FALSE, this controller can simply | |||
* obtain one iMCU row at a time from the coefficient controller and dole it | |||
* out as row groups to the postprocessor. | |||
* | |||
* When need_context_rows is TRUE, this controller guarantees that the buffer | |||
* passed to postprocessing contains at least one row group's worth of samples | |||
* above and below the row group(s) being processed. Note that the context | |||
* rows "above" the first passed row group appear at negative row offsets in | |||
* the passed buffer. At the top and bottom of the image, the required | |||
* context rows are manufactured by duplicating the first or last real sample | |||
* row; this avoids having special cases in the upsampling inner loops. | |||
* | |||
* The amount of context is fixed at one row group just because that's a | |||
* convenient number for this controller to work with. The existing | |||
* upsamplers really only need one sample row of context. An upsampler | |||
* supporting arbitrary output rescaling might wish for more than one row | |||
* group of context when shrinking the image; tough, we don't handle that. | |||
* (This is justified by the assumption that downsizing will be handled mostly | |||
* by adjusting the DCT_scaled_size values, so that the actual scale factor at | |||
* the upsample step needn't be much less than one.) | |||
* | |||
* To provide the desired context, we have to retain the last two row groups | |||
* of one iMCU row while reading in the next iMCU row. (The last row group | |||
* can't be processed until we have another row group for its below-context, | |||
* and so we have to save the next-to-last group too for its above-context.) | |||
* We could do this most simply by copying data around in our buffer, but | |||
* that'd be very slow. We can avoid copying any data by creating a rather | |||
* strange pointer structure. Here's how it works. We allocate a workspace | |||
* consisting of M+2 row groups (where M = min_DCT_scaled_size is the number | |||
* of row groups per iMCU row). We create two sets of redundant pointers to | |||
* the workspace. Labeling the physical row groups 0 to M+1, the synthesized | |||
* pointer lists look like this: | |||
* M+1 M-1 | |||
* master pointer --> 0 master pointer --> 0 | |||
* 1 1 | |||
* ... ... | |||
* M-3 M-3 | |||
* M-2 M | |||
* M-1 M+1 | |||
* M M-2 | |||
* M+1 M-1 | |||
* 0 0 | |||
* We read alternate iMCU rows using each master pointer; thus the last two | |||
* row groups of the previous iMCU row remain un-overwritten in the workspace. | |||
* The pointer lists are set up so that the required context rows appear to | |||
* be adjacent to the proper places when we pass the pointer lists to the | |||
* upsampler. | |||
* | |||
* The above pictures describe the normal state of the pointer lists. | |||
* At top and bottom of the image, we diddle the pointer lists to duplicate | |||
* the first or last sample row as necessary (this is cheaper than copying | |||
* sample rows around). | |||
* | |||
* This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that | |||
* situation each iMCU row provides only one row group so the buffering logic | |||
* must be different (eg, we must read two iMCU rows before we can emit the | |||
* first row group). For now, we simply do not support providing context | |||
* rows when min_DCT_scaled_size is 1. That combination seems unlikely to | |||
* be worth providing --- if someone wants a 1/8th-size preview, they probably | |||
* want it quick and dirty, so a context-free upsampler is sufficient. | |||
*/ | |||
/* Private buffer controller object */ | |||
typedef struct { | |||
struct jpeg_d_main_controller pub; /* public fields */ | |||
/* Pointer to allocated workspace (M or M+2 row groups). */ | |||
JSAMPARRAY buffer[MAX_COMPONENTS]; | |||
boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ | |||
JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ | |||
/* Remaining fields are only used in the context case. */ | |||
/* These are the master pointers to the funny-order pointer lists. */ | |||
JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ | |||
int whichptr; /* indicates which pointer set is now in use */ | |||
int context_state; /* process_data state machine status */ | |||
JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ | |||
JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ | |||
} my_main_controller; | |||
typedef my_main_controller * my_main_ptr; | |||
/* context_state values: */ | |||
#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ | |||
#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ | |||
#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ | |||
/* Forward declarations */ | |||
METHODDEF(void) process_data_simple_main | |||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | |||
METHODDEF(void) process_data_context_main | |||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
METHODDEF(void) process_data_crank_post | |||
JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf, | |||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)); | |||
#endif | |||
LOCAL(void) | |||
alloc_funny_pointers (j_decompress_ptr cinfo) | |||
/* Allocate space for the funny pointer lists. | |||
* This is done only once, not once per pass. | |||
*/ | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
int ci, rgroup; | |||
int M = cinfo->min_DCT_v_scaled_size; | |||
jpeg_component_info *compptr; | |||
JSAMPARRAY xbuf; | |||
/* Get top-level space for component array pointers. | |||
* We alloc both arrays with one call to save a few cycles. | |||
*/ | |||
mainp->xbuffer[0] = (JSAMPIMAGE) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
cinfo->num_components * 2 * SIZEOF(JSAMPARRAY)); | |||
mainp->xbuffer[1] = mainp->xbuffer[0] + cinfo->num_components; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |||
/* Get space for pointer lists --- M+4 row groups in each list. | |||
* We alloc both pointer lists with one call to save a few cycles. | |||
*/ | |||
xbuf = (JSAMPARRAY) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW)); | |||
xbuf += rgroup; /* want one row group at negative offsets */ | |||
mainp->xbuffer[0][ci] = xbuf; | |||
xbuf += rgroup * (M + 4); | |||
mainp->xbuffer[1][ci] = xbuf; | |||
} | |||
} | |||
LOCAL(void) | |||
make_funny_pointers (j_decompress_ptr cinfo) | |||
/* Create the funny pointer lists discussed in the comments above. | |||
* The actual workspace is already allocated (in mainp->buffer), | |||
* and the space for the pointer lists is allocated too. | |||
* This routine just fills in the curiously ordered lists. | |||
* This will be repeated at the beginning of each pass. | |||
*/ | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
int ci, i, rgroup; | |||
int M = cinfo->min_DCT_v_scaled_size; | |||
jpeg_component_info *compptr; | |||
JSAMPARRAY buf, xbuf0, xbuf1; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |||
xbuf0 = mainp->xbuffer[0][ci]; | |||
xbuf1 = mainp->xbuffer[1][ci]; | |||
/* First copy the workspace pointers as-is */ | |||
buf = mainp->buffer[ci]; | |||
for (i = 0; i < rgroup * (M + 2); i++) { | |||
xbuf0[i] = xbuf1[i] = buf[i]; | |||
} | |||
/* In the second list, put the last four row groups in swapped order */ | |||
for (i = 0; i < rgroup * 2; i++) { | |||
xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i]; | |||
xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i]; | |||
} | |||
/* The wraparound pointers at top and bottom will be filled later | |||
* (see set_wraparound_pointers, below). Initially we want the "above" | |||
* pointers to duplicate the first actual data line. This only needs | |||
* to happen in xbuffer[0]. | |||
*/ | |||
for (i = 0; i < rgroup; i++) { | |||
xbuf0[i - rgroup] = xbuf0[0]; | |||
} | |||
} | |||
} | |||
LOCAL(void) | |||
set_wraparound_pointers (j_decompress_ptr cinfo) | |||
/* Set up the "wraparound" pointers at top and bottom of the pointer lists. | |||
* This changes the pointer list state from top-of-image to the normal state. | |||
*/ | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
int ci, i, rgroup; | |||
int M = cinfo->min_DCT_v_scaled_size; | |||
jpeg_component_info *compptr; | |||
JSAMPARRAY xbuf0, xbuf1; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |||
xbuf0 = mainp->xbuffer[0][ci]; | |||
xbuf1 = mainp->xbuffer[1][ci]; | |||
for (i = 0; i < rgroup; i++) { | |||
xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i]; | |||
xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i]; | |||
xbuf0[rgroup*(M+2) + i] = xbuf0[i]; | |||
xbuf1[rgroup*(M+2) + i] = xbuf1[i]; | |||
} | |||
} | |||
} | |||
LOCAL(void) | |||
set_bottom_pointers (j_decompress_ptr cinfo) | |||
/* Change the pointer lists to duplicate the last sample row at the bottom | |||
* of the image. whichptr indicates which xbuffer holds the final iMCU row. | |||
* Also sets rowgroups_avail to indicate number of nondummy row groups in row. | |||
*/ | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
int ci, i, rgroup, iMCUheight, rows_left; | |||
jpeg_component_info *compptr; | |||
JSAMPARRAY xbuf; | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Count sample rows in one iMCU row and in one row group */ | |||
iMCUheight = compptr->v_samp_factor * compptr->DCT_v_scaled_size; | |||
rgroup = iMCUheight / cinfo->min_DCT_v_scaled_size; | |||
/* Count nondummy sample rows remaining for this component */ | |||
rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight); | |||
if (rows_left == 0) rows_left = iMCUheight; | |||
/* Count nondummy row groups. Should get same answer for each component, | |||
* so we need only do it once. | |||
*/ | |||
if (ci == 0) { | |||
mainp->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1); | |||
} | |||
/* Duplicate the last real sample row rgroup*2 times; this pads out the | |||
* last partial rowgroup and ensures at least one full rowgroup of context. | |||
*/ | |||
xbuf = mainp->xbuffer[mainp->whichptr][ci]; | |||
for (i = 0; i < rgroup * 2; i++) { | |||
xbuf[rows_left + i] = xbuf[rows_left-1]; | |||
} | |||
} | |||
} | |||
/* | |||
* Initialize for a processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
switch (pass_mode) { | |||
case JBUF_PASS_THRU: | |||
if (cinfo->upsample->need_context_rows) { | |||
mainp->pub.process_data = process_data_context_main; | |||
make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ | |||
mainp->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ | |||
mainp->context_state = CTX_PREPARE_FOR_IMCU; | |||
mainp->iMCU_row_ctr = 0; | |||
} else { | |||
/* Simple case with no context needed */ | |||
mainp->pub.process_data = process_data_simple_main; | |||
} | |||
mainp->buffer_full = FALSE; /* Mark buffer empty */ | |||
mainp->rowgroup_ctr = 0; | |||
break; | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
case JBUF_CRANK_DEST: | |||
/* For last pass of 2-pass quantization, just crank the postprocessor */ | |||
mainp->pub.process_data = process_data_crank_post; | |||
break; | |||
#endif | |||
default: | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
break; | |||
} | |||
} | |||
/* | |||
* Process some data. | |||
* This handles the simple case where no context is required. | |||
*/ | |||
METHODDEF(void) | |||
process_data_simple_main (j_decompress_ptr cinfo, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
JDIMENSION rowgroups_avail; | |||
/* Read input data if we haven't filled the main buffer yet */ | |||
if (! mainp->buffer_full) { | |||
if (! (*cinfo->coef->decompress_data) (cinfo, mainp->buffer)) | |||
return; /* suspension forced, can do nothing more */ | |||
mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ | |||
} | |||
/* There are always min_DCT_scaled_size row groups in an iMCU row. */ | |||
rowgroups_avail = (JDIMENSION) cinfo->min_DCT_v_scaled_size; | |||
/* Note: at the bottom of the image, we may pass extra garbage row groups | |||
* to the postprocessor. The postprocessor has to check for bottom | |||
* of image anyway (at row resolution), so no point in us doing it too. | |||
*/ | |||
/* Feed the postprocessor */ | |||
(*cinfo->post->post_process_data) (cinfo, mainp->buffer, | |||
&mainp->rowgroup_ctr, rowgroups_avail, | |||
output_buf, out_row_ctr, out_rows_avail); | |||
/* Has postprocessor consumed all the data yet? If so, mark buffer empty */ | |||
if (mainp->rowgroup_ctr >= rowgroups_avail) { | |||
mainp->buffer_full = FALSE; | |||
mainp->rowgroup_ctr = 0; | |||
} | |||
} | |||
/* | |||
* Process some data. | |||
* This handles the case where context rows must be provided. | |||
*/ | |||
METHODDEF(void) | |||
process_data_context_main (j_decompress_ptr cinfo, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
{ | |||
my_main_ptr mainp = (my_main_ptr) cinfo->main; | |||
/* Read input data if we haven't filled the main buffer yet */ | |||
if (! mainp->buffer_full) { | |||
if (! (*cinfo->coef->decompress_data) (cinfo, | |||
mainp->xbuffer[mainp->whichptr])) | |||
return; /* suspension forced, can do nothing more */ | |||
mainp->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ | |||
mainp->iMCU_row_ctr++; /* count rows received */ | |||
} | |||
/* Postprocessor typically will not swallow all the input data it is handed | |||
* in one call (due to filling the output buffer first). Must be prepared | |||
* to exit and restart. This switch lets us keep track of how far we got. | |||
* Note that each case falls through to the next on successful completion. | |||
*/ | |||
switch (mainp->context_state) { | |||
case CTX_POSTPONED_ROW: | |||
/* Call postprocessor using previously set pointers for postponed row */ | |||
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], | |||
&mainp->rowgroup_ctr, mainp->rowgroups_avail, | |||
output_buf, out_row_ctr, out_rows_avail); | |||
if (mainp->rowgroup_ctr < mainp->rowgroups_avail) | |||
return; /* Need to suspend */ | |||
mainp->context_state = CTX_PREPARE_FOR_IMCU; | |||
if (*out_row_ctr >= out_rows_avail) | |||
return; /* Postprocessor exactly filled output buf */ | |||
/*FALLTHROUGH*/ | |||
case CTX_PREPARE_FOR_IMCU: | |||
/* Prepare to process first M-1 row groups of this iMCU row */ | |||
mainp->rowgroup_ctr = 0; | |||
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size - 1); | |||
/* Check for bottom of image: if so, tweak pointers to "duplicate" | |||
* the last sample row, and adjust rowgroups_avail to ignore padding rows. | |||
*/ | |||
if (mainp->iMCU_row_ctr == cinfo->total_iMCU_rows) | |||
set_bottom_pointers(cinfo); | |||
mainp->context_state = CTX_PROCESS_IMCU; | |||
/*FALLTHROUGH*/ | |||
case CTX_PROCESS_IMCU: | |||
/* Call postprocessor using previously set pointers */ | |||
(*cinfo->post->post_process_data) (cinfo, mainp->xbuffer[mainp->whichptr], | |||
&mainp->rowgroup_ctr, mainp->rowgroups_avail, | |||
output_buf, out_row_ctr, out_rows_avail); | |||
if (mainp->rowgroup_ctr < mainp->rowgroups_avail) | |||
return; /* Need to suspend */ | |||
/* After the first iMCU, change wraparound pointers to normal state */ | |||
if (mainp->iMCU_row_ctr == 1) | |||
set_wraparound_pointers(cinfo); | |||
/* Prepare to load new iMCU row using other xbuffer list */ | |||
mainp->whichptr ^= 1; /* 0=>1 or 1=>0 */ | |||
mainp->buffer_full = FALSE; | |||
/* Still need to process last row group of this iMCU row, */ | |||
/* which is saved at index M+1 of the other xbuffer */ | |||
mainp->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 1); | |||
mainp->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_v_scaled_size + 2); | |||
mainp->context_state = CTX_POSTPONED_ROW; | |||
} | |||
} | |||
/* | |||
* Process some data. | |||
* Final pass of two-pass quantization: just call the postprocessor. | |||
* Source data will be the postprocessor controller's internal buffer. | |||
*/ | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
METHODDEF(void) | |||
process_data_crank_post (j_decompress_ptr cinfo, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
{ | |||
(*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL, | |||
(JDIMENSION *) NULL, (JDIMENSION) 0, | |||
output_buf, out_row_ctr, out_rows_avail); | |||
} | |||
#endif /* QUANT_2PASS_SUPPORTED */ | |||
/* | |||
* Initialize main buffer controller. | |||
*/ | |||
GLOBAL(void) | |||
jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | |||
{ | |||
my_main_ptr mainp; | |||
int ci, rgroup, ngroups; | |||
jpeg_component_info *compptr; | |||
mainp = (my_main_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_main_controller)); | |||
cinfo->main = (struct jpeg_d_main_controller *) mainp; | |||
mainp->pub.start_pass = start_pass_main; | |||
if (need_full_buffer) /* shouldn't happen */ | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
/* Allocate the workspace. | |||
* ngroups is the number of row groups we need. | |||
*/ | |||
if (cinfo->upsample->need_context_rows) { | |||
if (cinfo->min_DCT_v_scaled_size < 2) /* unsupported, see comments above */ | |||
ERREXIT(cinfo, JERR_NOTIMPL); | |||
alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ | |||
ngroups = cinfo->min_DCT_v_scaled_size + 2; | |||
} else { | |||
ngroups = cinfo->min_DCT_v_scaled_size; | |||
} | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
rgroup = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |||
cinfo->min_DCT_v_scaled_size; /* height of a row group of component */ | |||
mainp->buffer[ci] = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
compptr->width_in_blocks * compptr->DCT_h_scaled_size, | |||
(JDIMENSION) (rgroup * ngroups)); | |||
} | |||
} |
@@ -1,533 +0,0 @@ | |||
/* | |||
* jdmaster.c | |||
* | |||
* Copyright (C) 1991-1997, Thomas G. Lane. | |||
* Modified 2002-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains master control logic for the JPEG decompressor. | |||
* These routines are concerned with selecting the modules to be executed | |||
* and with determining the number of passes and the work to be done in each | |||
* pass. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Private state */ | |||
typedef struct { | |||
struct jpeg_decomp_master pub; /* public fields */ | |||
int pass_number; /* # of passes completed */ | |||
boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ | |||
/* Saved references to initialized quantizer modules, | |||
* in case we need to switch modes. | |||
*/ | |||
struct jpeg_color_quantizer * quantizer_1pass; | |||
struct jpeg_color_quantizer * quantizer_2pass; | |||
} my_decomp_master; | |||
typedef my_decomp_master * my_master_ptr; | |||
/* | |||
* Determine whether merged upsample/color conversion should be used. | |||
* CRUCIAL: this must match the actual capabilities of jdmerge.c! | |||
*/ | |||
LOCAL(boolean) | |||
use_merged_upsample (j_decompress_ptr cinfo) | |||
{ | |||
#ifdef UPSAMPLE_MERGING_SUPPORTED | |||
/* Merging is the equivalent of plain box-filter upsampling */ | |||
if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) | |||
return FALSE; | |||
/* jdmerge.c only supports YCC=>RGB color conversion */ | |||
if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || | |||
cinfo->out_color_space != JCS_RGB || | |||
cinfo->out_color_components != RGB_PIXELSIZE) | |||
return FALSE; | |||
/* and it only handles 2h1v or 2h2v sampling ratios */ | |||
if (cinfo->comp_info[0].h_samp_factor != 2 || | |||
cinfo->comp_info[1].h_samp_factor != 1 || | |||
cinfo->comp_info[2].h_samp_factor != 1 || | |||
cinfo->comp_info[0].v_samp_factor > 2 || | |||
cinfo->comp_info[1].v_samp_factor != 1 || | |||
cinfo->comp_info[2].v_samp_factor != 1) | |||
return FALSE; | |||
/* furthermore, it doesn't work if we've scaled the IDCTs differently */ | |||
if (cinfo->comp_info[0].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || | |||
cinfo->comp_info[1].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || | |||
cinfo->comp_info[2].DCT_h_scaled_size != cinfo->min_DCT_h_scaled_size || | |||
cinfo->comp_info[0].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || | |||
cinfo->comp_info[1].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size || | |||
cinfo->comp_info[2].DCT_v_scaled_size != cinfo->min_DCT_v_scaled_size) | |||
return FALSE; | |||
/* ??? also need to test for upsample-time rescaling, when & if supported */ | |||
return TRUE; /* by golly, it'll work... */ | |||
#else | |||
return FALSE; | |||
#endif | |||
} | |||
/* | |||
* Compute output image dimensions and related values. | |||
* NOTE: this is exported for possible use by application. | |||
* Hence it mustn't do anything that can't be done twice. | |||
* Also note that it may be called before the master module is initialized! | |||
*/ | |||
GLOBAL(void) | |||
jpeg_calc_output_dimensions (j_decompress_ptr cinfo) | |||
/* Do computations that are needed before master selection phase. | |||
* This function is used for full decompression. | |||
*/ | |||
{ | |||
#ifdef IDCT_SCALING_SUPPORTED | |||
int ci; | |||
jpeg_component_info *compptr; | |||
#endif | |||
/* Prevent application from calling me at wrong times */ | |||
if (cinfo->global_state != DSTATE_READY) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
/* Compute core output image dimensions and DCT scaling choices. */ | |||
jpeg_core_output_dimensions(cinfo); | |||
#ifdef IDCT_SCALING_SUPPORTED | |||
/* In selecting the actual DCT scaling for each component, we try to | |||
* scale up the chroma components via IDCT scaling rather than upsampling. | |||
* This saves time if the upsampler gets to use 1:1 scaling. | |||
* Note this code adapts subsampling ratios which are powers of 2. | |||
*/ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
int ssize = 1; | |||
while (cinfo->min_DCT_h_scaled_size * ssize <= | |||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && | |||
(cinfo->max_h_samp_factor % (compptr->h_samp_factor * ssize * 2)) == 0) { | |||
ssize = ssize * 2; | |||
} | |||
compptr->DCT_h_scaled_size = cinfo->min_DCT_h_scaled_size * ssize; | |||
ssize = 1; | |||
while (cinfo->min_DCT_v_scaled_size * ssize <= | |||
(cinfo->do_fancy_upsampling ? DCTSIZE : DCTSIZE / 2) && | |||
(cinfo->max_v_samp_factor % (compptr->v_samp_factor * ssize * 2)) == 0) { | |||
ssize = ssize * 2; | |||
} | |||
compptr->DCT_v_scaled_size = cinfo->min_DCT_v_scaled_size * ssize; | |||
/* We don't support IDCT ratios larger than 2. */ | |||
if (compptr->DCT_h_scaled_size > compptr->DCT_v_scaled_size * 2) | |||
compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size * 2; | |||
else if (compptr->DCT_v_scaled_size > compptr->DCT_h_scaled_size * 2) | |||
compptr->DCT_v_scaled_size = compptr->DCT_h_scaled_size * 2; | |||
} | |||
/* Recompute downsampled dimensions of components; | |||
* application needs to know these if using raw downsampled data. | |||
*/ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Size in samples, after IDCT scaling */ | |||
compptr->downsampled_width = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_width * | |||
(long) (compptr->h_samp_factor * compptr->DCT_h_scaled_size), | |||
(long) (cinfo->max_h_samp_factor * cinfo->block_size)); | |||
compptr->downsampled_height = (JDIMENSION) | |||
jdiv_round_up((long) cinfo->image_height * | |||
(long) (compptr->v_samp_factor * compptr->DCT_v_scaled_size), | |||
(long) (cinfo->max_v_samp_factor * cinfo->block_size)); | |||
} | |||
#endif /* IDCT_SCALING_SUPPORTED */ | |||
/* Report number of components in selected colorspace. */ | |||
/* Probably this should be in the color conversion module... */ | |||
switch (cinfo->out_color_space) { | |||
case JCS_GRAYSCALE: | |||
cinfo->out_color_components = 1; | |||
break; | |||
case JCS_RGB: | |||
#if RGB_PIXELSIZE != 3 | |||
cinfo->out_color_components = RGB_PIXELSIZE; | |||
break; | |||
#endif /* else share code with YCbCr */ | |||
case JCS_YCbCr: | |||
cinfo->out_color_components = 3; | |||
break; | |||
case JCS_CMYK: | |||
case JCS_YCCK: | |||
cinfo->out_color_components = 4; | |||
break; | |||
default: /* else must be same colorspace as in file */ | |||
cinfo->out_color_components = cinfo->num_components; | |||
break; | |||
} | |||
cinfo->output_components = (cinfo->quantize_colors ? 1 : | |||
cinfo->out_color_components); | |||
/* See if upsampler will want to emit more than one row at a time */ | |||
if (use_merged_upsample(cinfo)) | |||
cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; | |||
else | |||
cinfo->rec_outbuf_height = 1; | |||
} | |||
/* | |||
* Several decompression processes need to range-limit values to the range | |||
* 0..MAXJSAMPLE; the input value may fall somewhat outside this range | |||
* due to noise introduced by quantization, roundoff error, etc. These | |||
* processes are inner loops and need to be as fast as possible. On most | |||
* machines, particularly CPUs with pipelines or instruction prefetch, | |||
* a (subscript-check-less) C table lookup | |||
* x = sample_range_limit[x]; | |||
* is faster than explicit tests | |||
* if (x < 0) x = 0; | |||
* else if (x > MAXJSAMPLE) x = MAXJSAMPLE; | |||
* These processes all use a common table prepared by the routine below. | |||
* | |||
* For most steps we can mathematically guarantee that the initial value | |||
* of x is within MAXJSAMPLE+1 of the legal range, so a table running from | |||
* -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial | |||
* limiting step (just after the IDCT), a wildly out-of-range value is | |||
* possible if the input data is corrupt. To avoid any chance of indexing | |||
* off the end of memory and getting a bad-pointer trap, we perform the | |||
* post-IDCT limiting thus: | |||
* x = range_limit[x & MASK]; | |||
* where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit | |||
* samples. Under normal circumstances this is more than enough range and | |||
* a correct output will be generated; with bogus input data the mask will | |||
* cause wraparound, and we will safely generate a bogus-but-in-range output. | |||
* For the post-IDCT step, we want to convert the data from signed to unsigned | |||
* representation by adding CENTERJSAMPLE at the same time that we limit it. | |||
* So the post-IDCT limiting table ends up looking like this: | |||
* CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, | |||
* MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |||
* 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |||
* 0,1,...,CENTERJSAMPLE-1 | |||
* Negative inputs select values from the upper half of the table after | |||
* masking. | |||
* | |||
* We can save some space by overlapping the start of the post-IDCT table | |||
* with the simpler range limiting table. The post-IDCT table begins at | |||
* sample_range_limit + CENTERJSAMPLE. | |||
* | |||
* Note that the table is allocated in near data space on PCs; it's small | |||
* enough and used often enough to justify this. | |||
*/ | |||
LOCAL(void) | |||
prepare_range_limit_table (j_decompress_ptr cinfo) | |||
/* Allocate and fill in the sample_range_limit table */ | |||
{ | |||
JSAMPLE * table; | |||
int i; | |||
table = (JSAMPLE *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |||
table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ | |||
cinfo->sample_range_limit = table; | |||
/* First segment of "simple" table: limit[x] = 0 for x < 0 */ | |||
MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); | |||
/* Main part of "simple" table: limit[x] = x */ | |||
for (i = 0; i <= MAXJSAMPLE; i++) | |||
table[i] = (JSAMPLE) i; | |||
table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ | |||
/* End of simple table, rest of first half of post-IDCT table */ | |||
for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) | |||
table[i] = MAXJSAMPLE; | |||
/* Second half of post-IDCT table */ | |||
MEMZERO(table + (2 * (MAXJSAMPLE+1)), | |||
(2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |||
MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), | |||
cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); | |||
} | |||
/* | |||
* Master selection of decompression modules. | |||
* This is done once at jpeg_start_decompress time. We determine | |||
* which modules will be used and give them appropriate initialization calls. | |||
* We also initialize the decompressor input side to begin consuming data. | |||
* | |||
* Since jpeg_read_header has finished, we know what is in the SOF | |||
* and (first) SOS markers. We also have all the application parameter | |||
* settings. | |||
*/ | |||
LOCAL(void) | |||
master_selection (j_decompress_ptr cinfo) | |||
{ | |||
my_master_ptr master = (my_master_ptr) cinfo->master; | |||
boolean use_c_buffer; | |||
long samplesperrow; | |||
JDIMENSION jd_samplesperrow; | |||
/* Initialize dimensions and other stuff */ | |||
jpeg_calc_output_dimensions(cinfo); | |||
prepare_range_limit_table(cinfo); | |||
/* Width of an output scanline must be representable as JDIMENSION. */ | |||
samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; | |||
jd_samplesperrow = (JDIMENSION) samplesperrow; | |||
if ((long) jd_samplesperrow != samplesperrow) | |||
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |||
/* Initialize my private state */ | |||
master->pass_number = 0; | |||
master->using_merged_upsample = use_merged_upsample(cinfo); | |||
/* Color quantizer selection */ | |||
master->quantizer_1pass = NULL; | |||
master->quantizer_2pass = NULL; | |||
/* No mode changes if not using buffered-image mode. */ | |||
if (! cinfo->quantize_colors || ! cinfo->buffered_image) { | |||
cinfo->enable_1pass_quant = FALSE; | |||
cinfo->enable_external_quant = FALSE; | |||
cinfo->enable_2pass_quant = FALSE; | |||
} | |||
if (cinfo->quantize_colors) { | |||
if (cinfo->raw_data_out) | |||
ERREXIT(cinfo, JERR_NOTIMPL); | |||
/* 2-pass quantizer only works in 3-component color space. */ | |||
if (cinfo->out_color_components != 3) { | |||
cinfo->enable_1pass_quant = TRUE; | |||
cinfo->enable_external_quant = FALSE; | |||
cinfo->enable_2pass_quant = FALSE; | |||
cinfo->colormap = NULL; | |||
} else if (cinfo->colormap != NULL) { | |||
cinfo->enable_external_quant = TRUE; | |||
} else if (cinfo->two_pass_quantize) { | |||
cinfo->enable_2pass_quant = TRUE; | |||
} else { | |||
cinfo->enable_1pass_quant = TRUE; | |||
} | |||
if (cinfo->enable_1pass_quant) { | |||
#ifdef QUANT_1PASS_SUPPORTED | |||
jinit_1pass_quantizer(cinfo); | |||
master->quantizer_1pass = cinfo->cquantize; | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif | |||
} | |||
/* We use the 2-pass code to map to external colormaps. */ | |||
if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
jinit_2pass_quantizer(cinfo); | |||
master->quantizer_2pass = cinfo->cquantize; | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif | |||
} | |||
/* If both quantizers are initialized, the 2-pass one is left active; | |||
* this is necessary for starting with quantization to an external map. | |||
*/ | |||
} | |||
/* Post-processing: in particular, color conversion first */ | |||
if (! cinfo->raw_data_out) { | |||
if (master->using_merged_upsample) { | |||
#ifdef UPSAMPLE_MERGING_SUPPORTED | |||
jinit_merged_upsampler(cinfo); /* does color conversion too */ | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif | |||
} else { | |||
jinit_color_deconverter(cinfo); | |||
jinit_upsampler(cinfo); | |||
} | |||
jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); | |||
} | |||
/* Inverse DCT */ | |||
jinit_inverse_dct(cinfo); | |||
/* Entropy decoding: either Huffman or arithmetic coding. */ | |||
if (cinfo->arith_code) | |||
jinit_arith_decoder(cinfo); | |||
else { | |||
jinit_huff_decoder(cinfo); | |||
} | |||
/* Initialize principal buffer controllers. */ | |||
use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; | |||
jinit_d_coef_controller(cinfo, use_c_buffer); | |||
if (! cinfo->raw_data_out) | |||
jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); | |||
/* We can now tell the memory manager to allocate virtual arrays. */ | |||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | |||
/* Initialize input side of decompressor to consume first scan. */ | |||
(*cinfo->inputctl->start_input_pass) (cinfo); | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
/* If jpeg_start_decompress will read the whole file, initialize | |||
* progress monitoring appropriately. The input step is counted | |||
* as one pass. | |||
*/ | |||
if (cinfo->progress != NULL && ! cinfo->buffered_image && | |||
cinfo->inputctl->has_multiple_scans) { | |||
int nscans; | |||
/* Estimate number of scans to set pass_limit. */ | |||
if (cinfo->progressive_mode) { | |||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ | |||
nscans = 2 + 3 * cinfo->num_components; | |||
} else { | |||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */ | |||
nscans = cinfo->num_components; | |||
} | |||
cinfo->progress->pass_counter = 0L; | |||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; | |||
cinfo->progress->completed_passes = 0; | |||
cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); | |||
/* Count the input pass as done */ | |||
master->pass_number++; | |||
} | |||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ | |||
} | |||
/* | |||
* Per-pass setup. | |||
* This is called at the beginning of each output pass. We determine which | |||
* modules will be active during this pass and give them appropriate | |||
* start_pass calls. We also set is_dummy_pass to indicate whether this | |||
* is a "real" output pass or a dummy pass for color quantization. | |||
* (In the latter case, jdapistd.c will crank the pass to completion.) | |||
*/ | |||
METHODDEF(void) | |||
prepare_for_output_pass (j_decompress_ptr cinfo) | |||
{ | |||
my_master_ptr master = (my_master_ptr) cinfo->master; | |||
if (master->pub.is_dummy_pass) { | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
/* Final pass of 2-pass quantization */ | |||
master->pub.is_dummy_pass = FALSE; | |||
(*cinfo->cquantize->start_pass) (cinfo, FALSE); | |||
(*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); | |||
(*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); | |||
#else | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
#endif /* QUANT_2PASS_SUPPORTED */ | |||
} else { | |||
if (cinfo->quantize_colors && cinfo->colormap == NULL) { | |||
/* Select new quantization method */ | |||
if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { | |||
cinfo->cquantize = master->quantizer_2pass; | |||
master->pub.is_dummy_pass = TRUE; | |||
} else if (cinfo->enable_1pass_quant) { | |||
cinfo->cquantize = master->quantizer_1pass; | |||
} else { | |||
ERREXIT(cinfo, JERR_MODE_CHANGE); | |||
} | |||
} | |||
(*cinfo->idct->start_pass) (cinfo); | |||
(*cinfo->coef->start_output_pass) (cinfo); | |||
if (! cinfo->raw_data_out) { | |||
if (! master->using_merged_upsample) | |||
(*cinfo->cconvert->start_pass) (cinfo); | |||
(*cinfo->upsample->start_pass) (cinfo); | |||
if (cinfo->quantize_colors) | |||
(*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); | |||
(*cinfo->post->start_pass) (cinfo, | |||
(master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); | |||
(*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); | |||
} | |||
} | |||
/* Set up progress monitor's pass info if present */ | |||
if (cinfo->progress != NULL) { | |||
cinfo->progress->completed_passes = master->pass_number; | |||
cinfo->progress->total_passes = master->pass_number + | |||
(master->pub.is_dummy_pass ? 2 : 1); | |||
/* In buffered-image mode, we assume one more output pass if EOI not | |||
* yet reached, but no more passes if EOI has been reached. | |||
*/ | |||
if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { | |||
cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); | |||
} | |||
} | |||
} | |||
/* | |||
* Finish up at end of an output pass. | |||
*/ | |||
METHODDEF(void) | |||
finish_output_pass (j_decompress_ptr cinfo) | |||
{ | |||
my_master_ptr master = (my_master_ptr) cinfo->master; | |||
if (cinfo->quantize_colors) | |||
(*cinfo->cquantize->finish_pass) (cinfo); | |||
master->pass_number++; | |||
} | |||
#ifdef D_MULTISCAN_FILES_SUPPORTED | |||
/* | |||
* Switch to a new external colormap between output passes. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_new_colormap (j_decompress_ptr cinfo) | |||
{ | |||
my_master_ptr master = (my_master_ptr) cinfo->master; | |||
/* Prevent application from calling me at wrong times */ | |||
if (cinfo->global_state != DSTATE_BUFIMAGE) | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
if (cinfo->quantize_colors && cinfo->enable_external_quant && | |||
cinfo->colormap != NULL) { | |||
/* Select 2-pass quantizer for external colormap use */ | |||
cinfo->cquantize = master->quantizer_2pass; | |||
/* Notify quantizer of colormap change */ | |||
(*cinfo->cquantize->new_color_map) (cinfo); | |||
master->pub.is_dummy_pass = FALSE; /* just in case */ | |||
} else | |||
ERREXIT(cinfo, JERR_MODE_CHANGE); | |||
} | |||
#endif /* D_MULTISCAN_FILES_SUPPORTED */ | |||
/* | |||
* Initialize master decompression control and select active modules. | |||
* This is performed at the start of jpeg_start_decompress. | |||
*/ | |||
GLOBAL(void) | |||
jinit_master_decompress (j_decompress_ptr cinfo) | |||
{ | |||
my_master_ptr master; | |||
master = (my_master_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_decomp_master)); | |||
cinfo->master = (struct jpeg_decomp_master *) master; | |||
master->pub.prepare_for_output_pass = prepare_for_output_pass; | |||
master->pub.finish_output_pass = finish_output_pass; | |||
master->pub.is_dummy_pass = FALSE; | |||
master_selection(cinfo); | |||
} |
@@ -1,400 +0,0 @@ | |||
/* | |||
* jdmerge.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains code for merged upsampling/color conversion. | |||
* | |||
* This file combines functions from jdsample.c and jdcolor.c; | |||
* read those files first to understand what's going on. | |||
* | |||
* When the chroma components are to be upsampled by simple replication | |||
* (ie, box filtering), we can save some work in color conversion by | |||
* calculating all the output pixels corresponding to a pair of chroma | |||
* samples at one time. In the conversion equations | |||
* R = Y + K1 * Cr | |||
* G = Y + K2 * Cb + K3 * Cr | |||
* B = Y + K4 * Cb | |||
* only the Y term varies among the group of pixels corresponding to a pair | |||
* of chroma samples, so the rest of the terms can be calculated just once. | |||
* At typical sampling ratios, this eliminates half or three-quarters of the | |||
* multiplications needed for color conversion. | |||
* | |||
* This file currently provides implementations for the following cases: | |||
* YCbCr => RGB color conversion only. | |||
* Sampling ratios of 2h1v or 2h2v. | |||
* No scaling needed at upsample time. | |||
* Corner-aligned (non-CCIR601) sampling alignment. | |||
* Other special cases could be added, but in most applications these are | |||
* the only common cases. (For uncommon cases we fall back on the more | |||
* general code in jdsample.c and jdcolor.c.) | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#ifdef UPSAMPLE_MERGING_SUPPORTED | |||
/* Private subobject */ | |||
typedef struct { | |||
struct jpeg_upsampler pub; /* public fields */ | |||
/* Pointer to routine to do actual upsampling/conversion of one row group */ | |||
JMETHOD(void, upmethod, (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | |||
JSAMPARRAY output_buf)); | |||
/* Private state for YCC->RGB conversion */ | |||
int * Cr_r_tab; /* => table for Cr to R conversion */ | |||
int * Cb_b_tab; /* => table for Cb to B conversion */ | |||
INT32 * Cr_g_tab; /* => table for Cr to G conversion */ | |||
INT32 * Cb_g_tab; /* => table for Cb to G conversion */ | |||
/* For 2:1 vertical sampling, we produce two output rows at a time. | |||
* We need a "spare" row buffer to hold the second output row if the | |||
* application provides just a one-row buffer; we also use the spare | |||
* to discard the dummy last row if the image height is odd. | |||
*/ | |||
JSAMPROW spare_row; | |||
boolean spare_full; /* T if spare buffer is occupied */ | |||
JDIMENSION out_row_width; /* samples per output row */ | |||
JDIMENSION rows_to_go; /* counts rows remaining in image */ | |||
} my_upsampler; | |||
typedef my_upsampler * my_upsample_ptr; | |||
#define SCALEBITS 16 /* speediest right-shift on some machines */ | |||
#define ONE_HALF ((INT32) 1 << (SCALEBITS-1)) | |||
#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | |||
/* | |||
* Initialize tables for YCC->RGB colorspace conversion. | |||
* This is taken directly from jdcolor.c; see that file for more info. | |||
*/ | |||
LOCAL(void) | |||
build_ycc_rgb_table (j_decompress_ptr cinfo) | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
int i; | |||
INT32 x; | |||
SHIFT_TEMPS | |||
upsample->Cr_r_tab = (int *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(int)); | |||
upsample->Cb_b_tab = (int *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(int)); | |||
upsample->Cr_g_tab = (INT32 *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(INT32)); | |||
upsample->Cb_g_tab = (INT32 *) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(MAXJSAMPLE+1) * SIZEOF(INT32)); | |||
for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { | |||
/* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | |||
/* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | |||
/* Cr=>R value is nearest int to 1.40200 * x */ | |||
upsample->Cr_r_tab[i] = (int) | |||
RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); | |||
/* Cb=>B value is nearest int to 1.77200 * x */ | |||
upsample->Cb_b_tab[i] = (int) | |||
RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); | |||
/* Cr=>G value is scaled-up -0.71414 * x */ | |||
upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; | |||
/* Cb=>G value is scaled-up -0.34414 * x */ | |||
/* We also add in ONE_HALF so that need not do it in inner loop */ | |||
upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; | |||
} | |||
} | |||
/* | |||
* Initialize for an upsampling pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_merged_upsample (j_decompress_ptr cinfo) | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
/* Mark the spare buffer empty */ | |||
upsample->spare_full = FALSE; | |||
/* Initialize total-height counter for detecting bottom of image */ | |||
upsample->rows_to_go = cinfo->output_height; | |||
} | |||
/* | |||
* Control routine to do upsampling (and color conversion). | |||
* | |||
* The control routine just handles the row buffering considerations. | |||
*/ | |||
METHODDEF(void) | |||
merged_2v_upsample (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
/* 2:1 vertical sampling case: may need a spare row. */ | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
JSAMPROW work_ptrs[2]; | |||
JDIMENSION num_rows; /* number of rows returned to caller */ | |||
if (upsample->spare_full) { | |||
/* If we have a spare row saved from a previous cycle, just return it. */ | |||
jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, | |||
1, upsample->out_row_width); | |||
num_rows = 1; | |||
upsample->spare_full = FALSE; | |||
} else { | |||
/* Figure number of rows to return to caller. */ | |||
num_rows = 2; | |||
/* Not more than the distance to the end of the image. */ | |||
if (num_rows > upsample->rows_to_go) | |||
num_rows = upsample->rows_to_go; | |||
/* And not more than what the client can accept: */ | |||
out_rows_avail -= *out_row_ctr; | |||
if (num_rows > out_rows_avail) | |||
num_rows = out_rows_avail; | |||
/* Create output pointer array for upsampler. */ | |||
work_ptrs[0] = output_buf[*out_row_ctr]; | |||
if (num_rows > 1) { | |||
work_ptrs[1] = output_buf[*out_row_ctr + 1]; | |||
} else { | |||
work_ptrs[1] = upsample->spare_row; | |||
upsample->spare_full = TRUE; | |||
} | |||
/* Now do the upsampling. */ | |||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); | |||
} | |||
/* Adjust counts */ | |||
*out_row_ctr += num_rows; | |||
upsample->rows_to_go -= num_rows; | |||
/* When the buffer is emptied, declare this input row group consumed */ | |||
if (! upsample->spare_full) | |||
(*in_row_group_ctr)++; | |||
} | |||
METHODDEF(void) | |||
merged_1v_upsample (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
/* 1:1 vertical sampling case: much easier, never need a spare row. */ | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
/* Just do the upsampling. */ | |||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, | |||
output_buf + *out_row_ctr); | |||
/* Adjust counts */ | |||
(*out_row_ctr)++; | |||
(*in_row_group_ctr)++; | |||
} | |||
/* | |||
* These are the routines invoked by the control routines to do | |||
* the actual upsampling/conversion. One row group is processed per call. | |||
* | |||
* Note: since we may be writing directly into application-supplied buffers, | |||
* we have to be honest about the output width; we can't assume the buffer | |||
* has been rounded up to an even width. | |||
*/ | |||
/* | |||
* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. | |||
*/ | |||
METHODDEF(void) | |||
h2v1_merged_upsample (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | |||
JSAMPARRAY output_buf) | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
register int y, cred, cgreen, cblue; | |||
int cb, cr; | |||
register JSAMPROW outptr; | |||
JSAMPROW inptr0, inptr1, inptr2; | |||
JDIMENSION col; | |||
/* copy these pointers into registers if possible */ | |||
register JSAMPLE * range_limit = cinfo->sample_range_limit; | |||
int * Crrtab = upsample->Cr_r_tab; | |||
int * Cbbtab = upsample->Cb_b_tab; | |||
INT32 * Crgtab = upsample->Cr_g_tab; | |||
INT32 * Cbgtab = upsample->Cb_g_tab; | |||
SHIFT_TEMPS | |||
inptr0 = input_buf[0][in_row_group_ctr]; | |||
inptr1 = input_buf[1][in_row_group_ctr]; | |||
inptr2 = input_buf[2][in_row_group_ctr]; | |||
outptr = output_buf[0]; | |||
/* Loop for each pair of output pixels */ | |||
for (col = cinfo->output_width >> 1; col > 0; col--) { | |||
/* Do the chroma part of the calculation */ | |||
cb = GETJSAMPLE(*inptr1++); | |||
cr = GETJSAMPLE(*inptr2++); | |||
cred = Crrtab[cr]; | |||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | |||
cblue = Cbbtab[cb]; | |||
/* Fetch 2 Y values and emit 2 pixels */ | |||
y = GETJSAMPLE(*inptr0++); | |||
outptr[RGB_RED] = range_limit[y + cred]; | |||
outptr[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr[RGB_BLUE] = range_limit[y + cblue]; | |||
outptr += RGB_PIXELSIZE; | |||
y = GETJSAMPLE(*inptr0++); | |||
outptr[RGB_RED] = range_limit[y + cred]; | |||
outptr[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr[RGB_BLUE] = range_limit[y + cblue]; | |||
outptr += RGB_PIXELSIZE; | |||
} | |||
/* If image width is odd, do the last output column separately */ | |||
if (cinfo->output_width & 1) { | |||
cb = GETJSAMPLE(*inptr1); | |||
cr = GETJSAMPLE(*inptr2); | |||
cred = Crrtab[cr]; | |||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | |||
cblue = Cbbtab[cb]; | |||
y = GETJSAMPLE(*inptr0); | |||
outptr[RGB_RED] = range_limit[y + cred]; | |||
outptr[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr[RGB_BLUE] = range_limit[y + cblue]; | |||
} | |||
} | |||
/* | |||
* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. | |||
*/ | |||
METHODDEF(void) | |||
h2v2_merged_upsample (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | |||
JSAMPARRAY output_buf) | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
register int y, cred, cgreen, cblue; | |||
int cb, cr; | |||
register JSAMPROW outptr0, outptr1; | |||
JSAMPROW inptr00, inptr01, inptr1, inptr2; | |||
JDIMENSION col; | |||
/* copy these pointers into registers if possible */ | |||
register JSAMPLE * range_limit = cinfo->sample_range_limit; | |||
int * Crrtab = upsample->Cr_r_tab; | |||
int * Cbbtab = upsample->Cb_b_tab; | |||
INT32 * Crgtab = upsample->Cr_g_tab; | |||
INT32 * Cbgtab = upsample->Cb_g_tab; | |||
SHIFT_TEMPS | |||
inptr00 = input_buf[0][in_row_group_ctr*2]; | |||
inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; | |||
inptr1 = input_buf[1][in_row_group_ctr]; | |||
inptr2 = input_buf[2][in_row_group_ctr]; | |||
outptr0 = output_buf[0]; | |||
outptr1 = output_buf[1]; | |||
/* Loop for each group of output pixels */ | |||
for (col = cinfo->output_width >> 1; col > 0; col--) { | |||
/* Do the chroma part of the calculation */ | |||
cb = GETJSAMPLE(*inptr1++); | |||
cr = GETJSAMPLE(*inptr2++); | |||
cred = Crrtab[cr]; | |||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | |||
cblue = Cbbtab[cb]; | |||
/* Fetch 4 Y values and emit 4 pixels */ | |||
y = GETJSAMPLE(*inptr00++); | |||
outptr0[RGB_RED] = range_limit[y + cred]; | |||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr0[RGB_BLUE] = range_limit[y + cblue]; | |||
outptr0 += RGB_PIXELSIZE; | |||
y = GETJSAMPLE(*inptr00++); | |||
outptr0[RGB_RED] = range_limit[y + cred]; | |||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr0[RGB_BLUE] = range_limit[y + cblue]; | |||
outptr0 += RGB_PIXELSIZE; | |||
y = GETJSAMPLE(*inptr01++); | |||
outptr1[RGB_RED] = range_limit[y + cred]; | |||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr1[RGB_BLUE] = range_limit[y + cblue]; | |||
outptr1 += RGB_PIXELSIZE; | |||
y = GETJSAMPLE(*inptr01++); | |||
outptr1[RGB_RED] = range_limit[y + cred]; | |||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr1[RGB_BLUE] = range_limit[y + cblue]; | |||
outptr1 += RGB_PIXELSIZE; | |||
} | |||
/* If image width is odd, do the last output column separately */ | |||
if (cinfo->output_width & 1) { | |||
cb = GETJSAMPLE(*inptr1); | |||
cr = GETJSAMPLE(*inptr2); | |||
cred = Crrtab[cr]; | |||
cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | |||
cblue = Cbbtab[cb]; | |||
y = GETJSAMPLE(*inptr00); | |||
outptr0[RGB_RED] = range_limit[y + cred]; | |||
outptr0[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr0[RGB_BLUE] = range_limit[y + cblue]; | |||
y = GETJSAMPLE(*inptr01); | |||
outptr1[RGB_RED] = range_limit[y + cred]; | |||
outptr1[RGB_GREEN] = range_limit[y + cgreen]; | |||
outptr1[RGB_BLUE] = range_limit[y + cblue]; | |||
} | |||
} | |||
/* | |||
* Module initialization routine for merged upsampling/color conversion. | |||
* | |||
* NB: this is called under the conditions determined by use_merged_upsample() | |||
* in jdmaster.c. That routine MUST correspond to the actual capabilities | |||
* of this module; no safety checks are made here. | |||
*/ | |||
GLOBAL(void) | |||
jinit_merged_upsampler (j_decompress_ptr cinfo) | |||
{ | |||
my_upsample_ptr upsample; | |||
upsample = (my_upsample_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_upsampler)); | |||
cinfo->upsample = (struct jpeg_upsampler *) upsample; | |||
upsample->pub.start_pass = start_pass_merged_upsample; | |||
upsample->pub.need_context_rows = FALSE; | |||
upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; | |||
if (cinfo->max_v_samp_factor == 2) { | |||
upsample->pub.upsample = merged_2v_upsample; | |||
upsample->upmethod = h2v2_merged_upsample; | |||
/* Allocate a spare row buffer */ | |||
upsample->spare_row = (JSAMPROW) | |||
(*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(size_t) (upsample->out_row_width * SIZEOF(JSAMPLE))); | |||
} else { | |||
upsample->pub.upsample = merged_1v_upsample; | |||
upsample->upmethod = h2v1_merged_upsample; | |||
/* No spare row needed */ | |||
upsample->spare_row = NULL; | |||
} | |||
build_ycc_rgb_table(cinfo); | |||
} | |||
#endif /* UPSAMPLE_MERGING_SUPPORTED */ |
@@ -1,290 +0,0 @@ | |||
/* | |||
* jdpostct.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains the decompression postprocessing controller. | |||
* This controller manages the upsampling, color conversion, and color | |||
* quantization/reduction steps; specifically, it controls the buffering | |||
* between upsample/color conversion and color quantization/reduction. | |||
* | |||
* If no color quantization/reduction is required, then this module has no | |||
* work to do, and it just hands off to the upsample/color conversion code. | |||
* An integrated upsample/convert/quantize process would replace this module | |||
* entirely. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Private buffer controller object */ | |||
typedef struct { | |||
struct jpeg_d_post_controller pub; /* public fields */ | |||
/* Color quantization source buffer: this holds output data from | |||
* the upsample/color conversion step to be passed to the quantizer. | |||
* For two-pass color quantization, we need a full-image buffer; | |||
* for one-pass operation, a strip buffer is sufficient. | |||
*/ | |||
jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */ | |||
JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */ | |||
JDIMENSION strip_height; /* buffer size in rows */ | |||
/* for two-pass mode only: */ | |||
JDIMENSION starting_row; /* row # of first row in current strip */ | |||
JDIMENSION next_row; /* index of next row to fill/empty in strip */ | |||
} my_post_controller; | |||
typedef my_post_controller * my_post_ptr; | |||
/* Forward declarations */ | |||
METHODDEF(void) post_process_1pass | |||
JPP((j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail)); | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
METHODDEF(void) post_process_prepass | |||
JPP((j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail)); | |||
METHODDEF(void) post_process_2pass | |||
JPP((j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail)); | |||
#endif | |||
/* | |||
* Initialize for a processing pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode) | |||
{ | |||
my_post_ptr post = (my_post_ptr) cinfo->post; | |||
switch (pass_mode) { | |||
case JBUF_PASS_THRU: | |||
if (cinfo->quantize_colors) { | |||
/* Single-pass processing with color quantization. */ | |||
post->pub.post_process_data = post_process_1pass; | |||
/* We could be doing buffered-image output before starting a 2-pass | |||
* color quantization; in that case, jinit_d_post_controller did not | |||
* allocate a strip buffer. Use the virtual-array buffer as workspace. | |||
*/ | |||
if (post->buffer == NULL) { | |||
post->buffer = (*cinfo->mem->access_virt_sarray) | |||
((j_common_ptr) cinfo, post->whole_image, | |||
(JDIMENSION) 0, post->strip_height, TRUE); | |||
} | |||
} else { | |||
/* For single-pass processing without color quantization, | |||
* I have no work to do; just call the upsampler directly. | |||
*/ | |||
post->pub.post_process_data = cinfo->upsample->upsample; | |||
} | |||
break; | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
case JBUF_SAVE_AND_PASS: | |||
/* First pass of 2-pass quantization */ | |||
if (post->whole_image == NULL) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
post->pub.post_process_data = post_process_prepass; | |||
break; | |||
case JBUF_CRANK_DEST: | |||
/* Second pass of 2-pass quantization */ | |||
if (post->whole_image == NULL) | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
post->pub.post_process_data = post_process_2pass; | |||
break; | |||
#endif /* QUANT_2PASS_SUPPORTED */ | |||
default: | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
break; | |||
} | |||
post->starting_row = post->next_row = 0; | |||
} | |||
/* | |||
* Process some data in the one-pass (strip buffer) case. | |||
* This is used for color precision reduction as well as one-pass quantization. | |||
*/ | |||
METHODDEF(void) | |||
post_process_1pass (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
{ | |||
my_post_ptr post = (my_post_ptr) cinfo->post; | |||
JDIMENSION num_rows, max_rows; | |||
/* Fill the buffer, but not more than what we can dump out in one go. */ | |||
/* Note we rely on the upsampler to detect bottom of image. */ | |||
max_rows = out_rows_avail - *out_row_ctr; | |||
if (max_rows > post->strip_height) | |||
max_rows = post->strip_height; | |||
num_rows = 0; | |||
(*cinfo->upsample->upsample) (cinfo, | |||
input_buf, in_row_group_ctr, in_row_groups_avail, | |||
post->buffer, &num_rows, max_rows); | |||
/* Quantize and emit data. */ | |||
(*cinfo->cquantize->color_quantize) (cinfo, | |||
post->buffer, output_buf + *out_row_ctr, (int) num_rows); | |||
*out_row_ctr += num_rows; | |||
} | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
/* | |||
* Process some data in the first pass of 2-pass quantization. | |||
*/ | |||
METHODDEF(void) | |||
post_process_prepass (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
{ | |||
my_post_ptr post = (my_post_ptr) cinfo->post; | |||
JDIMENSION old_next_row, num_rows; | |||
/* Reposition virtual buffer if at start of strip. */ | |||
if (post->next_row == 0) { | |||
post->buffer = (*cinfo->mem->access_virt_sarray) | |||
((j_common_ptr) cinfo, post->whole_image, | |||
post->starting_row, post->strip_height, TRUE); | |||
} | |||
/* Upsample some data (up to a strip height's worth). */ | |||
old_next_row = post->next_row; | |||
(*cinfo->upsample->upsample) (cinfo, | |||
input_buf, in_row_group_ctr, in_row_groups_avail, | |||
post->buffer, &post->next_row, post->strip_height); | |||
/* Allow quantizer to scan new data. No data is emitted, */ | |||
/* but we advance out_row_ctr so outer loop can tell when we're done. */ | |||
if (post->next_row > old_next_row) { | |||
num_rows = post->next_row - old_next_row; | |||
(*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, | |||
(JSAMPARRAY) NULL, (int) num_rows); | |||
*out_row_ctr += num_rows; | |||
} | |||
/* Advance if we filled the strip. */ | |||
if (post->next_row >= post->strip_height) { | |||
post->starting_row += post->strip_height; | |||
post->next_row = 0; | |||
} | |||
} | |||
/* | |||
* Process some data in the second pass of 2-pass quantization. | |||
*/ | |||
METHODDEF(void) | |||
post_process_2pass (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
{ | |||
my_post_ptr post = (my_post_ptr) cinfo->post; | |||
JDIMENSION num_rows, max_rows; | |||
/* Reposition virtual buffer if at start of strip. */ | |||
if (post->next_row == 0) { | |||
post->buffer = (*cinfo->mem->access_virt_sarray) | |||
((j_common_ptr) cinfo, post->whole_image, | |||
post->starting_row, post->strip_height, FALSE); | |||
} | |||
/* Determine number of rows to emit. */ | |||
num_rows = post->strip_height - post->next_row; /* available in strip */ | |||
max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ | |||
if (num_rows > max_rows) | |||
num_rows = max_rows; | |||
/* We have to check bottom of image here, can't depend on upsampler. */ | |||
max_rows = cinfo->output_height - post->starting_row; | |||
if (num_rows > max_rows) | |||
num_rows = max_rows; | |||
/* Quantize and emit data. */ | |||
(*cinfo->cquantize->color_quantize) (cinfo, | |||
post->buffer + post->next_row, output_buf + *out_row_ctr, | |||
(int) num_rows); | |||
*out_row_ctr += num_rows; | |||
/* Advance if we filled the strip. */ | |||
post->next_row += num_rows; | |||
if (post->next_row >= post->strip_height) { | |||
post->starting_row += post->strip_height; | |||
post->next_row = 0; | |||
} | |||
} | |||
#endif /* QUANT_2PASS_SUPPORTED */ | |||
/* | |||
* Initialize postprocessing controller. | |||
*/ | |||
GLOBAL(void) | |||
jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer) | |||
{ | |||
my_post_ptr post; | |||
post = (my_post_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_post_controller)); | |||
cinfo->post = (struct jpeg_d_post_controller *) post; | |||
post->pub.start_pass = start_pass_dpost; | |||
post->whole_image = NULL; /* flag for no virtual arrays */ | |||
post->buffer = NULL; /* flag for no strip buffer */ | |||
/* Create the quantization buffer, if needed */ | |||
if (cinfo->quantize_colors) { | |||
/* The buffer strip height is max_v_samp_factor, which is typically | |||
* an efficient number of rows for upsampling to return. | |||
* (In the presence of output rescaling, we might want to be smarter?) | |||
*/ | |||
post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor; | |||
if (need_full_buffer) { | |||
/* Two-pass color quantization: need full-image storage. */ | |||
/* We round up the number of rows to a multiple of the strip height. */ | |||
#ifdef QUANT_2PASS_SUPPORTED | |||
post->whole_image = (*cinfo->mem->request_virt_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | |||
cinfo->output_width * cinfo->out_color_components, | |||
(JDIMENSION) jround_up((long) cinfo->output_height, | |||
(long) post->strip_height), | |||
post->strip_height); | |||
#else | |||
ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |||
#endif /* QUANT_2PASS_SUPPORTED */ | |||
} else { | |||
/* One-pass color quantization: just make a strip buffer. */ | |||
post->buffer = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
cinfo->output_width * cinfo->out_color_components, | |||
post->strip_height); | |||
} | |||
} | |||
} |
@@ -1,361 +0,0 @@ | |||
/* | |||
* jdsample.c | |||
* | |||
* Copyright (C) 1991-1996, Thomas G. Lane. | |||
* Modified 2002-2008 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains upsampling routines. | |||
* | |||
* Upsampling input data is counted in "row groups". A row group | |||
* is defined to be (v_samp_factor * DCT_v_scaled_size / min_DCT_v_scaled_size) | |||
* sample rows of each component. Upsampling will normally produce | |||
* max_v_samp_factor pixel rows from each row group (but this could vary | |||
* if the upsampler is applying a scale factor of its own). | |||
* | |||
* An excellent reference for image resampling is | |||
* Digital Image Warping, George Wolberg, 1990. | |||
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Pointer to routine to upsample a single component */ | |||
typedef JMETHOD(void, upsample1_ptr, | |||
(j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); | |||
/* Private subobject */ | |||
typedef struct { | |||
struct jpeg_upsampler pub; /* public fields */ | |||
/* Color conversion buffer. When using separate upsampling and color | |||
* conversion steps, this buffer holds one upsampled row group until it | |||
* has been color converted and output. | |||
* Note: we do not allocate any storage for component(s) which are full-size, | |||
* ie do not need rescaling. The corresponding entry of color_buf[] is | |||
* simply set to point to the input data array, thereby avoiding copying. | |||
*/ | |||
JSAMPARRAY color_buf[MAX_COMPONENTS]; | |||
/* Per-component upsampling method pointers */ | |||
upsample1_ptr methods[MAX_COMPONENTS]; | |||
int next_row_out; /* counts rows emitted from color_buf */ | |||
JDIMENSION rows_to_go; /* counts rows remaining in image */ | |||
/* Height of an input row group for each component. */ | |||
int rowgroup_height[MAX_COMPONENTS]; | |||
/* These arrays save pixel expansion factors so that int_expand need not | |||
* recompute them each time. They are unused for other upsampling methods. | |||
*/ | |||
UINT8 h_expand[MAX_COMPONENTS]; | |||
UINT8 v_expand[MAX_COMPONENTS]; | |||
} my_upsampler; | |||
typedef my_upsampler * my_upsample_ptr; | |||
/* | |||
* Initialize for an upsampling pass. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_upsample (j_decompress_ptr cinfo) | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
/* Mark the conversion buffer empty */ | |||
upsample->next_row_out = cinfo->max_v_samp_factor; | |||
/* Initialize total-height counter for detecting bottom of image */ | |||
upsample->rows_to_go = cinfo->output_height; | |||
} | |||
/* | |||
* Control routine to do upsampling (and color conversion). | |||
* | |||
* In this version we upsample each component independently. | |||
* We upsample one row group into the conversion buffer, then apply | |||
* color conversion a row at a time. | |||
*/ | |||
METHODDEF(void) | |||
sep_upsample (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail) | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
int ci; | |||
jpeg_component_info * compptr; | |||
JDIMENSION num_rows; | |||
/* Fill the conversion buffer, if it's empty */ | |||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) { | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Invoke per-component upsample method. Notice we pass a POINTER | |||
* to color_buf[ci], so that fullsize_upsample can change it. | |||
*/ | |||
(*upsample->methods[ci]) (cinfo, compptr, | |||
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), | |||
upsample->color_buf + ci); | |||
} | |||
upsample->next_row_out = 0; | |||
} | |||
/* Color-convert and emit rows */ | |||
/* How many we have in the buffer: */ | |||
num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); | |||
/* Not more than the distance to the end of the image. Need this test | |||
* in case the image height is not a multiple of max_v_samp_factor: | |||
*/ | |||
if (num_rows > upsample->rows_to_go) | |||
num_rows = upsample->rows_to_go; | |||
/* And not more than what the client can accept: */ | |||
out_rows_avail -= *out_row_ctr; | |||
if (num_rows > out_rows_avail) | |||
num_rows = out_rows_avail; | |||
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, | |||
(JDIMENSION) upsample->next_row_out, | |||
output_buf + *out_row_ctr, | |||
(int) num_rows); | |||
/* Adjust counts */ | |||
*out_row_ctr += num_rows; | |||
upsample->rows_to_go -= num_rows; | |||
upsample->next_row_out += num_rows; | |||
/* When the buffer is emptied, declare this input row group consumed */ | |||
if (upsample->next_row_out >= cinfo->max_v_samp_factor) | |||
(*in_row_group_ctr)++; | |||
} | |||
/* | |||
* These are the routines invoked by sep_upsample to upsample pixel values | |||
* of a single component. One row group is processed per call. | |||
*/ | |||
/* | |||
* For full-size components, we just make color_buf[ci] point at the | |||
* input buffer, and thus avoid copying any data. Note that this is | |||
* safe only because sep_upsample doesn't declare the input row group | |||
* "consumed" until we are done color converting and emitting it. | |||
*/ | |||
METHODDEF(void) | |||
fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |||
{ | |||
*output_data_ptr = input_data; | |||
} | |||
/* | |||
* This is a no-op version used for "uninteresting" components. | |||
* These components will not be referenced by color conversion. | |||
*/ | |||
METHODDEF(void) | |||
noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |||
{ | |||
*output_data_ptr = NULL; /* safety check */ | |||
} | |||
/* | |||
* This version handles any integral sampling ratios. | |||
* This is not used for typical JPEG files, so it need not be fast. | |||
* Nor, for that matter, is it particularly accurate: the algorithm is | |||
* simple replication of the input pixel onto the corresponding output | |||
* pixels. The hi-falutin sampling literature refers to this as a | |||
* "box filter". A box filter tends to introduce visible artifacts, | |||
* so if you are actually going to use 3:1 or 4:1 sampling ratios | |||
* you would be well advised to improve this code. | |||
*/ | |||
METHODDEF(void) | |||
int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |||
{ | |||
my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | |||
JSAMPARRAY output_data = *output_data_ptr; | |||
register JSAMPROW inptr, outptr; | |||
register JSAMPLE invalue; | |||
register int h; | |||
JSAMPROW outend; | |||
int h_expand, v_expand; | |||
int inrow, outrow; | |||
h_expand = upsample->h_expand[compptr->component_index]; | |||
v_expand = upsample->v_expand[compptr->component_index]; | |||
inrow = outrow = 0; | |||
while (outrow < cinfo->max_v_samp_factor) { | |||
/* Generate one output row with proper horizontal expansion */ | |||
inptr = input_data[inrow]; | |||
outptr = output_data[outrow]; | |||
outend = outptr + cinfo->output_width; | |||
while (outptr < outend) { | |||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ | |||
for (h = h_expand; h > 0; h--) { | |||
*outptr++ = invalue; | |||
} | |||
} | |||
/* Generate any additional output rows by duplicating the first one */ | |||
if (v_expand > 1) { | |||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1, | |||
v_expand-1, cinfo->output_width); | |||
} | |||
inrow++; | |||
outrow += v_expand; | |||
} | |||
} | |||
/* | |||
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical. | |||
* It's still a box filter. | |||
*/ | |||
METHODDEF(void) | |||
h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |||
{ | |||
JSAMPARRAY output_data = *output_data_ptr; | |||
register JSAMPROW inptr, outptr; | |||
register JSAMPLE invalue; | |||
JSAMPROW outend; | |||
int outrow; | |||
for (outrow = 0; outrow < cinfo->max_v_samp_factor; outrow++) { | |||
inptr = input_data[outrow]; | |||
outptr = output_data[outrow]; | |||
outend = outptr + cinfo->output_width; | |||
while (outptr < outend) { | |||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ | |||
*outptr++ = invalue; | |||
*outptr++ = invalue; | |||
} | |||
} | |||
} | |||
/* | |||
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical. | |||
* It's still a box filter. | |||
*/ | |||
METHODDEF(void) | |||
h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | |||
{ | |||
JSAMPARRAY output_data = *output_data_ptr; | |||
register JSAMPROW inptr, outptr; | |||
register JSAMPLE invalue; | |||
JSAMPROW outend; | |||
int inrow, outrow; | |||
inrow = outrow = 0; | |||
while (outrow < cinfo->max_v_samp_factor) { | |||
inptr = input_data[inrow]; | |||
outptr = output_data[outrow]; | |||
outend = outptr + cinfo->output_width; | |||
while (outptr < outend) { | |||
invalue = *inptr++; /* don't need GETJSAMPLE() here */ | |||
*outptr++ = invalue; | |||
*outptr++ = invalue; | |||
} | |||
jcopy_sample_rows(output_data, outrow, output_data, outrow+1, | |||
1, cinfo->output_width); | |||
inrow++; | |||
outrow += 2; | |||
} | |||
} | |||
/* | |||
* Module initialization routine for upsampling. | |||
*/ | |||
GLOBAL(void) | |||
jinit_upsampler (j_decompress_ptr cinfo) | |||
{ | |||
my_upsample_ptr upsample; | |||
int ci; | |||
jpeg_component_info * compptr; | |||
boolean need_buffer; | |||
int h_in_group, v_in_group, h_out_group, v_out_group; | |||
upsample = (my_upsample_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_upsampler)); | |||
cinfo->upsample = (struct jpeg_upsampler *) upsample; | |||
upsample->pub.start_pass = start_pass_upsample; | |||
upsample->pub.upsample = sep_upsample; | |||
upsample->pub.need_context_rows = FALSE; /* until we find out differently */ | |||
if (cinfo->CCIR601_sampling) /* this isn't supported */ | |||
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | |||
/* Verify we can handle the sampling factors, select per-component methods, | |||
* and create storage as needed. | |||
*/ | |||
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |||
ci++, compptr++) { | |||
/* Compute size of an "input group" after IDCT scaling. This many samples | |||
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels. | |||
*/ | |||
h_in_group = (compptr->h_samp_factor * compptr->DCT_h_scaled_size) / | |||
cinfo->min_DCT_h_scaled_size; | |||
v_in_group = (compptr->v_samp_factor * compptr->DCT_v_scaled_size) / | |||
cinfo->min_DCT_v_scaled_size; | |||
h_out_group = cinfo->max_h_samp_factor; | |||
v_out_group = cinfo->max_v_samp_factor; | |||
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ | |||
need_buffer = TRUE; | |||
if (! compptr->component_needed) { | |||
/* Don't bother to upsample an uninteresting component. */ | |||
upsample->methods[ci] = noop_upsample; | |||
need_buffer = FALSE; | |||
} else if (h_in_group == h_out_group && v_in_group == v_out_group) { | |||
/* Fullsize components can be processed without any work. */ | |||
upsample->methods[ci] = fullsize_upsample; | |||
need_buffer = FALSE; | |||
} else if (h_in_group * 2 == h_out_group && | |||
v_in_group == v_out_group) { | |||
/* Special case for 2h1v upsampling */ | |||
upsample->methods[ci] = h2v1_upsample; | |||
} else if (h_in_group * 2 == h_out_group && | |||
v_in_group * 2 == v_out_group) { | |||
/* Special case for 2h2v upsampling */ | |||
upsample->methods[ci] = h2v2_upsample; | |||
} else if ((h_out_group % h_in_group) == 0 && | |||
(v_out_group % v_in_group) == 0) { | |||
/* Generic integral-factors upsampling method */ | |||
upsample->methods[ci] = int_upsample; | |||
upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); | |||
upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); | |||
} else | |||
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | |||
if (need_buffer) { | |||
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(JDIMENSION) jround_up((long) cinfo->output_width, | |||
(long) cinfo->max_h_samp_factor), | |||
(JDIMENSION) cinfo->max_v_samp_factor); | |||
} | |||
} | |||
} |
@@ -1,140 +0,0 @@ | |||
/* | |||
* jdtrans.c | |||
* | |||
* Copyright (C) 1995-1997, Thomas G. Lane. | |||
* Modified 2000-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains library routines for transcoding decompression, | |||
* that is, reading raw DCT coefficient arrays from an input JPEG file. | |||
* The routines in jdapimin.c will also be needed by a transcoder. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* Forward declarations */ | |||
LOCAL(void) transdecode_master_selection JPP((j_decompress_ptr cinfo)); | |||
/* | |||
* Read the coefficient arrays from a JPEG file. | |||
* jpeg_read_header must be completed before calling this. | |||
* | |||
* The entire image is read into a set of virtual coefficient-block arrays, | |||
* one per component. The return value is a pointer to the array of | |||
* virtual-array descriptors. These can be manipulated directly via the | |||
* JPEG memory manager, or handed off to jpeg_write_coefficients(). | |||
* To release the memory occupied by the virtual arrays, call | |||
* jpeg_finish_decompress() when done with the data. | |||
* | |||
* An alternative usage is to simply obtain access to the coefficient arrays | |||
* during a buffered-image-mode decompression operation. This is allowed | |||
* after any jpeg_finish_output() call. The arrays can be accessed until | |||
* jpeg_finish_decompress() is called. (Note that any call to the library | |||
* may reposition the arrays, so don't rely on access_virt_barray() results | |||
* to stay valid across library calls.) | |||
* | |||
* Returns NULL if suspended. This case need be checked only if | |||
* a suspending data source is used. | |||
*/ | |||
GLOBAL(jvirt_barray_ptr *) | |||
jpeg_read_coefficients (j_decompress_ptr cinfo) | |||
{ | |||
if (cinfo->global_state == DSTATE_READY) { | |||
/* First call: initialize active modules */ | |||
transdecode_master_selection(cinfo); | |||
cinfo->global_state = DSTATE_RDCOEFS; | |||
} | |||
if (cinfo->global_state == DSTATE_RDCOEFS) { | |||
/* Absorb whole file into the coef buffer */ | |||
for (;;) { | |||
int retcode; | |||
/* Call progress monitor hook if present */ | |||
if (cinfo->progress != NULL) | |||
(*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo); | |||
/* Absorb some more input */ | |||
retcode = (*cinfo->inputctl->consume_input) (cinfo); | |||
if (retcode == JPEG_SUSPENDED) | |||
return NULL; | |||
if (retcode == JPEG_REACHED_EOI) | |||
break; | |||
/* Advance progress counter if appropriate */ | |||
if (cinfo->progress != NULL && | |||
(retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { | |||
if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { | |||
/* startup underestimated number of scans; ratchet up one scan */ | |||
cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows; | |||
} | |||
} | |||
} | |||
/* Set state so that jpeg_finish_decompress does the right thing */ | |||
cinfo->global_state = DSTATE_STOPPING; | |||
} | |||
/* At this point we should be in state DSTATE_STOPPING if being used | |||
* standalone, or in state DSTATE_BUFIMAGE if being invoked to get access | |||
* to the coefficients during a full buffered-image-mode decompression. | |||
*/ | |||
if ((cinfo->global_state == DSTATE_STOPPING || | |||
cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { | |||
return cinfo->coef->coef_arrays; | |||
} | |||
/* Oops, improper usage */ | |||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |||
return NULL; /* keep compiler happy */ | |||
} | |||
/* | |||
* Master selection of decompression modules for transcoding. | |||
* This substitutes for jdmaster.c's initialization of the full decompressor. | |||
*/ | |||
LOCAL(void) | |||
transdecode_master_selection (j_decompress_ptr cinfo) | |||
{ | |||
/* This is effectively a buffered-image operation. */ | |||
cinfo->buffered_image = TRUE; | |||
/* Compute output image dimensions and related values. */ | |||
jpeg_core_output_dimensions(cinfo); | |||
/* Entropy decoding: either Huffman or arithmetic coding. */ | |||
if (cinfo->arith_code) | |||
jinit_arith_decoder(cinfo); | |||
else { | |||
jinit_huff_decoder(cinfo); | |||
} | |||
/* Always get a full-image coefficient buffer. */ | |||
jinit_d_coef_controller(cinfo, TRUE); | |||
/* We can now tell the memory manager to allocate virtual arrays. */ | |||
(*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | |||
/* Initialize input side of decompressor to consume first scan. */ | |||
(*cinfo->inputctl->start_input_pass) (cinfo); | |||
/* Initialize progress monitoring. */ | |||
if (cinfo->progress != NULL) { | |||
int nscans; | |||
/* Estimate number of scans to set pass_limit. */ | |||
if (cinfo->progressive_mode) { | |||
/* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ | |||
nscans = 2 + 3 * cinfo->num_components; | |||
} else if (cinfo->inputctl->has_multiple_scans) { | |||
/* For a nonprogressive multiscan file, estimate 1 scan per component. */ | |||
nscans = cinfo->num_components; | |||
} else { | |||
nscans = 1; | |||
} | |||
cinfo->progress->pass_counter = 0L; | |||
cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; | |||
cinfo->progress->completed_passes = 0; | |||
cinfo->progress->total_passes = 1; | |||
} | |||
} |
@@ -1,252 +0,0 @@ | |||
/* | |||
* jerror.c | |||
* | |||
* Copyright (C) 1991-1998, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains simple error-reporting and trace-message routines. | |||
* These are suitable for Unix-like systems and others where writing to | |||
* stderr is the right thing to do. Many applications will want to replace | |||
* some or all of these routines. | |||
* | |||
* If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile, | |||
* you get a Windows-specific hack to display error messages in a dialog box. | |||
* It ain't much, but it beats dropping error messages into the bit bucket, | |||
* which is what happens to output to stderr under most Windows C compilers. | |||
* | |||
* These routines are used by both the compression and decompression code. | |||
*/ | |||
/* this is not a core library module, so it doesn't define JPEG_INTERNALS */ | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jversion.h" | |||
#include "jerror.h" | |||
#ifdef USE_WINDOWS_MESSAGEBOX | |||
#include <windows.h> | |||
#endif | |||
#ifndef EXIT_FAILURE /* define exit() codes if not provided */ | |||
#define EXIT_FAILURE 1 | |||
#endif | |||
/* | |||
* Create the message string table. | |||
* We do this from the master message list in jerror.h by re-reading | |||
* jerror.h with a suitable definition for macro JMESSAGE. | |||
* The message table is made an external symbol just in case any applications | |||
* want to refer to it directly. | |||
*/ | |||
#ifdef NEED_SHORT_EXTERNAL_NAMES | |||
#define jpeg_std_message_table jMsgTable | |||
#endif | |||
#define JMESSAGE(code,string) string , | |||
const char * const jpeg_std_message_table[] = { | |||
#include "jerror.h" | |||
NULL | |||
}; | |||
/* | |||
* Error exit handler: must not return to caller. | |||
* | |||
* Applications may override this if they want to get control back after | |||
* an error. Typically one would longjmp somewhere instead of exiting. | |||
* The setjmp buffer can be made a private field within an expanded error | |||
* handler object. Note that the info needed to generate an error message | |||
* is stored in the error object, so you can generate the message now or | |||
* later, at your convenience. | |||
* You should make sure that the JPEG object is cleaned up (with jpeg_abort | |||
* or jpeg_destroy) at some point. | |||
*/ | |||
METHODDEF(void) | |||
error_exit (j_common_ptr cinfo) | |||
{ | |||
/* Always display the message */ | |||
(*cinfo->err->output_message) (cinfo); | |||
/* Let the memory manager delete any temp files before we die */ | |||
jpeg_destroy(cinfo); | |||
exit(EXIT_FAILURE); | |||
} | |||
/* | |||
* Actual output of an error or trace message. | |||
* Applications may override this method to send JPEG messages somewhere | |||
* other than stderr. | |||
* | |||
* On Windows, printing to stderr is generally completely useless, | |||
* so we provide optional code to produce an error-dialog popup. | |||
* Most Windows applications will still prefer to override this routine, | |||
* but if they don't, it'll do something at least marginally useful. | |||
* | |||
* NOTE: to use the library in an environment that doesn't support the | |||
* C stdio library, you may have to delete the call to fprintf() entirely, | |||
* not just not use this routine. | |||
*/ | |||
METHODDEF(void) | |||
output_message (j_common_ptr cinfo) | |||
{ | |||
char buffer[JMSG_LENGTH_MAX]; | |||
/* Create the message */ | |||
(*cinfo->err->format_message) (cinfo, buffer); | |||
#ifdef USE_WINDOWS_MESSAGEBOX | |||
/* Display it in a message dialog box */ | |||
MessageBox(GetActiveWindow(), buffer, "JPEG Library Error", | |||
MB_OK | MB_ICONERROR); | |||
#else | |||
/* Send it to stderr, adding a newline */ | |||
fprintf(stderr, "%s\n", buffer); | |||
#endif | |||
} | |||
/* | |||
* Decide whether to emit a trace or warning message. | |||
* msg_level is one of: | |||
* -1: recoverable corrupt-data warning, may want to abort. | |||
* 0: important advisory messages (always display to user). | |||
* 1: first level of tracing detail. | |||
* 2,3,...: successively more detailed tracing messages. | |||
* An application might override this method if it wanted to abort on warnings | |||
* or change the policy about which messages to display. | |||
*/ | |||
METHODDEF(void) | |||
emit_message (j_common_ptr cinfo, int msg_level) | |||
{ | |||
struct jpeg_error_mgr * err = cinfo->err; | |||
if (msg_level < 0) { | |||
/* It's a warning message. Since corrupt files may generate many warnings, | |||
* the policy implemented here is to show only the first warning, | |||
* unless trace_level >= 3. | |||
*/ | |||
if (err->num_warnings == 0 || err->trace_level >= 3) | |||
(*err->output_message) (cinfo); | |||
/* Always count warnings in num_warnings. */ | |||
err->num_warnings++; | |||
} else { | |||
/* It's a trace message. Show it if trace_level >= msg_level. */ | |||
if (err->trace_level >= msg_level) | |||
(*err->output_message) (cinfo); | |||
} | |||
} | |||
/* | |||
* Format a message string for the most recent JPEG error or message. | |||
* The message is stored into buffer, which should be at least JMSG_LENGTH_MAX | |||
* characters. Note that no '\n' character is added to the string. | |||
* Few applications should need to override this method. | |||
*/ | |||
METHODDEF(void) | |||
format_message (j_common_ptr cinfo, char * buffer) | |||
{ | |||
struct jpeg_error_mgr * err = cinfo->err; | |||
int msg_code = err->msg_code; | |||
const char * msgtext = NULL; | |||
const char * msgptr; | |||
char ch; | |||
boolean isstring; | |||
/* Look up message string in proper table */ | |||
if (msg_code > 0 && msg_code <= err->last_jpeg_message) { | |||
msgtext = err->jpeg_message_table[msg_code]; | |||
} else if (err->addon_message_table != NULL && | |||
msg_code >= err->first_addon_message && | |||
msg_code <= err->last_addon_message) { | |||
msgtext = err->addon_message_table[msg_code - err->first_addon_message]; | |||
} | |||
/* Defend against bogus message number */ | |||
if (msgtext == NULL) { | |||
err->msg_parm.i[0] = msg_code; | |||
msgtext = err->jpeg_message_table[0]; | |||
} | |||
/* Check for string parameter, as indicated by %s in the message text */ | |||
isstring = FALSE; | |||
msgptr = msgtext; | |||
while ((ch = *msgptr++) != '\0') { | |||
if (ch == '%') { | |||
if (*msgptr == 's') isstring = TRUE; | |||
break; | |||
} | |||
} | |||
/* Format the message into the passed buffer */ | |||
if (isstring) | |||
sprintf(buffer, msgtext, err->msg_parm.s); | |||
else | |||
sprintf(buffer, msgtext, | |||
err->msg_parm.i[0], err->msg_parm.i[1], | |||
err->msg_parm.i[2], err->msg_parm.i[3], | |||
err->msg_parm.i[4], err->msg_parm.i[5], | |||
err->msg_parm.i[6], err->msg_parm.i[7]); | |||
} | |||
/* | |||
* Reset error state variables at start of a new image. | |||
* This is called during compression startup to reset trace/error | |||
* processing to default state, without losing any application-specific | |||
* method pointers. An application might possibly want to override | |||
* this method if it has additional error processing state. | |||
*/ | |||
METHODDEF(void) | |||
reset_error_mgr (j_common_ptr cinfo) | |||
{ | |||
cinfo->err->num_warnings = 0; | |||
/* trace_level is not reset since it is an application-supplied parameter */ | |||
cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */ | |||
} | |||
/* | |||
* Fill in the standard error-handling methods in a jpeg_error_mgr object. | |||
* Typical call is: | |||
* struct jpeg_compress_struct cinfo; | |||
* struct jpeg_error_mgr err; | |||
* | |||
* cinfo.err = jpeg_std_error(&err); | |||
* after which the application may override some of the methods. | |||
*/ | |||
GLOBAL(struct jpeg_error_mgr *) | |||
jpeg_std_error (struct jpeg_error_mgr * err) | |||
{ | |||
err->error_exit = error_exit; | |||
err->emit_message = emit_message; | |||
err->output_message = output_message; | |||
err->format_message = format_message; | |||
err->reset_error_mgr = reset_error_mgr; | |||
err->trace_level = 0; /* default = no tracing */ | |||
err->num_warnings = 0; /* no warnings emitted yet */ | |||
err->msg_code = 0; /* may be useful as a flag for "no error" */ | |||
/* Initialize message table pointers */ | |||
err->jpeg_message_table = jpeg_std_message_table; | |||
err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1; | |||
err->addon_message_table = NULL; | |||
err->first_addon_message = 0; /* for safety */ | |||
err->last_addon_message = 0; | |||
return err; | |||
} |
@@ -1,304 +0,0 @@ | |||
/* | |||
* jerror.h | |||
* | |||
* Copyright (C) 1994-1997, Thomas G. Lane. | |||
* Modified 1997-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file defines the error and message codes for the JPEG library. | |||
* Edit this file to add new codes, or to translate the message strings to | |||
* some other language. | |||
* A set of error-reporting macros are defined too. Some applications using | |||
* the JPEG library may wish to include this file to get the error codes | |||
* and/or the macros. | |||
*/ | |||
/* | |||
* To define the enum list of message codes, include this file without | |||
* defining macro JMESSAGE. To create a message string table, include it | |||
* again with a suitable JMESSAGE definition (see jerror.c for an example). | |||
*/ | |||
#ifndef JMESSAGE | |||
#ifndef JERROR_H | |||
/* First time through, define the enum list */ | |||
#define JMAKE_ENUM_LIST | |||
#else | |||
/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ | |||
#define JMESSAGE(code,string) | |||
#endif /* JERROR_H */ | |||
#endif /* JMESSAGE */ | |||
#ifdef JMAKE_ENUM_LIST | |||
typedef enum { | |||
#define JMESSAGE(code,string) code , | |||
#endif /* JMAKE_ENUM_LIST */ | |||
JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ | |||
/* For maintenance convenience, list is alphabetical by message code name */ | |||
JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") | |||
JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") | |||
JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") | |||
JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") | |||
JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") | |||
JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") | |||
JMESSAGE(JERR_BAD_DCTSIZE, "DCT scaled block size %dx%d not supported") | |||
JMESSAGE(JERR_BAD_DROP_SAMPLING, | |||
"Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") | |||
JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") | |||
JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") | |||
JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") | |||
JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") | |||
JMESSAGE(JERR_BAD_LIB_VERSION, | |||
"Wrong JPEG library version: library is %d, caller expects %d") | |||
JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") | |||
JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") | |||
JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") | |||
JMESSAGE(JERR_BAD_PROGRESSION, | |||
"Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") | |||
JMESSAGE(JERR_BAD_PROG_SCRIPT, | |||
"Invalid progressive parameters at scan script entry %d") | |||
JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") | |||
JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") | |||
JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") | |||
JMESSAGE(JERR_BAD_STRUCT_SIZE, | |||
"JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") | |||
JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") | |||
JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") | |||
JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") | |||
JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") | |||
JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") | |||
JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") | |||
JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") | |||
JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") | |||
JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") | |||
JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") | |||
JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") | |||
JMESSAGE(JERR_EMS_READ, "Read from EMS failed") | |||
JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") | |||
JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") | |||
JMESSAGE(JERR_FILE_READ, "Input file read error") | |||
JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") | |||
JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") | |||
JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") | |||
JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") | |||
JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") | |||
JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") | |||
JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") | |||
JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, | |||
"Cannot transcode due to multiple use of quantization table %d") | |||
JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") | |||
JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") | |||
JMESSAGE(JERR_NOTIMPL, "Not implemented yet") | |||
JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") | |||
JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") | |||
JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") | |||
JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") | |||
JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") | |||
JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") | |||
JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") | |||
JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") | |||
JMESSAGE(JERR_QUANT_COMPONENTS, | |||
"Cannot quantize more than %d color components") | |||
JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") | |||
JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") | |||
JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") | |||
JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") | |||
JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") | |||
JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") | |||
JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") | |||
JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") | |||
JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") | |||
JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") | |||
JMESSAGE(JERR_TFILE_WRITE, | |||
"Write failed on temporary file --- out of disk space?") | |||
JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") | |||
JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") | |||
JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") | |||
JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") | |||
JMESSAGE(JERR_XMS_READ, "Read from XMS failed") | |||
JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") | |||
JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT) | |||
JMESSAGE(JMSG_VERSION, JVERSION) | |||
JMESSAGE(JTRC_16BIT_TABLES, | |||
"Caution: quantization tables are too coarse for baseline JPEG") | |||
JMESSAGE(JTRC_ADOBE, | |||
"Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") | |||
JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") | |||
JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") | |||
JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") | |||
JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") | |||
JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") | |||
JMESSAGE(JTRC_DRI, "Define Restart Interval %u") | |||
JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") | |||
JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") | |||
JMESSAGE(JTRC_EOI, "End Of Image") | |||
JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") | |||
JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") | |||
JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, | |||
"Warning: thumbnail image size does not match data length %u") | |||
JMESSAGE(JTRC_JFIF_EXTENSION, | |||
"JFIF extension marker: type 0x%02x, length %u") | |||
JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") | |||
JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") | |||
JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") | |||
JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") | |||
JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") | |||
JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") | |||
JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") | |||
JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") | |||
JMESSAGE(JTRC_RST, "RST%d") | |||
JMESSAGE(JTRC_SMOOTH_NOTIMPL, | |||
"Smoothing not supported with nonstandard sampling ratios") | |||
JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") | |||
JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") | |||
JMESSAGE(JTRC_SOI, "Start of Image") | |||
JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") | |||
JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") | |||
JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") | |||
JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") | |||
JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") | |||
JMESSAGE(JTRC_THUMB_JPEG, | |||
"JFIF extension marker: JPEG-compressed thumbnail image, length %u") | |||
JMESSAGE(JTRC_THUMB_PALETTE, | |||
"JFIF extension marker: palette thumbnail image, length %u") | |||
JMESSAGE(JTRC_THUMB_RGB, | |||
"JFIF extension marker: RGB thumbnail image, length %u") | |||
JMESSAGE(JTRC_UNKNOWN_IDS, | |||
"Unrecognized component IDs %d %d %d, assuming YCbCr") | |||
JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") | |||
JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") | |||
JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") | |||
JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") | |||
JMESSAGE(JWRN_BOGUS_PROGRESSION, | |||
"Inconsistent progression sequence for component %d coefficient %d") | |||
JMESSAGE(JWRN_EXTRANEOUS_DATA, | |||
"Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") | |||
JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") | |||
JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") | |||
JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") | |||
JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") | |||
JMESSAGE(JWRN_MUST_RESYNC, | |||
"Corrupt JPEG data: found marker 0x%02x instead of RST%d") | |||
JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") | |||
JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") | |||
#ifdef JMAKE_ENUM_LIST | |||
JMSG_LASTMSGCODE | |||
} J_MESSAGE_CODE; | |||
#undef JMAKE_ENUM_LIST | |||
#endif /* JMAKE_ENUM_LIST */ | |||
/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ | |||
#undef JMESSAGE | |||
#ifndef JERROR_H | |||
#define JERROR_H | |||
/* Macros to simplify using the error and trace message stuff */ | |||
/* The first parameter is either type of cinfo pointer */ | |||
/* Fatal errors (print message and exit) */ | |||
#define ERREXIT(cinfo,code) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | |||
#define ERREXIT1(cinfo,code,p1) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | |||
#define ERREXIT2(cinfo,code,p1,p2) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(cinfo)->err->msg_parm.i[1] = (p2), \ | |||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | |||
#define ERREXIT3(cinfo,code,p1,p2,p3) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(cinfo)->err->msg_parm.i[1] = (p2), \ | |||
(cinfo)->err->msg_parm.i[2] = (p3), \ | |||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | |||
#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(cinfo)->err->msg_parm.i[1] = (p2), \ | |||
(cinfo)->err->msg_parm.i[2] = (p3), \ | |||
(cinfo)->err->msg_parm.i[3] = (p4), \ | |||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | |||
#define ERREXIT6(cinfo,code,p1,p2,p3,p4,p5,p6) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(cinfo)->err->msg_parm.i[1] = (p2), \ | |||
(cinfo)->err->msg_parm.i[2] = (p3), \ | |||
(cinfo)->err->msg_parm.i[3] = (p4), \ | |||
(cinfo)->err->msg_parm.i[4] = (p5), \ | |||
(cinfo)->err->msg_parm.i[5] = (p6), \ | |||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | |||
#define ERREXITS(cinfo,code,str) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ | |||
(*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo))) | |||
#define MAKESTMT(stuff) do { stuff } while (0) | |||
/* Nonfatal errors (we can keep going, but the data is probably corrupt) */ | |||
#define WARNMS(cinfo,code) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) | |||
#define WARNMS1(cinfo,code,p1) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) | |||
#define WARNMS2(cinfo,code,p1,p2) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(cinfo)->err->msg_parm.i[1] = (p2), \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1)) | |||
/* Informational/debugging messages */ | |||
#define TRACEMS(cinfo,lvl,code) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | |||
#define TRACEMS1(cinfo,lvl,code,p1) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | |||
#define TRACEMS2(cinfo,lvl,code,p1,p2) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
(cinfo)->err->msg_parm.i[0] = (p1), \ | |||
(cinfo)->err->msg_parm.i[1] = (p2), \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | |||
#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \ | |||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | |||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ | |||
(cinfo)->err->msg_code = (code); \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | |||
#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \ | |||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | |||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ | |||
(cinfo)->err->msg_code = (code); \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | |||
#define TRACEMS5(cinfo,lvl,code,p1,p2,p3,p4,p5) \ | |||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | |||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ | |||
_mp[4] = (p5); \ | |||
(cinfo)->err->msg_code = (code); \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | |||
#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \ | |||
MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \ | |||
_mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ | |||
_mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ | |||
(cinfo)->err->msg_code = (code); \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); ) | |||
#define TRACEMSS(cinfo,lvl,code,str) \ | |||
((cinfo)->err->msg_code = (code), \ | |||
strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ | |||
(*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl))) | |||
#endif /* JERROR_H */ |
@@ -1,174 +0,0 @@ | |||
/* | |||
* jfdctflt.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* Modified 2003-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains a floating-point implementation of the | |||
* forward DCT (Discrete Cosine Transform). | |||
* | |||
* This implementation should be more accurate than either of the integer | |||
* DCT implementations. However, it may not give the same results on all | |||
* machines because of differences in roundoff behavior. Speed will depend | |||
* on the hardware's floating point capacity. | |||
* | |||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |||
* on each column. Direct algorithms are also available, but they are | |||
* much more complex and seem not to be any faster when reduced to code. | |||
* | |||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for | |||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell | |||
* JPEG textbook (see REFERENCES section in file README). The following code | |||
* is based directly on figure 4-8 in P&M. | |||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is | |||
* possible to arrange the computation so that many of the multiplies are | |||
* simple scalings of the final outputs. These multiplies can then be | |||
* folded into the multiplications or divisions by the JPEG quantization | |||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds | |||
* to be done in the DCT itself. | |||
* The primary disadvantage of this method is that with a fixed-point | |||
* implementation, accuracy is lost due to imprecise representation of the | |||
* scaled quantization values. However, that problem does not arise if | |||
* we use floating point arithmetic. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jdct.h" /* Private declarations for DCT subsystem */ | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
/* | |||
* This module is specialized to the case DCTSIZE = 8. | |||
*/ | |||
#if DCTSIZE != 8 | |||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |||
#endif | |||
/* | |||
* Perform the forward DCT on one block of samples. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |||
{ | |||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | |||
FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; | |||
FAST_FLOAT *dataptr; | |||
JSAMPROW elemptr; | |||
int ctr; | |||
/* Pass 1: process rows. */ | |||
dataptr = data; | |||
for (ctr = 0; ctr < DCTSIZE; ctr++) { | |||
elemptr = sample_data[ctr] + start_col; | |||
/* Load data into workspace */ | |||
tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7])); | |||
tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7])); | |||
tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6])); | |||
tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6])); | |||
tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5])); | |||
tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5])); | |||
tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4])); | |||
tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4])); | |||
/* Even part */ | |||
tmp10 = tmp0 + tmp3; /* phase 2 */ | |||
tmp13 = tmp0 - tmp3; | |||
tmp11 = tmp1 + tmp2; | |||
tmp12 = tmp1 - tmp2; | |||
/* Apply unsigned->signed conversion */ | |||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ | |||
dataptr[4] = tmp10 - tmp11; | |||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | |||
dataptr[2] = tmp13 + z1; /* phase 5 */ | |||
dataptr[6] = tmp13 - z1; | |||
/* Odd part */ | |||
tmp10 = tmp4 + tmp5; /* phase 2 */ | |||
tmp11 = tmp5 + tmp6; | |||
tmp12 = tmp6 + tmp7; | |||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ | |||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | |||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | |||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | |||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | |||
z11 = tmp7 + z3; /* phase 5 */ | |||
z13 = tmp7 - z3; | |||
dataptr[5] = z13 + z2; /* phase 6 */ | |||
dataptr[3] = z13 - z2; | |||
dataptr[1] = z11 + z4; | |||
dataptr[7] = z11 - z4; | |||
dataptr += DCTSIZE; /* advance pointer to next row */ | |||
} | |||
/* Pass 2: process columns. */ | |||
dataptr = data; | |||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |||
/* Even part */ | |||
tmp10 = tmp0 + tmp3; /* phase 2 */ | |||
tmp13 = tmp0 - tmp3; | |||
tmp11 = tmp1 + tmp2; | |||
tmp12 = tmp1 - tmp2; | |||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | |||
dataptr[DCTSIZE*4] = tmp10 - tmp11; | |||
z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */ | |||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | |||
dataptr[DCTSIZE*6] = tmp13 - z1; | |||
/* Odd part */ | |||
tmp10 = tmp4 + tmp5; /* phase 2 */ | |||
tmp11 = tmp5 + tmp6; | |||
tmp12 = tmp6 + tmp7; | |||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ | |||
z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */ | |||
z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */ | |||
z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */ | |||
z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */ | |||
z11 = tmp7 + z3; /* phase 5 */ | |||
z13 = tmp7 - z3; | |||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | |||
dataptr[DCTSIZE*3] = z13 - z2; | |||
dataptr[DCTSIZE*1] = z11 + z4; | |||
dataptr[DCTSIZE*7] = z11 - z4; | |||
dataptr++; /* advance pointer to next column */ | |||
} | |||
} | |||
#endif /* DCT_FLOAT_SUPPORTED */ |
@@ -1,230 +0,0 @@ | |||
/* | |||
* jfdctfst.c | |||
* | |||
* Copyright (C) 1994-1996, Thomas G. Lane. | |||
* Modified 2003-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains a fast, not so accurate integer implementation of the | |||
* forward DCT (Discrete Cosine Transform). | |||
* | |||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | |||
* on each column. Direct algorithms are also available, but they are | |||
* much more complex and seem not to be any faster when reduced to code. | |||
* | |||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for | |||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell | |||
* JPEG textbook (see REFERENCES section in file README). The following code | |||
* is based directly on figure 4-8 in P&M. | |||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is | |||
* possible to arrange the computation so that many of the multiplies are | |||
* simple scalings of the final outputs. These multiplies can then be | |||
* folded into the multiplications or divisions by the JPEG quantization | |||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds | |||
* to be done in the DCT itself. | |||
* The primary disadvantage of this method is that with fixed-point math, | |||
* accuracy is lost due to imprecise representation of the scaled | |||
* quantization values. The smaller the quantization table entry, the less | |||
* precise the scaled value, so this implementation does worse with high- | |||
* quality-setting files than with low-quality ones. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jdct.h" /* Private declarations for DCT subsystem */ | |||
#ifdef DCT_IFAST_SUPPORTED | |||
/* | |||
* This module is specialized to the case DCTSIZE = 8. | |||
*/ | |||
#if DCTSIZE != 8 | |||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |||
#endif | |||
/* Scaling decisions are generally the same as in the LL&M algorithm; | |||
* see jfdctint.c for more details. However, we choose to descale | |||
* (right shift) multiplication products as soon as they are formed, | |||
* rather than carrying additional fractional bits into subsequent additions. | |||
* This compromises accuracy slightly, but it lets us save a few shifts. | |||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | |||
* everywhere except in the multiplications proper; this saves a good deal | |||
* of work on 16-bit-int machines. | |||
* | |||
* Again to save a few shifts, the intermediate results between pass 1 and | |||
* pass 2 are not upscaled, but are represented only to integral precision. | |||
* | |||
* A final compromise is to represent the multiplicative constants to only | |||
* 8 fractional bits, rather than 13. This saves some shifting work on some | |||
* machines, and may also reduce the cost of multiplication (since there | |||
* are fewer one-bits in the constants). | |||
*/ | |||
#define CONST_BITS 8 | |||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |||
* causing a lot of useless floating-point operations at run time. | |||
* To get around this we use the following pre-calculated constants. | |||
* If you change CONST_BITS you may want to add appropriate values. | |||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) | |||
*/ | |||
#if CONST_BITS == 8 | |||
#define FIX_0_382683433 ((INT32) 98) /* FIX(0.382683433) */ | |||
#define FIX_0_541196100 ((INT32) 139) /* FIX(0.541196100) */ | |||
#define FIX_0_707106781 ((INT32) 181) /* FIX(0.707106781) */ | |||
#define FIX_1_306562965 ((INT32) 334) /* FIX(1.306562965) */ | |||
#else | |||
#define FIX_0_382683433 FIX(0.382683433) | |||
#define FIX_0_541196100 FIX(0.541196100) | |||
#define FIX_0_707106781 FIX(0.707106781) | |||
#define FIX_1_306562965 FIX(1.306562965) | |||
#endif | |||
/* We can gain a little more speed, with a further compromise in accuracy, | |||
* by omitting the addition in a descaling shift. This yields an incorrectly | |||
* rounded result half the time... | |||
*/ | |||
#ifndef USE_ACCURATE_ROUNDING | |||
#undef DESCALE | |||
#define DESCALE(x,n) RIGHT_SHIFT(x, n) | |||
#endif | |||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately | |||
* descale to yield a DCTELEM result. | |||
*/ | |||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | |||
/* | |||
* Perform the forward DCT on one block of samples. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_fdct_ifast (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col) | |||
{ | |||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |||
DCTELEM tmp10, tmp11, tmp12, tmp13; | |||
DCTELEM z1, z2, z3, z4, z5, z11, z13; | |||
DCTELEM *dataptr; | |||
JSAMPROW elemptr; | |||
int ctr; | |||
SHIFT_TEMPS | |||
/* Pass 1: process rows. */ | |||
dataptr = data; | |||
for (ctr = 0; ctr < DCTSIZE; ctr++) { | |||
elemptr = sample_data[ctr] + start_col; | |||
/* Load data into workspace */ | |||
tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]); | |||
tmp7 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]); | |||
tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]); | |||
tmp6 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]); | |||
tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]); | |||
tmp5 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]); | |||
tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]); | |||
tmp4 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]); | |||
/* Even part */ | |||
tmp10 = tmp0 + tmp3; /* phase 2 */ | |||
tmp13 = tmp0 - tmp3; | |||
tmp11 = tmp1 + tmp2; | |||
tmp12 = tmp1 - tmp2; | |||
/* Apply unsigned->signed conversion */ | |||
dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */ | |||
dataptr[4] = tmp10 - tmp11; | |||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |||
dataptr[2] = tmp13 + z1; /* phase 5 */ | |||
dataptr[6] = tmp13 - z1; | |||
/* Odd part */ | |||
tmp10 = tmp4 + tmp5; /* phase 2 */ | |||
tmp11 = tmp5 + tmp6; | |||
tmp12 = tmp6 + tmp7; | |||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ | |||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |||
z11 = tmp7 + z3; /* phase 5 */ | |||
z13 = tmp7 - z3; | |||
dataptr[5] = z13 + z2; /* phase 6 */ | |||
dataptr[3] = z13 - z2; | |||
dataptr[1] = z11 + z4; | |||
dataptr[7] = z11 - z4; | |||
dataptr += DCTSIZE; /* advance pointer to next row */ | |||
} | |||
/* Pass 2: process columns. */ | |||
dataptr = data; | |||
for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |||
tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |||
tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |||
tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |||
tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |||
tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |||
tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |||
tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |||
tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |||
/* Even part */ | |||
tmp10 = tmp0 + tmp3; /* phase 2 */ | |||
tmp13 = tmp0 - tmp3; | |||
tmp11 = tmp1 + tmp2; | |||
tmp12 = tmp1 - tmp2; | |||
dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | |||
dataptr[DCTSIZE*4] = tmp10 - tmp11; | |||
z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |||
dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | |||
dataptr[DCTSIZE*6] = tmp13 - z1; | |||
/* Odd part */ | |||
tmp10 = tmp4 + tmp5; /* phase 2 */ | |||
tmp11 = tmp5 + tmp6; | |||
tmp12 = tmp6 + tmp7; | |||
/* The rotator is modified from fig 4-8 to avoid extra negations. */ | |||
z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |||
z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |||
z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |||
z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |||
z11 = tmp7 + z3; /* phase 5 */ | |||
z13 = tmp7 - z3; | |||
dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | |||
dataptr[DCTSIZE*3] = z13 - z2; | |||
dataptr[DCTSIZE*1] = z11 + z4; | |||
dataptr[DCTSIZE*7] = z11 - z4; | |||
dataptr++; /* advance pointer to next column */ | |||
} | |||
} | |||
#endif /* DCT_IFAST_SUPPORTED */ |
@@ -1,235 +0,0 @@ | |||
/* | |||
* jidctflt.c | |||
* | |||
* Copyright (C) 1994-1998, Thomas G. Lane. | |||
* Modified 2010 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains a floating-point implementation of the | |||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |||
* must also perform dequantization of the input coefficients. | |||
* | |||
* This implementation should be more accurate than either of the integer | |||
* IDCT implementations. However, it may not give the same results on all | |||
* machines because of differences in roundoff behavior. Speed will depend | |||
* on the hardware's floating point capacity. | |||
* | |||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |||
* on each row (or vice versa, but it's more convenient to emit a row at | |||
* a time). Direct algorithms are also available, but they are much more | |||
* complex and seem not to be any faster when reduced to code. | |||
* | |||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for | |||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell | |||
* JPEG textbook (see REFERENCES section in file README). The following code | |||
* is based directly on figure 4-8 in P&M. | |||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is | |||
* possible to arrange the computation so that many of the multiplies are | |||
* simple scalings of the final outputs. These multiplies can then be | |||
* folded into the multiplications or divisions by the JPEG quantization | |||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds | |||
* to be done in the DCT itself. | |||
* The primary disadvantage of this method is that with a fixed-point | |||
* implementation, accuracy is lost due to imprecise representation of the | |||
* scaled quantization values. However, that problem does not arise if | |||
* we use floating point arithmetic. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jdct.h" /* Private declarations for DCT subsystem */ | |||
#ifdef DCT_FLOAT_SUPPORTED | |||
/* | |||
* This module is specialized to the case DCTSIZE = 8. | |||
*/ | |||
#if DCTSIZE != 8 | |||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |||
#endif | |||
/* Dequantize a coefficient by multiplying it by the multiplier-table | |||
* entry; produce a float result. | |||
*/ | |||
#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval)) | |||
/* | |||
* Perform dequantization and inverse DCT on one block of coefficients. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, | |||
JSAMPARRAY output_buf, JDIMENSION output_col) | |||
{ | |||
FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |||
FAST_FLOAT tmp10, tmp11, tmp12, tmp13; | |||
FAST_FLOAT z5, z10, z11, z12, z13; | |||
JCOEFPTR inptr; | |||
FLOAT_MULT_TYPE * quantptr; | |||
FAST_FLOAT * wsptr; | |||
JSAMPROW outptr; | |||
JSAMPLE *range_limit = cinfo->sample_range_limit; | |||
int ctr; | |||
FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ | |||
/* Pass 1: process columns from input, store into work array. */ | |||
inptr = coef_block; | |||
quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table; | |||
wsptr = workspace; | |||
for (ctr = DCTSIZE; ctr > 0; ctr--) { | |||
/* Due to quantization, we will usually find that many of the input | |||
* coefficients are zero, especially the AC terms. We can exploit this | |||
* by short-circuiting the IDCT calculation for any column in which all | |||
* the AC terms are zero. In that case each output is equal to the | |||
* DC coefficient (with scale factor as needed). | |||
* With typical images and quantization tables, half or more of the | |||
* column DCT calculations can be simplified this way. | |||
*/ | |||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | |||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | |||
inptr[DCTSIZE*7] == 0) { | |||
/* AC terms all zero */ | |||
FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |||
wsptr[DCTSIZE*0] = dcval; | |||
wsptr[DCTSIZE*1] = dcval; | |||
wsptr[DCTSIZE*2] = dcval; | |||
wsptr[DCTSIZE*3] = dcval; | |||
wsptr[DCTSIZE*4] = dcval; | |||
wsptr[DCTSIZE*5] = dcval; | |||
wsptr[DCTSIZE*6] = dcval; | |||
wsptr[DCTSIZE*7] = dcval; | |||
inptr++; /* advance pointers to next column */ | |||
quantptr++; | |||
wsptr++; | |||
continue; | |||
} | |||
/* Even part */ | |||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | |||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |||
tmp10 = tmp0 + tmp2; /* phase 3 */ | |||
tmp11 = tmp0 - tmp2; | |||
tmp13 = tmp1 + tmp3; /* phases 5-3 */ | |||
tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */ | |||
tmp0 = tmp10 + tmp13; /* phase 2 */ | |||
tmp3 = tmp10 - tmp13; | |||
tmp1 = tmp11 + tmp12; | |||
tmp2 = tmp11 - tmp12; | |||
/* Odd part */ | |||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |||
z13 = tmp6 + tmp5; /* phase 6 */ | |||
z10 = tmp6 - tmp5; | |||
z11 = tmp4 + tmp7; | |||
z12 = tmp4 - tmp7; | |||
tmp7 = z11 + z13; /* phase 5 */ | |||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */ | |||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | |||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ | |||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ | |||
tmp6 = tmp12 - tmp7; /* phase 2 */ | |||
tmp5 = tmp11 - tmp6; | |||
tmp4 = tmp10 - tmp5; | |||
wsptr[DCTSIZE*0] = tmp0 + tmp7; | |||
wsptr[DCTSIZE*7] = tmp0 - tmp7; | |||
wsptr[DCTSIZE*1] = tmp1 + tmp6; | |||
wsptr[DCTSIZE*6] = tmp1 - tmp6; | |||
wsptr[DCTSIZE*2] = tmp2 + tmp5; | |||
wsptr[DCTSIZE*5] = tmp2 - tmp5; | |||
wsptr[DCTSIZE*3] = tmp3 + tmp4; | |||
wsptr[DCTSIZE*4] = tmp3 - tmp4; | |||
inptr++; /* advance pointers to next column */ | |||
quantptr++; | |||
wsptr++; | |||
} | |||
/* Pass 2: process rows from work array, store into output array. */ | |||
wsptr = workspace; | |||
for (ctr = 0; ctr < DCTSIZE; ctr++) { | |||
outptr = output_buf[ctr] + output_col; | |||
/* Rows of zeroes can be exploited in the same way as we did with columns. | |||
* However, the column calculation has created many nonzero AC terms, so | |||
* the simplification applies less often (typically 5% to 10% of the time). | |||
* And testing floats for zero is relatively expensive, so we don't bother. | |||
*/ | |||
/* Even part */ | |||
/* Apply signed->unsigned and prepare float->int conversion */ | |||
z5 = wsptr[0] + ((FAST_FLOAT) CENTERJSAMPLE + (FAST_FLOAT) 0.5); | |||
tmp10 = z5 + wsptr[4]; | |||
tmp11 = z5 - wsptr[4]; | |||
tmp13 = wsptr[2] + wsptr[6]; | |||
tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13; | |||
tmp0 = tmp10 + tmp13; | |||
tmp3 = tmp10 - tmp13; | |||
tmp1 = tmp11 + tmp12; | |||
tmp2 = tmp11 - tmp12; | |||
/* Odd part */ | |||
z13 = wsptr[5] + wsptr[3]; | |||
z10 = wsptr[5] - wsptr[3]; | |||
z11 = wsptr[1] + wsptr[7]; | |||
z12 = wsptr[1] - wsptr[7]; | |||
tmp7 = z11 + z13; | |||
tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); | |||
z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */ | |||
tmp10 = z5 - z12 * ((FAST_FLOAT) 1.082392200); /* 2*(c2-c6) */ | |||
tmp12 = z5 - z10 * ((FAST_FLOAT) 2.613125930); /* 2*(c2+c6) */ | |||
tmp6 = tmp12 - tmp7; | |||
tmp5 = tmp11 - tmp6; | |||
tmp4 = tmp10 - tmp5; | |||
/* Final output stage: float->int conversion and range-limit */ | |||
outptr[0] = range_limit[((int) (tmp0 + tmp7)) & RANGE_MASK]; | |||
outptr[7] = range_limit[((int) (tmp0 - tmp7)) & RANGE_MASK]; | |||
outptr[1] = range_limit[((int) (tmp1 + tmp6)) & RANGE_MASK]; | |||
outptr[6] = range_limit[((int) (tmp1 - tmp6)) & RANGE_MASK]; | |||
outptr[2] = range_limit[((int) (tmp2 + tmp5)) & RANGE_MASK]; | |||
outptr[5] = range_limit[((int) (tmp2 - tmp5)) & RANGE_MASK]; | |||
outptr[3] = range_limit[((int) (tmp3 + tmp4)) & RANGE_MASK]; | |||
outptr[4] = range_limit[((int) (tmp3 - tmp4)) & RANGE_MASK]; | |||
wsptr += DCTSIZE; /* advance pointer to next row */ | |||
} | |||
} | |||
#endif /* DCT_FLOAT_SUPPORTED */ |
@@ -1,368 +0,0 @@ | |||
/* | |||
* jidctfst.c | |||
* | |||
* Copyright (C) 1994-1998, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains a fast, not so accurate integer implementation of the | |||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |||
* must also perform dequantization of the input coefficients. | |||
* | |||
* A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |||
* on each row (or vice versa, but it's more convenient to emit a row at | |||
* a time). Direct algorithms are also available, but they are much more | |||
* complex and seem not to be any faster when reduced to code. | |||
* | |||
* This implementation is based on Arai, Agui, and Nakajima's algorithm for | |||
* scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | |||
* Japanese, but the algorithm is described in the Pennebaker & Mitchell | |||
* JPEG textbook (see REFERENCES section in file README). The following code | |||
* is based directly on figure 4-8 in P&M. | |||
* While an 8-point DCT cannot be done in less than 11 multiplies, it is | |||
* possible to arrange the computation so that many of the multiplies are | |||
* simple scalings of the final outputs. These multiplies can then be | |||
* folded into the multiplications or divisions by the JPEG quantization | |||
* table entries. The AA&N method leaves only 5 multiplies and 29 adds | |||
* to be done in the DCT itself. | |||
* The primary disadvantage of this method is that with fixed-point math, | |||
* accuracy is lost due to imprecise representation of the scaled | |||
* quantization values. The smaller the quantization table entry, the less | |||
* precise the scaled value, so this implementation does worse with high- | |||
* quality-setting files than with low-quality ones. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jdct.h" /* Private declarations for DCT subsystem */ | |||
#ifdef DCT_IFAST_SUPPORTED | |||
/* | |||
* This module is specialized to the case DCTSIZE = 8. | |||
*/ | |||
#if DCTSIZE != 8 | |||
Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |||
#endif | |||
/* Scaling decisions are generally the same as in the LL&M algorithm; | |||
* see jidctint.c for more details. However, we choose to descale | |||
* (right shift) multiplication products as soon as they are formed, | |||
* rather than carrying additional fractional bits into subsequent additions. | |||
* This compromises accuracy slightly, but it lets us save a few shifts. | |||
* More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | |||
* everywhere except in the multiplications proper; this saves a good deal | |||
* of work on 16-bit-int machines. | |||
* | |||
* The dequantized coefficients are not integers because the AA&N scaling | |||
* factors have been incorporated. We represent them scaled up by PASS1_BITS, | |||
* so that the first and second IDCT rounds have the same input scaling. | |||
* For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to | |||
* avoid a descaling shift; this compromises accuracy rather drastically | |||
* for small quantization table entries, but it saves a lot of shifts. | |||
* For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, | |||
* so we use a much larger scaling factor to preserve accuracy. | |||
* | |||
* A final compromise is to represent the multiplicative constants to only | |||
* 8 fractional bits, rather than 13. This saves some shifting work on some | |||
* machines, and may also reduce the cost of multiplication (since there | |||
* are fewer one-bits in the constants). | |||
*/ | |||
#if BITS_IN_JSAMPLE == 8 | |||
#define CONST_BITS 8 | |||
#define PASS1_BITS 2 | |||
#else | |||
#define CONST_BITS 8 | |||
#define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |||
#endif | |||
/* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |||
* causing a lot of useless floating-point operations at run time. | |||
* To get around this we use the following pre-calculated constants. | |||
* If you change CONST_BITS you may want to add appropriate values. | |||
* (With a reasonable C compiler, you can just rely on the FIX() macro...) | |||
*/ | |||
#if CONST_BITS == 8 | |||
#define FIX_1_082392200 ((INT32) 277) /* FIX(1.082392200) */ | |||
#define FIX_1_414213562 ((INT32) 362) /* FIX(1.414213562) */ | |||
#define FIX_1_847759065 ((INT32) 473) /* FIX(1.847759065) */ | |||
#define FIX_2_613125930 ((INT32) 669) /* FIX(2.613125930) */ | |||
#else | |||
#define FIX_1_082392200 FIX(1.082392200) | |||
#define FIX_1_414213562 FIX(1.414213562) | |||
#define FIX_1_847759065 FIX(1.847759065) | |||
#define FIX_2_613125930 FIX(2.613125930) | |||
#endif | |||
/* We can gain a little more speed, with a further compromise in accuracy, | |||
* by omitting the addition in a descaling shift. This yields an incorrectly | |||
* rounded result half the time... | |||
*/ | |||
#ifndef USE_ACCURATE_ROUNDING | |||
#undef DESCALE | |||
#define DESCALE(x,n) RIGHT_SHIFT(x, n) | |||
#endif | |||
/* Multiply a DCTELEM variable by an INT32 constant, and immediately | |||
* descale to yield a DCTELEM result. | |||
*/ | |||
#define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) | |||
/* Dequantize a coefficient by multiplying it by the multiplier-table | |||
* entry; produce a DCTELEM result. For 8-bit data a 16x16->16 | |||
* multiplication will do. For 12-bit data, the multiplier table is | |||
* declared INT32, so a 32-bit multiply will be used. | |||
*/ | |||
#if BITS_IN_JSAMPLE == 8 | |||
#define DEQUANTIZE(coef,quantval) (((IFAST_MULT_TYPE) (coef)) * (quantval)) | |||
#else | |||
#define DEQUANTIZE(coef,quantval) \ | |||
DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) | |||
#endif | |||
/* Like DESCALE, but applies to a DCTELEM and produces an int. | |||
* We assume that int right shift is unsigned if INT32 right shift is. | |||
*/ | |||
#ifdef RIGHT_SHIFT_IS_UNSIGNED | |||
#define ISHIFT_TEMPS DCTELEM ishift_temp; | |||
#if BITS_IN_JSAMPLE == 8 | |||
#define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ | |||
#else | |||
#define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ | |||
#endif | |||
#define IRIGHT_SHIFT(x,shft) \ | |||
((ishift_temp = (x)) < 0 ? \ | |||
(ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \ | |||
(ishift_temp >> (shft))) | |||
#else | |||
#define ISHIFT_TEMPS | |||
#define IRIGHT_SHIFT(x,shft) ((x) >> (shft)) | |||
#endif | |||
#ifdef USE_ACCURATE_ROUNDING | |||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n)) | |||
#else | |||
#define IDESCALE(x,n) ((int) IRIGHT_SHIFT(x, n)) | |||
#endif | |||
/* | |||
* Perform dequantization and inverse DCT on one block of coefficients. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, | |||
JSAMPARRAY output_buf, JDIMENSION output_col) | |||
{ | |||
DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | |||
DCTELEM tmp10, tmp11, tmp12, tmp13; | |||
DCTELEM z5, z10, z11, z12, z13; | |||
JCOEFPTR inptr; | |||
IFAST_MULT_TYPE * quantptr; | |||
int * wsptr; | |||
JSAMPROW outptr; | |||
JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |||
int ctr; | |||
int workspace[DCTSIZE2]; /* buffers data between passes */ | |||
SHIFT_TEMPS /* for DESCALE */ | |||
ISHIFT_TEMPS /* for IDESCALE */ | |||
/* Pass 1: process columns from input, store into work array. */ | |||
inptr = coef_block; | |||
quantptr = (IFAST_MULT_TYPE *) compptr->dct_table; | |||
wsptr = workspace; | |||
for (ctr = DCTSIZE; ctr > 0; ctr--) { | |||
/* Due to quantization, we will usually find that many of the input | |||
* coefficients are zero, especially the AC terms. We can exploit this | |||
* by short-circuiting the IDCT calculation for any column in which all | |||
* the AC terms are zero. In that case each output is equal to the | |||
* DC coefficient (with scale factor as needed). | |||
* With typical images and quantization tables, half or more of the | |||
* column DCT calculations can be simplified this way. | |||
*/ | |||
if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |||
inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | |||
inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | |||
inptr[DCTSIZE*7] == 0) { | |||
/* AC terms all zero */ | |||
int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |||
wsptr[DCTSIZE*0] = dcval; | |||
wsptr[DCTSIZE*1] = dcval; | |||
wsptr[DCTSIZE*2] = dcval; | |||
wsptr[DCTSIZE*3] = dcval; | |||
wsptr[DCTSIZE*4] = dcval; | |||
wsptr[DCTSIZE*5] = dcval; | |||
wsptr[DCTSIZE*6] = dcval; | |||
wsptr[DCTSIZE*7] = dcval; | |||
inptr++; /* advance pointers to next column */ | |||
quantptr++; | |||
wsptr++; | |||
continue; | |||
} | |||
/* Even part */ | |||
tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |||
tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |||
tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | |||
tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |||
tmp10 = tmp0 + tmp2; /* phase 3 */ | |||
tmp11 = tmp0 - tmp2; | |||
tmp13 = tmp1 + tmp3; /* phases 5-3 */ | |||
tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ | |||
tmp0 = tmp10 + tmp13; /* phase 2 */ | |||
tmp3 = tmp10 - tmp13; | |||
tmp1 = tmp11 + tmp12; | |||
tmp2 = tmp11 - tmp12; | |||
/* Odd part */ | |||
tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |||
tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |||
tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |||
tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |||
z13 = tmp6 + tmp5; /* phase 6 */ | |||
z10 = tmp6 - tmp5; | |||
z11 = tmp4 + tmp7; | |||
z12 = tmp4 - tmp7; | |||
tmp7 = z11 + z13; /* phase 5 */ | |||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | |||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | |||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ | |||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ | |||
tmp6 = tmp12 - tmp7; /* phase 2 */ | |||
tmp5 = tmp11 - tmp6; | |||
tmp4 = tmp10 + tmp5; | |||
wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7); | |||
wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7); | |||
wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6); | |||
wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6); | |||
wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5); | |||
wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5); | |||
wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4); | |||
wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4); | |||
inptr++; /* advance pointers to next column */ | |||
quantptr++; | |||
wsptr++; | |||
} | |||
/* Pass 2: process rows from work array, store into output array. */ | |||
/* Note that we must descale the results by a factor of 8 == 2**3, */ | |||
/* and also undo the PASS1_BITS scaling. */ | |||
wsptr = workspace; | |||
for (ctr = 0; ctr < DCTSIZE; ctr++) { | |||
outptr = output_buf[ctr] + output_col; | |||
/* Rows of zeroes can be exploited in the same way as we did with columns. | |||
* However, the column calculation has created many nonzero AC terms, so | |||
* the simplification applies less often (typically 5% to 10% of the time). | |||
* On machines with very fast multiplication, it's possible that the | |||
* test takes more time than it's worth. In that case this section | |||
* may be commented out. | |||
*/ | |||
#ifndef NO_ZERO_ROW_TEST | |||
if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && | |||
wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | |||
/* AC terms all zero */ | |||
JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[0] = dcval; | |||
outptr[1] = dcval; | |||
outptr[2] = dcval; | |||
outptr[3] = dcval; | |||
outptr[4] = dcval; | |||
outptr[5] = dcval; | |||
outptr[6] = dcval; | |||
outptr[7] = dcval; | |||
wsptr += DCTSIZE; /* advance pointer to next row */ | |||
continue; | |||
} | |||
#endif | |||
/* Even part */ | |||
tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]); | |||
tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]); | |||
tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]); | |||
tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562) | |||
- tmp13; | |||
tmp0 = tmp10 + tmp13; | |||
tmp3 = tmp10 - tmp13; | |||
tmp1 = tmp11 + tmp12; | |||
tmp2 = tmp11 - tmp12; | |||
/* Odd part */ | |||
z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3]; | |||
z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3]; | |||
z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7]; | |||
z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7]; | |||
tmp7 = z11 + z13; /* phase 5 */ | |||
tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ | |||
z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ | |||
tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ | |||
tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */ | |||
tmp6 = tmp12 - tmp7; /* phase 2 */ | |||
tmp5 = tmp11 - tmp6; | |||
tmp4 = tmp10 + tmp5; | |||
/* Final output stage: scale down by a factor of 8 and range-limit */ | |||
outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3) | |||
& RANGE_MASK]; | |||
wsptr += DCTSIZE; /* advance pointer to next row */ | |||
} | |||
} | |||
#endif /* DCT_IFAST_SUPPORTED */ |
@@ -1,91 +0,0 @@ | |||
/* | |||
* jinclude.h | |||
* | |||
* Copyright (C) 1991-1994, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file exists to provide a single place to fix any problems with | |||
* including the wrong system include files. (Common problems are taken | |||
* care of by the standard jconfig symbols, but on really weird systems | |||
* you may have to edit this file.) | |||
* | |||
* NOTE: this file is NOT intended to be included by applications using the | |||
* JPEG library. Most applications need only include jpeglib.h. | |||
*/ | |||
/* Include auto-config file to find out which system include files we need. */ | |||
#include "jconfig.h" /* auto configuration options */ | |||
#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */ | |||
/* | |||
* We need the NULL macro and size_t typedef. | |||
* On an ANSI-conforming system it is sufficient to include <stddef.h>. | |||
* Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to | |||
* pull in <sys/types.h> as well. | |||
* Note that the core JPEG library does not require <stdio.h>; | |||
* only the default error handler and data source/destination modules do. | |||
* But we must pull it in because of the references to FILE in jpeglib.h. | |||
* You can remove those references if you want to compile without <stdio.h>. | |||
*/ | |||
#ifdef HAVE_STDDEF_H | |||
#include <stddef.h> | |||
#endif | |||
#ifdef HAVE_STDLIB_H | |||
#include <stdlib.h> | |||
#endif | |||
#ifdef NEED_SYS_TYPES_H | |||
#include <sys/types.h> | |||
#endif | |||
#include <stdio.h> | |||
/* | |||
* We need memory copying and zeroing functions, plus strncpy(). | |||
* ANSI and System V implementations declare these in <string.h>. | |||
* BSD doesn't have the mem() functions, but it does have bcopy()/bzero(). | |||
* Some systems may declare memset and memcpy in <memory.h>. | |||
* | |||
* NOTE: we assume the size parameters to these functions are of type size_t. | |||
* Change the casts in these macros if not! | |||
*/ | |||
#ifdef NEED_BSD_STRINGS | |||
#include <strings.h> | |||
#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size)) | |||
#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size)) | |||
#else /* not BSD, assume ANSI/SysV string lib */ | |||
#include <string.h> | |||
#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size)) | |||
#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size)) | |||
#endif | |||
/* | |||
* In ANSI C, and indeed any rational implementation, size_t is also the | |||
* type returned by sizeof(). However, it seems there are some irrational | |||
* implementations out there, in which sizeof() returns an int even though | |||
* size_t is defined as long or unsigned long. To ensure consistent results | |||
* we always use this SIZEOF() macro in place of using sizeof() directly. | |||
*/ | |||
#define SIZEOF(object) ((size_t) sizeof(object)) | |||
/* | |||
* The modules that use fread() and fwrite() always invoke them through | |||
* these macros. On some systems you may need to twiddle the argument casts. | |||
* CAUTION: argument order is different from underlying functions! | |||
*/ | |||
#define JFREAD(file,buf,sizeofbuf) \ | |||
((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) | |||
#define JFWRITE(file,buf,sizeofbuf) \ | |||
((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file))) |
@@ -1,109 +0,0 @@ | |||
/* | |||
* jmemnobs.c | |||
* | |||
* Copyright (C) 1992-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file provides a really simple implementation of the system- | |||
* dependent portion of the JPEG memory manager. This implementation | |||
* assumes that no backing-store files are needed: all required space | |||
* can be obtained from malloc(). | |||
* This is very portable in the sense that it'll compile on almost anything, | |||
* but you'd better have lots of main memory (or virtual memory) if you want | |||
* to process big images. | |||
* Note that the max_memory_to_use option is ignored by this implementation. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#include "jmemsys.h" /* import the system-dependent declarations */ | |||
#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare malloc(),free() */ | |||
extern void * malloc JPP((size_t size)); | |||
extern void free JPP((void *ptr)); | |||
#endif | |||
/* | |||
* Memory allocation and freeing are controlled by the regular library | |||
* routines malloc() and free(). | |||
*/ | |||
GLOBAL(void *) | |||
jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject) | |||
{ | |||
return (void *) malloc(sizeofobject); | |||
} | |||
GLOBAL(void) | |||
jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject) | |||
{ | |||
free(object); | |||
} | |||
/* | |||
* "Large" objects are treated the same as "small" ones. | |||
* NB: although we include FAR keywords in the routine declarations, | |||
* this file won't actually work in 80x86 small/medium model; at least, | |||
* you probably won't be able to process useful-size images in only 64KB. | |||
*/ | |||
GLOBAL(void FAR *) | |||
jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject) | |||
{ | |||
return (void FAR *) malloc(sizeofobject); | |||
} | |||
GLOBAL(void) | |||
jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject) | |||
{ | |||
free(object); | |||
} | |||
/* | |||
* This routine computes the total memory space available for allocation. | |||
* Here we always say, "we got all you want bud!" | |||
*/ | |||
GLOBAL(long) | |||
jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed, | |||
long max_bytes_needed, long already_allocated) | |||
{ | |||
return max_bytes_needed; | |||
} | |||
/* | |||
* Backing store (temporary file) management. | |||
* Since jpeg_mem_available always promised the moon, | |||
* this should never be called and we can just error out. | |||
*/ | |||
GLOBAL(void) | |||
jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info, | |||
long total_bytes_needed) | |||
{ | |||
ERREXIT(cinfo, JERR_NO_BACKING_STORE); | |||
} | |||
/* | |||
* These routines take care of any system-dependent initialization and | |||
* cleanup required. Here, there isn't any. | |||
*/ | |||
GLOBAL(long) | |||
jpeg_mem_init (j_common_ptr cinfo) | |||
{ | |||
return 0; /* just set max_memory_to_use to 0 */ | |||
} | |||
GLOBAL(void) | |||
jpeg_mem_term (j_common_ptr cinfo) | |||
{ | |||
/* no work */ | |||
} |
@@ -1,198 +0,0 @@ | |||
/* | |||
* jmemsys.h | |||
* | |||
* Copyright (C) 1992-1997, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This include file defines the interface between the system-independent | |||
* and system-dependent portions of the JPEG memory manager. No other | |||
* modules need include it. (The system-independent portion is jmemmgr.c; | |||
* there are several different versions of the system-dependent portion.) | |||
* | |||
* This file works as-is for the system-dependent memory managers supplied | |||
* in the IJG distribution. You may need to modify it if you write a | |||
* custom memory manager. If system-dependent changes are needed in | |||
* this file, the best method is to #ifdef them based on a configuration | |||
* symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR | |||
* and USE_MAC_MEMMGR. | |||
*/ | |||
/* Short forms of external names for systems with brain-damaged linkers. */ | |||
#ifdef NEED_SHORT_EXTERNAL_NAMES | |||
#define jpeg_get_small jGetSmall | |||
#define jpeg_free_small jFreeSmall | |||
#define jpeg_get_large jGetLarge | |||
#define jpeg_free_large jFreeLarge | |||
#define jpeg_mem_available jMemAvail | |||
#define jpeg_open_backing_store jOpenBackStore | |||
#define jpeg_mem_init jMemInit | |||
#define jpeg_mem_term jMemTerm | |||
#endif /* NEED_SHORT_EXTERNAL_NAMES */ | |||
/* | |||
* These two functions are used to allocate and release small chunks of | |||
* memory. (Typically the total amount requested through jpeg_get_small is | |||
* no more than 20K or so; this will be requested in chunks of a few K each.) | |||
* Behavior should be the same as for the standard library functions malloc | |||
* and free; in particular, jpeg_get_small must return NULL on failure. | |||
* On most systems, these ARE malloc and free. jpeg_free_small is passed the | |||
* size of the object being freed, just in case it's needed. | |||
* On an 80x86 machine using small-data memory model, these manage near heap. | |||
*/ | |||
EXTERN(void *) jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject)); | |||
EXTERN(void) jpeg_free_small JPP((j_common_ptr cinfo, void * object, | |||
size_t sizeofobject)); | |||
/* | |||
* These two functions are used to allocate and release large chunks of | |||
* memory (up to the total free space designated by jpeg_mem_available). | |||
* The interface is the same as above, except that on an 80x86 machine, | |||
* far pointers are used. On most other machines these are identical to | |||
* the jpeg_get/free_small routines; but we keep them separate anyway, | |||
* in case a different allocation strategy is desirable for large chunks. | |||
*/ | |||
EXTERN(void FAR *) jpeg_get_large JPP((j_common_ptr cinfo, | |||
size_t sizeofobject)); | |||
EXTERN(void) jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object, | |||
size_t sizeofobject)); | |||
/* | |||
* The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may | |||
* be requested in a single call to jpeg_get_large (and jpeg_get_small for that | |||
* matter, but that case should never come into play). This macro is needed | |||
* to model the 64Kb-segment-size limit of far addressing on 80x86 machines. | |||
* On those machines, we expect that jconfig.h will provide a proper value. | |||
* On machines with 32-bit flat address spaces, any large constant may be used. | |||
* | |||
* NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type | |||
* size_t and will be a multiple of sizeof(align_type). | |||
*/ | |||
#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */ | |||
#define MAX_ALLOC_CHUNK 1000000000L | |||
#endif | |||
/* | |||
* This routine computes the total space still available for allocation by | |||
* jpeg_get_large. If more space than this is needed, backing store will be | |||
* used. NOTE: any memory already allocated must not be counted. | |||
* | |||
* There is a minimum space requirement, corresponding to the minimum | |||
* feasible buffer sizes; jmemmgr.c will request that much space even if | |||
* jpeg_mem_available returns zero. The maximum space needed, enough to hold | |||
* all working storage in memory, is also passed in case it is useful. | |||
* Finally, the total space already allocated is passed. If no better | |||
* method is available, cinfo->mem->max_memory_to_use - already_allocated | |||
* is often a suitable calculation. | |||
* | |||
* It is OK for jpeg_mem_available to underestimate the space available | |||
* (that'll just lead to more backing-store access than is really necessary). | |||
* However, an overestimate will lead to failure. Hence it's wise to subtract | |||
* a slop factor from the true available space. 5% should be enough. | |||
* | |||
* On machines with lots of virtual memory, any large constant may be returned. | |||
* Conversely, zero may be returned to always use the minimum amount of memory. | |||
*/ | |||
EXTERN(long) jpeg_mem_available JPP((j_common_ptr cinfo, | |||
long min_bytes_needed, | |||
long max_bytes_needed, | |||
long already_allocated)); | |||
/* | |||
* This structure holds whatever state is needed to access a single | |||
* backing-store object. The read/write/close method pointers are called | |||
* by jmemmgr.c to manipulate the backing-store object; all other fields | |||
* are private to the system-dependent backing store routines. | |||
*/ | |||
#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */ | |||
#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */ | |||
typedef unsigned short XMSH; /* type of extended-memory handles */ | |||
typedef unsigned short EMSH; /* type of expanded-memory handles */ | |||
typedef union { | |||
short file_handle; /* DOS file handle if it's a temp file */ | |||
XMSH xms_handle; /* handle if it's a chunk of XMS */ | |||
EMSH ems_handle; /* handle if it's a chunk of EMS */ | |||
} handle_union; | |||
#endif /* USE_MSDOS_MEMMGR */ | |||
#ifdef USE_MAC_MEMMGR /* Mac-specific junk */ | |||
#include <Files.h> | |||
#endif /* USE_MAC_MEMMGR */ | |||
typedef struct backing_store_struct * backing_store_ptr; | |||
typedef struct backing_store_struct { | |||
/* Methods for reading/writing/closing this backing-store object */ | |||
JMETHOD(void, read_backing_store, (j_common_ptr cinfo, | |||
backing_store_ptr info, | |||
void FAR * buffer_address, | |||
long file_offset, long byte_count)); | |||
JMETHOD(void, write_backing_store, (j_common_ptr cinfo, | |||
backing_store_ptr info, | |||
void FAR * buffer_address, | |||
long file_offset, long byte_count)); | |||
JMETHOD(void, close_backing_store, (j_common_ptr cinfo, | |||
backing_store_ptr info)); | |||
/* Private fields for system-dependent backing-store management */ | |||
#ifdef USE_MSDOS_MEMMGR | |||
/* For the MS-DOS manager (jmemdos.c), we need: */ | |||
handle_union handle; /* reference to backing-store storage object */ | |||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ | |||
#else | |||
#ifdef USE_MAC_MEMMGR | |||
/* For the Mac manager (jmemmac.c), we need: */ | |||
short temp_file; /* file reference number to temp file */ | |||
FSSpec tempSpec; /* the FSSpec for the temp file */ | |||
char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ | |||
#else | |||
/* For a typical implementation with temp files, we need: */ | |||
FILE * temp_file; /* stdio reference to temp file */ | |||
char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ | |||
#endif | |||
#endif | |||
} backing_store_info; | |||
/* | |||
* Initial opening of a backing-store object. This must fill in the | |||
* read/write/close pointers in the object. The read/write routines | |||
* may take an error exit if the specified maximum file size is exceeded. | |||
* (If jpeg_mem_available always returns a large value, this routine can | |||
* just take an error exit.) | |||
*/ | |||
EXTERN(void) jpeg_open_backing_store JPP((j_common_ptr cinfo, | |||
backing_store_ptr info, | |||
long total_bytes_needed)); | |||
/* | |||
* These routines take care of any system-dependent initialization and | |||
* cleanup required. jpeg_mem_init will be called before anything is | |||
* allocated (and, therefore, nothing in cinfo is of use except the error | |||
* manager pointer). It should return a suitable default value for | |||
* max_memory_to_use; this may subsequently be overridden by the surrounding | |||
* application. (Note that max_memory_to_use is only important if | |||
* jpeg_mem_available chooses to consult it ... no one else will.) | |||
* jpeg_mem_term may assume that all requested memory has been freed and that | |||
* all opened backing-store objects have been closed. | |||
*/ | |||
EXTERN(long) jpeg_mem_init JPP((j_common_ptr cinfo)); | |||
EXTERN(void) jpeg_mem_term JPP((j_common_ptr cinfo)); |
@@ -1,371 +0,0 @@ | |||
/* | |||
* jmorecfg.h | |||
* | |||
* Copyright (C) 1991-1997, Thomas G. Lane. | |||
* Modified 1997-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains additional configuration options that customize the | |||
* JPEG software for special applications or support machine-dependent | |||
* optimizations. Most users will not need to touch this file. | |||
*/ | |||
/* | |||
* Define BITS_IN_JSAMPLE as either | |||
* 8 for 8-bit sample values (the usual setting) | |||
* 12 for 12-bit sample values | |||
* Only 8 and 12 are legal data precisions for lossy JPEG according to the | |||
* JPEG standard, and the IJG code does not support anything else! | |||
* We do not support run-time selection of data precision, sorry. | |||
*/ | |||
#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */ | |||
/* | |||
* Maximum number of components (color channels) allowed in JPEG image. | |||
* To meet the letter of the JPEG spec, set this to 255. However, darn | |||
* few applications need more than 4 channels (maybe 5 for CMYK + alpha | |||
* mask). We recommend 10 as a reasonable compromise; use 4 if you are | |||
* really short on memory. (Each allowed component costs a hundred or so | |||
* bytes of storage, whether actually used in an image or not.) | |||
*/ | |||
#define MAX_COMPONENTS 10 /* maximum number of image components */ | |||
/* | |||
* Basic data types. | |||
* You may need to change these if you have a machine with unusual data | |||
* type sizes; for example, "char" not 8 bits, "short" not 16 bits, | |||
* or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, | |||
* but it had better be at least 16. | |||
*/ | |||
/* Representation of a single sample (pixel element value). | |||
* We frequently allocate large arrays of these, so it's important to keep | |||
* them small. But if you have memory to burn and access to char or short | |||
* arrays is very slow on your hardware, you might want to change these. | |||
*/ | |||
#if BITS_IN_JSAMPLE == 8 | |||
/* JSAMPLE should be the smallest type that will hold the values 0..255. | |||
* You can use a signed char by having GETJSAMPLE mask it with 0xFF. | |||
*/ | |||
#ifdef HAVE_UNSIGNED_CHAR | |||
typedef unsigned char JSAMPLE; | |||
#define GETJSAMPLE(value) ((int) (value)) | |||
#else /* not HAVE_UNSIGNED_CHAR */ | |||
typedef char JSAMPLE; | |||
#ifdef CHAR_IS_UNSIGNED | |||
#define GETJSAMPLE(value) ((int) (value)) | |||
#else | |||
#define GETJSAMPLE(value) ((int) (value) & 0xFF) | |||
#endif /* CHAR_IS_UNSIGNED */ | |||
#endif /* HAVE_UNSIGNED_CHAR */ | |||
#define MAXJSAMPLE 255 | |||
#define CENTERJSAMPLE 128 | |||
#endif /* BITS_IN_JSAMPLE == 8 */ | |||
#if BITS_IN_JSAMPLE == 12 | |||
/* JSAMPLE should be the smallest type that will hold the values 0..4095. | |||
* On nearly all machines "short" will do nicely. | |||
*/ | |||
typedef short JSAMPLE; | |||
#define GETJSAMPLE(value) ((int) (value)) | |||
#define MAXJSAMPLE 4095 | |||
#define CENTERJSAMPLE 2048 | |||
#endif /* BITS_IN_JSAMPLE == 12 */ | |||
/* Representation of a DCT frequency coefficient. | |||
* This should be a signed value of at least 16 bits; "short" is usually OK. | |||
* Again, we allocate large arrays of these, but you can change to int | |||
* if you have memory to burn and "short" is really slow. | |||
*/ | |||
typedef short JCOEF; | |||
/* Compressed datastreams are represented as arrays of JOCTET. | |||
* These must be EXACTLY 8 bits wide, at least once they are written to | |||
* external storage. Note that when using the stdio data source/destination | |||
* managers, this is also the data type passed to fread/fwrite. | |||
*/ | |||
#ifdef HAVE_UNSIGNED_CHAR | |||
typedef unsigned char JOCTET; | |||
#define GETJOCTET(value) (value) | |||
#else /* not HAVE_UNSIGNED_CHAR */ | |||
typedef char JOCTET; | |||
#ifdef CHAR_IS_UNSIGNED | |||
#define GETJOCTET(value) (value) | |||
#else | |||
#define GETJOCTET(value) ((value) & 0xFF) | |||
#endif /* CHAR_IS_UNSIGNED */ | |||
#endif /* HAVE_UNSIGNED_CHAR */ | |||
/* These typedefs are used for various table entries and so forth. | |||
* They must be at least as wide as specified; but making them too big | |||
* won't cost a huge amount of memory, so we don't provide special | |||
* extraction code like we did for JSAMPLE. (In other words, these | |||
* typedefs live at a different point on the speed/space tradeoff curve.) | |||
*/ | |||
/* UINT8 must hold at least the values 0..255. */ | |||
#ifdef HAVE_UNSIGNED_CHAR | |||
typedef unsigned char UINT8; | |||
#else /* not HAVE_UNSIGNED_CHAR */ | |||
#ifdef CHAR_IS_UNSIGNED | |||
typedef char UINT8; | |||
#else /* not CHAR_IS_UNSIGNED */ | |||
typedef short UINT8; | |||
#endif /* CHAR_IS_UNSIGNED */ | |||
#endif /* HAVE_UNSIGNED_CHAR */ | |||
/* UINT16 must hold at least the values 0..65535. */ | |||
#ifdef HAVE_UNSIGNED_SHORT | |||
typedef unsigned short UINT16; | |||
#else /* not HAVE_UNSIGNED_SHORT */ | |||
typedef unsigned int UINT16; | |||
#endif /* HAVE_UNSIGNED_SHORT */ | |||
/* INT16 must hold at least the values -32768..32767. */ | |||
#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */ | |||
typedef short INT16; | |||
#endif | |||
/* INT32 must hold at least signed 32-bit values. */ | |||
#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */ | |||
#ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */ | |||
#ifndef _BASETSD_H /* MinGW is slightly different */ | |||
#ifndef QGLOBAL_H /* Qt defines it in qglobal.h */ | |||
typedef long INT32; | |||
#endif | |||
#endif | |||
#endif | |||
#endif | |||
/* Datatype used for image dimensions. The JPEG standard only supports | |||
* images up to 64K*64K due to 16-bit fields in SOF markers. Therefore | |||
* "unsigned int" is sufficient on all machines. However, if you need to | |||
* handle larger images and you don't mind deviating from the spec, you | |||
* can change this datatype. | |||
*/ | |||
typedef unsigned int JDIMENSION; | |||
#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ | |||
/* These macros are used in all function definitions and extern declarations. | |||
* You could modify them if you need to change function linkage conventions; | |||
* in particular, you'll need to do that to make the library a Windows DLL. | |||
* Another application is to make all functions global for use with debuggers | |||
* or code profilers that require it. | |||
*/ | |||
/* a function called through method pointers: */ | |||
#define METHODDEF(type) static type | |||
/* a function used only in its module: */ | |||
#define LOCAL(type) static type | |||
/* a function referenced thru EXTERNs: */ | |||
#define GLOBAL(type) type | |||
/* a reference to a GLOBAL function: */ | |||
#define EXTERN(type) extern type | |||
/* This macro is used to declare a "method", that is, a function pointer. | |||
* We want to supply prototype parameters if the compiler can cope. | |||
* Note that the arglist parameter must be parenthesized! | |||
* Again, you can customize this if you need special linkage keywords. | |||
*/ | |||
#ifdef HAVE_PROTOTYPES | |||
#define JMETHOD(type,methodname,arglist) type (*methodname) arglist | |||
#else | |||
#define JMETHOD(type,methodname,arglist) type (*methodname) () | |||
#endif | |||
/* Here is the pseudo-keyword for declaring pointers that must be "far" | |||
* on 80x86 machines. Most of the specialized coding for 80x86 is handled | |||
* by just saying "FAR *" where such a pointer is needed. In a few places | |||
* explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol. | |||
*/ | |||
#ifndef FAR | |||
#ifdef NEED_FAR_POINTERS | |||
#define FAR far | |||
#else | |||
#define FAR | |||
#endif | |||
#endif | |||
/* | |||
* On a few systems, type boolean and/or its values FALSE, TRUE may appear | |||
* in standard header files. Or you may have conflicts with application- | |||
* specific header files that you want to include together with these files. | |||
* Defining HAVE_BOOLEAN before including jpeglib.h should make it work. | |||
*/ | |||
#ifndef HAVE_BOOLEAN | |||
typedef int boolean; | |||
#endif | |||
#ifndef FALSE /* in case these macros already exist */ | |||
#define FALSE 0 /* values of boolean */ | |||
#endif | |||
#ifndef TRUE | |||
#define TRUE 1 | |||
#endif | |||
/* | |||
* The remaining options affect code selection within the JPEG library, | |||
* but they don't need to be visible to most applications using the library. | |||
* To minimize application namespace pollution, the symbols won't be | |||
* defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. | |||
*/ | |||
#ifdef JPEG_INTERNALS | |||
#define JPEG_INTERNAL_OPTIONS | |||
#endif | |||
#ifdef JPEG_INTERNAL_OPTIONS | |||
/* | |||
* These defines indicate whether to include various optional functions. | |||
* Undefining some of these symbols will produce a smaller but less capable | |||
* library. Note that you can leave certain source files out of the | |||
* compilation/linking process if you've #undef'd the corresponding symbols. | |||
* (You may HAVE to do that if your compiler doesn't like null source files.) | |||
*/ | |||
/* Capability options common to encoder and decoder: */ | |||
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */ | |||
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */ | |||
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */ | |||
/* Encoder capability options: */ | |||
#define C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ | |||
#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ | |||
#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ | |||
#define DCT_SCALING_SUPPORTED /* Input rescaling via DCT? (Requires DCT_ISLOW)*/ | |||
#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ | |||
/* Note: if you selected 12-bit data precision, it is dangerous to turn off | |||
* ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit | |||
* precision, so jchuff.c normally uses entropy optimization to compute | |||
* usable tables for higher precision. If you don't want to do optimization, | |||
* you'll have to supply different default Huffman tables. | |||
* The exact same statements apply for progressive JPEG: the default tables | |||
* don't work for progressive mode. (This may get fixed, however.) | |||
*/ | |||
#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ | |||
/* Decoder capability options: */ | |||
#define D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */ | |||
#define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ | |||
#define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ | |||
#define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ | |||
#define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ | |||
#define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ | |||
#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ | |||
#define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ | |||
#define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ | |||
#define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ | |||
/* more capability options later, no doubt */ | |||
/* | |||
* Ordering of RGB data in scanlines passed to or from the application. | |||
* If your application wants to deal with data in the order B,G,R, just | |||
* change these macros. You can also deal with formats such as R,G,B,X | |||
* (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing | |||
* the offsets will also change the order in which colormap data is organized. | |||
* RESTRICTIONS: | |||
* 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats. | |||
* 2. These macros only affect RGB<=>YCbCr color conversion, so they are not | |||
* useful if you are using JPEG color spaces other than YCbCr or grayscale. | |||
* 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE | |||
* is not 3 (they don't understand about dummy color components!). So you | |||
* can't use color quantization if you change that value. | |||
*/ | |||
#define RGB_RED 0 /* Offset of Red in an RGB scanline element */ | |||
#define RGB_GREEN 1 /* Offset of Green */ | |||
#define RGB_BLUE 2 /* Offset of Blue */ | |||
#define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ | |||
/* Definitions for speed-related optimizations. */ | |||
/* If your compiler supports inline functions, define INLINE | |||
* as the inline keyword; otherwise define it as empty. | |||
*/ | |||
#ifndef INLINE | |||
#ifdef __GNUC__ /* for instance, GNU C knows about inline */ | |||
#define INLINE __inline__ | |||
#endif | |||
#ifndef INLINE | |||
#define INLINE /* default is to define it as empty */ | |||
#endif | |||
#endif | |||
/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying | |||
* two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER | |||
* as short on such a machine. MULTIPLIER must be at least 16 bits wide. | |||
*/ | |||
#ifndef MULTIPLIER | |||
#define MULTIPLIER int /* type for fastest integer multiply */ | |||
#endif | |||
/* FAST_FLOAT should be either float or double, whichever is done faster | |||
* by your compiler. (Note that this type is only used in the floating point | |||
* DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) | |||
* Typically, float is faster in ANSI C compilers, while double is faster in | |||
* pre-ANSI compilers (because they insist on converting to double anyway). | |||
* The code below therefore chooses float if we have ANSI-style prototypes. | |||
*/ | |||
#ifndef FAST_FLOAT | |||
#ifdef HAVE_PROTOTYPES | |||
#define FAST_FLOAT float | |||
#else | |||
#define FAST_FLOAT double | |||
#endif | |||
#endif | |||
#endif /* JPEG_INTERNAL_OPTIONS */ |
@@ -1,407 +0,0 @@ | |||
/* | |||
* jpegint.h | |||
* | |||
* Copyright (C) 1991-1997, Thomas G. Lane. | |||
* Modified 1997-2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file provides common declarations for the various JPEG modules. | |||
* These declarations are considered internal to the JPEG library; most | |||
* applications using the library shouldn't need to include this file. | |||
*/ | |||
/* Declarations for both compression & decompression */ | |||
typedef enum { /* Operating modes for buffer controllers */ | |||
JBUF_PASS_THRU, /* Plain stripwise operation */ | |||
/* Remaining modes require a full-image buffer to have been created */ | |||
JBUF_SAVE_SOURCE, /* Run source subobject only, save output */ | |||
JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */ | |||
JBUF_SAVE_AND_PASS /* Run both subobjects, save output */ | |||
} J_BUF_MODE; | |||
/* Values of global_state field (jdapi.c has some dependencies on ordering!) */ | |||
#define CSTATE_START 100 /* after create_compress */ | |||
#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */ | |||
#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */ | |||
#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */ | |||
#define DSTATE_START 200 /* after create_decompress */ | |||
#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */ | |||
#define DSTATE_READY 202 /* found SOS, ready for start_decompress */ | |||
#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/ | |||
#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */ | |||
#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */ | |||
#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */ | |||
#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */ | |||
#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */ | |||
#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */ | |||
#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */ | |||
/* Declarations for compression modules */ | |||
/* Master control module */ | |||
struct jpeg_comp_master { | |||
JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo)); | |||
JMETHOD(void, pass_startup, (j_compress_ptr cinfo)); | |||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); | |||
/* State variables made visible to other modules */ | |||
boolean call_pass_startup; /* True if pass_startup must be called */ | |||
boolean is_last_pass; /* True during last pass */ | |||
}; | |||
/* Main buffer control (downsampled-data buffer) */ | |||
struct jpeg_c_main_controller { | |||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); | |||
JMETHOD(void, process_data, (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, | |||
JDIMENSION in_rows_avail)); | |||
}; | |||
/* Compression preprocessing (downsampling input buffer control) */ | |||
struct jpeg_c_prep_controller { | |||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); | |||
JMETHOD(void, pre_process_data, (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, | |||
JDIMENSION *in_row_ctr, | |||
JDIMENSION in_rows_avail, | |||
JSAMPIMAGE output_buf, | |||
JDIMENSION *out_row_group_ctr, | |||
JDIMENSION out_row_groups_avail)); | |||
}; | |||
/* Coefficient buffer control */ | |||
struct jpeg_c_coef_controller { | |||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode)); | |||
JMETHOD(boolean, compress_data, (j_compress_ptr cinfo, | |||
JSAMPIMAGE input_buf)); | |||
}; | |||
/* Colorspace conversion */ | |||
struct jpeg_color_converter { | |||
JMETHOD(void, start_pass, (j_compress_ptr cinfo)); | |||
JMETHOD(void, color_convert, (j_compress_ptr cinfo, | |||
JSAMPARRAY input_buf, JSAMPIMAGE output_buf, | |||
JDIMENSION output_row, int num_rows)); | |||
}; | |||
/* Downsampling */ | |||
struct jpeg_downsampler { | |||
JMETHOD(void, start_pass, (j_compress_ptr cinfo)); | |||
JMETHOD(void, downsample, (j_compress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION in_row_index, | |||
JSAMPIMAGE output_buf, | |||
JDIMENSION out_row_group_index)); | |||
boolean need_context_rows; /* TRUE if need rows above & below */ | |||
}; | |||
/* Forward DCT (also controls coefficient quantization) */ | |||
typedef JMETHOD(void, forward_DCT_ptr, | |||
(j_compress_ptr cinfo, jpeg_component_info * compptr, | |||
JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | |||
JDIMENSION start_row, JDIMENSION start_col, | |||
JDIMENSION num_blocks)); | |||
struct jpeg_forward_dct { | |||
JMETHOD(void, start_pass, (j_compress_ptr cinfo)); | |||
/* It is useful to allow each component to have a separate FDCT method. */ | |||
forward_DCT_ptr forward_DCT[MAX_COMPONENTS]; | |||
}; | |||
/* Entropy encoding */ | |||
struct jpeg_entropy_encoder { | |||
JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics)); | |||
JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data)); | |||
JMETHOD(void, finish_pass, (j_compress_ptr cinfo)); | |||
}; | |||
/* Marker writing */ | |||
struct jpeg_marker_writer { | |||
JMETHOD(void, write_file_header, (j_compress_ptr cinfo)); | |||
JMETHOD(void, write_frame_header, (j_compress_ptr cinfo)); | |||
JMETHOD(void, write_scan_header, (j_compress_ptr cinfo)); | |||
JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo)); | |||
JMETHOD(void, write_tables_only, (j_compress_ptr cinfo)); | |||
/* These routines are exported to allow insertion of extra markers */ | |||
/* Probably only COM and APPn markers should be written this way */ | |||
JMETHOD(void, write_marker_header, (j_compress_ptr cinfo, int marker, | |||
unsigned int datalen)); | |||
JMETHOD(void, write_marker_byte, (j_compress_ptr cinfo, int val)); | |||
}; | |||
/* Declarations for decompression modules */ | |||
/* Master control module */ | |||
struct jpeg_decomp_master { | |||
JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo)); | |||
/* State variables made visible to other modules */ | |||
boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */ | |||
}; | |||
/* Input control module */ | |||
struct jpeg_input_controller { | |||
JMETHOD(int, consume_input, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo)); | |||
/* State variables made visible to other modules */ | |||
boolean has_multiple_scans; /* True if file has multiple scans */ | |||
boolean eoi_reached; /* True when EOI has been consumed */ | |||
}; | |||
/* Main buffer control (downsampled-data buffer) */ | |||
struct jpeg_d_main_controller { | |||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); | |||
JMETHOD(void, process_data, (j_decompress_ptr cinfo, | |||
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail)); | |||
}; | |||
/* Coefficient buffer control */ | |||
struct jpeg_d_coef_controller { | |||
JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(int, consume_data, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(int, decompress_data, (j_decompress_ptr cinfo, | |||
JSAMPIMAGE output_buf)); | |||
/* Pointer to array of coefficient virtual arrays, or NULL if none */ | |||
jvirt_barray_ptr *coef_arrays; | |||
}; | |||
/* Decompression postprocessing (color quantization buffer control) */ | |||
struct jpeg_d_post_controller { | |||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)); | |||
JMETHOD(void, post_process_data, (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, | |||
JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, | |||
JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail)); | |||
}; | |||
/* Marker reading & parsing */ | |||
struct jpeg_marker_reader { | |||
JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo)); | |||
/* Read markers until SOS or EOI. | |||
* Returns same codes as are defined for jpeg_consume_input: | |||
* JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. | |||
*/ | |||
JMETHOD(int, read_markers, (j_decompress_ptr cinfo)); | |||
/* Read a restart marker --- exported for use by entropy decoder only */ | |||
jpeg_marker_parser_method read_restart_marker; | |||
/* State of marker reader --- nominally internal, but applications | |||
* supplying COM or APPn handlers might like to know the state. | |||
*/ | |||
boolean saw_SOI; /* found SOI? */ | |||
boolean saw_SOF; /* found SOF? */ | |||
int next_restart_num; /* next restart number expected (0-7) */ | |||
unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */ | |||
}; | |||
/* Entropy decoding */ | |||
struct jpeg_entropy_decoder { | |||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo, | |||
JBLOCKROW *MCU_data)); | |||
}; | |||
/* Inverse DCT (also performs dequantization) */ | |||
typedef JMETHOD(void, inverse_DCT_method_ptr, | |||
(j_decompress_ptr cinfo, jpeg_component_info * compptr, | |||
JCOEFPTR coef_block, | |||
JSAMPARRAY output_buf, JDIMENSION output_col)); | |||
struct jpeg_inverse_dct { | |||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | |||
/* It is useful to allow each component to have a separate IDCT method. */ | |||
inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; | |||
}; | |||
/* Upsampling (note that upsampler must also call color converter) */ | |||
struct jpeg_upsampler { | |||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, upsample, (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, | |||
JDIMENSION *in_row_group_ctr, | |||
JDIMENSION in_row_groups_avail, | |||
JSAMPARRAY output_buf, | |||
JDIMENSION *out_row_ctr, | |||
JDIMENSION out_rows_avail)); | |||
boolean need_context_rows; /* TRUE if need rows above & below */ | |||
}; | |||
/* Colorspace conversion */ | |||
struct jpeg_color_deconverter { | |||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, color_convert, (j_decompress_ptr cinfo, | |||
JSAMPIMAGE input_buf, JDIMENSION input_row, | |||
JSAMPARRAY output_buf, int num_rows)); | |||
}; | |||
/* Color quantization or color precision reduction */ | |||
struct jpeg_color_quantizer { | |||
JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan)); | |||
JMETHOD(void, color_quantize, (j_decompress_ptr cinfo, | |||
JSAMPARRAY input_buf, JSAMPARRAY output_buf, | |||
int num_rows)); | |||
JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); | |||
JMETHOD(void, new_color_map, (j_decompress_ptr cinfo)); | |||
}; | |||
/* Miscellaneous useful macros */ | |||
#undef MAX | |||
#define MAX(a,b) ((a) > (b) ? (a) : (b)) | |||
#undef MIN | |||
#define MIN(a,b) ((a) < (b) ? (a) : (b)) | |||
/* We assume that right shift corresponds to signed division by 2 with | |||
* rounding towards minus infinity. This is correct for typical "arithmetic | |||
* shift" instructions that shift in copies of the sign bit. But some | |||
* C compilers implement >> with an unsigned shift. For these machines you | |||
* must define RIGHT_SHIFT_IS_UNSIGNED. | |||
* RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. | |||
* It is only applied with constant shift counts. SHIFT_TEMPS must be | |||
* included in the variables of any routine using RIGHT_SHIFT. | |||
*/ | |||
#ifdef RIGHT_SHIFT_IS_UNSIGNED | |||
#define SHIFT_TEMPS INT32 shift_temp; | |||
#define RIGHT_SHIFT(x,shft) \ | |||
((shift_temp = (x)) < 0 ? \ | |||
(shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ | |||
(shift_temp >> (shft))) | |||
#else | |||
#define SHIFT_TEMPS | |||
#define RIGHT_SHIFT(x,shft) ((x) >> (shft)) | |||
#endif | |||
/* Short forms of external names for systems with brain-damaged linkers. */ | |||
#ifdef NEED_SHORT_EXTERNAL_NAMES | |||
#define jinit_compress_master jICompress | |||
#define jinit_c_master_control jICMaster | |||
#define jinit_c_main_controller jICMainC | |||
#define jinit_c_prep_controller jICPrepC | |||
#define jinit_c_coef_controller jICCoefC | |||
#define jinit_color_converter jICColor | |||
#define jinit_downsampler jIDownsampler | |||
#define jinit_forward_dct jIFDCT | |||
#define jinit_huff_encoder jIHEncoder | |||
#define jinit_arith_encoder jIAEncoder | |||
#define jinit_marker_writer jIMWriter | |||
#define jinit_master_decompress jIDMaster | |||
#define jinit_d_main_controller jIDMainC | |||
#define jinit_d_coef_controller jIDCoefC | |||
#define jinit_d_post_controller jIDPostC | |||
#define jinit_input_controller jIInCtlr | |||
#define jinit_marker_reader jIMReader | |||
#define jinit_huff_decoder jIHDecoder | |||
#define jinit_arith_decoder jIADecoder | |||
#define jinit_inverse_dct jIIDCT | |||
#define jinit_upsampler jIUpsampler | |||
#define jinit_color_deconverter jIDColor | |||
#define jinit_1pass_quantizer jI1Quant | |||
#define jinit_2pass_quantizer jI2Quant | |||
#define jinit_merged_upsampler jIMUpsampler | |||
#define jinit_memory_mgr jIMemMgr | |||
#define jdiv_round_up jDivRound | |||
#define jround_up jRound | |||
#define jcopy_sample_rows jCopySamples | |||
#define jcopy_block_row jCopyBlocks | |||
#define jzero_far jZeroFar | |||
#define jpeg_zigzag_order jZIGTable | |||
#define jpeg_natural_order jZAGTable | |||
#define jpeg_natural_order7 jZAGTable7 | |||
#define jpeg_natural_order6 jZAGTable6 | |||
#define jpeg_natural_order5 jZAGTable5 | |||
#define jpeg_natural_order4 jZAGTable4 | |||
#define jpeg_natural_order3 jZAGTable3 | |||
#define jpeg_natural_order2 jZAGTable2 | |||
#define jpeg_aritab jAriTab | |||
#endif /* NEED_SHORT_EXTERNAL_NAMES */ | |||
/* Compression module initialization routines */ | |||
EXTERN(void) jinit_compress_master JPP((j_compress_ptr cinfo)); | |||
EXTERN(void) jinit_c_master_control JPP((j_compress_ptr cinfo, | |||
boolean transcode_only)); | |||
EXTERN(void) jinit_c_main_controller JPP((j_compress_ptr cinfo, | |||
boolean need_full_buffer)); | |||
EXTERN(void) jinit_c_prep_controller JPP((j_compress_ptr cinfo, | |||
boolean need_full_buffer)); | |||
EXTERN(void) jinit_c_coef_controller JPP((j_compress_ptr cinfo, | |||
boolean need_full_buffer)); | |||
EXTERN(void) jinit_color_converter JPP((j_compress_ptr cinfo)); | |||
EXTERN(void) jinit_downsampler JPP((j_compress_ptr cinfo)); | |||
EXTERN(void) jinit_forward_dct JPP((j_compress_ptr cinfo)); | |||
EXTERN(void) jinit_huff_encoder JPP((j_compress_ptr cinfo)); | |||
EXTERN(void) jinit_arith_encoder JPP((j_compress_ptr cinfo)); | |||
EXTERN(void) jinit_marker_writer JPP((j_compress_ptr cinfo)); | |||
/* Decompression module initialization routines */ | |||
EXTERN(void) jinit_master_decompress JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_d_main_controller JPP((j_decompress_ptr cinfo, | |||
boolean need_full_buffer)); | |||
EXTERN(void) jinit_d_coef_controller JPP((j_decompress_ptr cinfo, | |||
boolean need_full_buffer)); | |||
EXTERN(void) jinit_d_post_controller JPP((j_decompress_ptr cinfo, | |||
boolean need_full_buffer)); | |||
EXTERN(void) jinit_input_controller JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_marker_reader JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_huff_decoder JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_arith_decoder JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_inverse_dct JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_upsampler JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_color_deconverter JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_1pass_quantizer JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_2pass_quantizer JPP((j_decompress_ptr cinfo)); | |||
EXTERN(void) jinit_merged_upsampler JPP((j_decompress_ptr cinfo)); | |||
/* Memory manager initialization */ | |||
EXTERN(void) jinit_memory_mgr JPP((j_common_ptr cinfo)); | |||
/* Utility routines in jutils.c */ | |||
EXTERN(long) jdiv_round_up JPP((long a, long b)); | |||
EXTERN(long) jround_up JPP((long a, long b)); | |||
EXTERN(void) jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row, | |||
JSAMPARRAY output_array, int dest_row, | |||
int num_rows, JDIMENSION num_cols)); | |||
EXTERN(void) jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row, | |||
JDIMENSION num_blocks)); | |||
EXTERN(void) jzero_far JPP((void FAR * target, size_t bytestozero)); | |||
/* Constant tables in jutils.c */ | |||
#if 0 /* This table is not actually needed in v6a */ | |||
extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ | |||
#endif | |||
extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ | |||
extern const int jpeg_natural_order7[]; /* zz to natural order for 7x7 block */ | |||
extern const int jpeg_natural_order6[]; /* zz to natural order for 6x6 block */ | |||
extern const int jpeg_natural_order5[]; /* zz to natural order for 5x5 block */ | |||
extern const int jpeg_natural_order4[]; /* zz to natural order for 4x4 block */ | |||
extern const int jpeg_natural_order3[]; /* zz to natural order for 3x3 block */ | |||
extern const int jpeg_natural_order2[]; /* zz to natural order for 2x2 block */ | |||
/* Arithmetic coding probability estimation tables in jaricom.c */ | |||
extern const INT32 jpeg_aritab[]; | |||
/* Suppress undefined-structure complaints if necessary. */ | |||
#ifdef INCOMPLETE_TYPES_BROKEN | |||
#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */ | |||
struct jvirt_sarray_control { long dummy; }; | |||
struct jvirt_barray_control { long dummy; }; | |||
#endif | |||
#endif /* INCOMPLETE_TYPES_BROKEN */ |
@@ -1,856 +0,0 @@ | |||
/* | |||
* jquant1.c | |||
* | |||
* Copyright (C) 1991-1996, Thomas G. Lane. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains 1-pass color quantization (color mapping) routines. | |||
* These routines provide mapping to a fixed color map using equally spaced | |||
* color values. Optional Floyd-Steinberg or ordered dithering is available. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
#ifdef QUANT_1PASS_SUPPORTED | |||
/* | |||
* The main purpose of 1-pass quantization is to provide a fast, if not very | |||
* high quality, colormapped output capability. A 2-pass quantizer usually | |||
* gives better visual quality; however, for quantized grayscale output this | |||
* quantizer is perfectly adequate. Dithering is highly recommended with this | |||
* quantizer, though you can turn it off if you really want to. | |||
* | |||
* In 1-pass quantization the colormap must be chosen in advance of seeing the | |||
* image. We use a map consisting of all combinations of Ncolors[i] color | |||
* values for the i'th component. The Ncolors[] values are chosen so that | |||
* their product, the total number of colors, is no more than that requested. | |||
* (In most cases, the product will be somewhat less.) | |||
* | |||
* Since the colormap is orthogonal, the representative value for each color | |||
* component can be determined without considering the other components; | |||
* then these indexes can be combined into a colormap index by a standard | |||
* N-dimensional-array-subscript calculation. Most of the arithmetic involved | |||
* can be precalculated and stored in the lookup table colorindex[]. | |||
* colorindex[i][j] maps pixel value j in component i to the nearest | |||
* representative value (grid plane) for that component; this index is | |||
* multiplied by the array stride for component i, so that the | |||
* index of the colormap entry closest to a given pixel value is just | |||
* sum( colorindex[component-number][pixel-component-value] ) | |||
* Aside from being fast, this scheme allows for variable spacing between | |||
* representative values with no additional lookup cost. | |||
* | |||
* If gamma correction has been applied in color conversion, it might be wise | |||
* to adjust the color grid spacing so that the representative colors are | |||
* equidistant in linear space. At this writing, gamma correction is not | |||
* implemented by jdcolor, so nothing is done here. | |||
*/ | |||
/* Declarations for ordered dithering. | |||
* | |||
* We use a standard 16x16 ordered dither array. The basic concept of ordered | |||
* dithering is described in many references, for instance Dale Schumacher's | |||
* chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | |||
* In place of Schumacher's comparisons against a "threshold" value, we add a | |||
* "dither" value to the input pixel and then round the result to the nearest | |||
* output value. The dither value is equivalent to (0.5 - threshold) times | |||
* the distance between output values. For ordered dithering, we assume that | |||
* the output colors are equally spaced; if not, results will probably be | |||
* worse, since the dither may be too much or too little at a given point. | |||
* | |||
* The normal calculation would be to form pixel value + dither, range-limit | |||
* this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. | |||
* We can skip the separate range-limiting step by extending the colorindex | |||
* table in both directions. | |||
*/ | |||
#define ODITHER_SIZE 16 /* dimension of dither matrix */ | |||
/* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | |||
#define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE) /* # cells in matrix */ | |||
#define ODITHER_MASK (ODITHER_SIZE-1) /* mask for wrapping around counters */ | |||
typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; | |||
typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; | |||
static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { | |||
/* Bayer's order-4 dither array. Generated by the code given in | |||
* Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | |||
* The values in this array must range from 0 to ODITHER_CELLS-1. | |||
*/ | |||
{ 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, | |||
{ 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | |||
{ 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | |||
{ 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | |||
{ 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, | |||
{ 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | |||
{ 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | |||
{ 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | |||
{ 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, | |||
{ 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | |||
{ 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | |||
{ 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | |||
{ 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, | |||
{ 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | |||
{ 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | |||
{ 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | |||
}; | |||
/* Declarations for Floyd-Steinberg dithering. | |||
* | |||
* Errors are accumulated into the array fserrors[], at a resolution of | |||
* 1/16th of a pixel count. The error at a given pixel is propagated | |||
* to its not-yet-processed neighbors using the standard F-S fractions, | |||
* ... (here) 7/16 | |||
* 3/16 5/16 1/16 | |||
* We work left-to-right on even rows, right-to-left on odd rows. | |||
* | |||
* We can get away with a single array (holding one row's worth of errors) | |||
* by using it to store the current row's errors at pixel columns not yet | |||
* processed, but the next row's errors at columns already processed. We | |||
* need only a few extra variables to hold the errors immediately around the | |||
* current column. (If we are lucky, those variables are in registers, but | |||
* even if not, they're probably cheaper to access than array elements are.) | |||
* | |||
* The fserrors[] array is indexed [component#][position]. | |||
* We provide (#columns + 2) entries per component; the extra entry at each | |||
* end saves us from special-casing the first and last pixels. | |||
* | |||
* Note: on a wide image, we might not have enough room in a PC's near data | |||
* segment to hold the error array; so it is allocated with alloc_large. | |||
*/ | |||
#if BITS_IN_JSAMPLE == 8 | |||
typedef INT16 FSERROR; /* 16 bits should be enough */ | |||
typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |||
#else | |||
typedef INT32 FSERROR; /* may need more than 16 bits */ | |||
typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |||
#endif | |||
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |||
/* Private subobject */ | |||
#define MAX_Q_COMPS 4 /* max components I can handle */ | |||
typedef struct { | |||
struct jpeg_color_quantizer pub; /* public fields */ | |||
/* Initially allocated colormap is saved here */ | |||
JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ | |||
int sv_actual; /* number of entries in use */ | |||
JSAMPARRAY colorindex; /* Precomputed mapping for speed */ | |||
/* colorindex[i][j] = index of color closest to pixel value j in component i, | |||
* premultiplied as described above. Since colormap indexes must fit into | |||
* JSAMPLEs, the entries of this array will too. | |||
*/ | |||
boolean is_padded; /* is the colorindex padded for odither? */ | |||
int Ncolors[MAX_Q_COMPS]; /* # of values alloced to each component */ | |||
/* Variables for ordered dithering */ | |||
int row_index; /* cur row's vertical index in dither matrix */ | |||
ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ | |||
/* Variables for Floyd-Steinberg dithering */ | |||
FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ | |||
boolean on_odd_row; /* flag to remember which row we are on */ | |||
} my_cquantizer; | |||
typedef my_cquantizer * my_cquantize_ptr; | |||
/* | |||
* Policy-making subroutines for create_colormap and create_colorindex. | |||
* These routines determine the colormap to be used. The rest of the module | |||
* only assumes that the colormap is orthogonal. | |||
* | |||
* * select_ncolors decides how to divvy up the available colors | |||
* among the components. | |||
* * output_value defines the set of representative values for a component. | |||
* * largest_input_value defines the mapping from input values to | |||
* representative values for a component. | |||
* Note that the latter two routines may impose different policies for | |||
* different components, though this is not currently done. | |||
*/ | |||
LOCAL(int) | |||
select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) | |||
/* Determine allocation of desired colors to components, */ | |||
/* and fill in Ncolors[] array to indicate choice. */ | |||
/* Return value is total number of colors (product of Ncolors[] values). */ | |||
{ | |||
int nc = cinfo->out_color_components; /* number of color components */ | |||
int max_colors = cinfo->desired_number_of_colors; | |||
int total_colors, iroot, i, j; | |||
boolean changed; | |||
long temp; | |||
static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; | |||
/* We can allocate at least the nc'th root of max_colors per component. */ | |||
/* Compute floor(nc'th root of max_colors). */ | |||
iroot = 1; | |||
do { | |||
iroot++; | |||
temp = iroot; /* set temp = iroot ** nc */ | |||
for (i = 1; i < nc; i++) | |||
temp *= iroot; | |||
} while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ | |||
iroot--; /* now iroot = floor(root) */ | |||
/* Must have at least 2 color values per component */ | |||
if (iroot < 2) | |||
ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); | |||
/* Initialize to iroot color values for each component */ | |||
total_colors = 1; | |||
for (i = 0; i < nc; i++) { | |||
Ncolors[i] = iroot; | |||
total_colors *= iroot; | |||
} | |||
/* We may be able to increment the count for one or more components without | |||
* exceeding max_colors, though we know not all can be incremented. | |||
* Sometimes, the first component can be incremented more than once! | |||
* (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | |||
* In RGB colorspace, try to increment G first, then R, then B. | |||
*/ | |||
do { | |||
changed = FALSE; | |||
for (i = 0; i < nc; i++) { | |||
j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | |||
/* calculate new total_colors if Ncolors[j] is incremented */ | |||
temp = total_colors / Ncolors[j]; | |||
temp *= Ncolors[j]+1; /* done in long arith to avoid oflo */ | |||
if (temp > (long) max_colors) | |||
break; /* won't fit, done with this pass */ | |||
Ncolors[j]++; /* OK, apply the increment */ | |||
total_colors = (int) temp; | |||
changed = TRUE; | |||
} | |||
} while (changed); | |||
return total_colors; | |||
} | |||
LOCAL(int) | |||
output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |||
/* Return j'th output value, where j will range from 0 to maxj */ | |||
/* The output values must fall in 0..MAXJSAMPLE in increasing order */ | |||
{ | |||
/* We always provide values 0 and MAXJSAMPLE for each component; | |||
* any additional values are equally spaced between these limits. | |||
* (Forcing the upper and lower values to the limits ensures that | |||
* dithering can't produce a color outside the selected gamut.) | |||
*/ | |||
return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); | |||
} | |||
LOCAL(int) | |||
largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | |||
/* Return largest input value that should map to j'th output value */ | |||
/* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ | |||
{ | |||
/* Breakpoints are halfway between values returned by output_value */ | |||
return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); | |||
} | |||
/* | |||
* Create the colormap. | |||
*/ | |||
LOCAL(void) | |||
create_colormap (j_decompress_ptr cinfo) | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
JSAMPARRAY colormap; /* Created colormap */ | |||
int total_colors; /* Number of distinct output colors */ | |||
int i,j,k, nci, blksize, blkdist, ptr, val; | |||
/* Select number of colors for each component */ | |||
total_colors = select_ncolors(cinfo, cquantize->Ncolors); | |||
/* Report selected color counts */ | |||
if (cinfo->out_color_components == 3) | |||
TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, | |||
total_colors, cquantize->Ncolors[0], | |||
cquantize->Ncolors[1], cquantize->Ncolors[2]); | |||
else | |||
TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); | |||
/* Allocate and fill in the colormap. */ | |||
/* The colors are ordered in the map in standard row-major order, */ | |||
/* i.e. rightmost (highest-indexed) color changes most rapidly. */ | |||
colormap = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); | |||
/* blksize is number of adjacent repeated entries for a component */ | |||
/* blkdist is distance between groups of identical entries for a component */ | |||
blkdist = total_colors; | |||
for (i = 0; i < cinfo->out_color_components; i++) { | |||
/* fill in colormap entries for i'th color component */ | |||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |||
blksize = blkdist / nci; | |||
for (j = 0; j < nci; j++) { | |||
/* Compute j'th output value (out of nci) for component */ | |||
val = output_value(cinfo, i, j, nci-1); | |||
/* Fill in all colormap entries that have this value of this component */ | |||
for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | |||
/* fill in blksize entries beginning at ptr */ | |||
for (k = 0; k < blksize; k++) | |||
colormap[i][ptr+k] = (JSAMPLE) val; | |||
} | |||
} | |||
blkdist = blksize; /* blksize of this color is blkdist of next */ | |||
} | |||
/* Save the colormap in private storage, | |||
* where it will survive color quantization mode changes. | |||
*/ | |||
cquantize->sv_colormap = colormap; | |||
cquantize->sv_actual = total_colors; | |||
} | |||
/* | |||
* Create the color index table. | |||
*/ | |||
LOCAL(void) | |||
create_colorindex (j_decompress_ptr cinfo) | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
JSAMPROW indexptr; | |||
int i,j,k, nci, blksize, val, pad; | |||
/* For ordered dither, we pad the color index tables by MAXJSAMPLE in | |||
* each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). | |||
* This is not necessary in the other dithering modes. However, we | |||
* flag whether it was done in case user changes dithering mode. | |||
*/ | |||
if (cinfo->dither_mode == JDITHER_ORDERED) { | |||
pad = MAXJSAMPLE*2; | |||
cquantize->is_padded = TRUE; | |||
} else { | |||
pad = 0; | |||
cquantize->is_padded = FALSE; | |||
} | |||
cquantize->colorindex = (*cinfo->mem->alloc_sarray) | |||
((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
(JDIMENSION) (MAXJSAMPLE+1 + pad), | |||
(JDIMENSION) cinfo->out_color_components); | |||
/* blksize is number of adjacent repeated entries for a component */ | |||
blksize = cquantize->sv_actual; | |||
for (i = 0; i < cinfo->out_color_components; i++) { | |||
/* fill in colorindex entries for i'th color component */ | |||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |||
blksize = blksize / nci; | |||
/* adjust colorindex pointers to provide padding at negative indexes. */ | |||
if (pad) | |||
cquantize->colorindex[i] += MAXJSAMPLE; | |||
/* in loop, val = index of current output value, */ | |||
/* and k = largest j that maps to current val */ | |||
indexptr = cquantize->colorindex[i]; | |||
val = 0; | |||
k = largest_input_value(cinfo, i, 0, nci-1); | |||
for (j = 0; j <= MAXJSAMPLE; j++) { | |||
while (j > k) /* advance val if past boundary */ | |||
k = largest_input_value(cinfo, i, ++val, nci-1); | |||
/* premultiply so that no multiplication needed in main processing */ | |||
indexptr[j] = (JSAMPLE) (val * blksize); | |||
} | |||
/* Pad at both ends if necessary */ | |||
if (pad) | |||
for (j = 1; j <= MAXJSAMPLE; j++) { | |||
indexptr[-j] = indexptr[0]; | |||
indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; | |||
} | |||
} | |||
} | |||
/* | |||
* Create an ordered-dither array for a component having ncolors | |||
* distinct output values. | |||
*/ | |||
LOCAL(ODITHER_MATRIX_PTR) | |||
make_odither_array (j_decompress_ptr cinfo, int ncolors) | |||
{ | |||
ODITHER_MATRIX_PTR odither; | |||
int j,k; | |||
INT32 num,den; | |||
odither = (ODITHER_MATRIX_PTR) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(ODITHER_MATRIX)); | |||
/* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). | |||
* Hence the dither value for the matrix cell with fill order f | |||
* (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). | |||
* On 16-bit-int machine, be careful to avoid overflow. | |||
*/ | |||
den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); | |||
for (j = 0; j < ODITHER_SIZE; j++) { | |||
for (k = 0; k < ODITHER_SIZE; k++) { | |||
num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) | |||
* MAXJSAMPLE; | |||
/* Ensure round towards zero despite C's lack of consistency | |||
* about rounding negative values in integer division... | |||
*/ | |||
odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); | |||
} | |||
} | |||
return odither; | |||
} | |||
/* | |||
* Create the ordered-dither tables. | |||
* Components having the same number of representative colors may | |||
* share a dither table. | |||
*/ | |||
LOCAL(void) | |||
create_odither_tables (j_decompress_ptr cinfo) | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
ODITHER_MATRIX_PTR odither; | |||
int i, j, nci; | |||
for (i = 0; i < cinfo->out_color_components; i++) { | |||
nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | |||
odither = NULL; /* search for matching prior component */ | |||
for (j = 0; j < i; j++) { | |||
if (nci == cquantize->Ncolors[j]) { | |||
odither = cquantize->odither[j]; | |||
break; | |||
} | |||
} | |||
if (odither == NULL) /* need a new table? */ | |||
odither = make_odither_array(cinfo, nci); | |||
cquantize->odither[i] = odither; | |||
} | |||
} | |||
/* | |||
* Map some rows of pixels to the output colormapped representation. | |||
*/ | |||
METHODDEF(void) | |||
color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
JSAMPARRAY output_buf, int num_rows) | |||
/* General case, no dithering */ | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
JSAMPARRAY colorindex = cquantize->colorindex; | |||
register int pixcode, ci; | |||
register JSAMPROW ptrin, ptrout; | |||
int row; | |||
JDIMENSION col; | |||
JDIMENSION width = cinfo->output_width; | |||
register int nc = cinfo->out_color_components; | |||
for (row = 0; row < num_rows; row++) { | |||
ptrin = input_buf[row]; | |||
ptrout = output_buf[row]; | |||
for (col = width; col > 0; col--) { | |||
pixcode = 0; | |||
for (ci = 0; ci < nc; ci++) { | |||
pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); | |||
} | |||
*ptrout++ = (JSAMPLE) pixcode; | |||
} | |||
} | |||
} | |||
METHODDEF(void) | |||
color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
JSAMPARRAY output_buf, int num_rows) | |||
/* Fast path for out_color_components==3, no dithering */ | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
register int pixcode; | |||
register JSAMPROW ptrin, ptrout; | |||
JSAMPROW colorindex0 = cquantize->colorindex[0]; | |||
JSAMPROW colorindex1 = cquantize->colorindex[1]; | |||
JSAMPROW colorindex2 = cquantize->colorindex[2]; | |||
int row; | |||
JDIMENSION col; | |||
JDIMENSION width = cinfo->output_width; | |||
for (row = 0; row < num_rows; row++) { | |||
ptrin = input_buf[row]; | |||
ptrout = output_buf[row]; | |||
for (col = width; col > 0; col--) { | |||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); | |||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); | |||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); | |||
*ptrout++ = (JSAMPLE) pixcode; | |||
} | |||
} | |||
} | |||
METHODDEF(void) | |||
quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
JSAMPARRAY output_buf, int num_rows) | |||
/* General case, with ordered dithering */ | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
register JSAMPROW input_ptr; | |||
register JSAMPROW output_ptr; | |||
JSAMPROW colorindex_ci; | |||
int * dither; /* points to active row of dither matrix */ | |||
int row_index, col_index; /* current indexes into dither matrix */ | |||
int nc = cinfo->out_color_components; | |||
int ci; | |||
int row; | |||
JDIMENSION col; | |||
JDIMENSION width = cinfo->output_width; | |||
for (row = 0; row < num_rows; row++) { | |||
/* Initialize output values to 0 so can process components separately */ | |||
jzero_far((void FAR *) output_buf[row], | |||
(size_t) (width * SIZEOF(JSAMPLE))); | |||
row_index = cquantize->row_index; | |||
for (ci = 0; ci < nc; ci++) { | |||
input_ptr = input_buf[row] + ci; | |||
output_ptr = output_buf[row]; | |||
colorindex_ci = cquantize->colorindex[ci]; | |||
dither = cquantize->odither[ci][row_index]; | |||
col_index = 0; | |||
for (col = width; col > 0; col--) { | |||
/* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, | |||
* select output value, accumulate into output code for this pixel. | |||
* Range-limiting need not be done explicitly, as we have extended | |||
* the colorindex table to produce the right answers for out-of-range | |||
* inputs. The maximum dither is +- MAXJSAMPLE; this sets the | |||
* required amount of padding. | |||
*/ | |||
*output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; | |||
input_ptr += nc; | |||
output_ptr++; | |||
col_index = (col_index + 1) & ODITHER_MASK; | |||
} | |||
} | |||
/* Advance row index for next row */ | |||
row_index = (row_index + 1) & ODITHER_MASK; | |||
cquantize->row_index = row_index; | |||
} | |||
} | |||
METHODDEF(void) | |||
quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
JSAMPARRAY output_buf, int num_rows) | |||
/* Fast path for out_color_components==3, with ordered dithering */ | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
register int pixcode; | |||
register JSAMPROW input_ptr; | |||
register JSAMPROW output_ptr; | |||
JSAMPROW colorindex0 = cquantize->colorindex[0]; | |||
JSAMPROW colorindex1 = cquantize->colorindex[1]; | |||
JSAMPROW colorindex2 = cquantize->colorindex[2]; | |||
int * dither0; /* points to active row of dither matrix */ | |||
int * dither1; | |||
int * dither2; | |||
int row_index, col_index; /* current indexes into dither matrix */ | |||
int row; | |||
JDIMENSION col; | |||
JDIMENSION width = cinfo->output_width; | |||
for (row = 0; row < num_rows; row++) { | |||
row_index = cquantize->row_index; | |||
input_ptr = input_buf[row]; | |||
output_ptr = output_buf[row]; | |||
dither0 = cquantize->odither[0][row_index]; | |||
dither1 = cquantize->odither[1][row_index]; | |||
dither2 = cquantize->odither[2][row_index]; | |||
col_index = 0; | |||
for (col = width; col > 0; col--) { | |||
pixcode = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + | |||
dither0[col_index]]); | |||
pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + | |||
dither1[col_index]]); | |||
pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + | |||
dither2[col_index]]); | |||
*output_ptr++ = (JSAMPLE) pixcode; | |||
col_index = (col_index + 1) & ODITHER_MASK; | |||
} | |||
row_index = (row_index + 1) & ODITHER_MASK; | |||
cquantize->row_index = row_index; | |||
} | |||
} | |||
METHODDEF(void) | |||
quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |||
JSAMPARRAY output_buf, int num_rows) | |||
/* General case, with Floyd-Steinberg dithering */ | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
register LOCFSERROR cur; /* current error or pixel value */ | |||
LOCFSERROR belowerr; /* error for pixel below cur */ | |||
LOCFSERROR bpreverr; /* error for below/prev col */ | |||
LOCFSERROR bnexterr; /* error for below/next col */ | |||
LOCFSERROR delta; | |||
register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |||
register JSAMPROW input_ptr; | |||
register JSAMPROW output_ptr; | |||
JSAMPROW colorindex_ci; | |||
JSAMPROW colormap_ci; | |||
int pixcode; | |||
int nc = cinfo->out_color_components; | |||
int dir; /* 1 for left-to-right, -1 for right-to-left */ | |||
int dirnc; /* dir * nc */ | |||
int ci; | |||
int row; | |||
JDIMENSION col; | |||
JDIMENSION width = cinfo->output_width; | |||
JSAMPLE *range_limit = cinfo->sample_range_limit; | |||
SHIFT_TEMPS | |||
for (row = 0; row < num_rows; row++) { | |||
/* Initialize output values to 0 so can process components separately */ | |||
jzero_far((void FAR *) output_buf[row], | |||
(size_t) (width * SIZEOF(JSAMPLE))); | |||
for (ci = 0; ci < nc; ci++) { | |||
input_ptr = input_buf[row] + ci; | |||
output_ptr = output_buf[row]; | |||
if (cquantize->on_odd_row) { | |||
/* work right to left in this row */ | |||
input_ptr += (width-1) * nc; /* so point to rightmost pixel */ | |||
output_ptr += width-1; | |||
dir = -1; | |||
dirnc = -nc; | |||
errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ | |||
} else { | |||
/* work left to right in this row */ | |||
dir = 1; | |||
dirnc = nc; | |||
errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | |||
} | |||
colorindex_ci = cquantize->colorindex[ci]; | |||
colormap_ci = cquantize->sv_colormap[ci]; | |||
/* Preset error values: no error propagated to first pixel from left */ | |||
cur = 0; | |||
/* and no error propagated to row below yet */ | |||
belowerr = bpreverr = 0; | |||
for (col = width; col > 0; col--) { | |||
/* cur holds the error propagated from the previous pixel on the | |||
* current line. Add the error propagated from the previous line | |||
* to form the complete error correction term for this pixel, and | |||
* round the error term (which is expressed * 16) to an integer. | |||
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |||
* for either sign of the error value. | |||
* Note: errorptr points to *previous* column's array entry. | |||
*/ | |||
cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); | |||
/* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |||
* The maximum error is +- MAXJSAMPLE; this sets the required size | |||
* of the range_limit array. | |||
*/ | |||
cur += GETJSAMPLE(*input_ptr); | |||
cur = GETJSAMPLE(range_limit[cur]); | |||
/* Select output value, accumulate into output code for this pixel */ | |||
pixcode = GETJSAMPLE(colorindex_ci[cur]); | |||
*output_ptr += (JSAMPLE) pixcode; | |||
/* Compute actual representation error at this pixel */ | |||
/* Note: we can do this even though we don't have the final */ | |||
/* pixel code, because the colormap is orthogonal. */ | |||
cur -= GETJSAMPLE(colormap_ci[pixcode]); | |||
/* Compute error fractions to be propagated to adjacent pixels. | |||
* Add these into the running sums, and simultaneously shift the | |||
* next-line error sums left by 1 column. | |||
*/ | |||
bnexterr = cur; | |||
delta = cur * 2; | |||
cur += delta; /* form error * 3 */ | |||
errorptr[0] = (FSERROR) (bpreverr + cur); | |||
cur += delta; /* form error * 5 */ | |||
bpreverr = belowerr + cur; | |||
belowerr = bnexterr; | |||
cur += delta; /* form error * 7 */ | |||
/* At this point cur contains the 7/16 error value to be propagated | |||
* to the next pixel on the current line, and all the errors for the | |||
* next line have been shifted over. We are therefore ready to move on. | |||
*/ | |||
input_ptr += dirnc; /* advance input ptr to next column */ | |||
output_ptr += dir; /* advance output ptr to next column */ | |||
errorptr += dir; /* advance errorptr to current column */ | |||
} | |||
/* Post-loop cleanup: we must unload the final error value into the | |||
* final fserrors[] entry. Note we need not unload belowerr because | |||
* it is for the dummy column before or after the actual array. | |||
*/ | |||
errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ | |||
} | |||
cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); | |||
} | |||
} | |||
/* | |||
* Allocate workspace for Floyd-Steinberg errors. | |||
*/ | |||
LOCAL(void) | |||
alloc_fs_workspace (j_decompress_ptr cinfo) | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
size_t arraysize; | |||
int i; | |||
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | |||
for (i = 0; i < cinfo->out_color_components; i++) { | |||
cquantize->fserrors[i] = (FSERRPTR) | |||
(*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | |||
} | |||
} | |||
/* | |||
* Initialize for one-pass color quantization. | |||
*/ | |||
METHODDEF(void) | |||
start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |||
{ | |||
my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |||
size_t arraysize; | |||
int i; | |||
/* Install my colormap. */ | |||
cinfo->colormap = cquantize->sv_colormap; | |||
cinfo->actual_number_of_colors = cquantize->sv_actual; | |||
/* Initialize for desired dithering mode. */ | |||
switch (cinfo->dither_mode) { | |||
case JDITHER_NONE: | |||
if (cinfo->out_color_components == 3) | |||
cquantize->pub.color_quantize = color_quantize3; | |||
else | |||
cquantize->pub.color_quantize = color_quantize; | |||
break; | |||
case JDITHER_ORDERED: | |||
if (cinfo->out_color_components == 3) | |||
cquantize->pub.color_quantize = quantize3_ord_dither; | |||
else | |||
cquantize->pub.color_quantize = quantize_ord_dither; | |||
cquantize->row_index = 0; /* initialize state for ordered dither */ | |||
/* If user changed to ordered dither from another mode, | |||
* we must recreate the color index table with padding. | |||
* This will cost extra space, but probably isn't very likely. | |||
*/ | |||
if (! cquantize->is_padded) | |||
create_colorindex(cinfo); | |||
/* Create ordered-dither tables if we didn't already. */ | |||
if (cquantize->odither[0] == NULL) | |||
create_odither_tables(cinfo); | |||
break; | |||
case JDITHER_FS: | |||
cquantize->pub.color_quantize = quantize_fs_dither; | |||
cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ | |||
/* Allocate Floyd-Steinberg workspace if didn't already. */ | |||
if (cquantize->fserrors[0] == NULL) | |||
alloc_fs_workspace(cinfo); | |||
/* Initialize the propagated errors to zero. */ | |||
arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | |||
for (i = 0; i < cinfo->out_color_components; i++) | |||
jzero_far((void FAR *) cquantize->fserrors[i], arraysize); | |||
break; | |||
default: | |||
ERREXIT(cinfo, JERR_NOT_COMPILED); | |||
break; | |||
} | |||
} | |||
/* | |||
* Finish up at the end of the pass. | |||
*/ | |||
METHODDEF(void) | |||
finish_pass_1_quant (j_decompress_ptr cinfo) | |||
{ | |||
/* no work in 1-pass case */ | |||
} | |||
/* | |||
* Switch to a new external colormap between output passes. | |||
* Shouldn't get to this module! | |||
*/ | |||
METHODDEF(void) | |||
new_color_map_1_quant (j_decompress_ptr cinfo) | |||
{ | |||
ERREXIT(cinfo, JERR_MODE_CHANGE); | |||
} | |||
/* | |||
* Module initialization routine for 1-pass color quantization. | |||
*/ | |||
GLOBAL(void) | |||
jinit_1pass_quantizer (j_decompress_ptr cinfo) | |||
{ | |||
my_cquantize_ptr cquantize; | |||
cquantize = (my_cquantize_ptr) | |||
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |||
SIZEOF(my_cquantizer)); | |||
cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | |||
cquantize->pub.start_pass = start_pass_1_quant; | |||
cquantize->pub.finish_pass = finish_pass_1_quant; | |||
cquantize->pub.new_color_map = new_color_map_1_quant; | |||
cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ | |||
cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ | |||
/* Make sure my internal arrays won't overflow */ | |||
if (cinfo->out_color_components > MAX_Q_COMPS) | |||
ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); | |||
/* Make sure colormap indexes can be represented by JSAMPLEs */ | |||
if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) | |||
ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); | |||
/* Create the colormap and color index table. */ | |||
create_colormap(cinfo); | |||
create_colorindex(cinfo); | |||
/* Allocate Floyd-Steinberg workspace now if requested. | |||
* We do this now since it is FAR storage and may affect the memory | |||
* manager's space calculations. If the user changes to FS dither | |||
* mode in a later pass, we will allocate the space then, and will | |||
* possibly overrun the max_memory_to_use setting. | |||
*/ | |||
if (cinfo->dither_mode == JDITHER_FS) | |||
alloc_fs_workspace(cinfo); | |||
} | |||
#endif /* QUANT_1PASS_SUPPORTED */ |
@@ -1,231 +0,0 @@ | |||
/* | |||
* jutils.c | |||
* | |||
* Copyright (C) 1991-1996, Thomas G. Lane. | |||
* Modified 2009 by Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains tables and miscellaneous utility routines needed | |||
* for both compression and decompression. | |||
* Note we prefix all global names with "j" to minimize conflicts with | |||
* a surrounding application. | |||
*/ | |||
#define JPEG_INTERNALS | |||
#include "jinclude.h" | |||
#include "jpeglib.h" | |||
/* | |||
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element | |||
* of a DCT block read in natural order (left to right, top to bottom). | |||
*/ | |||
#if 0 /* This table is not actually needed in v6a */ | |||
const int jpeg_zigzag_order[DCTSIZE2] = { | |||
0, 1, 5, 6, 14, 15, 27, 28, | |||
2, 4, 7, 13, 16, 26, 29, 42, | |||
3, 8, 12, 17, 25, 30, 41, 43, | |||
9, 11, 18, 24, 31, 40, 44, 53, | |||
10, 19, 23, 32, 39, 45, 52, 54, | |||
20, 22, 33, 38, 46, 51, 55, 60, | |||
21, 34, 37, 47, 50, 56, 59, 61, | |||
35, 36, 48, 49, 57, 58, 62, 63 | |||
}; | |||
#endif | |||
/* | |||
* jpeg_natural_order[i] is the natural-order position of the i'th element | |||
* of zigzag order. | |||
* | |||
* When reading corrupted data, the Huffman decoders could attempt | |||
* to reference an entry beyond the end of this array (if the decoded | |||
* zero run length reaches past the end of the block). To prevent | |||
* wild stores without adding an inner-loop test, we put some extra | |||
* "63"s after the real entries. This will cause the extra coefficient | |||
* to be stored in location 63 of the block, not somewhere random. | |||
* The worst case would be a run-length of 15, which means we need 16 | |||
* fake entries. | |||
*/ | |||
const int jpeg_natural_order[DCTSIZE2+16] = { | |||
0, 1, 8, 16, 9, 2, 3, 10, | |||
17, 24, 32, 25, 18, 11, 4, 5, | |||
12, 19, 26, 33, 40, 48, 41, 34, | |||
27, 20, 13, 6, 7, 14, 21, 28, | |||
35, 42, 49, 56, 57, 50, 43, 36, | |||
29, 22, 15, 23, 30, 37, 44, 51, | |||
58, 59, 52, 45, 38, 31, 39, 46, | |||
53, 60, 61, 54, 47, 55, 62, 63, | |||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | |||
63, 63, 63, 63, 63, 63, 63, 63 | |||
}; | |||
const int jpeg_natural_order7[7*7+16] = { | |||
0, 1, 8, 16, 9, 2, 3, 10, | |||
17, 24, 32, 25, 18, 11, 4, 5, | |||
12, 19, 26, 33, 40, 48, 41, 34, | |||
27, 20, 13, 6, 14, 21, 28, 35, | |||
42, 49, 50, 43, 36, 29, 22, 30, | |||
37, 44, 51, 52, 45, 38, 46, 53, | |||
54, | |||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | |||
63, 63, 63, 63, 63, 63, 63, 63 | |||
}; | |||
const int jpeg_natural_order6[6*6+16] = { | |||
0, 1, 8, 16, 9, 2, 3, 10, | |||
17, 24, 32, 25, 18, 11, 4, 5, | |||
12, 19, 26, 33, 40, 41, 34, 27, | |||
20, 13, 21, 28, 35, 42, 43, 36, | |||
29, 37, 44, 45, | |||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | |||
63, 63, 63, 63, 63, 63, 63, 63 | |||
}; | |||
const int jpeg_natural_order5[5*5+16] = { | |||
0, 1, 8, 16, 9, 2, 3, 10, | |||
17, 24, 32, 25, 18, 11, 4, 12, | |||
19, 26, 33, 34, 27, 20, 28, 35, | |||
36, | |||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | |||
63, 63, 63, 63, 63, 63, 63, 63 | |||
}; | |||
const int jpeg_natural_order4[4*4+16] = { | |||
0, 1, 8, 16, 9, 2, 3, 10, | |||
17, 24, 25, 18, 11, 19, 26, 27, | |||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | |||
63, 63, 63, 63, 63, 63, 63, 63 | |||
}; | |||
const int jpeg_natural_order3[3*3+16] = { | |||
0, 1, 8, 16, 9, 2, 10, 17, | |||
18, | |||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | |||
63, 63, 63, 63, 63, 63, 63, 63 | |||
}; | |||
const int jpeg_natural_order2[2*2+16] = { | |||
0, 1, 8, 9, | |||
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ | |||
63, 63, 63, 63, 63, 63, 63, 63 | |||
}; | |||
/* | |||
* Arithmetic utilities | |||
*/ | |||
GLOBAL(long) | |||
jdiv_round_up (long a, long b) | |||
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */ | |||
/* Assumes a >= 0, b > 0 */ | |||
{ | |||
return (a + b - 1L) / b; | |||
} | |||
GLOBAL(long) | |||
jround_up (long a, long b) | |||
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ | |||
/* Assumes a >= 0, b > 0 */ | |||
{ | |||
a += b - 1L; | |||
return a - (a % b); | |||
} | |||
/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays | |||
* and coefficient-block arrays. This won't work on 80x86 because the arrays | |||
* are FAR and we're assuming a small-pointer memory model. However, some | |||
* DOS compilers provide far-pointer versions of memcpy() and memset() even | |||
* in the small-model libraries. These will be used if USE_FMEM is defined. | |||
* Otherwise, the routines below do it the hard way. (The performance cost | |||
* is not all that great, because these routines aren't very heavily used.) | |||
*/ | |||
#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */ | |||
#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size) | |||
#define FMEMZERO(target,size) MEMZERO(target,size) | |||
#else /* 80x86 case, define if we can */ | |||
#ifdef USE_FMEM | |||
#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size)) | |||
#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size)) | |||
#endif | |||
#endif | |||
GLOBAL(void) | |||
jcopy_sample_rows (JSAMPARRAY input_array, int source_row, | |||
JSAMPARRAY output_array, int dest_row, | |||
int num_rows, JDIMENSION num_cols) | |||
/* Copy some rows of samples from one place to another. | |||
* num_rows rows are copied from input_array[source_row++] | |||
* to output_array[dest_row++]; these areas may overlap for duplication. | |||
* The source and destination arrays must be at least as wide as num_cols. | |||
*/ | |||
{ | |||
register JSAMPROW inptr, outptr; | |||
#ifdef FMEMCOPY | |||
register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE)); | |||
#else | |||
register JDIMENSION count; | |||
#endif | |||
register int row; | |||
input_array += source_row; | |||
output_array += dest_row; | |||
for (row = num_rows; row > 0; row--) { | |||
inptr = *input_array++; | |||
outptr = *output_array++; | |||
#ifdef FMEMCOPY | |||
FMEMCOPY(outptr, inptr, count); | |||
#else | |||
for (count = num_cols; count > 0; count--) | |||
*outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */ | |||
#endif | |||
} | |||
} | |||
GLOBAL(void) | |||
jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row, | |||
JDIMENSION num_blocks) | |||
/* Copy a row of coefficient blocks from one place to another. */ | |||
{ | |||
#ifdef FMEMCOPY | |||
FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF))); | |||
#else | |||
register JCOEFPTR inptr, outptr; | |||
register long count; | |||
inptr = (JCOEFPTR) input_row; | |||
outptr = (JCOEFPTR) output_row; | |||
for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) { | |||
*outptr++ = *inptr++; | |||
} | |||
#endif | |||
} | |||
GLOBAL(void) | |||
jzero_far (void FAR * target, size_t bytestozero) | |||
/* Zero out a chunk of FAR memory. */ | |||
/* This might be sample-array data, block-array data, or alloc_large data. */ | |||
{ | |||
#ifdef FMEMZERO | |||
FMEMZERO(target, bytestozero); | |||
#else | |||
register char FAR * ptr = (char FAR *) target; | |||
register size_t count; | |||
for (count = bytestozero; count > 0; count--) { | |||
*ptr++ = 0; | |||
} | |||
#endif | |||
} |
@@ -1,14 +0,0 @@ | |||
/* | |||
* jversion.h | |||
* | |||
* Copyright (C) 1991-2011, Thomas G. Lane, Guido Vollbeding. | |||
* This file is part of the Independent JPEG Group's software. | |||
* For conditions of distribution and use, see the accompanying README file. | |||
* | |||
* This file contains software version identification. | |||
*/ | |||
#define JVERSION "8c 16-Jan-2011" | |||
#define JCOPYRIGHT "Copyright (C) 2011, Thomas G. Lane, Guido Vollbeding" |
@@ -1,59 +0,0 @@ | |||
# DO NOT DELETE | |||
jaricom.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcapimin.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcapistd.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcarith.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jccoefct.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jccolor.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcdctmgr.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcdctmgr.o: jdct.h | |||
jchuff.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcinit.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcmainct.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcmarker.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcmaster.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcomapi.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcparam.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcprepct.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jcsample.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jctrans.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdapimin.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdapistd.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdarith.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdatadst.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdatasrc.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdcoefct.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdcolor.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jddctmgr.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jddctmgr.o: jdct.h | |||
jdhuff.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdinput.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdmainct.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdmarker.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdmaster.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdmerge.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdpostct.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdsample.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jdtrans.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jerror.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jerror.o: jversion.h | |||
jfdctflt.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jfdctflt.o: jdct.h | |||
jfdctfst.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jfdctfst.o: jdct.h | |||
jfdctint.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jfdctint.o: jdct.h | |||
jidctflt.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jidctflt.o: jdct.h | |||
jidctfst.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jidctfst.o: jdct.h | |||
jidctint.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jidctint.o: jdct.h | |||
jmemmgr.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jmemmgr.o: jmemsys.h | |||
jmemnobs.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jmemnobs.o: jmemsys.h | |||
jquant1.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jquant2.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h | |||
jutils.o: jinclude.h jconfig.h jpeglib.h jmorecfg.h jpegint.h jerror.h |
@@ -1,69 +0,0 @@ | |||
# | |||
# "$Id: makefile.wat 7563 2010-04-28 03:15:47Z greg.ercolano $" | |||
# | |||
# JPEG library makefile for the Fast Light Toolkit (FLTK). | |||
# | |||
# Copyright 1997-2004 by Easy Software Products. | |||
# | |||
# This library is free software; you can redistribute it and/or | |||
# modify it under the terms of the GNU Library General Public | |||
# License as published by the Free Software Foundation; either | |||
# version 2 of the License, or (at your option) any later version. | |||
# | |||
# This library is distributed in the hope that it will be useful, | |||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
# Library General Public License for more details. | |||
# | |||
# You should have received a copy of the GNU Library General Public | |||
# License along with this library; if not, write to the Free Software | |||
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | |||
# USA. | |||
# | |||
# Please report all bugs and problems on the following page: | |||
# | |||
# http://www.fltk.org/str.php | |||
# | |||
LIBNAMEROOT=ftlk_jpeg | |||
!include ../watcom.mif | |||
# | |||
# Object files... | |||
# | |||
LIBOBJS = jmemnobs.obj & | |||
jcapimin.obj jcapistd.obj jccoefct.obj jccolor.obj jcdctmgr.obj & | |||
jchuff.obj jcinit.obj jcmainct.obj jcmarker.obj jcmaster.obj jcomapi.obj & | |||
jcparam.obj jcphuff.obj jcprepct.obj jcsample.obj jctrans.obj & | |||
jdapimin.obj jdapistd.obj jdatadst.obj jdatasrc.obj jdcoefct.obj & | |||
jdcolor.obj jddctmgr.obj jdhuff.obj jdinput.obj jdmainct.obj jdmarker.obj & | |||
jdmaster.obj jdmerge.obj jdphuff.obj jdpostct.obj jdsample.obj & | |||
jdtrans.obj jerror.obj jfdctflt.obj jfdctfst.obj jfdctint.obj & | |||
jidctflt.obj jidctfst.obj jidctint.obj jidctred.obj jquant1.obj & | |||
jquant2.obj jutils.obj jmemmgr.obj | |||
# | |||
# Make all targets... | |||
# | |||
all: $(LIBNAME) | |||
$(LIBNAME): $(LIBOBJS) | |||
$(LIB) $(LIBOPTS) $@ $< | |||
# | |||
# Clean all directories | |||
# | |||
clean : .SYMBOLIC | |||
@echo Cleaning up. | |||
CLEANEXTS = obj | |||
@for %a in ($(CLEANEXTS)) do -rm -f $(ODIR)\*.%a | |||
-rm -f *.err | |||
-rm -f $(LIBNAME) | |||
# | |||
# End of "$Id: makefile.wat 7563 2010-04-28 03:15:47Z greg.ercolano $". | |||
# |
@@ -1,945 +0,0 @@ | |||
IJG JPEG LIBRARY: SYSTEM ARCHITECTURE | |||
Copyright (C) 1991-2009, Thomas G. Lane, Guido Vollbeding. | |||
This file is part of the Independent JPEG Group's software. | |||
For conditions of distribution and use, see the accompanying README file. | |||
This file provides an overview of the architecture of the IJG JPEG software; | |||
that is, the functions of the various modules in the system and the interfaces | |||
between modules. For more precise details about any data structure or calling | |||
convention, see the include files and comments in the source code. | |||
We assume that the reader is already somewhat familiar with the JPEG standard. | |||
The README file includes references for learning about JPEG. The file | |||
libjpeg.txt describes the library from the viewpoint of an application | |||
programmer using the library; it's best to read that file before this one. | |||
Also, the file coderules.txt describes the coding style conventions we use. | |||
In this document, JPEG-specific terminology follows the JPEG standard: | |||
A "component" means a color channel, e.g., Red or Luminance. | |||
A "sample" is a single component value (i.e., one number in the image data). | |||
A "coefficient" is a frequency coefficient (a DCT transform output number). | |||
A "block" is an 8x8 group of samples or coefficients. | |||
An "MCU" (minimum coded unit) is an interleaved set of blocks of size | |||
determined by the sampling factors, or a single block in a | |||
noninterleaved scan. | |||
We do not use the terms "pixel" and "sample" interchangeably. When we say | |||
pixel, we mean an element of the full-size image, while a sample is an element | |||
of the downsampled image. Thus the number of samples may vary across | |||
components while the number of pixels does not. (This terminology is not used | |||
rigorously throughout the code, but it is used in places where confusion would | |||
otherwise result.) | |||
*** System features *** | |||
The IJG distribution contains two parts: | |||
* A subroutine library for JPEG compression and decompression. | |||
* cjpeg/djpeg, two sample applications that use the library to transform | |||
JFIF JPEG files to and from several other image formats. | |||
cjpeg/djpeg are of no great intellectual complexity: they merely add a simple | |||
command-line user interface and I/O routines for several uncompressed image | |||
formats. This document concentrates on the library itself. | |||
We desire the library to be capable of supporting all JPEG baseline, extended | |||
sequential, and progressive DCT processes. Hierarchical processes are not | |||
supported. | |||
The library does not support the lossless (spatial) JPEG process. Lossless | |||
JPEG shares little or no code with lossy JPEG, and would normally be used | |||
without the extensive pre- and post-processing provided by this library. | |||
We feel that lossless JPEG is better handled by a separate library. | |||
Within these limits, any set of compression parameters allowed by the JPEG | |||
spec should be readable for decompression. (We can be more restrictive about | |||
what formats we can generate.) Although the system design allows for all | |||
parameter values, some uncommon settings are not yet implemented and may | |||
never be; nonintegral sampling ratios are the prime example. Furthermore, | |||
we treat 8-bit vs. 12-bit data precision as a compile-time switch, not a | |||
run-time option, because most machines can store 8-bit pixels much more | |||
compactly than 12-bit. | |||
By itself, the library handles only interchange JPEG datastreams --- in | |||
particular the widely used JFIF file format. The library can be used by | |||
surrounding code to process interchange or abbreviated JPEG datastreams that | |||
are embedded in more complex file formats. (For example, libtiff uses this | |||
library to implement JPEG compression within the TIFF file format.) | |||
The library includes a substantial amount of code that is not covered by the | |||
JPEG standard but is necessary for typical applications of JPEG. These | |||
functions preprocess the image before JPEG compression or postprocess it after | |||
decompression. They include colorspace conversion, downsampling/upsampling, | |||
and color quantization. This code can be omitted if not needed. | |||
A wide range of quality vs. speed tradeoffs are possible in JPEG processing, | |||
and even more so in decompression postprocessing. The decompression library | |||
provides multiple implementations that cover most of the useful tradeoffs, | |||
ranging from very-high-quality down to fast-preview operation. On the | |||
compression side we have generally not provided low-quality choices, since | |||
compression is normally less time-critical. It should be understood that the | |||
low-quality modes may not meet the JPEG standard's accuracy requirements; | |||
nonetheless, they are useful for viewers. | |||
*** Portability issues *** | |||
Portability is an essential requirement for the library. The key portability | |||
issues that show up at the level of system architecture are: | |||
1. Memory usage. We want the code to be able to run on PC-class machines | |||
with limited memory. Images should therefore be processed sequentially (in | |||
strips), to avoid holding the whole image in memory at once. Where a | |||
full-image buffer is necessary, we should be able to use either virtual memory | |||
or temporary files. | |||
2. Near/far pointer distinction. To run efficiently on 80x86 machines, the | |||
code should distinguish "small" objects (kept in near data space) from | |||
"large" ones (kept in far data space). This is an annoying restriction, but | |||
fortunately it does not impact code quality for less brain-damaged machines, | |||
and the source code clutter turns out to be minimal with sufficient use of | |||
pointer typedefs. | |||
3. Data precision. We assume that "char" is at least 8 bits, "short" and | |||
"int" at least 16, "long" at least 32. The code will work fine with larger | |||
data sizes, although memory may be used inefficiently in some cases. However, | |||
the JPEG compressed datastream must ultimately appear on external storage as a | |||
sequence of 8-bit bytes if it is to conform to the standard. This may pose a | |||
problem on machines where char is wider than 8 bits. The library represents | |||
compressed data as an array of values of typedef JOCTET. If no data type | |||
exactly 8 bits wide is available, custom data source and data destination | |||
modules must be written to unpack and pack the chosen JOCTET datatype into | |||
8-bit external representation. | |||
*** System overview *** | |||
The compressor and decompressor are each divided into two main sections: | |||
the JPEG compressor or decompressor proper, and the preprocessing or | |||
postprocessing functions. The interface between these two sections is the | |||
image data that the official JPEG spec regards as its input or output: this | |||
data is in the colorspace to be used for compression, and it is downsampled | |||
to the sampling factors to be used. The preprocessing and postprocessing | |||
steps are responsible for converting a normal image representation to or from | |||
this form. (Those few applications that want to deal with YCbCr downsampled | |||
data can skip the preprocessing or postprocessing step.) | |||
Looking more closely, the compressor library contains the following main | |||
elements: | |||
Preprocessing: | |||
* Color space conversion (e.g., RGB to YCbCr). | |||
* Edge expansion and downsampling. Optionally, this step can do simple | |||
smoothing --- this is often helpful for low-quality source data. | |||
JPEG proper: | |||
* MCU assembly, DCT, quantization. | |||
* Entropy coding (sequential or progressive, Huffman or arithmetic). | |||
In addition to these modules we need overall control, marker generation, | |||
and support code (memory management & error handling). There is also a | |||
module responsible for physically writing the output data --- typically | |||
this is just an interface to fwrite(), but some applications may need to | |||
do something else with the data. | |||
The decompressor library contains the following main elements: | |||
JPEG proper: | |||
* Entropy decoding (sequential or progressive, Huffman or arithmetic). | |||
* Dequantization, inverse DCT, MCU disassembly. | |||
Postprocessing: | |||
* Upsampling. Optionally, this step may be able to do more general | |||
rescaling of the image. | |||
* Color space conversion (e.g., YCbCr to RGB). This step may also | |||
provide gamma adjustment [ currently it does not ]. | |||
* Optional color quantization (e.g., reduction to 256 colors). | |||
* Optional color precision reduction (e.g., 24-bit to 15-bit color). | |||
[This feature is not currently implemented.] | |||
We also need overall control, marker parsing, and a data source module. | |||
The support code (memory management & error handling) can be shared with | |||
the compression half of the library. | |||
There may be several implementations of each of these elements, particularly | |||
in the decompressor, where a wide range of speed/quality tradeoffs is very | |||
useful. It must be understood that some of the best speedups involve | |||
merging adjacent steps in the pipeline. For example, upsampling, color space | |||
conversion, and color quantization might all be done at once when using a | |||
low-quality ordered-dither technique. The system architecture is designed to | |||
allow such merging where appropriate. | |||
Note: it is convenient to regard edge expansion (padding to block boundaries) | |||
as a preprocessing/postprocessing function, even though the JPEG spec includes | |||
it in compression/decompression. We do this because downsampling/upsampling | |||
can be simplified a little if they work on padded data: it's not necessary to | |||
have special cases at the right and bottom edges. Therefore the interface | |||
buffer is always an integral number of blocks wide and high, and we expect | |||
compression preprocessing to pad the source data properly. Padding will occur | |||
only to the next block (8-sample) boundary. In an interleaved-scan situation, | |||
additional dummy blocks may be used to fill out MCUs, but the MCU assembly and | |||
disassembly logic will create or discard these blocks internally. (This is | |||
advantageous for speed reasons, since we avoid DCTing the dummy blocks. | |||
It also permits a small reduction in file size, because the compressor can | |||
choose dummy block contents so as to minimize their size in compressed form. | |||
Finally, it makes the interface buffer specification independent of whether | |||
the file is actually interleaved or not.) Applications that wish to deal | |||
directly with the downsampled data must provide similar buffering and padding | |||
for odd-sized images. | |||
*** Poor man's object-oriented programming *** | |||
It should be clear by now that we have a lot of quasi-independent processing | |||
steps, many of which have several possible behaviors. To avoid cluttering the | |||
code with lots of switch statements, we use a simple form of object-style | |||
programming to separate out the different possibilities. | |||
For example, two different color quantization algorithms could be implemented | |||
as two separate modules that present the same external interface; at runtime, | |||
the calling code will access the proper module indirectly through an "object". | |||
We can get the limited features we need while staying within portable C. | |||
The basic tool is a function pointer. An "object" is just a struct | |||
containing one or more function pointer fields, each of which corresponds to | |||
a method name in real object-oriented languages. During initialization we | |||
fill in the function pointers with references to whichever module we have | |||
determined we need to use in this run. Then invocation of the module is done | |||
by indirecting through a function pointer; on most machines this is no more | |||
expensive than a switch statement, which would be the only other way of | |||
making the required run-time choice. The really significant benefit, of | |||
course, is keeping the source code clean and well structured. | |||
We can also arrange to have private storage that varies between different | |||
implementations of the same kind of object. We do this by making all the | |||
module-specific object structs be separately allocated entities, which will | |||
be accessed via pointers in the master compression or decompression struct. | |||
The "public" fields or methods for a given kind of object are specified by | |||
a commonly known struct. But a module's initialization code can allocate | |||
a larger struct that contains the common struct as its first member, plus | |||
additional private fields. With appropriate pointer casting, the module's | |||
internal functions can access these private fields. (For a simple example, | |||
see jdatadst.c, which implements the external interface specified by struct | |||
jpeg_destination_mgr, but adds extra fields.) | |||
(Of course this would all be a lot easier if we were using C++, but we are | |||
not yet prepared to assume that everyone has a C++ compiler.) | |||
An important benefit of this scheme is that it is easy to provide multiple | |||
versions of any method, each tuned to a particular case. While a lot of | |||
precalculation might be done to select an optimal implementation of a method, | |||
the cost per invocation is constant. For example, the upsampling step might | |||
have a "generic" method, plus one or more "hardwired" methods for the most | |||
popular sampling factors; the hardwired methods would be faster because they'd | |||
use straight-line code instead of for-loops. The cost to determine which | |||
method to use is paid only once, at startup, and the selection criteria are | |||
hidden from the callers of the method. | |||
This plan differs a little bit from usual object-oriented structures, in that | |||
only one instance of each object class will exist during execution. The | |||
reason for having the class structure is that on different runs we may create | |||
different instances (choose to execute different modules). You can think of | |||
the term "method" as denoting the common interface presented by a particular | |||
set of interchangeable functions, and "object" as denoting a group of related | |||
methods, or the total shared interface behavior of a group of modules. | |||
*** Overall control structure *** | |||
We previously mentioned the need for overall control logic in the compression | |||
and decompression libraries. In IJG implementations prior to v5, overall | |||
control was mostly provided by "pipeline control" modules, which proved to be | |||
large, unwieldy, and hard to understand. To improve the situation, the | |||
control logic has been subdivided into multiple modules. The control modules | |||
consist of: | |||
1. Master control for module selection and initialization. This has two | |||
responsibilities: | |||
1A. Startup initialization at the beginning of image processing. | |||
The individual processing modules to be used in this run are selected | |||
and given initialization calls. | |||
1B. Per-pass control. This determines how many passes will be performed | |||
and calls each active processing module to configure itself | |||
appropriately at the beginning of each pass. End-of-pass processing, | |||
where necessary, is also invoked from the master control module. | |||
Method selection is partially distributed, in that a particular processing | |||
module may contain several possible implementations of a particular method, | |||
which it will select among when given its initialization call. The master | |||
control code need only be concerned with decisions that affect more than | |||
one module. | |||
2. Data buffering control. A separate control module exists for each | |||
inter-processing-step data buffer. This module is responsible for | |||
invoking the processing steps that write or read that data buffer. | |||
Each buffer controller sees the world as follows: | |||
input data => processing step A => buffer => processing step B => output data | |||
| | | | |||
------------------ controller ------------------ | |||
The controller knows the dataflow requirements of steps A and B: how much data | |||
they want to accept in one chunk and how much they output in one chunk. Its | |||
function is to manage its buffer and call A and B at the proper times. | |||
A data buffer control module may itself be viewed as a processing step by a | |||
higher-level control module; thus the control modules form a binary tree with | |||
elementary processing steps at the leaves of the tree. | |||
The control modules are objects. A considerable amount of flexibility can | |||
be had by replacing implementations of a control module. For example: | |||
* Merging of adjacent steps in the pipeline is done by replacing a control | |||
module and its pair of processing-step modules with a single processing- | |||
step module. (Hence the possible merges are determined by the tree of | |||
control modules.) | |||
* In some processing modes, a given interstep buffer need only be a "strip" | |||
buffer large enough to accommodate the desired data chunk sizes. In other | |||
modes, a full-image buffer is needed and several passes are required. | |||
The control module determines which kind of buffer is used and manipulates | |||
virtual array buffers as needed. One or both processing steps may be | |||
unaware of the multi-pass behavior. | |||
In theory, we might be able to make all of the data buffer controllers | |||
interchangeable and provide just one set of implementations for all. In | |||
practice, each one contains considerable special-case processing for its | |||
particular job. The buffer controller concept should be regarded as an | |||
overall system structuring principle, not as a complete description of the | |||
task performed by any one controller. | |||
*** Compression object structure *** | |||
Here is a sketch of the logical structure of the JPEG compression library: | |||
|-- Colorspace conversion | |||
|-- Preprocessing controller --| | |||
| |-- Downsampling | |||
Main controller --| | |||
| |-- Forward DCT, quantize | |||
|-- Coefficient controller --| | |||
|-- Entropy encoding | |||
This sketch also describes the flow of control (subroutine calls) during | |||
typical image data processing. Each of the components shown in the diagram is | |||
an "object" which may have several different implementations available. One | |||
or more source code files contain the actual implementation(s) of each object. | |||
The objects shown above are: | |||
* Main controller: buffer controller for the subsampled-data buffer, which | |||
holds the preprocessed input data. This controller invokes preprocessing to | |||
fill the subsampled-data buffer, and JPEG compression to empty it. There is | |||
usually no need for a full-image buffer here; a strip buffer is adequate. | |||
* Preprocessing controller: buffer controller for the downsampling input data | |||
buffer, which lies between colorspace conversion and downsampling. Note | |||
that a unified conversion/downsampling module would probably replace this | |||
controller entirely. | |||
* Colorspace conversion: converts application image data into the desired | |||
JPEG color space; also changes the data from pixel-interleaved layout to | |||
separate component planes. Processes one pixel row at a time. | |||
* Downsampling: performs reduction of chroma components as required. | |||
Optionally may perform pixel-level smoothing as well. Processes a "row | |||
group" at a time, where a row group is defined as Vmax pixel rows of each | |||
component before downsampling, and Vk sample rows afterwards (remember Vk | |||
differs across components). Some downsampling or smoothing algorithms may | |||
require context rows above and below the current row group; the | |||
preprocessing controller is responsible for supplying these rows via proper | |||
buffering. The downsampler is responsible for edge expansion at the right | |||
edge (i.e., extending each sample row to a multiple of 8 samples); but the | |||
preprocessing controller is responsible for vertical edge expansion (i.e., | |||
duplicating the bottom sample row as needed to make a multiple of 8 rows). | |||
* Coefficient controller: buffer controller for the DCT-coefficient data. | |||
This controller handles MCU assembly, including insertion of dummy DCT | |||
blocks when needed at the right or bottom edge. When performing | |||
Huffman-code optimization or emitting a multiscan JPEG file, this | |||
controller is responsible for buffering the full image. The equivalent of | |||
one fully interleaved MCU row of subsampled data is processed per call, | |||
even when the JPEG file is noninterleaved. | |||
* Forward DCT and quantization: Perform DCT, quantize, and emit coefficients. | |||
Works on one or more DCT blocks at a time. (Note: the coefficients are now | |||
emitted in normal array order, which the entropy encoder is expected to | |||
convert to zigzag order as necessary. Prior versions of the IJG code did | |||
the conversion to zigzag order within the quantization step.) | |||
* Entropy encoding: Perform Huffman or arithmetic entropy coding and emit the | |||
coded data to the data destination module. Works on one MCU per call. | |||
For progressive JPEG, the same DCT blocks are fed to the entropy coder | |||
during each pass, and the coder must emit the appropriate subset of | |||
coefficients. | |||
In addition to the above objects, the compression library includes these | |||
objects: | |||
* Master control: determines the number of passes required, controls overall | |||
and per-pass initialization of the other modules. | |||
* Marker writing: generates JPEG markers (except for RSTn, which is emitted | |||
by the entropy encoder when needed). | |||
* Data destination manager: writes the output JPEG datastream to its final | |||
destination (e.g., a file). The destination manager supplied with the | |||
library knows how to write to a stdio stream; for other behaviors, the | |||
surrounding application may provide its own destination manager. | |||
* Memory manager: allocates and releases memory, controls virtual arrays | |||
(with backing store management, where required). | |||
* Error handler: performs formatting and output of error and trace messages; | |||
determines handling of nonfatal errors. The surrounding application may | |||
override some or all of this object's methods to change error handling. | |||
* Progress monitor: supports output of "percent-done" progress reports. | |||
This object represents an optional callback to the surrounding application: | |||
if wanted, it must be supplied by the application. | |||
The error handler, destination manager, and progress monitor objects are | |||
defined as separate objects in order to simplify application-specific | |||
customization of the JPEG library. A surrounding application may override | |||
individual methods or supply its own all-new implementation of one of these | |||
objects. The object interfaces for these objects are therefore treated as | |||
part of the application interface of the library, whereas the other objects | |||
are internal to the library. | |||
The error handler and memory manager are shared by JPEG compression and | |||
decompression; the progress monitor, if used, may be shared as well. | |||
*** Decompression object structure *** | |||
Here is a sketch of the logical structure of the JPEG decompression library: | |||
|-- Entropy decoding | |||
|-- Coefficient controller --| | |||
| |-- Dequantize, Inverse DCT | |||
Main controller --| | |||
| |-- Upsampling | |||
|-- Postprocessing controller --| |-- Colorspace conversion | |||
|-- Color quantization | |||
|-- Color precision reduction | |||
As before, this diagram also represents typical control flow. The objects | |||
shown are: | |||
* Main controller: buffer controller for the subsampled-data buffer, which | |||
holds the output of JPEG decompression proper. This controller's primary | |||
task is to feed the postprocessing procedure. Some upsampling algorithms | |||
may require context rows above and below the current row group; when this | |||
is true, the main controller is responsible for managing its buffer so as | |||
to make context rows available. In the current design, the main buffer is | |||
always a strip buffer; a full-image buffer is never required. | |||
* Coefficient controller: buffer controller for the DCT-coefficient data. | |||
This controller handles MCU disassembly, including deletion of any dummy | |||
DCT blocks at the right or bottom edge. When reading a multiscan JPEG | |||
file, this controller is responsible for buffering the full image. | |||
(Buffering DCT coefficients, rather than samples, is necessary to support | |||
progressive JPEG.) The equivalent of one fully interleaved MCU row of | |||
subsampled data is processed per call, even when the source JPEG file is | |||
noninterleaved. | |||
* Entropy decoding: Read coded data from the data source module and perform | |||
Huffman or arithmetic entropy decoding. Works on one MCU per call. | |||
For progressive JPEG decoding, the coefficient controller supplies the prior | |||
coefficients of each MCU (initially all zeroes), which the entropy decoder | |||
modifies in each scan. | |||
* Dequantization and inverse DCT: like it says. Note that the coefficients | |||
buffered by the coefficient controller have NOT been dequantized; we | |||
merge dequantization and inverse DCT into a single step for speed reasons. | |||
When scaled-down output is asked for, simplified DCT algorithms may be used | |||
that need fewer coefficients and emit fewer samples per DCT block, not the | |||
full 8x8. Works on one DCT block at a time. | |||
* Postprocessing controller: buffer controller for the color quantization | |||
input buffer, when quantization is in use. (Without quantization, this | |||
controller just calls the upsampler.) For two-pass quantization, this | |||
controller is responsible for buffering the full-image data. | |||
* Upsampling: restores chroma components to full size. (May support more | |||
general output rescaling, too. Note that if undersized DCT outputs have | |||
been emitted by the DCT module, this module must adjust so that properly | |||
sized outputs are created.) Works on one row group at a time. This module | |||
also calls the color conversion module, so its top level is effectively a | |||
buffer controller for the upsampling->color conversion buffer. However, in | |||
all but the highest-quality operating modes, upsampling and color | |||
conversion are likely to be merged into a single step. | |||
* Colorspace conversion: convert from JPEG color space to output color space, | |||
and change data layout from separate component planes to pixel-interleaved. | |||
Works on one pixel row at a time. | |||
* Color quantization: reduce the data to colormapped form, using either an | |||
externally specified colormap or an internally generated one. This module | |||
is not used for full-color output. Works on one pixel row at a time; may | |||
require two passes to generate a color map. Note that the output will | |||
always be a single component representing colormap indexes. In the current | |||
design, the output values are JSAMPLEs, so an 8-bit compilation cannot | |||
quantize to more than 256 colors. This is unlikely to be a problem in | |||
practice. | |||
* Color reduction: this module handles color precision reduction, e.g., | |||
generating 15-bit color (5 bits/primary) from JPEG's 24-bit output. | |||
Not quite clear yet how this should be handled... should we merge it with | |||
colorspace conversion??? | |||
Note that some high-speed operating modes might condense the entire | |||
postprocessing sequence to a single module (upsample, color convert, and | |||
quantize in one step). | |||
In addition to the above objects, the decompression library includes these | |||
objects: | |||
* Master control: determines the number of passes required, controls overall | |||
and per-pass initialization of the other modules. This is subdivided into | |||
input and output control: jdinput.c controls only input-side processing, | |||
while jdmaster.c handles overall initialization and output-side control. | |||
* Marker reading: decodes JPEG markers (except for RSTn). | |||
* Data source manager: supplies the input JPEG datastream. The source | |||
manager supplied with the library knows how to read from a stdio stream; | |||
for other behaviors, the surrounding application may provide its own source | |||
manager. | |||
* Memory manager: same as for compression library. | |||
* Error handler: same as for compression library. | |||
* Progress monitor: same as for compression library. | |||
As with compression, the data source manager, error handler, and progress | |||
monitor are candidates for replacement by a surrounding application. | |||
*** Decompression input and output separation *** | |||
To support efficient incremental display of progressive JPEG files, the | |||
decompressor is divided into two sections that can run independently: | |||
1. Data input includes marker parsing, entropy decoding, and input into the | |||
coefficient controller's DCT coefficient buffer. Note that this | |||
processing is relatively cheap and fast. | |||
2. Data output reads from the DCT coefficient buffer and performs the IDCT | |||
and all postprocessing steps. | |||
For a progressive JPEG file, the data input processing is allowed to get | |||
arbitrarily far ahead of the data output processing. (This occurs only | |||
if the application calls jpeg_consume_input(); otherwise input and output | |||
run in lockstep, since the input section is called only when the output | |||
section needs more data.) In this way the application can avoid making | |||
extra display passes when data is arriving faster than the display pass | |||
can run. Furthermore, it is possible to abort an output pass without | |||
losing anything, since the coefficient buffer is read-only as far as the | |||
output section is concerned. See libjpeg.txt for more detail. | |||
A full-image coefficient array is only created if the JPEG file has multiple | |||
scans (or if the application specifies buffered-image mode anyway). When | |||
reading a single-scan file, the coefficient controller normally creates only | |||
a one-MCU buffer, so input and output processing must run in lockstep in this | |||
case. jpeg_consume_input() is effectively a no-op in this situation. | |||
The main impact of dividing the decompressor in this fashion is that we must | |||
be very careful with shared variables in the cinfo data structure. Each | |||
variable that can change during the course of decompression must be | |||
classified as belonging to data input or data output, and each section must | |||
look only at its own variables. For example, the data output section may not | |||
depend on any of the variables that describe the current scan in the JPEG | |||
file, because these may change as the data input section advances into a new | |||
scan. | |||
The progress monitor is (somewhat arbitrarily) defined to treat input of the | |||
file as one pass when buffered-image mode is not used, and to ignore data | |||
input work completely when buffered-image mode is used. Note that the | |||
library has no reliable way to predict the number of passes when dealing | |||
with a progressive JPEG file, nor can it predict the number of output passes | |||
in buffered-image mode. So the work estimate is inherently bogus anyway. | |||
No comparable division is currently made in the compression library, because | |||
there isn't any real need for it. | |||
*** Data formats *** | |||
Arrays of pixel sample values use the following data structure: | |||
typedef something JSAMPLE; a pixel component value, 0..MAXJSAMPLE | |||
typedef JSAMPLE *JSAMPROW; ptr to a row of samples | |||
typedef JSAMPROW *JSAMPARRAY; ptr to a list of rows | |||
typedef JSAMPARRAY *JSAMPIMAGE; ptr to a list of color-component arrays | |||
The basic element type JSAMPLE will typically be one of unsigned char, | |||
(signed) char, or short. Short will be used if samples wider than 8 bits are | |||
to be supported (this is a compile-time option). Otherwise, unsigned char is | |||
used if possible. If the compiler only supports signed chars, then it is | |||
necessary to mask off the value when reading. Thus, all reads of JSAMPLE | |||
values must be coded as "GETJSAMPLE(value)", where the macro will be defined | |||
as "((value) & 0xFF)" on signed-char machines and "((int) (value))" elsewhere. | |||
With these conventions, JSAMPLE values can be assumed to be >= 0. This helps | |||
simplify correct rounding during downsampling, etc. The JPEG standard's | |||
specification that sample values run from -128..127 is accommodated by | |||
subtracting 128 from the sample value in the DCT step. Similarly, during | |||
decompression the output of the IDCT step will be immediately shifted back to | |||
0..255. (NB: different values are required when 12-bit samples are in use. | |||
The code is written in terms of MAXJSAMPLE and CENTERJSAMPLE, which will be | |||
defined as 255 and 128 respectively in an 8-bit implementation, and as 4095 | |||
and 2048 in a 12-bit implementation.) | |||
We use a pointer per row, rather than a two-dimensional JSAMPLE array. This | |||
choice costs only a small amount of memory and has several benefits: | |||
* Code using the data structure doesn't need to know the allocated width of | |||
the rows. This simplifies edge expansion/compression, since we can work | |||
in an array that's wider than the logical picture width. | |||
* Indexing doesn't require multiplication; this is a performance win on many | |||
machines. | |||
* Arrays with more than 64K total elements can be supported even on machines | |||
where malloc() cannot allocate chunks larger than 64K. | |||
* The rows forming a component array may be allocated at different times | |||
without extra copying. This trick allows some speedups in smoothing steps | |||
that need access to the previous and next rows. | |||
Note that each color component is stored in a separate array; we don't use the | |||
traditional layout in which the components of a pixel are stored together. | |||
This simplifies coding of modules that work on each component independently, | |||
because they don't need to know how many components there are. Furthermore, | |||
we can read or write each component to a temporary file independently, which | |||
is helpful when dealing with noninterleaved JPEG files. | |||
In general, a specific sample value is accessed by code such as | |||
GETJSAMPLE(image[colorcomponent][row][col]) | |||
where col is measured from the image left edge, but row is measured from the | |||
first sample row currently in memory. Either of the first two indexings can | |||
be precomputed by copying the relevant pointer. | |||
Since most image-processing applications prefer to work on images in which | |||
the components of a pixel are stored together, the data passed to or from the | |||
surrounding application uses the traditional convention: a single pixel is | |||
represented by N consecutive JSAMPLE values, and an image row is an array of | |||
(# of color components)*(image width) JSAMPLEs. One or more rows of data can | |||
be represented by a pointer of type JSAMPARRAY in this scheme. This scheme is | |||
converted to component-wise storage inside the JPEG library. (Applications | |||
that want to skip JPEG preprocessing or postprocessing will have to contend | |||
with component-wise storage.) | |||
Arrays of DCT-coefficient values use the following data structure: | |||
typedef short JCOEF; a 16-bit signed integer | |||
typedef JCOEF JBLOCK[DCTSIZE2]; an 8x8 block of coefficients | |||
typedef JBLOCK *JBLOCKROW; ptr to one horizontal row of 8x8 blocks | |||
typedef JBLOCKROW *JBLOCKARRAY; ptr to a list of such rows | |||
typedef JBLOCKARRAY *JBLOCKIMAGE; ptr to a list of color component arrays | |||
The underlying type is at least a 16-bit signed integer; while "short" is big | |||
enough on all machines of interest, on some machines it is preferable to use | |||
"int" for speed reasons, despite the storage cost. Coefficients are grouped | |||
into 8x8 blocks (but we always use #defines DCTSIZE and DCTSIZE2 rather than | |||
"8" and "64"). | |||
The contents of a coefficient block may be in either "natural" or zigzagged | |||
order, and may be true values or divided by the quantization coefficients, | |||
depending on where the block is in the processing pipeline. In the current | |||
library, coefficient blocks are kept in natural order everywhere; the entropy | |||
codecs zigzag or dezigzag the data as it is written or read. The blocks | |||
contain quantized coefficients everywhere outside the DCT/IDCT subsystems. | |||
(This latter decision may need to be revisited to support variable | |||
quantization a la JPEG Part 3.) | |||
Notice that the allocation unit is now a row of 8x8 blocks, corresponding to | |||
eight rows of samples. Otherwise the structure is much the same as for | |||
samples, and for the same reasons. | |||
On machines where malloc() can't handle a request bigger than 64Kb, this data | |||
structure limits us to rows of less than 512 JBLOCKs, or a picture width of | |||
4000+ pixels. This seems an acceptable restriction. | |||
On 80x86 machines, the bottom-level pointer types (JSAMPROW and JBLOCKROW) | |||
must be declared as "far" pointers, but the upper levels can be "near" | |||
(implying that the pointer lists are allocated in the DS segment). | |||
We use a #define symbol FAR, which expands to the "far" keyword when | |||
compiling on 80x86 machines and to nothing elsewhere. | |||
*** Suspendable processing *** | |||
In some applications it is desirable to use the JPEG library as an | |||
incremental, memory-to-memory filter. In this situation the data source or | |||
destination may be a limited-size buffer, and we can't rely on being able to | |||
empty or refill the buffer at arbitrary times. Instead the application would | |||
like to have control return from the library at buffer overflow/underrun, and | |||
then resume compression or decompression at a later time. | |||
This scenario is supported for simple cases. (For anything more complex, we | |||
recommend that the application "bite the bullet" and develop real multitasking | |||
capability.) The libjpeg.txt file goes into more detail about the usage and | |||
limitations of this capability; here we address the implications for library | |||
structure. | |||
The essence of the problem is that the entropy codec (coder or decoder) must | |||
be prepared to stop at arbitrary times. In turn, the controllers that call | |||
the entropy codec must be able to stop before having produced or consumed all | |||
the data that they normally would handle in one call. That part is reasonably | |||
straightforward: we make the controller call interfaces include "progress | |||
counters" which indicate the number of data chunks successfully processed, and | |||
we require callers to test the counter rather than just assume all of the data | |||
was processed. | |||
Rather than trying to restart at an arbitrary point, the current Huffman | |||
codecs are designed to restart at the beginning of the current MCU after a | |||
suspension due to buffer overflow/underrun. At the start of each call, the | |||
codec's internal state is loaded from permanent storage (in the JPEG object | |||
structures) into local variables. On successful completion of the MCU, the | |||
permanent state is updated. (This copying is not very expensive, and may even | |||
lead to *improved* performance if the local variables can be registerized.) | |||
If a suspension occurs, the codec simply returns without updating the state, | |||
thus effectively reverting to the start of the MCU. Note that this implies | |||
leaving some data unprocessed in the source/destination buffer (ie, the | |||
compressed partial MCU). The data source/destination module interfaces are | |||
specified so as to make this possible. This also implies that the data buffer | |||
must be large enough to hold a worst-case compressed MCU; a couple thousand | |||
bytes should be enough. | |||
In a successive-approximation AC refinement scan, the progressive Huffman | |||
decoder has to be able to undo assignments of newly nonzero coefficients if it | |||
suspends before the MCU is complete, since decoding requires distinguishing | |||
previously-zero and previously-nonzero coefficients. This is a bit tedious | |||
but probably won't have much effect on performance. Other variants of Huffman | |||
decoding need not worry about this, since they will just store the same values | |||
again if forced to repeat the MCU. | |||
This approach would probably not work for an arithmetic codec, since its | |||
modifiable state is quite large and couldn't be copied cheaply. Instead it | |||
would have to suspend and resume exactly at the point of the buffer end. | |||
The JPEG marker reader is designed to cope with suspension at an arbitrary | |||
point. It does so by backing up to the start of the marker parameter segment, | |||
so the data buffer must be big enough to hold the largest marker of interest. | |||
Again, a couple KB should be adequate. (A special "skip" convention is used | |||
to bypass COM and APPn markers, so these can be larger than the buffer size | |||
without causing problems; otherwise a 64K buffer would be needed in the worst | |||
case.) | |||
The JPEG marker writer currently does *not* cope with suspension. | |||
We feel that this is not necessary; it is much easier simply to require | |||
the application to ensure there is enough buffer space before starting. (An | |||
empty 2K buffer is more than sufficient for the header markers; and ensuring | |||
there are a dozen or two bytes available before calling jpeg_finish_compress() | |||
will suffice for the trailer.) This would not work for writing multi-scan | |||
JPEG files, but we simply do not intend to support that capability with | |||
suspension. | |||
*** Memory manager services *** | |||
The JPEG library's memory manager controls allocation and deallocation of | |||
memory, and it manages large "virtual" data arrays on machines where the | |||
operating system does not provide virtual memory. Note that the same | |||
memory manager serves both compression and decompression operations. | |||
In all cases, allocated objects are tied to a particular compression or | |||
decompression master record, and they will be released when that master | |||
record is destroyed. | |||
The memory manager does not provide explicit deallocation of objects. | |||
Instead, objects are created in "pools" of free storage, and a whole pool | |||
can be freed at once. This approach helps prevent storage-leak bugs, and | |||
it speeds up operations whenever malloc/free are slow (as they often are). | |||
The pools can be regarded as lifetime identifiers for objects. Two | |||
pools/lifetimes are defined: | |||
* JPOOL_PERMANENT lasts until master record is destroyed | |||
* JPOOL_IMAGE lasts until done with image (JPEG datastream) | |||
Permanent lifetime is used for parameters and tables that should be carried | |||
across from one datastream to another; this includes all application-visible | |||
parameters. Image lifetime is used for everything else. (A third lifetime, | |||
JPOOL_PASS = one processing pass, was originally planned. However it was | |||
dropped as not being worthwhile. The actual usage patterns are such that the | |||
peak memory usage would be about the same anyway; and having per-pass storage | |||
substantially complicates the virtual memory allocation rules --- see below.) | |||
The memory manager deals with three kinds of object: | |||
1. "Small" objects. Typically these require no more than 10K-20K total. | |||
2. "Large" objects. These may require tens to hundreds of K depending on | |||
image size. Semantically they behave the same as small objects, but we | |||
distinguish them for two reasons: | |||
* On MS-DOS machines, large objects are referenced by FAR pointers, | |||
small objects by NEAR pointers. | |||
* Pool allocation heuristics may differ for large and small objects. | |||
Note that individual "large" objects cannot exceed the size allowed by | |||
type size_t, which may be 64K or less on some machines. | |||
3. "Virtual" objects. These are large 2-D arrays of JSAMPLEs or JBLOCKs | |||
(typically large enough for the entire image being processed). The | |||
memory manager provides stripwise access to these arrays. On machines | |||
without virtual memory, the rest of the array may be swapped out to a | |||
temporary file. | |||
(Note: JSAMPARRAY and JBLOCKARRAY data structures are a combination of large | |||
objects for the data proper and small objects for the row pointers. For | |||
convenience and speed, the memory manager provides single routines to create | |||
these structures. Similarly, virtual arrays include a small control block | |||
and a JSAMPARRAY or JBLOCKARRAY working buffer, all created with one call.) | |||
In the present implementation, virtual arrays are only permitted to have image | |||
lifespan. (Permanent lifespan would not be reasonable, and pass lifespan is | |||
not very useful since a virtual array's raison d'etre is to store data for | |||
multiple passes through the image.) We also expect that only "small" objects | |||
will be given permanent lifespan, though this restriction is not required by | |||
the memory manager. | |||
In a non-virtual-memory machine, some performance benefit can be gained by | |||
making the in-memory buffers for virtual arrays be as large as possible. | |||
(For small images, the buffers might fit entirely in memory, so blind | |||
swapping would be very wasteful.) The memory manager will adjust the height | |||
of the buffers to fit within a prespecified maximum memory usage. In order | |||
to do this in a reasonably optimal fashion, the manager needs to allocate all | |||
of the virtual arrays at once. Therefore, there isn't a one-step allocation | |||
routine for virtual arrays; instead, there is a "request" routine that simply | |||
allocates the control block, and a "realize" routine (called just once) that | |||
determines space allocation and creates all of the actual buffers. The | |||
realize routine must allow for space occupied by non-virtual large objects. | |||
(We don't bother to factor in the space needed for small objects, on the | |||
grounds that it isn't worth the trouble.) | |||
To support all this, we establish the following protocol for doing business | |||
with the memory manager: | |||
1. Modules must request virtual arrays (which may have only image lifespan) | |||
during the initial setup phase, i.e., in their jinit_xxx routines. | |||
2. All "large" objects (including JSAMPARRAYs and JBLOCKARRAYs) must also be | |||
allocated during initial setup. | |||
3. realize_virt_arrays will be called at the completion of initial setup. | |||
The above conventions ensure that sufficient information is available | |||
for it to choose a good size for virtual array buffers. | |||
Small objects of any lifespan may be allocated at any time. We expect that | |||
the total space used for small objects will be small enough to be negligible | |||
in the realize_virt_arrays computation. | |||
In a virtual-memory machine, we simply pretend that the available space is | |||
infinite, thus causing realize_virt_arrays to decide that it can allocate all | |||
the virtual arrays as full-size in-memory buffers. The overhead of the | |||
virtual-array access protocol is very small when no swapping occurs. | |||
A virtual array can be specified to be "pre-zeroed"; when this flag is set, | |||
never-yet-written sections of the array are set to zero before being made | |||
available to the caller. If this flag is not set, never-written sections | |||
of the array contain garbage. (This feature exists primarily because the | |||
equivalent logic would otherwise be needed in jdcoefct.c for progressive | |||
JPEG mode; we may as well make it available for possible other uses.) | |||
The first write pass on a virtual array is required to occur in top-to-bottom | |||
order; read passes, as well as any write passes after the first one, may | |||
access the array in any order. This restriction exists partly to simplify | |||
the virtual array control logic, and partly because some file systems may not | |||
support seeking beyond the current end-of-file in a temporary file. The main | |||
implication of this restriction is that rearrangement of rows (such as | |||
converting top-to-bottom data order to bottom-to-top) must be handled while | |||
reading data out of the virtual array, not while putting it in. | |||
*** Memory manager internal structure *** | |||
To isolate system dependencies as much as possible, we have broken the | |||
memory manager into two parts. There is a reasonably system-independent | |||
"front end" (jmemmgr.c) and a "back end" that contains only the code | |||
likely to change across systems. All of the memory management methods | |||
outlined above are implemented by the front end. The back end provides | |||
the following routines for use by the front end (none of these routines | |||
are known to the rest of the JPEG code): | |||
jpeg_mem_init, jpeg_mem_term system-dependent initialization/shutdown | |||
jpeg_get_small, jpeg_free_small interface to malloc and free library routines | |||
(or their equivalents) | |||
jpeg_get_large, jpeg_free_large interface to FAR malloc/free in MSDOS machines; | |||
else usually the same as | |||
jpeg_get_small/jpeg_free_small | |||
jpeg_mem_available estimate available memory | |||
jpeg_open_backing_store create a backing-store object | |||
read_backing_store, manipulate a backing-store object | |||
write_backing_store, | |||
close_backing_store | |||
On some systems there will be more than one type of backing-store object | |||
(specifically, in MS-DOS a backing store file might be an area of extended | |||
memory as well as a disk file). jpeg_open_backing_store is responsible for | |||
choosing how to implement a given object. The read/write/close routines | |||
are method pointers in the structure that describes a given object; this | |||
lets them be different for different object types. | |||
It may be necessary to ensure that backing store objects are explicitly | |||
released upon abnormal program termination. For example, MS-DOS won't free | |||
extended memory by itself. To support this, we will expect the main program | |||
or surrounding application to arrange to call self_destruct (typically via | |||
jpeg_destroy) upon abnormal termination. This may require a SIGINT signal | |||
handler or equivalent. We don't want to have the back end module install its | |||
own signal handler, because that would pre-empt the surrounding application's | |||
ability to control signal handling. | |||
The IJG distribution includes several memory manager back end implementations. | |||
Usually the same back end should be suitable for all applications on a given | |||
system, but it is possible for an application to supply its own back end at | |||
need. | |||
*** Implications of DNL marker *** | |||
Some JPEG files may use a DNL marker to postpone definition of the image | |||
height (this would be useful for a fax-like scanner's output, for instance). | |||
In these files the SOF marker claims the image height is 0, and you only | |||
find out the true image height at the end of the first scan. | |||
We could read these files as follows: | |||
1. Upon seeing zero image height, replace it by 65535 (the maximum allowed). | |||
2. When the DNL is found, update the image height in the global image | |||
descriptor. | |||
This implies that control modules must avoid making copies of the image | |||
height, and must re-test for termination after each MCU row. This would | |||
be easy enough to do. | |||
In cases where image-size data structures are allocated, this approach will | |||
result in very inefficient use of virtual memory or much-larger-than-necessary | |||
temporary files. This seems acceptable for something that probably won't be a | |||
mainstream usage. People might have to forgo use of memory-hogging options | |||
(such as two-pass color quantization or noninterleaved JPEG files) if they | |||
want efficient conversion of such files. (One could improve efficiency by | |||
demanding a user-supplied upper bound for the height, less than 65536; in most | |||
cases it could be much less.) | |||
The standard also permits the SOF marker to overestimate the image height, | |||
with a DNL to give the true, smaller height at the end of the first scan. | |||
This would solve the space problems if the overestimate wasn't too great. | |||
However, it implies that you don't even know whether DNL will be used. | |||
This leads to a couple of very serious objections: | |||
1. Testing for a DNL marker must occur in the inner loop of the decompressor's | |||
Huffman decoder; this implies a speed penalty whether the feature is used | |||
or not. | |||
2. There is no way to hide the last-minute change in image height from an | |||
application using the decoder. Thus *every* application using the IJG | |||
library would suffer a complexity penalty whether it cared about DNL or | |||
not. | |||
We currently do not support DNL because of these problems. | |||
A different approach is to insist that DNL-using files be preprocessed by a | |||
separate program that reads ahead to the DNL, then goes back and fixes the SOF | |||
marker. This is a much simpler solution and is probably far more efficient. | |||
Even if one wants piped input, buffering the first scan of the JPEG file needs | |||
a lot smaller temp file than is implied by the maximum-height method. For | |||
this approach we'd simply treat DNL as a no-op in the decompressor (at most, | |||
check that it matches the SOF image height). | |||
We will not worry about making the compressor capable of outputting DNL. | |||
Something similar to the first scheme above could be applied if anyone ever | |||
wants to make that work. |
@@ -1,631 +0,0 @@ | |||
USAGE instructions for the Independent JPEG Group's JPEG software | |||
================================================================= | |||
This file describes usage of the JPEG conversion programs cjpeg and djpeg, | |||
as well as the utility programs jpegtran, rdjpgcom and wrjpgcom. (See | |||
the other documentation files if you wish to use the JPEG library within | |||
your own programs.) | |||
If you are on a Unix machine you may prefer to read the Unix-style manual | |||
pages in files cjpeg.1, djpeg.1, jpegtran.1, rdjpgcom.1, wrjpgcom.1. | |||
INTRODUCTION | |||
These programs implement JPEG image encoding, decoding, and transcoding. | |||
JPEG (pronounced "jay-peg") is a standardized compression method for | |||
full-color and gray-scale images. | |||
GENERAL USAGE | |||
We provide two programs, cjpeg to compress an image file into JPEG format, | |||
and djpeg to decompress a JPEG file back into a conventional image format. | |||
On Unix-like systems, you say: | |||
cjpeg [switches] [imagefile] >jpegfile | |||
or | |||
djpeg [switches] [jpegfile] >imagefile | |||
The programs read the specified input file, or standard input if none is | |||
named. They always write to standard output (with trace/error messages to | |||
standard error). These conventions are handy for piping images between | |||
programs. | |||
On most non-Unix systems, you say: | |||
cjpeg [switches] imagefile jpegfile | |||
or | |||
djpeg [switches] jpegfile imagefile | |||
i.e., both the input and output files are named on the command line. This | |||
style is a little more foolproof, and it loses no functionality if you don't | |||
have pipes. (You can get this style on Unix too, if you prefer, by defining | |||
TWO_FILE_COMMANDLINE when you compile the programs; see install.txt.) | |||
You can also say: | |||
cjpeg [switches] -outfile jpegfile imagefile | |||
or | |||
djpeg [switches] -outfile imagefile jpegfile | |||
This syntax works on all systems, so it is useful for scripts. | |||
The currently supported image file formats are: PPM (PBMPLUS color format), | |||
PGM (PBMPLUS gray-scale format), BMP, Targa, and RLE (Utah Raster Toolkit | |||
format). (RLE is supported only if the URT library is available.) | |||
cjpeg recognizes the input image format automatically, with the exception | |||
of some Targa-format files. You have to tell djpeg which format to generate. | |||
JPEG files are in the defacto standard JFIF file format. There are other, | |||
less widely used JPEG-based file formats, but we don't support them. | |||
All switch names may be abbreviated; for example, -grayscale may be written | |||
-gray or -gr. Most of the "basic" switches can be abbreviated to as little as | |||
one letter. Upper and lower case are equivalent (-BMP is the same as -bmp). | |||
British spellings are also accepted (e.g., -greyscale), though for brevity | |||
these are not mentioned below. | |||
CJPEG DETAILS | |||
The basic command line switches for cjpeg are: | |||
-quality N[,...] Scale quantization tables to adjust image quality. | |||
Quality is 0 (worst) to 100 (best); default is 75. | |||
(See below for more info.) | |||
-grayscale Create monochrome JPEG file from color input. | |||
Be sure to use this switch when compressing a grayscale | |||
BMP file, because cjpeg isn't bright enough to notice | |||
whether a BMP file uses only shades of gray. By | |||
saying -grayscale, you'll get a smaller JPEG file that | |||
takes less time to process. | |||
-optimize Perform optimization of entropy encoding parameters. | |||
Without this, default encoding parameters are used. | |||
-optimize usually makes the JPEG file a little smaller, | |||
but cjpeg runs somewhat slower and needs much more | |||
memory. Image quality and speed of decompression are | |||
unaffected by -optimize. | |||
-progressive Create progressive JPEG file (see below). | |||
-scale M/N Scale the output image by a factor M/N. Currently | |||
supported scale factors are M/N with all N from 1 to | |||
16, where M is the destination DCT size, which is 8 by | |||
default (see -block N switch below). | |||
-targa Input file is Targa format. Targa files that contain | |||
an "identification" field will not be automatically | |||
recognized by cjpeg; for such files you must specify | |||
-targa to make cjpeg treat the input as Targa format. | |||
For most Targa files, you won't need this switch. | |||
The -quality switch lets you trade off compressed file size against quality of | |||
the reconstructed image: the higher the quality setting, the larger the JPEG | |||
file, and the closer the output image will be to the original input. Normally | |||
you want to use the lowest quality setting (smallest file) that decompresses | |||
into something visually indistinguishable from the original image. For this | |||
purpose the quality setting should be between 50 and 95; the default of 75 is | |||
often about right. If you see defects at -quality 75, then go up 5 or 10 | |||
counts at a time until you are happy with the output image. (The optimal | |||
setting will vary from one image to another.) | |||
-quality 100 will generate a quantization table of all 1's, minimizing loss | |||
in the quantization step (but there is still information loss in subsampling, | |||
as well as roundoff error). This setting is mainly of interest for | |||
experimental purposes. Quality values above about 95 are NOT recommended for | |||
normal use; the compressed file size goes up dramatically for hardly any gain | |||
in output image quality. | |||
In the other direction, quality values below 50 will produce very small files | |||
of low image quality. Settings around 5 to 10 might be useful in preparing an | |||
index of a large image library, for example. Try -quality 2 (or so) for some | |||
amusing Cubist effects. (Note: quality values below about 25 generate 2-byte | |||
quantization tables, which are considered optional in the JPEG standard. | |||
cjpeg emits a warning message when you give such a quality value, because some | |||
other JPEG programs may be unable to decode the resulting file. Use -baseline | |||
if you need to ensure compatibility at low quality values.) | |||
The -quality option has been extended in IJG version 7 for support of separate | |||
quality settings for luminance and chrominance (or in general, for every | |||
provided quantization table slot). This feature is useful for high-quality | |||
applications which cannot accept the damage of color data by coarse | |||
subsampling settings. You can now easily reduce the color data amount more | |||
smoothly with finer control without separate subsampling. The resulting file | |||
is fully compliant with standard JPEG decoders. | |||
Note that the -quality ratings refer to the quantization table slots, and that | |||
the last value is replicated if there are more q-table slots than parameters. | |||
The default q-table slots are 0 for luminance and 1 for chrominance with | |||
default tables as given in the JPEG standard. This is compatible with the old | |||
behaviour in case that only one parameter is given, which is then used for | |||
both luminance and chrominance (slots 0 and 1). More or custom quantization | |||
tables can be set with -qtables and assigned to components with -qslots | |||
parameter (see the "wizard" switches below). | |||
CAUTION: You must explicitly add -sample 1x1 for efficient separate color | |||
quality selection, since the default value used by library is 2x2! | |||
The -progressive switch creates a "progressive JPEG" file. In this type of | |||
JPEG file, the data is stored in multiple scans of increasing quality. If the | |||
file is being transmitted over a slow communications link, the decoder can use | |||
the first scan to display a low-quality image very quickly, and can then | |||
improve the display with each subsequent scan. The final image is exactly | |||
equivalent to a standard JPEG file of the same quality setting, and the total | |||
file size is about the same --- often a little smaller. | |||
Switches for advanced users: | |||
-block N Set DCT block size. All N from 1 to 16 are possible. | |||
Default is 8 (baseline format). | |||
Larger values produce higher compression, | |||
smaller values produce higher quality | |||
(exact DCT stage possible with 1 or 2; with the | |||
default quality of 75 and default Luminance qtable | |||
the DCT+Quantization stage is lossless for N=1). | |||
CAUTION: An implementation of the JPEG SmartScale | |||
extension is required for this feature. SmartScale | |||
enabled JPEG is not yet widely implemented, so many | |||
decoders will be unable to view a SmartScale extended | |||
JPEG file at all. | |||
-dct int Use integer DCT method (default). | |||
-dct fast Use fast integer DCT (less accurate). | |||
-dct float Use floating-point DCT method. | |||
The float method is very slightly more accurate than | |||
the int method, but is much slower unless your machine | |||
has very fast floating-point hardware. Also note that | |||
results of the floating-point method may vary slightly | |||
across machines, while the integer methods should give | |||
the same results everywhere. The fast integer method | |||
is much less accurate than the other two. | |||
-nosmooth Don't use high-quality downsampling. | |||
-restart N Emit a JPEG restart marker every N MCU rows, or every | |||
N MCU blocks if "B" is attached to the number. | |||
-restart 0 (the default) means no restart markers. | |||
-smooth N Smooth the input image to eliminate dithering noise. | |||
N, ranging from 1 to 100, indicates the strength of | |||
smoothing. 0 (the default) means no smoothing. | |||
-maxmemory N Set limit for amount of memory to use in processing | |||
large images. Value is in thousands of bytes, or | |||
millions of bytes if "M" is attached to the number. | |||
For example, -max 4m selects 4000000 bytes. If more | |||
space is needed, temporary files will be used. | |||
-verbose Enable debug printout. More -v's give more printout. | |||
or -debug Also, version information is printed at startup. | |||
The -restart option inserts extra markers that allow a JPEG decoder to | |||
resynchronize after a transmission error. Without restart markers, any damage | |||
to a compressed file will usually ruin the image from the point of the error | |||
to the end of the image; with restart markers, the damage is usually confined | |||
to the portion of the image up to the next restart marker. Of course, the | |||
restart markers occupy extra space. We recommend -restart 1 for images that | |||
will be transmitted across unreliable networks such as Usenet. | |||
The -smooth option filters the input to eliminate fine-scale noise. This is | |||
often useful when converting dithered images to JPEG: a moderate smoothing | |||
factor of 10 to 50 gets rid of dithering patterns in the input file, resulting | |||
in a smaller JPEG file and a better-looking image. Too large a smoothing | |||
factor will visibly blur the image, however. | |||
Switches for wizards: | |||
-arithmetic Use arithmetic coding. CAUTION: arithmetic coded JPEG | |||
is not yet widely implemented, so many decoders will | |||
be unable to view an arithmetic coded JPEG file at | |||
all. | |||
-baseline Force baseline-compatible quantization tables to be | |||
generated. This clamps quantization values to 8 bits | |||
even at low quality settings. (This switch is poorly | |||
named, since it does not ensure that the output is | |||
actually baseline JPEG. For example, you can use | |||
-baseline and -progressive together.) | |||
-qtables file Use the quantization tables given in the specified | |||
text file. | |||
-qslots N[,...] Select which quantization table to use for each color | |||
component. | |||
-sample HxV[,...] Set JPEG sampling factors for each color component. | |||
-scans file Use the scan script given in the specified text file. | |||
The "wizard" switches are intended for experimentation with JPEG. If you | |||
don't know what you are doing, DON'T USE THEM. These switches are documented | |||
further in the file wizard.txt. | |||
DJPEG DETAILS | |||
The basic command line switches for djpeg are: | |||
-colors N Reduce image to at most N colors. This reduces the | |||
or -quantize N number of colors used in the output image, so that it | |||
can be displayed on a colormapped display or stored in | |||
a colormapped file format. For example, if you have | |||
an 8-bit display, you'd need to reduce to 256 or fewer | |||
colors. (-colors is the recommended name, -quantize | |||
is provided only for backwards compatibility.) | |||
-fast Select recommended processing options for fast, low | |||
quality output. (The default options are chosen for | |||
highest quality output.) Currently, this is equivalent | |||
to "-dct fast -nosmooth -onepass -dither ordered". | |||
-grayscale Force gray-scale output even if JPEG file is color. | |||
Useful for viewing on monochrome displays; also, | |||
djpeg runs noticeably faster in this mode. | |||
-scale M/N Scale the output image by a factor M/N. Currently | |||
supported scale factors are M/N with all M from 1 to | |||
16, where N is the source DCT size, which is 8 for | |||
baseline JPEG. If the /N part is omitted, then M | |||
specifies the DCT scaled size to be applied on the | |||
given input. For baseline JPEG this is equivalent to | |||
M/8 scaling, since the source DCT size for baseline | |||
JPEG is 8. Scaling is handy if the image is larger | |||
than your screen; also, djpeg runs much faster when | |||
scaling down the output. | |||
-bmp Select BMP output format (Windows flavor). 8-bit | |||
colormapped format is emitted if -colors or -grayscale | |||
is specified, or if the JPEG file is gray-scale; | |||
otherwise, 24-bit full-color format is emitted. | |||
-gif Select GIF output format. Since GIF does not support | |||
more than 256 colors, -colors 256 is assumed (unless | |||
you specify a smaller number of colors). If you | |||
specify -fast, the default number of colors is 216. | |||
-os2 Select BMP output format (OS/2 1.x flavor). 8-bit | |||
colormapped format is emitted if -colors or -grayscale | |||
is specified, or if the JPEG file is gray-scale; | |||
otherwise, 24-bit full-color format is emitted. | |||
-pnm Select PBMPLUS (PPM/PGM) output format (this is the | |||
default format). PGM is emitted if the JPEG file is | |||
gray-scale or if -grayscale is specified; otherwise | |||
PPM is emitted. | |||
-rle Select RLE output format. (Requires URT library.) | |||
-targa Select Targa output format. Gray-scale format is | |||
emitted if the JPEG file is gray-scale or if | |||
-grayscale is specified; otherwise, colormapped format | |||
is emitted if -colors is specified; otherwise, 24-bit | |||
full-color format is emitted. | |||
Switches for advanced users: | |||
-dct int Use integer DCT method (default). | |||
-dct fast Use fast integer DCT (less accurate). | |||
-dct float Use floating-point DCT method. | |||
The float method is very slightly more accurate than | |||
the int method, but is much slower unless your machine | |||
has very fast floating-point hardware. Also note that | |||
results of the floating-point method may vary slightly | |||
across machines, while the integer methods should give | |||
the same results everywhere. The fast integer method | |||
is much less accurate than the other two. | |||
-dither fs Use Floyd-Steinberg dithering in color quantization. | |||
-dither ordered Use ordered dithering in color quantization. | |||
-dither none Do not use dithering in color quantization. | |||
By default, Floyd-Steinberg dithering is applied when | |||
quantizing colors; this is slow but usually produces | |||
the best results. Ordered dither is a compromise | |||
between speed and quality; no dithering is fast but | |||
usually looks awful. Note that these switches have | |||
no effect unless color quantization is being done. | |||
Ordered dither is only available in -onepass mode. | |||
-map FILE Quantize to the colors used in the specified image | |||
file. This is useful for producing multiple files | |||
with identical color maps, or for forcing a predefined | |||
set of colors to be used. The FILE must be a GIF | |||
or PPM file. This option overrides -colors and | |||
-onepass. | |||
-nosmooth Don't use high-quality upsampling. | |||
-onepass Use one-pass instead of two-pass color quantization. | |||
The one-pass method is faster and needs less memory, | |||
but it produces a lower-quality image. -onepass is | |||
ignored unless you also say -colors N. Also, | |||
the one-pass method is always used for gray-scale | |||
output (the two-pass method is no improvement then). | |||
-maxmemory N Set limit for amount of memory to use in processing | |||
large images. Value is in thousands of bytes, or | |||
millions of bytes if "M" is attached to the number. | |||
For example, -max 4m selects 4000000 bytes. If more | |||
space is needed, temporary files will be used. | |||
-verbose Enable debug printout. More -v's give more printout. | |||
or -debug Also, version information is printed at startup. | |||
HINTS FOR CJPEG | |||
Color GIF files are not the ideal input for JPEG; JPEG is really intended for | |||
compressing full-color (24-bit) images. In particular, don't try to convert | |||
cartoons, line drawings, and other images that have only a few distinct | |||
colors. GIF works great on these, JPEG does not. If you want to convert a | |||
GIF to JPEG, you should experiment with cjpeg's -quality and -smooth options | |||
to get a satisfactory conversion. -smooth 10 or so is often helpful. | |||
Avoid running an image through a series of JPEG compression/decompression | |||
cycles. Image quality loss will accumulate; after ten or so cycles the image | |||
may be noticeably worse than it was after one cycle. It's best to use a | |||
lossless format while manipulating an image, then convert to JPEG format when | |||
you are ready to file the image away. | |||
The -optimize option to cjpeg is worth using when you are making a "final" | |||
version for posting or archiving. It's also a win when you are using low | |||
quality settings to make very small JPEG files; the percentage improvement | |||
is often a lot more than it is on larger files. (At present, -optimize | |||
mode is always selected when generating progressive JPEG files.) | |||
GIF input files are no longer supported, to avoid the Unisys LZW patent. | |||
(Conversion of GIF files to JPEG is usually a bad idea anyway.) | |||
HINTS FOR DJPEG | |||
To get a quick preview of an image, use the -grayscale and/or -scale switches. | |||
"-grayscale -scale 1/8" is the fastest case. | |||
Several options are available that trade off image quality to gain speed. | |||
"-fast" turns on the recommended settings. | |||
"-dct fast" and/or "-nosmooth" gain speed at a small sacrifice in quality. | |||
When producing a color-quantized image, "-onepass -dither ordered" is fast but | |||
much lower quality than the default behavior. "-dither none" may give | |||
acceptable results in two-pass mode, but is seldom tolerable in one-pass mode. | |||
If you are fortunate enough to have very fast floating point hardware, | |||
"-dct float" may be even faster than "-dct fast". But on most machines | |||
"-dct float" is slower than "-dct int"; in this case it is not worth using, | |||
because its theoretical accuracy advantage is too small to be significant | |||
in practice. | |||
Two-pass color quantization requires a good deal of memory; on MS-DOS machines | |||
it may run out of memory even with -maxmemory 0. In that case you can still | |||
decompress, with some loss of image quality, by specifying -onepass for | |||
one-pass quantization. | |||
To avoid the Unisys LZW patent, djpeg produces uncompressed GIF files. These | |||
are larger than they should be, but are readable by standard GIF decoders. | |||
HINTS FOR BOTH PROGRAMS | |||
If more space is needed than will fit in the available main memory (as | |||
determined by -maxmemory), temporary files will be used. (MS-DOS versions | |||
will try to get extended or expanded memory first.) The temporary files are | |||
often rather large: in typical cases they occupy three bytes per pixel, for | |||
example 3*800*600 = 1.44Mb for an 800x600 image. If you don't have enough | |||
free disk space, leave out -progressive and -optimize (for cjpeg) or specify | |||
-onepass (for djpeg). | |||
On MS-DOS, the temporary files are created in the directory named by the TMP | |||
or TEMP environment variable, or in the current directory if neither of those | |||
exist. Amiga implementations put the temp files in the directory named by | |||
JPEGTMP:, so be sure to assign JPEGTMP: to a disk partition with adequate free | |||
space. | |||
The default memory usage limit (-maxmemory) is set when the software is | |||
compiled. If you get an "insufficient memory" error, try specifying a smaller | |||
-maxmemory value, even -maxmemory 0 to use the absolute minimum space. You | |||
may want to recompile with a smaller default value if this happens often. | |||
On machines that have "environment" variables, you can define the environment | |||
variable JPEGMEM to set the default memory limit. The value is specified as | |||
described for the -maxmemory switch. JPEGMEM overrides the default value | |||
specified when the program was compiled, and itself is overridden by an | |||
explicit -maxmemory switch. | |||
On MS-DOS machines, -maxmemory is the amount of main (conventional) memory to | |||
use. (Extended or expanded memory is also used if available.) Most | |||
DOS-specific versions of this software do their own memory space estimation | |||
and do not need you to specify -maxmemory. | |||
JPEGTRAN | |||
jpegtran performs various useful transformations of JPEG files. | |||
It can translate the coded representation from one variant of JPEG to another, | |||
for example from baseline JPEG to progressive JPEG or vice versa. It can also | |||
perform some rearrangements of the image data, for example turning an image | |||
from landscape to portrait format by rotation. | |||
jpegtran works by rearranging the compressed data (DCT coefficients), without | |||
ever fully decoding the image. Therefore, its transformations are lossless: | |||
there is no image degradation at all, which would not be true if you used | |||
djpeg followed by cjpeg to accomplish the same conversion. But by the same | |||
token, jpegtran cannot perform lossy operations such as changing the image | |||
quality. | |||
jpegtran uses a command line syntax similar to cjpeg or djpeg. | |||
On Unix-like systems, you say: | |||
jpegtran [switches] [inputfile] >outputfile | |||
On most non-Unix systems, you say: | |||
jpegtran [switches] inputfile outputfile | |||
where both the input and output files are JPEG files. | |||
To specify the coded JPEG representation used in the output file, | |||
jpegtran accepts a subset of the switches recognized by cjpeg: | |||
-optimize Perform optimization of entropy encoding parameters. | |||
-progressive Create progressive JPEG file. | |||
-restart N Emit a JPEG restart marker every N MCU rows, or every | |||
N MCU blocks if "B" is attached to the number. | |||
-arithmetic Use arithmetic coding. | |||
-scans file Use the scan script given in the specified text file. | |||
See the previous discussion of cjpeg for more details about these switches. | |||
If you specify none of these switches, you get a plain baseline-JPEG output | |||
file. The quality setting and so forth are determined by the input file. | |||
The image can be losslessly transformed by giving one of these switches: | |||
-flip horizontal Mirror image horizontally (left-right). | |||
-flip vertical Mirror image vertically (top-bottom). | |||
-rotate 90 Rotate image 90 degrees clockwise. | |||
-rotate 180 Rotate image 180 degrees. | |||
-rotate 270 Rotate image 270 degrees clockwise (or 90 ccw). | |||
-transpose Transpose image (across UL-to-LR axis). | |||
-transverse Transverse transpose (across UR-to-LL axis). | |||
The transpose transformation has no restrictions regarding image dimensions. | |||
The other transformations operate rather oddly if the image dimensions are not | |||
a multiple of the iMCU size (usually 8 or 16 pixels), because they can only | |||
transform complete blocks of DCT coefficient data in the desired way. | |||
jpegtran's default behavior when transforming an odd-size image is designed | |||
to preserve exact reversibility and mathematical consistency of the | |||
transformation set. As stated, transpose is able to flip the entire image | |||
area. Horizontal mirroring leaves any partial iMCU column at the right edge | |||
untouched, but is able to flip all rows of the image. Similarly, vertical | |||
mirroring leaves any partial iMCU row at the bottom edge untouched, but is | |||
able to flip all columns. The other transforms can be built up as sequences | |||
of transpose and flip operations; for consistency, their actions on edge | |||
pixels are defined to be the same as the end result of the corresponding | |||
transpose-and-flip sequence. | |||
For practical use, you may prefer to discard any untransformable edge pixels | |||
rather than having a strange-looking strip along the right and/or bottom edges | |||
of a transformed image. To do this, add the -trim switch: | |||
-trim Drop non-transformable edge blocks. | |||
Obviously, a transformation with -trim is not reversible, so strictly speaking | |||
jpegtran with this switch is not lossless. Also, the expected mathematical | |||
equivalences between the transformations no longer hold. For example, | |||
"-rot 270 -trim" trims only the bottom edge, but "-rot 90 -trim" followed by | |||
"-rot 180 -trim" trims both edges. | |||
If you are only interested in perfect transformation, add the -perfect switch: | |||
-perfect Fails with an error if the transformation is not | |||
perfect. | |||
For example you may want to do | |||
jpegtran -rot 90 -perfect foo.jpg || djpeg foo.jpg | pnmflip -r90 | cjpeg | |||
to do a perfect rotation if available or an approximated one if not. | |||
We also offer a lossless-crop option, which discards data outside a given | |||
image region but losslessly preserves what is inside. Like the rotate and | |||
flip transforms, lossless crop is restricted by the current JPEG format: the | |||
upper left corner of the selected region must fall on an iMCU boundary. If | |||
this does not hold for the given crop parameters, we silently move the upper | |||
left corner up and/or left to make it so, simultaneously increasing the region | |||
dimensions to keep the lower right crop corner unchanged. (Thus, the output | |||
image covers at least the requested region, but may cover more.) | |||
The image can be losslessly cropped by giving the switch: | |||
-crop WxH+X+Y Crop to a rectangular subarea of width W, height H | |||
starting at point X,Y. | |||
Other not-strictly-lossless transformation switches are: | |||
-grayscale Force grayscale output. | |||
This option discards the chrominance channels if the input image is YCbCr | |||
(ie, a standard color JPEG), resulting in a grayscale JPEG file. The | |||
luminance channel is preserved exactly, so this is a better method of reducing | |||
to grayscale than decompression, conversion, and recompression. This switch | |||
is particularly handy for fixing a monochrome picture that was mistakenly | |||
encoded as a color JPEG. (In such a case, the space savings from getting rid | |||
of the near-empty chroma channels won't be large; but the decoding time for | |||
a grayscale JPEG is substantially less than that for a color JPEG.) | |||
-scale M/N Scale the output image by a factor M/N. | |||
Currently supported scale factors are M/N with all M from 1 to 16, where N is | |||
the source DCT size, which is 8 for baseline JPEG. If the /N part is omitted, | |||
then M specifies the DCT scaled size to be applied on the given input. For | |||
baseline JPEG this is equivalent to M/8 scaling, since the source DCT size | |||
for baseline JPEG is 8. CAUTION: An implementation of the JPEG SmartScale | |||
extension is required for this feature. SmartScale enabled JPEG is not yet | |||
widely implemented, so many decoders will be unable to view a SmartScale | |||
extended JPEG file at all. | |||
jpegtran also recognizes these switches that control what to do with "extra" | |||
markers, such as comment blocks: | |||
-copy none Copy no extra markers from source file. This setting | |||
suppresses all comments and other excess baggage | |||
present in the source file. | |||
-copy comments Copy only comment markers. This setting copies | |||
comments from the source file, but discards | |||
any other inessential (for image display) data. | |||
-copy all Copy all extra markers. This setting preserves | |||
miscellaneous markers found in the source file, such | |||
as JFIF thumbnails, Exif data, and Photoshop settings. | |||
In some files these extra markers can be sizable. | |||
The default behavior is -copy comments. (Note: in IJG releases v6 and v6a, | |||
jpegtran always did the equivalent of -copy none.) | |||
Additional switches recognized by jpegtran are: | |||
-outfile filename | |||
-maxmemory N | |||
-verbose | |||
-debug | |||
These work the same as in cjpeg or djpeg. | |||
THE COMMENT UTILITIES | |||
The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file. | |||
Although the standard doesn't actually define what COM blocks are for, they | |||
are widely used to hold user-supplied text strings. This lets you add | |||
annotations, titles, index terms, etc to your JPEG files, and later retrieve | |||
them as text. COM blocks do not interfere with the image stored in the JPEG | |||
file. The maximum size of a COM block is 64K, but you can have as many of | |||
them as you like in one JPEG file. | |||
We provide two utility programs to display COM block contents and add COM | |||
blocks to a JPEG file. | |||
rdjpgcom searches a JPEG file and prints the contents of any COM blocks on | |||
standard output. The command line syntax is | |||
rdjpgcom [-raw] [-verbose] [inputfilename] | |||
The switch "-raw" (or just "-r") causes rdjpgcom to also output non-printable | |||
characters in comments, which are normally escaped for security reasons. | |||
The switch "-verbose" (or just "-v") causes rdjpgcom to also display the JPEG | |||
image dimensions. If you omit the input file name from the command line, | |||
the JPEG file is read from standard input. (This may not work on some | |||
operating systems, if binary data can't be read from stdin.) | |||
wrjpgcom adds a COM block, containing text you provide, to a JPEG file. | |||
Ordinarily, the COM block is added after any existing COM blocks, but you | |||
can delete the old COM blocks if you wish. wrjpgcom produces a new JPEG | |||
file; it does not modify the input file. DO NOT try to overwrite the input | |||
file by directing wrjpgcom's output back into it; on most systems this will | |||
just destroy your file. | |||
The command line syntax for wrjpgcom is similar to cjpeg's. On Unix-like | |||
systems, it is | |||
wrjpgcom [switches] [inputfilename] | |||
The output file is written to standard output. The input file comes from | |||
the named file, or from standard input if no input file is named. | |||
On most non-Unix systems, the syntax is | |||
wrjpgcom [switches] inputfilename outputfilename | |||
where both input and output file names must be given explicitly. | |||
wrjpgcom understands three switches: | |||
-replace Delete any existing COM blocks from the file. | |||
-comment "Comment text" Supply new COM text on command line. | |||
-cfile name Read text for new COM block from named file. | |||
(Switch names can be abbreviated.) If you have only one line of comment text | |||
to add, you can provide it on the command line with -comment. The comment | |||
text must be surrounded with quotes so that it is treated as a single | |||
argument. Longer comments can be read from a text file. | |||
If you give neither -comment nor -cfile, then wrjpgcom will read the comment | |||
text from standard input. (In this case an input image file name MUST be | |||
supplied, so that the source JPEG file comes from somewhere else.) You can | |||
enter multiple lines, up to 64KB worth. Type an end-of-file indicator | |||
(usually control-D or control-Z) to terminate the comment text entry. | |||
wrjpgcom will not add a COM block if the provided comment string is empty. | |||
Therefore -replace -comment "" can be used to delete all COM blocks from a | |||
file. | |||
These utility programs do not depend on the IJG JPEG library. In | |||
particular, the source code for rdjpgcom is intended as an illustration of | |||
the minimum amount of code required to parse a JPEG file header correctly. |
@@ -1,211 +0,0 @@ | |||
Advanced usage instructions for the Independent JPEG Group's JPEG software | |||
========================================================================== | |||
This file describes cjpeg's "switches for wizards". | |||
The "wizard" switches are intended for experimentation with JPEG by persons | |||
who are reasonably knowledgeable about the JPEG standard. If you don't know | |||
what you are doing, DON'T USE THESE SWITCHES. You'll likely produce files | |||
with worse image quality and/or poorer compression than you'd get from the | |||
default settings. Furthermore, these switches must be used with caution | |||
when making files intended for general use, because not all JPEG decoders | |||
will support unusual JPEG parameter settings. | |||
Quantization Table Adjustment | |||
----------------------------- | |||
Ordinarily, cjpeg starts with a default set of tables (the same ones given | |||
as examples in the JPEG standard) and scales them up or down according to | |||
the -quality setting. The details of the scaling algorithm can be found in | |||
jcparam.c. At very low quality settings, some quantization table entries | |||
can get scaled up to values exceeding 255. Although 2-byte quantization | |||
values are supported by the IJG software, this feature is not in baseline | |||
JPEG and is not supported by all implementations. If you need to ensure | |||
wide compatibility of low-quality files, you can constrain the scaled | |||
quantization values to no more than 255 by giving the -baseline switch. | |||
Note that use of -baseline will result in poorer quality for the same file | |||
size, since more bits than necessary are expended on higher AC coefficients. | |||
You can substitute a different set of quantization values by using the | |||
-qtables switch: | |||
-qtables file Use the quantization tables given in the named file. | |||
The specified file should be a text file containing decimal quantization | |||
values. The file should contain one to four tables, each of 64 elements. | |||
The tables are implicitly numbered 0,1,etc. in order of appearance. Table | |||
entries appear in normal array order (NOT in the zigzag order in which they | |||
will be stored in the JPEG file). | |||
Quantization table files are free format, in that arbitrary whitespace can | |||
appear between numbers. Also, comments can be included: a comment starts | |||
with '#' and extends to the end of the line. Here is an example file that | |||
duplicates the default quantization tables: | |||
# Quantization tables given in JPEG spec, section K.1 | |||
# This is table 0 (the luminance table): | |||
16 11 10 16 24 40 51 61 | |||
12 12 14 19 26 58 60 55 | |||
14 13 16 24 40 57 69 56 | |||
14 17 22 29 51 87 80 62 | |||
18 22 37 56 68 109 103 77 | |||
24 35 55 64 81 104 113 92 | |||
49 64 78 87 103 121 120 101 | |||
72 92 95 98 112 100 103 99 | |||
# This is table 1 (the chrominance table): | |||
17 18 24 47 99 99 99 99 | |||
18 21 26 66 99 99 99 99 | |||
24 26 56 99 99 99 99 99 | |||
47 66 99 99 99 99 99 99 | |||
99 99 99 99 99 99 99 99 | |||
99 99 99 99 99 99 99 99 | |||
99 99 99 99 99 99 99 99 | |||
99 99 99 99 99 99 99 99 | |||
If the -qtables switch is used without -quality, then the specified tables | |||
are used exactly as-is. If both -qtables and -quality are used, then the | |||
tables taken from the file are scaled in the same fashion that the default | |||
tables would be scaled for that quality setting. If -baseline appears, then | |||
the quantization values are constrained to the range 1-255. | |||
By default, cjpeg will use quantization table 0 for luminance components and | |||
table 1 for chrominance components. To override this choice, use the -qslots | |||
switch: | |||
-qslots N[,...] Select which quantization table to use for | |||
each color component. | |||
The -qslots switch specifies a quantization table number for each color | |||
component, in the order in which the components appear in the JPEG SOF marker. | |||
For example, to create a separate table for each of Y,Cb,Cr, you could | |||
provide a -qtables file that defines three quantization tables and say | |||
"-qslots 0,1,2". If -qslots gives fewer table numbers than there are color | |||
components, then the last table number is repeated as necessary. | |||
Sampling Factor Adjustment | |||
-------------------------- | |||
By default, cjpeg uses 2:1 horizontal and vertical downsampling when | |||
compressing YCbCr data, and no downsampling for all other color spaces. | |||
You can override this default with the -sample switch: | |||
-sample HxV[,...] Set JPEG sampling factors for each color | |||
component. | |||
The -sample switch specifies the JPEG sampling factors for each color | |||
component, in the order in which they appear in the JPEG SOF marker. | |||
If you specify fewer HxV pairs than there are components, the remaining | |||
components are set to 1x1 sampling. For example, the default YCbCr setting | |||
is equivalent to "-sample 2x2,1x1,1x1", which can be abbreviated to | |||
"-sample 2x2". | |||
There are still some JPEG decoders in existence that support only 2x1 | |||
sampling (also called 4:2:2 sampling). Compatibility with such decoders can | |||
be achieved by specifying "-sample 2x1". This is not recommended unless | |||
really necessary, since it increases file size and encoding/decoding time | |||
with very little quality gain. | |||
Multiple Scan / Progression Control | |||
----------------------------------- | |||
By default, cjpeg emits a single-scan sequential JPEG file. The | |||
-progressive switch generates a progressive JPEG file using a default series | |||
of progression parameters. You can create multiple-scan sequential JPEG | |||
files or progressive JPEG files with custom progression parameters by using | |||
the -scans switch: | |||
-scans file Use the scan sequence given in the named file. | |||
The specified file should be a text file containing a "scan script". | |||
The script specifies the contents and ordering of the scans to be emitted. | |||
Each entry in the script defines one scan. A scan definition specifies | |||
the components to be included in the scan, and for progressive JPEG it also | |||
specifies the progression parameters Ss,Se,Ah,Al for the scan. Scan | |||
definitions are separated by semicolons (';'). A semicolon after the last | |||
scan definition is optional. | |||
Each scan definition contains one to four component indexes, optionally | |||
followed by a colon (':') and the four progressive-JPEG parameters. The | |||
component indexes denote which color component(s) are to be transmitted in | |||
the scan. Components are numbered in the order in which they appear in the | |||
JPEG SOF marker, with the first component being numbered 0. (Note that these | |||
indexes are not the "component ID" codes assigned to the components, just | |||
positional indexes.) | |||
The progression parameters for each scan are: | |||
Ss Zigzag index of first coefficient included in scan | |||
Se Zigzag index of last coefficient included in scan | |||
Ah Zero for first scan of a coefficient, else Al of prior scan | |||
Al Successive approximation low bit position for scan | |||
If the progression parameters are omitted, the values 0,63,0,0 are used, | |||
producing a sequential JPEG file. cjpeg automatically determines whether | |||
the script represents a progressive or sequential file, by observing whether | |||
Ss and Se values other than 0 and 63 appear. (The -progressive switch is | |||
not needed to specify this; in fact, it is ignored when -scans appears.) | |||
The scan script must meet the JPEG restrictions on progression sequences. | |||
(cjpeg checks that the spec's requirements are obeyed.) | |||
Scan script files are free format, in that arbitrary whitespace can appear | |||
between numbers and around punctuation. Also, comments can be included: a | |||
comment starts with '#' and extends to the end of the line. For additional | |||
legibility, commas or dashes can be placed between values. (Actually, any | |||
single punctuation character other than ':' or ';' can be inserted.) For | |||
example, the following two scan definitions are equivalent: | |||
0 1 2: 0 63 0 0; | |||
0,1,2 : 0-63, 0,0 ; | |||
Here is an example of a scan script that generates a partially interleaved | |||
sequential JPEG file: | |||
0; # Y only in first scan | |||
1 2; # Cb and Cr in second scan | |||
Here is an example of a progressive scan script using only spectral selection | |||
(no successive approximation): | |||
# Interleaved DC scan for Y,Cb,Cr: | |||
0,1,2: 0-0, 0, 0 ; | |||
# AC scans: | |||
0: 1-2, 0, 0 ; # First two Y AC coefficients | |||
0: 3-5, 0, 0 ; # Three more | |||
1: 1-63, 0, 0 ; # All AC coefficients for Cb | |||
2: 1-63, 0, 0 ; # All AC coefficients for Cr | |||
0: 6-9, 0, 0 ; # More Y coefficients | |||
0: 10-63, 0, 0 ; # Remaining Y coefficients | |||
Here is an example of a successive-approximation script. This is equivalent | |||
to the default script used by "cjpeg -progressive" for YCbCr images: | |||
# Initial DC scan for Y,Cb,Cr (lowest bit not sent) | |||
0,1,2: 0-0, 0, 1 ; | |||
# First AC scan: send first 5 Y AC coefficients, minus 2 lowest bits: | |||
0: 1-5, 0, 2 ; | |||
# Send all Cr,Cb AC coefficients, minus lowest bit: | |||
# (chroma data is usually too small to be worth subdividing further; | |||
# but note we send Cr first since eye is least sensitive to Cb) | |||
2: 1-63, 0, 1 ; | |||
1: 1-63, 0, 1 ; | |||
# Send remaining Y AC coefficients, minus 2 lowest bits: | |||
0: 6-63, 0, 2 ; | |||
# Send next-to-lowest bit of all Y AC coefficients: | |||
0: 1-63, 2, 1 ; | |||
# At this point we've sent all but the lowest bit of all coefficients. | |||
# Send lowest bit of DC coefficients | |||
0,1,2: 0-0, 1, 0 ; | |||
# Send lowest bit of AC coefficients | |||
2: 1-63, 1, 0 ; | |||
1: 1-63, 1, 0 ; | |||
# Y AC lowest bit scan is last; it's usually the largest scan | |||
0: 1-63, 1, 0 ; | |||
It may be worth pointing out that this script is tuned for quality settings | |||
of around 50 to 75. For lower quality settings, you'd probably want to use | |||
a script with fewer stages of successive approximation (otherwise the | |||
initial scans will be really bad). For higher quality settings, you might | |||
want to use more stages of successive approximation (so that the initial | |||
scans are not too large). |
@@ -1,64 +0,0 @@ | |||
#!/usr/bin/env python | |||
def options(opt): | |||
pass | |||
def configure(conf): | |||
pass | |||
def build(bld): | |||
lib_source = ''' | |||
jcapimin.c | |||
jcapistd.c | |||
jcarith.c | |||
jctrans.c | |||
jcparam.c | |||
jdatadst.c | |||
jcinit.c | |||
jcmaster.c | |||
jcmarker.c | |||
jcmainct.c | |||
jcprepct.c | |||
jccoefct.c | |||
jccolor.c | |||
jcsample.c | |||
jchuff.c | |||
jcdctmgr.c | |||
jfdctfst.c | |||
jfdctflt.c | |||
jfdctint.c | |||
jdapimin.c | |||
jdapistd.c | |||
jdarith.c | |||
jdtrans.c | |||
jdatasrc.c | |||
jdmaster.c | |||
jdinput.c | |||
jdmarker.c | |||
jdhuff.c | |||
jdmainct.c | |||
jdcoefct.c | |||
jdpostct.c | |||
jddctmgr.c | |||
jidctfst.c | |||
jidctflt.c | |||
jidctint.c | |||
jdsample.c | |||
jdcolor.c | |||
jquant1.c | |||
jquant2.c | |||
jdmerge.c | |||
jaricom.c | |||
jcomapi.c | |||
jutils.c | |||
jerror.c | |||
jmemmgr.c | |||
jmemnobs.c | |||
''' | |||
bld.stlib( source = lib_source, | |||
cflags = [ '-fPIC' ], | |||
cxxflags = [ '-fPIC' ], | |||
target = 'ntk_jpeg', | |||
includes = ['.' ], | |||
install_path = None ) |
@@ -1,96 +0,0 @@ | |||
Libpng 1.5.1 - February 3, 2011 | |||
This is a public release of libpng, intended for use in production codes. | |||
Files available for download: | |||
Source files with LF line endings (for Unix/Linux) and with a | |||
"configure" script | |||
libpng-1.5.1.tar.xz (LZMA-compressed, recommended) | |||
libpng-1.5.1.tar.gz | |||
libpng-1.5.1.tar.bz2 | |||
Source files with CRLF line endings (for Windows), without the | |||
"configure" script | |||
lpng151.7z (LZMA-compressed, recommended) | |||
lpng151.zip | |||
Other information: | |||
libpng-1.5.1-README.txt | |||
libpng-1.5.1-LICENSE.txt | |||
Changes since the last public release (1.5.0): | |||
Added description of png_set_crc_action() to the manual. | |||
Added a note in the manual that the type of the iCCP profile was changed | |||
from png_charpp to png_bytepp in png_get_iCCP(). Similarly, | |||
it was changed from png_charpp to png_const_bytepp in png_set_iCCP(). | |||
Ensure that png_rgb_to_gray ignores palette mapped images, if libpng | |||
internally happens to call it with one. | |||
Fixed the failure to handle palette mapped images correctly. | |||
Fixed a bug in handling of interlaced images (bero at arklinux.org). | |||
Updated CMakeLists.txt (Clifford Yapp) | |||
Fixed typecasting of some png_debug() statements (Cosmin) | |||
Updated documentation of png_set|get_tRNS() (Thomas Klausner). | |||
Mentioned in the documentation that applications must #include "zlib.h" | |||
if they need access to anything in zlib.h, and that a number of | |||
macros such as png_memset() are no longer accessible by applications. | |||
Corrected pngvalid gamma test "sample" function to access all of the color | |||
samples of each pixel, instead of sampling the red channel three times. | |||
Changed variable names index, div, exp, and gamma to char_index, divisor, | |||
exp_b10, and gamma_val, respectively, to avoid "shadow" warnings. | |||
Prevent png_push_crc_skip() from hanging while reading an unknown chunk | |||
or an over-large compressed zTXt chunk with the progressive reader. | |||
Eliminated more GCC "shadow" warnings. | |||
Revised png_fixed() in png.c to avoid compiler warning about reaching the | |||
end without returning anything. | |||
In the manual, describe the png_get_IHDR() arguments in the correct order. | |||
Added const_png_structp and const_png_infop types, and used them in | |||
prototypes for most png_get_*() functions. | |||
Added png_get_io_chunk_type() and deprecated png_get_io_chunk_name() | |||
Added synopses for the IO_STATE functions and other missing synopses | |||
to the manual. Removed the synopses from libpngpf.3 because they | |||
were out of date and no longer useful. Better information can be | |||
obtained by reading the prototypes and comments in pngpriv.h | |||
Attempted to fix cpp on Solaris with S. Studio 12 cc, fix build | |||
Added a make macro DFNCPP that is a CPP that will accept the tokens in | |||
a .dfn file and adds configure stuff to test for such a CPP. ./configure | |||
should fail if one is not available. | |||
Corrected const_png_ in png.h to png_const_ to avoid polluting the namespace. | |||
Added png_get_current_row_number and png_get_current_pass_number for the | |||
benefit of the user transform callback. | |||
Added png_process_data_pause and png_process_data_skip for the benefit of | |||
progressive readers that need to stop data processing or want to optimize | |||
skipping of unread data (e.g. if the reader marks a chunk to be skipped.) | |||
Enhanced pngvalid, corrected an error in gray_to_rgb, corrected doc error. | |||
pngvalid contains tests of transforms, which tests are currently disabled | |||
because they are incompletely tested. gray_to_rgb was failing to expand | |||
the bit depth for smaller bit depth images; this seems to be a long | |||
standing error and resulted, apparently, in invalid output. The | |||
documentation did not accurately describe what libpng really does when | |||
converting RGB to gray. | |||
Fixed incorrect examples of callback prototypes in the manual, that were | |||
introduced in libpng-1.0.0. | |||
In addition the order of the png_get_uint macros with respect to the | |||
relevant function definitions has been reversed. This helps the | |||
preprocessing of the symbol files be more robust. Furthermore, the | |||
symbol file preprocessing now uses -DPNG_NO_USE_READ_MACROS even when | |||
the library may actually be built with PNG_USE_READ_MACROS; this stops | |||
the read macros interfering with the symbol file format. | |||
Made the manual, synopses, and function prototypes use the function | |||
argument names file_gamma, int_file_gamma, and srgb_intent consistently. | |||
Changed PNG_UNUSED from "param=param;" to "(void)param;". | |||
Added transform tests to pngvalid and simplified the arguments. | |||
Added a request in the manual that applications do not use "png_" or | |||
"PNG_" to begin any of their own symbols. | |||
Send comments/corrections/commendations to png-mng-implement at lists.sf.net | |||
(subscription required; visit | |||
https://lists.sourceforge.net/lists/listinfo/png-mng-implement | |||
to subscribe) or to glennrp at users.sourceforge.net | |||
Glenn R-P |
@@ -1,135 +0,0 @@ | |||
Installing libpng | |||
On Unix/Linux and similar systems, you can simply type | |||
./configure [--prefix=/path] | |||
make check | |||
make install | |||
and ignore the rest of this document. | |||
If configure does not work on your system and you have a reasonably | |||
up-to-date set of tools, running ./autogen.sh before running ./configure | |||
may fix the problem. You can also run the individual commands in | |||
autogen.sh with the --force option, if supported by your version of | |||
the tools. To be really sure that you aren't using any of the included | |||
pre-built scripts, you can do this: | |||
./configure --enable-maintainer-mode | |||
make maintainer-clean | |||
./autogen.sh | |||
./configure [--prefix=/path] [other options] | |||
make | |||
make install | |||
make check | |||
Instead, you can use one of the custom-built makefiles in the | |||
"scripts" directory | |||
cp scripts/makefile.system makefile | |||
make test | |||
make install | |||
The files that are presently available in the scripts directory | |||
are listed and described in scripts/README.txt. | |||
Or you can use one of the "projects" in the "projects" directory. | |||
Before installing libpng, you must first install zlib, if it | |||
is not already on your system. zlib can usually be found | |||
wherever you got libpng. zlib can be placed in another directory, | |||
at the same level as libpng. | |||
If you want to use "cmake" (see www.cmake.org), type | |||
cmake . -DCMAKE_INSTALL_PREFIX=/path | |||
make | |||
make install | |||
If your system already has a preinstalled zlib you will still need | |||
to have access to the zlib.h and zconf.h include files that | |||
correspond to the version of zlib that's installed. | |||
You can rename the directories that you downloaded (they | |||
might be called "libpng-x.y.z" or "libpngNN" and "zlib-1.2.5" | |||
or "zlib125") so that you have directories called "zlib" and "libpng". | |||
Your directory structure should look like this: | |||
.. (the parent directory) | |||
libpng (this directory) | |||
INSTALL (this file) | |||
README | |||
*.h | |||
*.c | |||
CMakeLists.txt => "cmake" script | |||
configuration files: | |||
configure.ac, configure, Makefile.am, Makefile.in, | |||
autogen.sh, config.guess, ltmain.sh, missing, libpng.pc.in, | |||
libpng-config.in, aclocal.m4, config.h.in, config.sub, | |||
depcomp, install-sh, mkinstalldirs, test-pngtest.sh | |||
contrib | |||
gregbook | |||
pngminim | |||
pngminus | |||
pngsuite | |||
visupng | |||
projects | |||
visualc71 | |||
vstudio | |||
scripts | |||
makefile.* | |||
*.def (module definition files) | |||
etc. | |||
pngtest.png | |||
etc. | |||
zlib | |||
README | |||
*.h | |||
*.c | |||
contrib | |||
etc. | |||
If the line endings in the files look funny, you may wish to get the other | |||
distribution of libpng. It is available in both tar.gz (UNIX style line | |||
endings) and zip (DOS style line endings) formats. | |||
If you are building libpng with MSVC, you can enter the | |||
libpng projects\visualc6 or visualc71 directory and follow the instructions | |||
in README.txt. | |||
Otherwise enter the zlib directory and follow the instructions in zlib/README, | |||
then come back here and run "configure" or choose the appropriate | |||
makefile.sys in the scripts directory. | |||
Copy the file (or files) that you need from the | |||
scripts directory into this directory, for example | |||
MSDOS example: copy scripts\makefile.msc makefile | |||
UNIX example: cp scripts/makefile.std makefile | |||
Read the makefile to see if you need to change any source or | |||
target directories to match your preferences. | |||
Then read pnglibconf.dfa to see if you want to make any configuration | |||
changes. | |||
Then just run "make" which will create the libpng library in | |||
this directory and "make test" which will run a quick test that reads | |||
the "pngtest.png" file and writes a "pngout.png" file that should be | |||
identical to it. Look for "9782 zero samples" in the output of the | |||
test. For more confidence, you can run another test by typing | |||
"pngtest pngnow.png" and looking for "289 zero samples" in the output. | |||
Also, you can run "pngtest -m contrib/pngsuite/*.png" and compare | |||
your output with the result shown in contrib/pngsuite/README. | |||
Most of the makefiles will allow you to run "make install" to | |||
put the library in its final resting place (if you want to | |||
do that, run "make install" in the zlib directory first if necessary). | |||
Some also allow you to run "make test-installed" after you have | |||
run "make install". | |||
Further information can be found in the README and libpng-manual.txt | |||
files, in the individual makefiles, in png.h, and the manual pages | |||
libpng.3 and png.5. |
@@ -1,111 +0,0 @@ | |||
This copy of the libpng notices is provided for your convenience. In case of | |||
any discrepancy between this copy and the notices in the file png.h that is | |||
included in the libpng distribution, the latter shall prevail. | |||
COPYRIGHT NOTICE, DISCLAIMER, and LICENSE: | |||
If you modify libpng you may insert additional notices immediately following | |||
this sentence. | |||
This code is released under the libpng license. | |||
libpng versions 1.2.6, August 15, 2004, through 1.5.1, February 3, 2011, are | |||
Copyright (c) 2004, 2006-2011 Glenn Randers-Pehrson, and are | |||
distributed according to the same disclaimer and license as libpng-1.2.5 | |||
with the following individual added to the list of Contributing Authors | |||
Cosmin Truta | |||
libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are | |||
Copyright (c) 2000-2002 Glenn Randers-Pehrson, and are | |||
distributed according to the same disclaimer and license as libpng-1.0.6 | |||
with the following individuals added to the list of Contributing Authors | |||
Simon-Pierre Cadieux | |||
Eric S. Raymond | |||
Gilles Vollant | |||
and with the following additions to the disclaimer: | |||
There is no warranty against interference with your enjoyment of the | |||
library or against infringement. There is no warranty that our | |||
efforts or the library will fulfill any of your particular purposes | |||
or needs. This library is provided with all faults, and the entire | |||
risk of satisfactory quality, performance, accuracy, and effort is with | |||
the user. | |||
libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are | |||
Copyright (c) 1998, 1999 Glenn Randers-Pehrson, and are | |||
distributed according to the same disclaimer and license as libpng-0.96, | |||
with the following individuals added to the list of Contributing Authors: | |||
Tom Lane | |||
Glenn Randers-Pehrson | |||
Willem van Schaik | |||
libpng versions 0.89, June 1996, through 0.96, May 1997, are | |||
Copyright (c) 1996, 1997 Andreas Dilger | |||
Distributed according to the same disclaimer and license as libpng-0.88, | |||
with the following individuals added to the list of Contributing Authors: | |||
John Bowler | |||
Kevin Bracey | |||
Sam Bushell | |||
Magnus Holmgren | |||
Greg Roelofs | |||
Tom Tanner | |||
libpng versions 0.5, May 1995, through 0.88, January 1996, are | |||
Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc. | |||
For the purposes of this copyright and license, "Contributing Authors" | |||
is defined as the following set of individuals: | |||
Andreas Dilger | |||
Dave Martindale | |||
Guy Eric Schalnat | |||
Paul Schmidt | |||
Tim Wegner | |||
The PNG Reference Library is supplied "AS IS". The Contributing Authors | |||
and Group 42, Inc. disclaim all warranties, expressed or implied, | |||
including, without limitation, the warranties of merchantability and of | |||
fitness for any purpose. The Contributing Authors and Group 42, Inc. | |||
assume no liability for direct, indirect, incidental, special, exemplary, | |||
or consequential damages, which may result from the use of the PNG | |||
Reference Library, even if advised of the possibility of such damage. | |||
Permission is hereby granted to use, copy, modify, and distribute this | |||
source code, or portions hereof, for any purpose, without fee, subject | |||
to the following restrictions: | |||
1. The origin of this source code must not be misrepresented. | |||
2. Altered versions must be plainly marked as such and must not | |||
be misrepresented as being the original source. | |||
3. This Copyright notice may not be removed or altered from any | |||
source or altered source distribution. | |||
The Contributing Authors and Group 42, Inc. specifically permit, without | |||
fee, and encourage the use of this source code as a component to | |||
supporting the PNG file format in commercial products. If you use this | |||
source code in a product, acknowledgment is not required but would be | |||
appreciated. | |||
A "png_get_copyright" function is available, for convenient use in "about" | |||
boxes and the like: | |||
printf("%s",png_get_copyright(NULL)); | |||
Also, the PNG logo (in PNG format, of course) is supplied in the | |||
files "pngbar.png" and "pngbar.jpg (88x31) and "pngnow.png" (98x31). | |||
Libpng is OSI Certified Open Source Software. OSI Certified Open Source is a | |||
certification mark of the Open Source Initiative. | |||
Glenn Randers-Pehrson | |||
glennrp at users.sourceforge.net | |||
February 3, 2011 |
@@ -1,205 +0,0 @@ | |||
README for libpng version 1.5.1 - February 3, 2011 (shared library 15.0) | |||
See the note about version numbers near the top of png.h | |||
See INSTALL for instructions on how to install libpng. | |||
Libpng comes in several distribution formats. Get libpng-*.tar.gz, | |||
libpng-*.tar.xz or libpng-*.tar.bz2 if you want UNIX-style line endings | |||
in the text files, or lpng*.zip if you want DOS-style line endings. | |||
Version 0.89 was the first official release of libpng. Don't let the | |||
fact that it's the first release fool you. The libpng library has been in | |||
extensive use and testing since mid-1995. By late 1997 it had | |||
finally gotten to the stage where there hadn't been significant | |||
changes to the API in some time, and people have a bad feeling about | |||
libraries with versions < 1.0. Version 1.0.0 was released in | |||
March 1998. | |||
**** | |||
Note that some of the changes to the png_info structure render this | |||
version of the library binary incompatible with libpng-0.89 or | |||
earlier versions if you are using a shared library. The type of the | |||
"filler" parameter for png_set_filler() has changed from png_byte to | |||
png_uint_32, which will affect shared-library applications that use | |||
this function. | |||
To avoid problems with changes to the internals of png_info_struct, | |||
new APIs have been made available in 0.95 to avoid direct application | |||
access to info_ptr. These functions are the png_set_<chunk> and | |||
png_get_<chunk> functions. These functions should be used when | |||
accessing/storing the info_struct data, rather than manipulating it | |||
directly, to avoid such problems in the future. | |||
It is important to note that the APIs do not make current programs | |||
that access the info struct directly incompatible with the new | |||
library. However, it is strongly suggested that new programs use | |||
the new APIs (as shown in example.c and pngtest.c), and older programs | |||
be converted to the new format, to facilitate upgrades in the future. | |||
**** | |||
Additions since 0.90 include the ability to compile libpng as a | |||
Windows DLL, and new APIs for accessing data in the info struct. | |||
Experimental functions include the ability to set weighting and cost | |||
factors for row filter selection, direct reads of integers from buffers | |||
on big-endian processors that support misaligned data access, faster | |||
methods of doing alpha composition, and more accurate 16->8 bit color | |||
conversion. | |||
The additions since 0.89 include the ability to read from a PNG stream | |||
which has had some (or all) of the signature bytes read by the calling | |||
application. This also allows the reading of embedded PNG streams that | |||
do not have the PNG file signature. As well, it is now possible to set | |||
the library action on the detection of chunk CRC errors. It is possible | |||
to set different actions based on whether the CRC error occurred in a | |||
critical or an ancillary chunk. | |||
The changes made to the library, and bugs fixed are based on discussions | |||
on the PNG-implement mailing list and not on material submitted | |||
privately to Guy, Andreas, or Glenn. They will forward any good | |||
suggestions to the list. | |||
For a detailed description on using libpng, read libpng-manual.txt. For | |||
examples of libpng in a program, see example.c and pngtest.c. For usage | |||
information and restrictions (what little they are) on libpng, see | |||
png.h. For a description on using zlib (the compression library used by | |||
libpng) and zlib's restrictions, see zlib.h | |||
I have included a general makefile, as well as several machine and | |||
compiler specific ones, but you may have to modify one for your own needs. | |||
You should use zlib 1.0.4 or later to run this, but it MAY work with | |||
versions as old as zlib 0.95. Even so, there are bugs in older zlib | |||
versions which can cause the output of invalid compression streams for | |||
some images. You will definitely need zlib 1.0.4 or later if you are | |||
taking advantage of the MS-DOS "far" structure allocation for the small | |||
and medium memory models. You should also note that zlib is a | |||
compression library that is useful for more things than just PNG files. | |||
You can use zlib as a drop-in replacement for fread() and fwrite() if | |||
you are so inclined. | |||
zlib should be available at the same place that libpng is, or at. | |||
ftp://ftp.info-zip.org/pub/infozip/zlib | |||
You may also want a copy of the PNG specification. It is available | |||
as an RFC, a W3C Recommendation, and an ISO/IEC Standard. You can find | |||
these at http://www.libpng.org/pub/png/documents/ | |||
This code is currently being archived at libpng.sf.net in the | |||
[DOWNLOAD] area, and on CompuServe, Lib 20 (PNG SUPPORT) | |||
at GO GRAPHSUP. If you can't find it in any of those places, | |||
e-mail me, and I'll help you find it. | |||
If you have any code changes, requests, problems, etc., please e-mail | |||
them to me. Also, I'd appreciate any make files or project files, | |||
and any modifications you needed to make to get libpng to compile, | |||
along with a #define variable to tell what compiler/system you are on. | |||
If you needed to add transformations to libpng, or wish libpng would | |||
provide the image in a different way, drop me a note (and code, if | |||
possible), so I can consider supporting the transformation. | |||
Finally, if you get any warning messages when compiling libpng | |||
(note: not zlib), and they are easy to fix, I'd appreciate the | |||
fix. Please mention "libpng" somewhere in the subject line. Thanks. | |||
This release was created and will be supported by myself (of course | |||
based in a large way on Guy's and Andreas' earlier work), and the PNG | |||
development group. | |||
Send comments/corrections/commendations to png-mng-implement at | |||
lists.sourceforge.net (subscription required; visit | |||
https://lists.sourceforge.net/lists/listinfo/png-mng-implement | |||
to subscribe) or to glennrp at users.sourceforge.net | |||
You can't reach Guy, the original libpng author, at the addresses | |||
given in previous versions of this document. He and Andreas will | |||
read mail addressed to the png-implement list, however. | |||
Please do not send general questions about PNG. Send them to | |||
the (png-list at ccrc.wustl.edu, subscription required, write to | |||
majordomo at ccrc.wustl.edu with "subscribe png-list" in your message). | |||
On the other hand, | |||
please do not send libpng questions to that address, send them to me | |||
or to the png-implement list. I'll | |||
get them in the end anyway. If you have a question about something | |||
in the PNG specification that is related to using libpng, send it | |||
to me. Send me any questions that start with "I was using libpng, | |||
and ...". If in doubt, send questions to me. I'll bounce them | |||
to others, if necessary. | |||
Please do not send suggestions on how to change PNG. We have | |||
been discussing PNG for nine years now, and it is official and | |||
finished. If you have suggestions for libpng, however, I'll | |||
gladly listen. Even if your suggestion is not used immediately, | |||
it may be used later. | |||
Files in this distribution: | |||
ANNOUNCE => Announcement of this version, with recent changes | |||
CHANGES => Description of changes between libpng versions | |||
KNOWNBUG => List of known bugs and deficiencies | |||
LICENSE => License to use and redistribute libpng | |||
README => This file | |||
TODO => Things not implemented in the current library | |||
Y2KINFO => Statement of Y2K compliance | |||
example.c => Example code for using libpng functions | |||
libpng.3 => manual page for libpng (includes libpng-manual.txt) | |||
libpng-manual.txt => Description of libpng and its functions | |||
libpngpf.3 => manual page for libpng's private functions | |||
png.5 => manual page for the PNG format | |||
png.c => Basic interface functions common to library | |||
png.h => Library function and interface declarations (public) | |||
pngpriv.h => Library function and interface declarations (private) | |||
pngconf.h => System specific library configuration (public) | |||
pngstruct.h => png_struct declaration (private) | |||
pnginfo.h => png_info struct declaration (private) | |||
pngdebug.h => debugging macros (private) | |||
pngerror.c => Error/warning message I/O functions | |||
pngget.c => Functions for retrieving info from struct | |||
pngmem.c => Memory handling functions | |||
pngbar.png => PNG logo, 88x31 | |||
pngnow.png => PNG logo, 98x31 | |||
pngpread.c => Progressive reading functions | |||
pngread.c => Read data/helper high-level functions | |||
pngrio.c => Lowest-level data read I/O functions | |||
pngrtran.c => Read data transformation functions | |||
pngrutil.c => Read data utility functions | |||
pngset.c => Functions for storing data into the info_struct | |||
pngtest.c => Library test program | |||
pngtest.png => Library test sample image | |||
pngtrans.c => Common data transformation functions | |||
pngwio.c => Lowest-level write I/O functions | |||
pngwrite.c => High-level write functions | |||
pngwtran.c => Write data transformations | |||
pngwutil.c => Write utility functions | |||
contrib => Contributions | |||
gregbook => source code for PNG reading and writing, from | |||
Greg Roelofs' "PNG: The Definitive Guide", | |||
O'Reilly, 1999 | |||
msvctest => Builds and runs pngtest using a MSVC workspace | |||
pngminus => Simple pnm2png and png2pnm programs | |||
pngsuite => Test images | |||
visupng => Contains a MSVC workspace for VisualPng | |||
projects => Contains project files and workspaces for | |||
building a DLL | |||
cbuilder5 => Contains a Borland workspace for building | |||
libpng and zlib | |||
visualc6 => Contains a Microsoft Visual C++ (MSVC) | |||
workspace for building libpng and zlib | |||
visualc71 => Contains a Microsoft Visual C++ (MSVC) | |||
workspace for building libpng and zlib | |||
xcode => Contains an Apple xcode | |||
workspace for building libpng and zlib | |||
scripts => Directory containing scripts for building libpng: | |||
(see scripts/README.txt for the list of scripts) | |||
Good luck, and happy coding. | |||
-Glenn Randers-Pehrson (current maintainer, since 1998) | |||
Internet: glennrp at users.sourceforge.net | |||
-Andreas Eric Dilger (former maintainer, 1996-1997) | |||
Internet: adilger at enel.ucalgary.ca | |||
Web: http://www-mddsp.enel.ucalgary.ca/People/adilger/ | |||
-Guy Eric Schalnat (original author and former maintainer, 1995-1996) | |||
(formerly of Group 42, Inc) | |||
Internet: gschal at infinet.com |
@@ -1,27 +0,0 @@ | |||
/* | |||
TODO - list of things to do for libpng: | |||
Final bug fixes. | |||
Better C++ wrapper/full C++ implementation? | |||
Fix problem with C++ and EXTERN "C". | |||
cHRM transformation. | |||
Remove setjmp/longjmp usage in favor of returning error codes. | |||
Add "grayscale->palette" transformation and "palette->grayscale" detection. | |||
Improved dithering. | |||
Multi-lingual error and warning message support. | |||
Complete sRGB transformation (presently it simply uses gamma=0.45455). | |||
Man pages for function calls. | |||
Better documentation. | |||
Better filter selection | |||
(counting huffman bits/precompression? filter inertia? filter costs?). | |||
Histogram creation. | |||
Text conversion between different code pages (Latin-1 -> Mac and DOS). | |||
Avoid building gamma tables whenever possible. | |||
Use greater precision when changing to linear gamma for compositing against | |||
background and doing rgb-to-gray transformation. | |||
Investigate pre-incremented loop counters and other loop constructions. | |||
Add interpolated method of handling interlacing. | |||
Switch to the simpler zlib (zlib/libpng) license if legally possible. | |||
Extend pngvalid.c to validate more of the libpng transformations. | |||
*/ |
@@ -1,30 +0,0 @@ | |||
.TH LIBPNGPF 3 "February 3, 2011" | |||
.SH NAME | |||
libpng \- Portable Network Graphics (PNG) Reference Library 1.5.1 | |||
(private functions) | |||
.SH SYNOPSIS | |||
\fB#include \fI"pngpriv.h" | |||
\fI\fB | |||
\fBAs of libpng version \fP\fI1.5.1\fP\fB, this section is no longer \fP\fImaintained\fP\fB, now \fIthat | |||
\fBthe private function prototypes are hidden in pngpriv.h and not \fIaccessible | |||
\fBto applications. Look in pngpriv.h for the prototypes and a short \fIdescription | |||
\fBof each \fIfunction. | |||
\fI\fB | |||
.SH DESCRIPTION | |||
The functions previously listed here are used privately by libpng | |||
and are not recommended for use by applications. They are | |||
not "exported" to applications using shared libraries. They | |||
are listed alphabetically here as an aid to libpng maintainers. | |||
See pngpriv.h for more information on these functions. | |||
.SH SEE ALSO | |||
.BR "png"(5), " libpng"(3), " zlib"(3), " deflate"(5), " " and " zlib"(5) | |||
.SH AUTHOR | |||
Glenn Randers-Pehrson |
@@ -1,32 +0,0 @@ | |||
# DO NOT DELETE | |||
png.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
png.o: pngdebug.h | |||
pngset.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngset.o: pngdebug.h | |||
pngget.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngget.o: pngdebug.h | |||
pngrutil.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngrutil.o: pngdebug.h | |||
pngtrans.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngtrans.o: pngdebug.h | |||
pngwutil.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngwutil.o: pngdebug.h | |||
pngread.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngread.o: pngdebug.h | |||
pngrio.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngrio.o: pngdebug.h | |||
pngwio.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngwio.o: pngdebug.h | |||
pngwrite.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngwrite.o: pngdebug.h | |||
pngrtran.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngrtran.o: pngdebug.h | |||
pngwtran.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngwtran.o: pngdebug.h | |||
pngmem.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngmem.o: pngdebug.h | |||
pngerror.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngerror.o: pngdebug.h | |||
pngpread.o: pngpriv.h png.h pnglibconf.h pngconf.h pnginfo.h pngstruct.h | |||
pngpread.o: pngdebug.h |
@@ -1,66 +0,0 @@ | |||
# | |||
# "$Id: makefile.wat 7563 2010-04-28 03:15:47Z greg.ercolano $" | |||
# | |||
# PNG library makefile for the Fast Light Toolkit (FLTK). | |||
# | |||
# Copyright 1997-2004 by Easy Software Products. | |||
# | |||
# This library is free software; you can redistribute it and/or | |||
# modify it under the terms of the GNU Library General Public | |||
# License as published by the Free Software Foundation; either | |||
# version 2 of the License, or (at your option) any later version. | |||
# | |||
# This library is distributed in the hope that it will be useful, | |||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
# Library General Public License for more details. | |||
# | |||
# You should have received a copy of the GNU Library General Public | |||
# License along with this library; if not, write to the Free Software | |||
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 | |||
# USA. | |||
# | |||
# Please report all bugs and problems on the following page: | |||
# | |||
# http://www.fltk.org/str.php | |||
# | |||
LIBNAMEROOT=ftlk_png | |||
# I ought to be able to do "EXTRA_INCLUDE_DIRS += ;../zlib" but it doesn't work for me (OW1.3) | |||
!undef EXTRA_INCLUDE_DIRS | |||
EXTRA_INCLUDE_DIRS=$(ROOT);../zlib | |||
!include ../watcom.mif | |||
# | |||
# Object files... | |||
# | |||
LIBOBJS = png.obj pngset.obj pngget.obj pngrutil.obj pngtrans.obj pngwutil.obj & | |||
pngread.obj pngrio.obj pngwio.obj pngwrite.obj pngrtran.obj & | |||
pngwtran.obj pngmem.obj pngerror.obj pngpread.obj | |||
# | |||
# Make all targets... | |||
# | |||
all: $(LIBNAME) | |||
$(LIBNAME): $(LIBOBJS) | |||
$(LIB) $(LIBOPTS) $@ $< | |||
# | |||
# Clean all directories | |||
# | |||
clean : .SYMBOLIC | |||
@echo Cleaning up. | |||
CLEANEXTS = obj | |||
@for %a in ($(CLEANEXTS)) do -rm -f $(ODIR)\*.%a | |||
-rm -f *.err | |||
-rm -f $(LIBNAME) | |||
# | |||
# End of "$Id: makefile.wat 7563 2010-04-28 03:15:47Z greg.ercolano $". | |||
# |
@@ -1,74 +0,0 @@ | |||
.TH PNG 5 "February 3, 2011" | |||
.SH NAME | |||
png \- Portable Network Graphics (PNG) format | |||
.SH DESCRIPTION | |||
PNG (Portable Network Graphics) is an extensible file format for the | |||
lossless, portable, well-compressed storage of raster images. PNG provides | |||
a patent-free replacement for GIF and can also replace many | |||
common uses of TIFF. Indexed-color, grayscale, and truecolor images are | |||
supported, plus an optional alpha channel. Sample depths range from | |||
1 to 16 bits. | |||
.br | |||
PNG is designed to work well in online viewing applications, such as the | |||
World Wide Web, so it is fully streamable with a progressive display | |||
option. PNG is robust, providing both full file integrity checking and | |||
fast, simple detection of common transmission errors. Also, PNG can store | |||
gamma and chromaticity data for improved color matching on heterogeneous | |||
platforms. | |||
.SH "SEE ALSO" | |||
.BR "libpng"(3), " libpngpf"(3), " zlib"(3), " deflate"(5), " " and " zlib"(5) | |||
.LP | |||
PNG specification (second edition), November 2003: | |||
.IP | |||
.br | |||
<http://www.w3.org/TR/2003/REC-PNG-20031110/ | |||
PNG 1.2 specification, July 1999: | |||
.IP | |||
.br | |||
http://www.libpng.org/pub/png | |||
.LP | |||
PNG 1.0 specification, October 1996: | |||
.IP | |||
.br | |||
RFC 2083 | |||
.IP | |||
.br | |||
ftp://ds.internic.net/rfc/rfc2083.txt | |||
.br | |||
or (as a W3C Recommendation) at | |||
.br | |||
http://www.w3.org/TR/REC-png.html | |||
.SH AUTHORS | |||
This man page: Glenn Randers-Pehrson | |||
.LP | |||
Portable Network Graphics (PNG) Specification (Second Edition) | |||
Information technology - Computer graphics and image processing - | |||
Portable Network Graphics (PNG): Functional specification. | |||
ISO/IEC 15948:2003 (E) (November 10, 2003): David Duce and others. | |||
.LP | |||
Portable Network Graphics (PNG) Specification Version 1.2 (July 8, 1999): | |||
Glenn Randers-Pehrson and others (png-list). | |||
.LP | |||
Portable Network Graphics (PNG) Specification Version 1.0 (October 1, 1996): | |||
Thomas Boutell and others (png-list). | |||
.LP | |||
.SH COPYRIGHT NOTICE | |||
.LP | |||
This man page is Copyright (c) 1998-2006 Glenn Randers-Pehrson. See png.h | |||
for conditions of use and distribution. | |||
.LP | |||
The PNG Specification (Second Edition) is | |||
Copyright (c) 2003 W3C. (MIT, ERCIM, Keio), All Rights Reserved. | |||
.LP | |||
The PNG-1.2 specification is copyright (c) 1999 Glenn Randers-Pehrson. | |||
See the specification for conditions of use and distribution. | |||
.LP | |||
The PNG-1.0 specification is copyright (c) 1996 Massachusetts Institute of | |||
Technology. See the specification for conditions of use and distribution. | |||
.LP | |||
.\" end of man page | |||
@@ -1,632 +0,0 @@ | |||
/* pngconf.h - machine configurable file for libpng | |||
* | |||
* libpng version 1.5.1 - February 3, 2011 | |||
* | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
* | |||
*/ | |||
/* Any machine specific code is near the front of this file, so if you | |||
* are configuring libpng for a machine, you may want to read the section | |||
* starting here down to where it starts to typedef png_color, png_text, | |||
* and png_info. | |||
*/ | |||
#ifndef PNGCONF_H | |||
#define PNGCONF_H | |||
/* PNG_NO_LIMITS_H may be used to turn off the use of the standard C | |||
* definition file for machine specific limits, this may impact the | |||
* correctness of the definitons below (see uses of INT_MAX). | |||
*/ | |||
#ifndef PNG_NO_LIMITS_H | |||
# include <limits.h> | |||
#endif | |||
/* For the memory copy APIs (i.e. the standard definitions of these), | |||
* because this file defines png_memcpy and so on the base APIs must | |||
* be defined here. | |||
*/ | |||
#ifdef BSD | |||
# include <strings.h> | |||
#else | |||
# include <string.h> | |||
#endif | |||
/* For png_FILE_p - this provides the standard definition of a | |||
* FILE | |||
*/ | |||
#ifdef PNG_STDIO_SUPPORTED | |||
# include <stdio.h> | |||
#endif | |||
/* This controls optimization of the reading of 16 and 32 bit values | |||
* from PNG files. It can be set on a per-app-file basis - it | |||
* just changes whether a macro is used to the function is called. | |||
* The library builder sets the default, if read functions are not | |||
* built into the library the macro implementation is forced on. | |||
*/ | |||
#ifndef PNG_READ_INT_FUNCTIONS_SUPPORTED | |||
# define PNG_USE_READ_MACROS | |||
#endif | |||
#if !defined(PNG_NO_USE_READ_MACROS) && !defined(PNG_USE_READ_MACROS) | |||
# if PNG_DEFAULT_READ_MACROS | |||
# define PNG_USE_READ_MACROS | |||
# endif | |||
#endif | |||
/* COMPILER SPECIFIC OPTIONS. | |||
* | |||
* These options are provided so that a variety of difficult compilers | |||
* can be used. Some are fixed at build time (e.g. PNG_API_RULE | |||
* below) but still have compiler specific implementations, others | |||
* may be changed on a per-file basis when compiling against libpng. | |||
*/ | |||
/* The PNGARG macro protects us against machines that don't have function | |||
* prototypes (ie K&R style headers). If your compiler does not handle | |||
* function prototypes, define this macro and use the included ansi2knr. | |||
* I've always been able to use _NO_PROTO as the indicator, but you may | |||
* need to drag the empty declaration out in front of here, or change the | |||
* ifdef to suit your own needs. | |||
*/ | |||
#ifndef PNGARG | |||
# ifdef OF /* zlib prototype munger */ | |||
# define PNGARG(arglist) OF(arglist) | |||
# else | |||
# ifdef _NO_PROTO | |||
# define PNGARG(arglist) () | |||
# else | |||
# define PNGARG(arglist) arglist | |||
# endif /* _NO_PROTO */ | |||
# endif /* OF */ | |||
#endif /* PNGARG */ | |||
/* Function calling conventions. | |||
* ============================= | |||
* Normally it is not necessary to specify to the compiler how to call | |||
* a function - it just does it - however on x86 systems derived from | |||
* Microsoft and Borland C compilers ('IBM PC', 'DOS', 'Windows' systems | |||
* and some others) there are multiple ways to call a function and the | |||
* default can be changed on the compiler command line. For this reason | |||
* libpng specifies the calling convention of every exported function and | |||
* every function called via a user supplied function pointer. This is | |||
* done in this file by defining the following macros: | |||
* | |||
* PNGAPI Calling convention for exported functions. | |||
* PNGCBAPI Calling convention for user provided (callback) functions. | |||
* PNGCAPI Calling convention used by the ANSI-C library (required | |||
* for longjmp callbacks and sometimes used internally to | |||
* specify the calling convention for zlib). | |||
* | |||
* These macros should never be overridden. If it is necessary to | |||
* change calling convention in a private build this can be done | |||
* by setting PNG_API_RULE (which defaults to 0) to one of the values | |||
* below to select the correct 'API' variants. | |||
* | |||
* PNG_API_RULE=0 Use PNGCAPI - the 'C' calling convention - throughout. | |||
* This is correct in every known environment. | |||
* PNG_API_RULE=1 Use the operating system convention for PNGAPI and | |||
* the 'C' calling convention (from PNGCAPI) for | |||
* callbacks (PNGCBAPI). This is no longer required | |||
* in any known environment - if it has to be used | |||
* please post an explanation of the problem to the | |||
* libpng mailing list. | |||
* | |||
* These cases only differ if the operating system does not use the C | |||
* calling convention, at present this just means the above cases | |||
* (x86 DOS/Windows sytems) and, even then, this does not apply to | |||
* Cygwin running on those systems. | |||
* | |||
* Note that the value must be defined in pnglibconf.h so that what | |||
* the application uses to call the library matches the conventions | |||
* set when building the library. | |||
*/ | |||
/* Symbol export | |||
* ============= | |||
* When building a shared library it is almost always necessary to tell | |||
* the compiler which symbols to export. The png.h macro 'PNG_EXPORT' | |||
* is used to mark the symbols. On some systems these symbols can be | |||
* extracted at link time and need no special processing by the compiler, | |||
* on other systems the symbols are flagged by the compiler and just | |||
* the declaration requires a special tag applied (unfortunately) in a | |||
* compiler dependent way. Some systems can do either. | |||
* | |||
* A small number of older systems also require a symbol from a DLL to | |||
* be flagged to the program that calls it. This is a problem because | |||
* we do not know in the header file included by application code that | |||
* the symbol will come from a shared library, as opposed to a statically | |||
* linked one. For this reason the application must tell us by setting | |||
* the magic flag PNG_USE_DLL to turn on the special processing before | |||
* it includes png.h. | |||
* | |||
* Four additional macros are used to make this happen: | |||
* | |||
* PNG_IMPEXP The magic (if any) to cause a symbol to be exported from | |||
* the build or imported if PNG_USE_DLL is set - compiler | |||
* and system specific. | |||
* | |||
* PNG_EXPORT_TYPE(type) A macro that pre or appends PNG_IMPEXP to | |||
* 'type', compiler specific. | |||
* | |||
* PNG_DLL_EXPORT Set to the magic to use during a libpng build to | |||
* make a symbol exported from the DLL. | |||
* | |||
* PNG_DLL_IMPORT Set to the magic to force the libpng symbols to come | |||
* from a DLL - used to define PNG_IMPEXP when | |||
* PNG_USE_DLL is set. | |||
*/ | |||
/* System specific discovery. | |||
* ========================== | |||
* This code is used at build time to find PNG_IMPEXP, the API settings | |||
* and PNG_EXPORT_TYPE(), it may also set a macro to indicate the DLL | |||
* import processing is possible. On Windows/x86 systems it also sets | |||
* compiler-specific macros to the values required to change the calling | |||
* conventions of the various functions. | |||
*/ | |||
#if ( defined(_Windows) || defined(_WINDOWS) || defined(WIN32) ||\ | |||
defined(_WIN32) || defined(__WIN32__) || defined(__CYGWIN__) ) &&\ | |||
( defined(_X86_) || defined(_X64_) || defined(_M_IX86) ||\ | |||
defined(_M_X64) || defined(_M_IA64) ) | |||
/* Windows system (DOS doesn't support DLLs) running on x86/x64. Includes | |||
* builds under Cygwin or MinGW. Also includes Watcom builds but these need | |||
* special treatment because they are not compatible with GCC or Visual C | |||
* because of different calling conventions. | |||
*/ | |||
# if PNG_API_RULE == 2 | |||
/* If this line results in an error, either because __watcall is not | |||
* understood or because of a redefine just below you cannot use *this* | |||
* build of the library with the compiler you are using. *This* build was | |||
* build using Watcom and applications must also be built using Watcom! | |||
*/ | |||
# define PNGCAPI __watcall | |||
# endif | |||
# if defined(__GNUC__) || (defined (_MSC_VER) && (_MSC_VER >= 800)) | |||
# define PNGCAPI __cdecl | |||
# if PNG_API_RULE == 1 | |||
# define PNGAPI __stdcall | |||
# endif | |||
# else | |||
/* An older compiler, or one not detected (erroneously) above, | |||
* if necessary override on the command line to get the correct | |||
* variants for the compiler. | |||
*/ | |||
# ifndef PNGCAPI | |||
# define PNGCAPI _cdecl | |||
# endif | |||
# if PNG_API_RULE == 1 && !defined(PNGAPI) | |||
# define PNGAPI _stdcall | |||
# endif | |||
# endif /* compiler/api */ | |||
/* NOTE: PNGCBAPI always defaults to PNGCAPI. */ | |||
# if defined(PNGAPI) && !defined(PNG_USER_PRIVATEBUILD) | |||
ERROR: PNG_USER_PRIVATEBUILD must be defined if PNGAPI is changed | |||
# endif | |||
# if (defined(_MSC_VER) && _MSC_VER < 800) ||\ | |||
(defined(__BORLANDC__) && __BORLANDC__ < 0x500) | |||
/* older Borland and MSC | |||
* compilers used '__export' and required this to be after | |||
* the type. | |||
*/ | |||
# ifndef PNG_EXPORT_TYPE | |||
# define PNG_EXPORT_TYPE(type) type PNG_IMPEXP | |||
# endif | |||
# define PNG_DLL_EXPORT __export | |||
# else /* newer compiler */ | |||
# define PNG_DLL_EXPORT __declspec(dllexport) | |||
# ifndef PNG_DLL_IMPORT | |||
# define PNG_DLL_IMPORT __declspec(dllimport) | |||
# endif | |||
# endif /* compiler */ | |||
#else /* !Windows/x86 */ | |||
# if (defined(__IBMC__) || defined(__IBMCPP__)) && defined(__OS2__) | |||
# define PNGAPI _System | |||
# else /* !Windows/x86 && !OS/2 */ | |||
/* Use the defaults, or define PNG*API on the command line (but | |||
* this will have to be done for every compile!) | |||
*/ | |||
# endif /* other system, !OS/2 */ | |||
#endif /* !Windows/x86 */ | |||
/* Now do all the defaulting . */ | |||
#ifndef PNGCAPI | |||
# define PNGCAPI | |||
#endif | |||
#ifndef PNGCBAPI | |||
# define PNGCBAPI PNGCAPI | |||
#endif | |||
#ifndef PNGAPI | |||
# define PNGAPI PNGCAPI | |||
#endif | |||
/* The default for PNG_IMPEXP depends on whether the library is | |||
* being built or used. | |||
*/ | |||
#ifndef PNG_IMPEXP | |||
# ifdef PNGLIB_BUILD | |||
/* Building the library */ | |||
# if (defined(DLL_EXPORT)/*from libtool*/ ||\ | |||
defined(_WINDLL) || defined(_DLL) || defined(__DLL__) ||\ | |||
defined(_USRDLL) ||\ | |||
defined(PNG_BUILD_DLL)) && defined(PNG_DLL_EXPORT) | |||
/* Building a DLL. */ | |||
# define PNG_IMPEXP PNG_DLL_EXPORT | |||
# endif /* DLL */ | |||
# else | |||
/* Using the library */ | |||
# if defined(PNG_USE_DLL) && defined(PNG_DLL_IMPORT) | |||
/* This forces use of a DLL, disallowing static linking */ | |||
# define PNG_IMPEXP PNG_DLL_IMPORT | |||
# endif | |||
# endif | |||
# ifndef PNG_IMPEXP | |||
# define PNG_IMPEXP | |||
# endif | |||
#endif | |||
/* THe following complexity is concerned with getting the 'attributes' of the | |||
* declared function in the correct place. This potentially requires a separate | |||
* PNG_EXPORT function for every compiler. | |||
*/ | |||
#ifndef PNG_FUNCTION | |||
# ifdef __GNUC__ | |||
# define PNG_FUNCTION(type, name, args, attributes)\ | |||
attributes type name args | |||
# else /* !GNUC */ | |||
# ifdef _MSC_VER | |||
# define PNG_FUNCTION(type, name, args, attributes)\ | |||
attributes type name args | |||
# else /* !MSC */ | |||
# define PNG_FUNCTION(type, name, args, attributes)\ | |||
type name args | |||
# endif | |||
# endif | |||
#endif | |||
#ifndef PNG_EXPORT_TYPE | |||
# define PNG_EXPORT_TYPE(type) PNG_IMPEXP type | |||
#endif | |||
/* The ordinal value is only relevant when preprocessing png.h for symbol | |||
* table entries, so we discard it here. See the .dfn files in the | |||
* scripts directory. | |||
*/ | |||
#ifndef PNG_EXPORTA | |||
# define PNG_EXPORTA(ordinal, type, name, args, attributes)\ | |||
extern PNG_FUNCTION(PNG_EXPORT_TYPE(type),(PNGAPI name),PNGARG(args),\ | |||
attributes) | |||
#endif | |||
#define PNG_EXPORT(ordinal, type, name, args)\ | |||
PNG_EXPORTA(ordinal, type, name, args, ) | |||
/* Use PNG_REMOVED to comment out a removed interface. */ | |||
#ifndef PNG_REMOVED | |||
# define PNG_REMOVED(ordinal, type, name, args, attributes) | |||
#endif | |||
#ifndef PNG_CALLBACK | |||
# define PNG_CALLBACK(type, name, args, attributes)\ | |||
type (PNGCBAPI name) PNGARG(args) attributes | |||
#endif | |||
/* Support for compiler specific function attributes. These are used | |||
* so that where compiler support is available incorrect use of API | |||
* functions in png.h will generate compiler warnings. | |||
* | |||
* Added at libpng-1.2.41. | |||
*/ | |||
#ifndef PNG_NO_PEDANTIC_WARNINGS | |||
# ifndef PNG_PEDANTIC_WARNINGS_SUPPORTED | |||
# define PNG_PEDANTIC_WARNINGS_SUPPORTED | |||
# endif | |||
#endif | |||
#ifdef PNG_PEDANTIC_WARNINGS_SUPPORTED | |||
/* Support for compiler specific function attributes. These are used | |||
* so that where compiler support is available incorrect use of API | |||
* functions in png.h will generate compiler warnings. Added at libpng | |||
* version 1.2.41. | |||
*/ | |||
# ifdef __GNUC__ | |||
# ifndef PNG_USE_RESULT | |||
# define PNG_USE_RESULT __attribute__((__warn_unused_result__)) | |||
# endif | |||
# ifndef PNG_NORETURN | |||
# define PNG_NORETURN __attribute__((__noreturn__)) | |||
# endif | |||
# ifndef PNG_PTR_NORETURN | |||
# define PNG_PTR_NORETURN __attribute__((__noreturn__)) | |||
# endif | |||
# ifndef PNG_ALLOCATED | |||
# define PNG_ALLOCATED __attribute__((__malloc__)) | |||
# endif | |||
/* This specifically protects structure members that should only be | |||
* accessed from within the library, therefore should be empty during | |||
* a library build. | |||
*/ | |||
# ifndef PNGLIB_BUILD | |||
# ifndef PNG_DEPRECATED | |||
# define PNG_DEPRECATED __attribute__((__deprecated__)) | |||
# endif | |||
# ifndef PNG_DEPSTRUCT | |||
# define PNG_DEPSTRUCT __attribute__((__deprecated__)) | |||
# endif | |||
# ifndef PNG_PRIVATE | |||
# if 0 /* Doesn't work so we use deprecated instead*/ | |||
# define PNG_PRIVATE \ | |||
__attribute__((warning("This function is not exported by libpng."))) | |||
# else | |||
# define PNG_PRIVATE \ | |||
__attribute__((__deprecated__)) | |||
# endif | |||
# endif /* PNG_PRIVATE */ | |||
# endif /* PNGLIB_BUILD */ | |||
# endif /* __GNUC__ */ | |||
# ifdef _MSC_VER /* may need to check value */ | |||
# ifndef PNG_USE_RESULT | |||
# define PNG_USE_RESULT /*not supported*/ | |||
# endif | |||
# ifndef PNG_NORETURN | |||
# define PNG_NORETURN __declspec(noreturn) | |||
# endif | |||
# ifndef PNG_PTR_NORETURN | |||
# define PNG_PTR_NORETURN /*not supported*/ | |||
# endif | |||
# ifndef PNG_ALLOCATED | |||
# define PNG_ALLOCATED __declspec(restrict) | |||
# endif | |||
/* This specifically protects structure members that should only be | |||
* accessed from within the library, therefore should be empty during | |||
* a library build. | |||
*/ | |||
# ifndef PNGLIB_BUILD | |||
# ifndef PNG_DEPRECATED | |||
# define PNG_DEPRECATED __declspec(deprecated) | |||
# endif | |||
# ifndef PNG_DEPSTRUCT | |||
# define PNG_DEPSTRUCT __declspec(deprecated) | |||
# endif | |||
# ifndef PNG_PRIVATE | |||
# define PNG_PRIVATE __declspec(deprecated) | |||
# endif /* PNG_PRIVATE */ | |||
# endif /* PNGLIB_BUILD */ | |||
# endif /* __GNUC__ */ | |||
#endif /* PNG_PEDANTIC_WARNINGS */ | |||
#ifndef PNG_DEPRECATED | |||
# define PNG_DEPRECATED /* Use of this function is deprecated */ | |||
#endif | |||
#ifndef PNG_USE_RESULT | |||
# define PNG_USE_RESULT /* The result of this function must be checked */ | |||
#endif | |||
#ifndef PNG_NORETURN | |||
# define PNG_NORETURN /* This function does not return */ | |||
#endif | |||
#ifndef PNG_ALLOCATED | |||
# define PNG_ALLOCATED /* The result of the function is new memory */ | |||
#endif | |||
#ifndef PNG_DEPSTRUCT | |||
# define PNG_DEPSTRUCT /* Access to this struct member is deprecated */ | |||
#endif | |||
#ifndef PNG_PRIVATE | |||
# define PNG_PRIVATE /* This is a private libpng function */ | |||
#endif | |||
#ifndef PNG_FP_EXPORT /* A floating point API. */ | |||
# ifdef PNG_FLOATING_POINT_SUPPORTED | |||
# define PNG_FP_EXPORT(ordinal, type, name, args)\ | |||
PNG_EXPORT(ordinal, type, name, args) | |||
# else /* No floating point APIs */ | |||
# define PNG_FP_EXPORT(ordinal, type, name, args) | |||
# endif | |||
#endif | |||
#ifndef PNG_FIXED_EXPORT /* A fixed point API. */ | |||
# ifdef PNG_FIXED_POINT_SUPPORTED | |||
# define PNG_FIXED_EXPORT(ordinal, type, name, args)\ | |||
PNG_EXPORT(ordinal, type, name, args) | |||
# else /* No fixed point APIs */ | |||
# define PNG_FIXED_EXPORT(ordinal, type, name, args) | |||
# endif | |||
#endif | |||
/* The following uses const char * instead of char * for error | |||
* and warning message functions, so some compilers won't complain. | |||
* If you do not want to use const, define PNG_NO_CONST here. | |||
* | |||
* This should not change how the APIs are called, so it can be done | |||
* on a per-file basis in the application. | |||
*/ | |||
#ifndef PNG_CONST | |||
# ifndef PNG_NO_CONST | |||
# define PNG_CONST const | |||
# else | |||
# define PNG_CONST | |||
# endif | |||
#endif | |||
/* Some typedefs to get us started. These should be safe on most of the | |||
* common platforms. The typedefs should be at least as large as the | |||
* numbers suggest (a png_uint_32 must be at least 32 bits long), but they | |||
* don't have to be exactly that size. Some compilers dislike passing | |||
* unsigned shorts as function parameters, so you may be better off using | |||
* unsigned int for png_uint_16. | |||
*/ | |||
#if defined(INT_MAX) && (INT_MAX > 0x7ffffffeL) | |||
typedef unsigned int png_uint_32; | |||
typedef int png_int_32; | |||
#else | |||
typedef unsigned long png_uint_32; | |||
typedef long png_int_32; | |||
#endif | |||
typedef unsigned short png_uint_16; | |||
typedef short png_int_16; | |||
typedef unsigned char png_byte; | |||
#ifdef PNG_NO_SIZE_T | |||
typedef unsigned int png_size_t; | |||
#else | |||
typedef size_t png_size_t; | |||
#endif | |||
#define png_sizeof(x) (sizeof (x)) | |||
/* The following is needed for medium model support. It cannot be in the | |||
* pngpriv.h header. Needs modification for other compilers besides | |||
* MSC. Model independent support declares all arrays and pointers to be | |||
* large using the far keyword. The zlib version used must also support | |||
* model independent data. As of version zlib 1.0.4, the necessary changes | |||
* have been made in zlib. The USE_FAR_KEYWORD define triggers other | |||
* changes that are needed. (Tim Wegner) | |||
*/ | |||
/* Separate compiler dependencies (problem here is that zlib.h always | |||
* defines FAR. (SJT) | |||
*/ | |||
#ifdef __BORLANDC__ | |||
# if defined(__LARGE__) || defined(__HUGE__) || defined(__COMPACT__) | |||
# define LDATA 1 | |||
# else | |||
# define LDATA 0 | |||
# endif | |||
/* GRR: why is Cygwin in here? Cygwin is not Borland C... */ | |||
# if !defined(__WIN32__) && !defined(__FLAT__) && !defined(__CYGWIN__) | |||
# define PNG_MAX_MALLOC_64K /* only used in build */ | |||
# if (LDATA != 1) | |||
# ifndef FAR | |||
# define FAR __far | |||
# endif | |||
# define USE_FAR_KEYWORD | |||
# endif /* LDATA != 1 */ | |||
/* Possibly useful for moving data out of default segment. | |||
* Uncomment it if you want. Could also define FARDATA as | |||
* const if your compiler supports it. (SJT) | |||
# define FARDATA FAR | |||
*/ | |||
# endif /* __WIN32__, __FLAT__, __CYGWIN__ */ | |||
#endif /* __BORLANDC__ */ | |||
/* Suggest testing for specific compiler first before testing for | |||
* FAR. The Watcom compiler defines both __MEDIUM__ and M_I86MM, | |||
* making reliance oncertain keywords suspect. (SJT) | |||
*/ | |||
/* MSC Medium model */ | |||
#ifdef FAR | |||
# ifdef M_I86MM | |||
# define USE_FAR_KEYWORD | |||
# define FARDATA FAR | |||
# include <dos.h> | |||
# endif | |||
#endif | |||
/* SJT: default case */ | |||
#ifndef FAR | |||
# define FAR | |||
#endif | |||
/* At this point FAR is always defined */ | |||
#ifndef FARDATA | |||
# define FARDATA | |||
#endif | |||
/* Typedef for floating-point numbers that are converted | |||
* to fixed-point with a multiple of 100,000, e.g., gamma | |||
*/ | |||
typedef png_int_32 png_fixed_point; | |||
/* Add typedefs for pointers */ | |||
typedef void FAR * png_voidp; | |||
typedef PNG_CONST void FAR * png_const_voidp; | |||
typedef png_byte FAR * png_bytep; | |||
typedef PNG_CONST png_byte FAR * png_const_bytep; | |||
typedef png_uint_32 FAR * png_uint_32p; | |||
typedef PNG_CONST png_uint_32 FAR * png_const_uint_32p; | |||
typedef png_int_32 FAR * png_int_32p; | |||
typedef PNG_CONST png_int_32 FAR * png_const_int_32p; | |||
typedef png_uint_16 FAR * png_uint_16p; | |||
typedef PNG_CONST png_uint_16 FAR * png_const_uint_16p; | |||
typedef png_int_16 FAR * png_int_16p; | |||
typedef PNG_CONST png_int_16 FAR * png_const_int_16p; | |||
typedef char FAR * png_charp; | |||
typedef PNG_CONST char FAR * png_const_charp; | |||
typedef png_fixed_point FAR * png_fixed_point_p; | |||
typedef PNG_CONST png_fixed_point FAR * png_const_fixed_point_p; | |||
typedef png_size_t FAR * png_size_tp; | |||
typedef PNG_CONST png_size_t FAR * png_const_size_tp; | |||
#ifdef PNG_STDIO_SUPPORTED | |||
typedef FILE * png_FILE_p; | |||
#endif | |||
#ifdef PNG_FLOATING_POINT_SUPPORTED | |||
typedef double FAR * png_doublep; | |||
typedef PNG_CONST double FAR * png_const_doublep; | |||
#endif | |||
/* Pointers to pointers; i.e. arrays */ | |||
typedef png_byte FAR * FAR * png_bytepp; | |||
typedef png_uint_32 FAR * FAR * png_uint_32pp; | |||
typedef png_int_32 FAR * FAR * png_int_32pp; | |||
typedef png_uint_16 FAR * FAR * png_uint_16pp; | |||
typedef png_int_16 FAR * FAR * png_int_16pp; | |||
typedef PNG_CONST char FAR * FAR * png_const_charpp; | |||
typedef char FAR * FAR * png_charpp; | |||
typedef png_fixed_point FAR * FAR * png_fixed_point_pp; | |||
#ifdef PNG_FLOATING_POINT_SUPPORTED | |||
typedef double FAR * FAR * png_doublepp; | |||
#endif | |||
/* Pointers to pointers to pointers; i.e., pointer to array */ | |||
typedef char FAR * FAR * FAR * png_charppp; | |||
/* png_alloc_size_t is guaranteed to be no smaller than png_size_t, | |||
* and no smaller than png_uint_32. Casts from png_size_t or png_uint_32 | |||
* to png_alloc_size_t are not necessary; in fact, it is recommended | |||
* not to use them at all so that the compiler can complain when something | |||
* turns out to be problematic. | |||
* Casts in the other direction (from png_alloc_size_t to png_size_t or | |||
* png_uint_32) should be explicitly applied; however, we do not expect | |||
* to encounter practical situations that require such conversions. | |||
*/ | |||
#if defined(__TURBOC__) && !defined(__FLAT__) | |||
typedef unsigned long png_alloc_size_t; | |||
#else | |||
# if defined(_MSC_VER) && defined(MAXSEG_64K) | |||
typedef unsigned long png_alloc_size_t; | |||
# else | |||
/* This is an attempt to detect an old Windows system where (int) is | |||
* actually 16 bits, in that case png_malloc must have an argument with a | |||
* bigger size to accomodate the requirements of the library. | |||
*/ | |||
# if (defined(_Windows) || defined(_WINDOWS) || defined(_WINDOWS_)) && \ | |||
(!defined(INT_MAX) || INT_MAX <= 0x7ffffffeL) | |||
typedef DWORD png_alloc_size_t; | |||
# else | |||
typedef png_size_t png_alloc_size_t; | |||
# endif | |||
# endif | |||
#endif | |||
#endif /* PNGCONF_H */ |
@@ -1,157 +0,0 @@ | |||
/* pngdebug.h - Debugging macros for libpng, also used in pngtest.c | |||
* | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* Last changed in libpng 1.5.0 [January 6, 2011] | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
*/ | |||
/* Define PNG_DEBUG at compile time for debugging information. Higher | |||
* numbers for PNG_DEBUG mean more debugging information. This has | |||
* only been added since version 0.95 so it is not implemented throughout | |||
* libpng yet, but more support will be added as needed. | |||
* | |||
* png_debug[1-2]?(level, message ,arg{0-2}) | |||
* Expands to a statement (either a simple expression or a compound | |||
* do..while(0) statement) that outputs a message with parameter | |||
* substitution if PNG_DEBUG is defined to 2 or more. If PNG_DEBUG | |||
* is undefined, 0 or 1 every png_debug expands to a simple expression | |||
* (actually ((void)0)). | |||
* | |||
* level: level of detail of message, starting at 0. A level 'n' | |||
* message is preceded by 'n' tab characters (not implemented | |||
* on Microsoft compilers unless PNG_DEBUG_FILE is also | |||
* defined, to allow debug DLL compilation with no standard IO). | |||
* message: a printf(3) style text string. A trailing '\n' is added | |||
* to the message. | |||
* arg: 0 to 2 arguments for printf(3) style substitution in message. | |||
*/ | |||
#ifndef PNGDEBUG_H | |||
#define PNGDEBUG_H | |||
/* These settings control the formatting of messages in png.c and pngerror.c */ | |||
/* Moved to pngdebug.h at 1.5.0 */ | |||
# ifndef PNG_LITERAL_SHARP | |||
# define PNG_LITERAL_SHARP 0x23 | |||
# endif | |||
# ifndef PNG_LITERAL_LEFT_SQUARE_BRACKET | |||
# define PNG_LITERAL_LEFT_SQUARE_BRACKET 0x5b | |||
# endif | |||
# ifndef PNG_LITERAL_RIGHT_SQUARE_BRACKET | |||
# define PNG_LITERAL_RIGHT_SQUARE_BRACKET 0x5d | |||
# endif | |||
# ifndef PNG_STRING_NEWLINE | |||
# define PNG_STRING_NEWLINE "\n" | |||
# endif | |||
#ifdef PNG_DEBUG | |||
# if (PNG_DEBUG > 0) | |||
# if !defined(PNG_DEBUG_FILE) && defined(_MSC_VER) | |||
# include <crtdbg.h> | |||
# if (PNG_DEBUG > 1) | |||
# ifndef _DEBUG | |||
# define _DEBUG | |||
# endif | |||
# ifndef png_debug | |||
# define png_debug(l,m) _RPT0(_CRT_WARN,m PNG_STRING_NEWLINE) | |||
# endif | |||
# ifndef png_debug1 | |||
# define png_debug1(l,m,p1) _RPT1(_CRT_WARN,m PNG_STRING_NEWLINE,p1) | |||
# endif | |||
# ifndef png_debug2 | |||
# define png_debug2(l,m,p1,p2) \ | |||
_RPT2(_CRT_WARN,m PNG_STRING_NEWLINE,p1,p2) | |||
# endif | |||
# endif | |||
# else /* PNG_DEBUG_FILE || !_MSC_VER */ | |||
# ifndef PNG_STDIO_SUPPORTED | |||
# include <stdio.h> /* not included yet */ | |||
# endif | |||
# ifndef PNG_DEBUG_FILE | |||
# define PNG_DEBUG_FILE stderr | |||
# endif /* PNG_DEBUG_FILE */ | |||
# if (PNG_DEBUG > 1) | |||
/* Note: ["%s"m PNG_STRING_NEWLINE] probably does not work on | |||
* non-ISO compilers | |||
*/ | |||
# ifdef __STDC__ | |||
# ifndef png_debug | |||
# define png_debug(l,m) \ | |||
do { \ | |||
int num_tabs=l; \ | |||
fprintf(PNG_DEBUG_FILE,"%s"m PNG_STRING_NEWLINE,(num_tabs==1 ? "\t" : \ | |||
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":"")))); \ | |||
} while (0) | |||
# endif | |||
# ifndef png_debug1 | |||
# define png_debug1(l,m,p1) \ | |||
do { \ | |||
int num_tabs=l; \ | |||
fprintf(PNG_DEBUG_FILE,"%s"m PNG_STRING_NEWLINE,(num_tabs==1 ? "\t" : \ | |||
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1); \ | |||
} while (0) | |||
# endif | |||
# ifndef png_debug2 | |||
# define png_debug2(l,m,p1,p2) \ | |||
do { \ | |||
int num_tabs=l; \ | |||
fprintf(PNG_DEBUG_FILE,"%s"m PNG_STRING_NEWLINE,(num_tabs==1 ? "\t" : \ | |||
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))),p1,p2); \ | |||
} while (0) | |||
# endif | |||
# else /* __STDC __ */ | |||
# ifndef png_debug | |||
# define png_debug(l,m) \ | |||
do { \ | |||
int num_tabs=l; \ | |||
char format[256]; \ | |||
snprintf(format,256,"%s%s%s",(num_tabs==1 ? "\t" : \ | |||
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))), \ | |||
m,PNG_STRING_NEWLINE); \ | |||
fprintf(PNG_DEBUG_FILE,format); \ | |||
} while (0) | |||
# endif | |||
# ifndef png_debug1 | |||
# define png_debug1(l,m,p1) \ | |||
do { \ | |||
int num_tabs=l; \ | |||
char format[256]; \ | |||
snprintf(format,256,"%s%s%s",(num_tabs==1 ? "\t" : \ | |||
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))), \ | |||
m,PNG_STRING_NEWLINE); \ | |||
fprintf(PNG_DEBUG_FILE,format,p1); \ | |||
} while (0) | |||
# endif | |||
# ifndef png_debug2 | |||
# define png_debug2(l,m,p1,p2) \ | |||
do { \ | |||
int num_tabs=l; \ | |||
char format[256]; \ | |||
snprintf(format,256,"%s%s%s",(num_tabs==1 ? "\t" : \ | |||
(num_tabs==2 ? "\t\t":(num_tabs>2 ? "\t\t\t":""))), \ | |||
m,PNG_STRING_NEWLINE); \ | |||
fprintf(PNG_DEBUG_FILE,format,p1,p2); \ | |||
} while (0) | |||
# endif | |||
# endif /* __STDC __ */ | |||
# endif /* (PNG_DEBUG > 1) */ | |||
# endif /* _MSC_VER */ | |||
# endif /* (PNG_DEBUG > 0) */ | |||
#endif /* PNG_DEBUG */ | |||
#ifndef png_debug | |||
# define png_debug(l, m) ((void)0) | |||
#endif | |||
#ifndef png_debug1 | |||
# define png_debug1(l, m, p1) ((void)0) | |||
#endif | |||
#ifndef png_debug2 | |||
# define png_debug2(l, m, p1, p2) ((void)0) | |||
#endif | |||
#endif /* PNGDEBUG_H */ |
@@ -1,447 +0,0 @@ | |||
/* pngerror.c - stub functions for i/o and memory allocation | |||
* | |||
* Last changed in libpng 1.5.1 [February 3, 2011] | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
* | |||
* This file provides a location for all error handling. Users who | |||
* need special error handling are expected to write replacement functions | |||
* and use png_set_error_fn() to use those functions. See the instructions | |||
* at each function. | |||
*/ | |||
#include "pngpriv.h" | |||
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |||
static PNG_FUNCTION(void, png_default_error,PNGARG((png_structp png_ptr, | |||
png_const_charp error_message)),PNG_NORETURN); | |||
#ifdef PNG_WARNINGS_SUPPORTED | |||
static void /* PRIVATE */ | |||
png_default_warning PNGARG((png_structp png_ptr, | |||
png_const_charp warning_message)); | |||
#endif /* PNG_WARNINGS_SUPPORTED */ | |||
/* This function is called whenever there is a fatal error. This function | |||
* should not be changed. If there is a need to handle errors differently, | |||
* you should supply a replacement error function and use png_set_error_fn() | |||
* to replace the error function at run-time. | |||
*/ | |||
#ifdef PNG_ERROR_TEXT_SUPPORTED | |||
PNG_FUNCTION(void,PNGAPI | |||
png_error,(png_structp png_ptr, png_const_charp error_message),PNG_NORETURN) | |||
{ | |||
#ifdef PNG_ERROR_NUMBERS_SUPPORTED | |||
char msg[16]; | |||
if (png_ptr != NULL) | |||
{ | |||
if (png_ptr->flags& | |||
(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT)) | |||
{ | |||
if (*error_message == PNG_LITERAL_SHARP) | |||
{ | |||
/* Strip "#nnnn " from beginning of error message. */ | |||
int offset; | |||
for (offset = 1; offset<15; offset++) | |||
if (error_message[offset] == ' ') | |||
break; | |||
if (png_ptr->flags&PNG_FLAG_STRIP_ERROR_TEXT) | |||
{ | |||
int i; | |||
for (i = 0; i < offset - 1; i++) | |||
msg[i] = error_message[i + 1]; | |||
msg[i - 1] = '\0'; | |||
error_message = msg; | |||
} | |||
else | |||
error_message += offset; | |||
} | |||
else | |||
{ | |||
if (png_ptr->flags&PNG_FLAG_STRIP_ERROR_TEXT) | |||
{ | |||
msg[0] = '0'; | |||
msg[1] = '\0'; | |||
error_message = msg; | |||
} | |||
} | |||
} | |||
} | |||
#endif | |||
if (png_ptr != NULL && png_ptr->error_fn != NULL) | |||
(*(png_ptr->error_fn))(png_ptr, error_message); | |||
/* If the custom handler doesn't exist, or if it returns, | |||
use the default handler, which will not return. */ | |||
png_default_error(png_ptr, error_message); | |||
} | |||
#else | |||
PNG_FUNCTION(void,PNGAPI | |||
png_err,(png_structp png_ptr),PNG_NORETURN) | |||
{ | |||
if (png_ptr != NULL && png_ptr->error_fn != NULL) | |||
(*(png_ptr->error_fn))(png_ptr, '\0'); | |||
/* If the custom handler doesn't exist, or if it returns, | |||
use the default handler, which will not return. */ | |||
png_default_error(png_ptr, '\0'); | |||
} | |||
#endif /* PNG_ERROR_TEXT_SUPPORTED */ | |||
#ifdef PNG_WARNINGS_SUPPORTED | |||
/* This function is called whenever there is a non-fatal error. This function | |||
* should not be changed. If there is a need to handle warnings differently, | |||
* you should supply a replacement warning function and use | |||
* png_set_error_fn() to replace the warning function at run-time. | |||
*/ | |||
void PNGAPI | |||
png_warning(png_structp png_ptr, png_const_charp warning_message) | |||
{ | |||
int offset = 0; | |||
if (png_ptr != NULL) | |||
{ | |||
#ifdef PNG_ERROR_NUMBERS_SUPPORTED | |||
if (png_ptr->flags& | |||
(PNG_FLAG_STRIP_ERROR_NUMBERS|PNG_FLAG_STRIP_ERROR_TEXT)) | |||
#endif | |||
{ | |||
if (*warning_message == PNG_LITERAL_SHARP) | |||
{ | |||
for (offset = 1; offset < 15; offset++) | |||
if (warning_message[offset] == ' ') | |||
break; | |||
} | |||
} | |||
} | |||
if (png_ptr != NULL && png_ptr->warning_fn != NULL) | |||
(*(png_ptr->warning_fn))(png_ptr, warning_message + offset); | |||
else | |||
png_default_warning(png_ptr, warning_message + offset); | |||
} | |||
#endif /* PNG_WARNINGS_SUPPORTED */ | |||
#ifdef PNG_BENIGN_ERRORS_SUPPORTED | |||
void PNGAPI | |||
png_benign_error(png_structp png_ptr, png_const_charp error_message) | |||
{ | |||
if (png_ptr->flags & PNG_FLAG_BENIGN_ERRORS_WARN) | |||
png_warning(png_ptr, error_message); | |||
else | |||
png_error(png_ptr, error_message); | |||
} | |||
#endif | |||
/* These utilities are used internally to build an error message that relates | |||
* to the current chunk. The chunk name comes from png_ptr->chunk_name, | |||
* this is used to prefix the message. The message is limited in length | |||
* to 63 bytes, the name characters are output as hex digits wrapped in [] | |||
* if the character is invalid. | |||
*/ | |||
#define isnonalpha(c) ((c) < 65 || (c) > 122 || ((c) > 90 && (c) < 97)) | |||
static PNG_CONST char png_digit[16] = { | |||
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', | |||
'A', 'B', 'C', 'D', 'E', 'F' | |||
}; | |||
#define PNG_MAX_ERROR_TEXT 64 | |||
#if defined(PNG_WARNINGS_SUPPORTED) || defined(PNG_ERROR_TEXT_SUPPORTED) | |||
static void /* PRIVATE */ | |||
png_format_buffer(png_structp png_ptr, png_charp buffer, png_const_charp | |||
error_message) | |||
{ | |||
int iout = 0, iin = 0; | |||
while (iin < 4) | |||
{ | |||
int c = png_ptr->chunk_name[iin++]; | |||
if (isnonalpha(c)) | |||
{ | |||
buffer[iout++] = PNG_LITERAL_LEFT_SQUARE_BRACKET; | |||
buffer[iout++] = png_digit[(c & 0xf0) >> 4]; | |||
buffer[iout++] = png_digit[c & 0x0f]; | |||
buffer[iout++] = PNG_LITERAL_RIGHT_SQUARE_BRACKET; | |||
} | |||
else | |||
{ | |||
buffer[iout++] = (png_byte)c; | |||
} | |||
} | |||
if (error_message == NULL) | |||
buffer[iout] = '\0'; | |||
else | |||
{ | |||
buffer[iout++] = ':'; | |||
buffer[iout++] = ' '; | |||
png_memcpy(buffer + iout, error_message, PNG_MAX_ERROR_TEXT); | |||
buffer[iout + PNG_MAX_ERROR_TEXT - 1] = '\0'; | |||
} | |||
} | |||
#endif /* PNG_WARNINGS_SUPPORTED || PNG_ERROR_TEXT_SUPPORTED */ | |||
#if defined(PNG_READ_SUPPORTED) && defined(PNG_ERROR_TEXT_SUPPORTED) | |||
PNG_FUNCTION(void,PNGAPI | |||
png_chunk_error,(png_structp png_ptr, png_const_charp error_message), | |||
PNG_NORETURN) | |||
{ | |||
char msg[18+PNG_MAX_ERROR_TEXT]; | |||
if (png_ptr == NULL) | |||
png_error(png_ptr, error_message); | |||
else | |||
{ | |||
png_format_buffer(png_ptr, msg, error_message); | |||
png_error(png_ptr, msg); | |||
} | |||
} | |||
#endif /* PNG_READ_SUPPORTED && PNG_ERROR_TEXT_SUPPORTED */ | |||
#ifdef PNG_WARNINGS_SUPPORTED | |||
void PNGAPI | |||
png_chunk_warning(png_structp png_ptr, png_const_charp warning_message) | |||
{ | |||
char msg[18+PNG_MAX_ERROR_TEXT]; | |||
if (png_ptr == NULL) | |||
png_warning(png_ptr, warning_message); | |||
else | |||
{ | |||
png_format_buffer(png_ptr, msg, warning_message); | |||
png_warning(png_ptr, msg); | |||
} | |||
} | |||
#endif /* PNG_WARNINGS_SUPPORTED */ | |||
#ifdef PNG_READ_SUPPORTED | |||
#ifdef PNG_BENIGN_ERRORS_SUPPORTED | |||
void PNGAPI | |||
png_chunk_benign_error(png_structp png_ptr, png_const_charp error_message) | |||
{ | |||
if (png_ptr->flags & PNG_FLAG_BENIGN_ERRORS_WARN) | |||
png_chunk_warning(png_ptr, error_message); | |||
else | |||
png_chunk_error(png_ptr, error_message); | |||
} | |||
#endif | |||
#endif /* PNG_READ_SUPPORTED */ | |||
#ifdef PNG_ERROR_TEXT_SUPPORTED | |||
#ifdef PNG_FLOATING_POINT_SUPPORTED | |||
PNG_FUNCTION(void, | |||
png_fixed_error,(png_structp png_ptr, png_const_charp name),PNG_NORETURN) | |||
{ | |||
# define fixed_message "fixed point overflow in " | |||
# define fixed_message_ln ((sizeof fixed_message)-1) | |||
int iin; | |||
char msg[fixed_message_ln+PNG_MAX_ERROR_TEXT]; | |||
png_memcpy(msg, fixed_message, fixed_message_ln); | |||
iin = 0; | |||
if (name != NULL) while (iin < (PNG_MAX_ERROR_TEXT-1) && name[iin] != 0) | |||
{ | |||
msg[fixed_message_ln + iin] = name[iin]; | |||
++iin; | |||
} | |||
msg[fixed_message_ln + iin] = 0; | |||
png_error(png_ptr, msg); | |||
} | |||
#endif | |||
#endif | |||
#ifdef PNG_SETJMP_SUPPORTED | |||
/* This API only exists if ANSI-C style error handling is used, | |||
* otherwise it is necessary for png_default_error to be overridden. | |||
*/ | |||
jmp_buf* PNGAPI | |||
png_set_longjmp_fn(png_structp png_ptr, png_longjmp_ptr longjmp_fn, | |||
size_t jmp_buf_size) | |||
{ | |||
if (png_ptr == NULL || jmp_buf_size != png_sizeof(jmp_buf)) | |||
return NULL; | |||
png_ptr->longjmp_fn = longjmp_fn; | |||
return &png_ptr->png_jmpbuf; | |||
} | |||
#endif | |||
/* This is the default error handling function. Note that replacements for | |||
* this function MUST NOT RETURN, or the program will likely crash. This | |||
* function is used by default, or if the program supplies NULL for the | |||
* error function pointer in png_set_error_fn(). | |||
*/ | |||
static PNG_FUNCTION(void /* PRIVATE */, | |||
png_default_error,(png_structp png_ptr, png_const_charp error_message), | |||
PNG_NORETURN) | |||
{ | |||
#ifdef PNG_CONSOLE_IO_SUPPORTED | |||
#ifdef PNG_ERROR_NUMBERS_SUPPORTED | |||
if (*error_message == PNG_LITERAL_SHARP) | |||
{ | |||
/* Strip "#nnnn " from beginning of error message. */ | |||
int offset; | |||
char error_number[16]; | |||
for (offset = 0; offset<15; offset++) | |||
{ | |||
error_number[offset] = error_message[offset + 1]; | |||
if (error_message[offset] == ' ') | |||
break; | |||
} | |||
if ((offset > 1) && (offset < 15)) | |||
{ | |||
error_number[offset - 1] = '\0'; | |||
fprintf(stderr, "libpng error no. %s: %s", | |||
error_number, error_message + offset + 1); | |||
fprintf(stderr, PNG_STRING_NEWLINE); | |||
} | |||
else | |||
{ | |||
fprintf(stderr, "libpng error: %s, offset=%d", | |||
error_message, offset); | |||
fprintf(stderr, PNG_STRING_NEWLINE); | |||
} | |||
} | |||
else | |||
#endif | |||
{ | |||
fprintf(stderr, "libpng error: %s", error_message); | |||
fprintf(stderr, PNG_STRING_NEWLINE); | |||
} | |||
#endif | |||
#ifndef PNG_CONSOLE_IO_SUPPORTED | |||
PNG_UNUSED(error_message) /* Make compiler happy */ | |||
#endif | |||
png_longjmp(png_ptr, 1); | |||
} | |||
PNG_FUNCTION(void,PNGAPI | |||
png_longjmp,(png_structp png_ptr, int val),PNG_NORETURN) | |||
{ | |||
#ifdef PNG_SETJMP_SUPPORTED | |||
if (png_ptr && png_ptr->longjmp_fn) | |||
{ | |||
# ifdef USE_FAR_KEYWORD | |||
{ | |||
jmp_buf png_jmpbuf; | |||
png_memcpy(png_jmpbuf, png_ptr->png_jmpbuf, png_sizeof(jmp_buf)); | |||
png_ptr->longjmp_fn(png_jmpbuf, val); | |||
} | |||
# else | |||
png_ptr->longjmp_fn(png_ptr->png_jmpbuf, val); | |||
# endif | |||
} | |||
#endif | |||
/* Here if not setjmp support or if png_ptr is null. */ | |||
PNG_ABORT(); | |||
} | |||
#ifdef PNG_WARNINGS_SUPPORTED | |||
/* This function is called when there is a warning, but the library thinks | |||
* it can continue anyway. Replacement functions don't have to do anything | |||
* here if you don't want them to. In the default configuration, png_ptr is | |||
* not used, but it is passed in case it may be useful. | |||
*/ | |||
static void /* PRIVATE */ | |||
png_default_warning(png_structp png_ptr, png_const_charp warning_message) | |||
{ | |||
#ifdef PNG_CONSOLE_IO_SUPPORTED | |||
# ifdef PNG_ERROR_NUMBERS_SUPPORTED | |||
if (*warning_message == PNG_LITERAL_SHARP) | |||
{ | |||
int offset; | |||
char warning_number[16]; | |||
for (offset = 0; offset < 15; offset++) | |||
{ | |||
warning_number[offset] = warning_message[offset + 1]; | |||
if (warning_message[offset] == ' ') | |||
break; | |||
} | |||
if ((offset > 1) && (offset < 15)) | |||
{ | |||
warning_number[offset + 1] = '\0'; | |||
fprintf(stderr, "libpng warning no. %s: %s", | |||
warning_number, warning_message + offset); | |||
fprintf(stderr, PNG_STRING_NEWLINE); | |||
} | |||
else | |||
{ | |||
fprintf(stderr, "libpng warning: %s", | |||
warning_message); | |||
fprintf(stderr, PNG_STRING_NEWLINE); | |||
} | |||
} | |||
else | |||
# endif | |||
{ | |||
fprintf(stderr, "libpng warning: %s", warning_message); | |||
fprintf(stderr, PNG_STRING_NEWLINE); | |||
} | |||
#else | |||
PNG_UNUSED(warning_message) /* Make compiler happy */ | |||
#endif | |||
PNG_UNUSED(png_ptr) /* Make compiler happy */ | |||
} | |||
#endif /* PNG_WARNINGS_SUPPORTED */ | |||
/* This function is called when the application wants to use another method | |||
* of handling errors and warnings. Note that the error function MUST NOT | |||
* return to the calling routine or serious problems will occur. The return | |||
* method used in the default routine calls longjmp(png_ptr->png_jmpbuf, 1) | |||
*/ | |||
void PNGAPI | |||
png_set_error_fn(png_structp png_ptr, png_voidp error_ptr, | |||
png_error_ptr error_fn, png_error_ptr warning_fn) | |||
{ | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->error_ptr = error_ptr; | |||
png_ptr->error_fn = error_fn; | |||
png_ptr->warning_fn = warning_fn; | |||
} | |||
/* This function returns a pointer to the error_ptr associated with the user | |||
* functions. The application should free any memory associated with this | |||
* pointer before png_write_destroy and png_read_destroy are called. | |||
*/ | |||
png_voidp PNGAPI | |||
png_get_error_ptr(png_const_structp png_ptr) | |||
{ | |||
if (png_ptr == NULL) | |||
return NULL; | |||
return ((png_voidp)png_ptr->error_ptr); | |||
} | |||
#ifdef PNG_ERROR_NUMBERS_SUPPORTED | |||
void PNGAPI | |||
png_set_strip_error_numbers(png_structp png_ptr, png_uint_32 strip_mode) | |||
{ | |||
if (png_ptr != NULL) | |||
{ | |||
png_ptr->flags &= | |||
((~(PNG_FLAG_STRIP_ERROR_NUMBERS | | |||
PNG_FLAG_STRIP_ERROR_TEXT))&strip_mode); | |||
} | |||
} | |||
#endif | |||
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ |
@@ -1,270 +0,0 @@ | |||
/* pnginfo.h - header file for PNG reference library | |||
* | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* Last changed in libpng 1.5.0 [January 6, 2011] | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
*/ | |||
/* png_info is a structure that holds the information in a PNG file so | |||
* that the application can find out the characteristics of the image. | |||
* If you are reading the file, this structure will tell you what is | |||
* in the PNG file. If you are writing the file, fill in the information | |||
* you want to put into the PNG file, using png_set_*() functions, then | |||
* call png_write_info(). | |||
* | |||
* The names chosen should be very close to the PNG specification, so | |||
* consult that document for information about the meaning of each field. | |||
* | |||
* With libpng < 0.95, it was only possible to directly set and read the | |||
* the values in the png_info_struct, which meant that the contents and | |||
* order of the values had to remain fixed. With libpng 0.95 and later, | |||
* however, there are now functions that abstract the contents of | |||
* png_info_struct from the application, so this makes it easier to use | |||
* libpng with dynamic libraries, and even makes it possible to use | |||
* libraries that don't have all of the libpng ancillary chunk-handing | |||
* functionality. In libpng-1.5.0 this was moved into a separate private | |||
* file that is not visible to applications. | |||
* | |||
* The following members may have allocated storage attached that should be | |||
* cleaned up before the structure is discarded: palette, trans, text, | |||
* pcal_purpose, pcal_units, pcal_params, hist, iccp_name, iccp_profile, | |||
* splt_palettes, scal_unit, row_pointers, and unknowns. By default, these | |||
* are automatically freed when the info structure is deallocated, if they were | |||
* allocated internally by libpng. This behavior can be changed by means | |||
* of the png_data_freer() function. | |||
* | |||
* More allocation details: all the chunk-reading functions that | |||
* change these members go through the corresponding png_set_* | |||
* functions. A function to clear these members is available: see | |||
* png_free_data(). The png_set_* functions do not depend on being | |||
* able to point info structure members to any of the storage they are | |||
* passed (they make their own copies), EXCEPT that the png_set_text | |||
* functions use the same storage passed to them in the text_ptr or | |||
* itxt_ptr structure argument, and the png_set_rows and png_set_unknowns | |||
* functions do not make their own copies. | |||
*/ | |||
#ifndef PNGINFO_H | |||
#define PNGINFO_H | |||
struct png_info_def | |||
{ | |||
/* the following are necessary for every PNG file */ | |||
png_uint_32 width; /* width of image in pixels (from IHDR) */ | |||
png_uint_32 height; /* height of image in pixels (from IHDR) */ | |||
png_uint_32 valid; /* valid chunk data (see PNG_INFO_ below) */ | |||
png_size_t rowbytes; /* bytes needed to hold an untransformed row */ | |||
png_colorp palette; /* array of color values (valid & PNG_INFO_PLTE) */ | |||
png_uint_16 num_palette; /* number of color entries in "palette" (PLTE) */ | |||
png_uint_16 num_trans; /* number of transparent palette color (tRNS) */ | |||
png_byte bit_depth; /* 1, 2, 4, 8, or 16 bits/channel (from IHDR) */ | |||
png_byte color_type; /* see PNG_COLOR_TYPE_ below (from IHDR) */ | |||
/* The following three should have been named *_method not *_type */ | |||
png_byte compression_type; /* must be PNG_COMPRESSION_TYPE_BASE (IHDR) */ | |||
png_byte filter_type; /* must be PNG_FILTER_TYPE_BASE (from IHDR) */ | |||
png_byte interlace_type; /* One of PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */ | |||
/* The following is informational only on read, and not used on writes. */ | |||
png_byte channels; /* number of data channels per pixel (1, 2, 3, 4) */ | |||
png_byte pixel_depth; /* number of bits per pixel */ | |||
png_byte spare_byte; /* to align the data, and for future use */ | |||
png_byte signature[8]; /* magic bytes read by libpng from start of file */ | |||
/* The rest of the data is optional. If you are reading, check the | |||
* valid field to see if the information in these are valid. If you | |||
* are writing, set the valid field to those chunks you want written, | |||
* and initialize the appropriate fields below. | |||
*/ | |||
#if defined(PNG_gAMA_SUPPORTED) | |||
/* The gAMA chunk describes the gamma characteristics of the system | |||
* on which the image was created, normally in the range [1.0, 2.5]. | |||
* Data is valid if (valid & PNG_INFO_gAMA) is non-zero. | |||
*/ | |||
png_fixed_point gamma; | |||
#endif | |||
#ifdef PNG_sRGB_SUPPORTED | |||
/* GR-P, 0.96a */ | |||
/* Data valid if (valid & PNG_INFO_sRGB) non-zero. */ | |||
png_byte srgb_intent; /* sRGB rendering intent [0, 1, 2, or 3] */ | |||
#endif | |||
#ifdef PNG_TEXT_SUPPORTED | |||
/* The tEXt, and zTXt chunks contain human-readable textual data in | |||
* uncompressed, compressed, and optionally compressed forms, respectively. | |||
* The data in "text" is an array of pointers to uncompressed, | |||
* null-terminated C strings. Each chunk has a keyword that describes the | |||
* textual data contained in that chunk. Keywords are not required to be | |||
* unique, and the text string may be empty. Any number of text chunks may | |||
* be in an image. | |||
*/ | |||
int num_text; /* number of comments read or comments to write */ | |||
int max_text; /* current size of text array */ | |||
png_textp text; /* array of comments read or comments to write */ | |||
#endif /* PNG_TEXT_SUPPORTED */ | |||
#ifdef PNG_tIME_SUPPORTED | |||
/* The tIME chunk holds the last time the displayed image data was | |||
* modified. See the png_time struct for the contents of this struct. | |||
*/ | |||
png_time mod_time; | |||
#endif | |||
#ifdef PNG_sBIT_SUPPORTED | |||
/* The sBIT chunk specifies the number of significant high-order bits | |||
* in the pixel data. Values are in the range [1, bit_depth], and are | |||
* only specified for the channels in the pixel data. The contents of | |||
* the low-order bits is not specified. Data is valid if | |||
* (valid & PNG_INFO_sBIT) is non-zero. | |||
*/ | |||
png_color_8 sig_bit; /* significant bits in color channels */ | |||
#endif | |||
#if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_EXPAND_SUPPORTED) || \ | |||
defined(PNG_READ_BACKGROUND_SUPPORTED) | |||
/* The tRNS chunk supplies transparency data for paletted images and | |||
* other image types that don't need a full alpha channel. There are | |||
* "num_trans" transparency values for a paletted image, stored in the | |||
* same order as the palette colors, starting from index 0. Values | |||
* for the data are in the range [0, 255], ranging from fully transparent | |||
* to fully opaque, respectively. For non-paletted images, there is a | |||
* single color specified that should be treated as fully transparent. | |||
* Data is valid if (valid & PNG_INFO_tRNS) is non-zero. | |||
*/ | |||
png_bytep trans; /* alpha values for paletted image */ | |||
png_bytep trans_alpha; /* alpha values for paletted image */ | |||
png_color_16 trans_color; /* transparent color for non-palette image */ | |||
#endif | |||
#if defined(PNG_bKGD_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) | |||
/* The bKGD chunk gives the suggested image background color if the | |||
* display program does not have its own background color and the image | |||
* is needs to composited onto a background before display. The colors | |||
* in "background" are normally in the same color space/depth as the | |||
* pixel data. Data is valid if (valid & PNG_INFO_bKGD) is non-zero. | |||
*/ | |||
png_color_16 background; | |||
#endif | |||
#ifdef PNG_oFFs_SUPPORTED | |||
/* The oFFs chunk gives the offset in "offset_unit_type" units rightwards | |||
* and downwards from the top-left corner of the display, page, or other | |||
* application-specific co-ordinate space. See the PNG_OFFSET_ defines | |||
* below for the unit types. Valid if (valid & PNG_INFO_oFFs) non-zero. | |||
*/ | |||
png_int_32 x_offset; /* x offset on page */ | |||
png_int_32 y_offset; /* y offset on page */ | |||
png_byte offset_unit_type; /* offset units type */ | |||
#endif | |||
#ifdef PNG_pHYs_SUPPORTED | |||
/* The pHYs chunk gives the physical pixel density of the image for | |||
* display or printing in "phys_unit_type" units (see PNG_RESOLUTION_ | |||
* defines below). Data is valid if (valid & PNG_INFO_pHYs) is non-zero. | |||
*/ | |||
png_uint_32 x_pixels_per_unit; /* horizontal pixel density */ | |||
png_uint_32 y_pixels_per_unit; /* vertical pixel density */ | |||
png_byte phys_unit_type; /* resolution type (see PNG_RESOLUTION_ below) */ | |||
#endif | |||
#ifdef PNG_hIST_SUPPORTED | |||
/* The hIST chunk contains the relative frequency or importance of the | |||
* various palette entries, so that a viewer can intelligently select a | |||
* reduced-color palette, if required. Data is an array of "num_palette" | |||
* values in the range [0,65535]. Data valid if (valid & PNG_INFO_hIST) | |||
* is non-zero. | |||
*/ | |||
png_uint_16p hist; | |||
#endif | |||
#ifdef PNG_cHRM_SUPPORTED | |||
/* The cHRM chunk describes the CIE color characteristics of the monitor | |||
* on which the PNG was created. This data allows the viewer to do gamut | |||
* mapping of the input image to ensure that the viewer sees the same | |||
* colors in the image as the creator. Values are in the range | |||
* [0.0, 0.8]. Data valid if (valid & PNG_INFO_cHRM) non-zero. | |||
*/ | |||
png_fixed_point x_white; | |||
png_fixed_point y_white; | |||
png_fixed_point x_red; | |||
png_fixed_point y_red; | |||
png_fixed_point x_green; | |||
png_fixed_point y_green; | |||
png_fixed_point x_blue; | |||
png_fixed_point y_blue; | |||
#endif | |||
#ifdef PNG_pCAL_SUPPORTED | |||
/* The pCAL chunk describes a transformation between the stored pixel | |||
* values and original physical data values used to create the image. | |||
* The integer range [0, 2^bit_depth - 1] maps to the floating-point | |||
* range given by [pcal_X0, pcal_X1], and are further transformed by a | |||
* (possibly non-linear) transformation function given by "pcal_type" | |||
* and "pcal_params" into "pcal_units". Please see the PNG_EQUATION_ | |||
* defines below, and the PNG-Group's PNG extensions document for a | |||
* complete description of the transformations and how they should be | |||
* implemented, and for a description of the ASCII parameter strings. | |||
* Data values are valid if (valid & PNG_INFO_pCAL) non-zero. | |||
*/ | |||
png_charp pcal_purpose; /* pCAL chunk description string */ | |||
png_int_32 pcal_X0; /* minimum value */ | |||
png_int_32 pcal_X1; /* maximum value */ | |||
png_charp pcal_units; /* Latin-1 string giving physical units */ | |||
png_charpp pcal_params; /* ASCII strings containing parameter values */ | |||
png_byte pcal_type; /* equation type (see PNG_EQUATION_ below) */ | |||
png_byte pcal_nparams; /* number of parameters given in pcal_params */ | |||
#endif | |||
/* New members added in libpng-1.0.6 */ | |||
png_uint_32 free_me; /* flags items libpng is responsible for freeing */ | |||
#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED) || \ | |||
defined(PNG_HANDLE_AS_UNKNOWN_SUPPORTED) | |||
/* Storage for unknown chunks that the library doesn't recognize. */ | |||
png_unknown_chunkp unknown_chunks; | |||
int unknown_chunks_num; | |||
#endif | |||
#ifdef PNG_iCCP_SUPPORTED | |||
/* iCCP chunk data. */ | |||
png_charp iccp_name; /* profile name */ | |||
png_bytep iccp_profile; /* International Color Consortium profile data */ | |||
png_uint_32 iccp_proflen; /* ICC profile data length */ | |||
png_byte iccp_compression; /* Always zero */ | |||
#endif | |||
#ifdef PNG_sPLT_SUPPORTED | |||
/* Data on sPLT chunks (there may be more than one). */ | |||
png_sPLT_tp splt_palettes; | |||
png_uint_32 splt_palettes_num; | |||
#endif | |||
#ifdef PNG_sCAL_SUPPORTED | |||
/* The sCAL chunk describes the actual physical dimensions of the | |||
* subject matter of the graphic. The chunk contains a unit specification | |||
* a byte value, and two ASCII strings representing floating-point | |||
* values. The values are width and height corresponsing to one pixel | |||
* in the image. Data values are valid if (valid & PNG_INFO_sCAL) is | |||
* non-zero. | |||
*/ | |||
png_byte scal_unit; /* unit of physical scale */ | |||
png_charp scal_s_width; /* string containing height */ | |||
png_charp scal_s_height; /* string containing width */ | |||
#endif | |||
#ifdef PNG_INFO_IMAGE_SUPPORTED | |||
/* Memory has been allocated if (valid & PNG_ALLOCATED_INFO_ROWS) | |||
non-zero */ | |||
/* Data valid if (valid & PNG_INFO_IDAT) non-zero */ | |||
png_bytepp row_pointers; /* the image bits */ | |||
#endif | |||
}; | |||
#endif /* PNGINFO_H */ |
@@ -1,173 +0,0 @@ | |||
/* pnglibconf.h - library build configuration */ | |||
/* libpng version 1.5.0 - January 6, 2011 */ | |||
/* Copyright (c) 1998-2011 Glenn Randers-Pehrson */ | |||
/* This code is released under the libpng license. */ | |||
/* For conditions of distribution and use, see the disclaimer */ | |||
/* and license in png.h */ | |||
/* pnglibconf.h */ | |||
/* Machine generated file: DO NOT EDIT */ | |||
/* Derived from: scripts/pnglibconf.dfa */ | |||
#ifndef PNGLCONF_H | |||
#define PNGLCONF_H | |||
/* settings */ | |||
#define PNG_MAX_GAMMA_8 11 | |||
#define PNG_CALLOC_SUPPORTED | |||
#define PNG_QUANTIZE_RED_BITS 5 | |||
#define PNG_USER_WIDTH_MAX 1000000L | |||
#define PNG_QUANTIZE_GREEN_BITS 5 | |||
#define PNG_API_RULE 0 | |||
#define PNG_QUANTIZE_BLUE_BITS 5 | |||
#define PNG_USER_CHUNK_CACHE_MAX 0 | |||
#define PNG_USER_HEIGHT_MAX 1000000L | |||
#define PNG_sCAL_PRECISION 5 | |||
#define PNG_COST_SHIFT 3 | |||
#define PNG_WEIGHT_SHIFT 8 | |||
#define PNG_USER_CHUNK_MALLOC_MAX 0 | |||
#define PNG_DEFAULT_READ_MACROS 1 | |||
#define PNG_ZBUF_SIZE 8192 | |||
#define PNG_GAMMA_THRESHOLD_FIXED 5000 | |||
/* end of settings */ | |||
/* options */ | |||
#define PNG_INFO_IMAGE_SUPPORTED | |||
#define PNG_HANDLE_AS_UNKNOWN_SUPPORTED | |||
#define PNG_POINTER_INDEXING_SUPPORTED | |||
#define PNG_WARNINGS_SUPPORTED | |||
#define PNG_FLOATING_ARITHMETIC_SUPPORTED | |||
#define PNG_WRITE_SUPPORTED | |||
#define PNG_WRITE_INTERLACING_SUPPORTED | |||
#define PNG_WRITE_16BIT_SUPPORTED | |||
#define PNG_EASY_ACCESS_SUPPORTED | |||
#define PNG_ALIGN_MEMORY_SUPPORTED | |||
#define PNG_WRITE_WEIGHTED_FILTER_SUPPORTED | |||
#define PNG_WRITE_UNKNOWN_CHUNKS_SUPPORTED | |||
#define PNG_USER_LIMITS_SUPPORTED | |||
#define PNG_FIXED_POINT_SUPPORTED | |||
/*#undef PNG_ERROR_NUMBERS_SUPPORTED*/ | |||
#define PNG_ERROR_TEXT_SUPPORTED | |||
#define PNG_READ_SUPPORTED | |||
/*#undef PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED*/ | |||
#define PNG_BENIGN_ERRORS_SUPPORTED | |||
#define PNG_SETJMP_SUPPORTED | |||
#define PNG_WRITE_FLUSH_SUPPORTED | |||
#define PNG_MNG_FEATURES_SUPPORTED | |||
#define PNG_FLOATING_POINT_SUPPORTED | |||
#define PNG_INCH_CONVERSIONS_SUPPORTED | |||
#define PNG_STDIO_SUPPORTED | |||
#define PNG_READ_UNKNOWN_CHUNKS_SUPPORTED | |||
#define PNG_USER_MEM_SUPPORTED | |||
#define PNG_IO_STATE_SUPPORTED | |||
#define PNG_SET_USER_LIMITS_SUPPORTED | |||
#define PNG_READ_ANCILLARY_CHUNKS_SUPPORTED | |||
#define PNG_WRITE_INT_FUNCTIONS_SUPPORTED | |||
#define PNG_WRITE_ANCILLARY_CHUNKS_SUPPORTED | |||
#define PNG_WRITE_FILTER_SUPPORTED | |||
#define PNG_SET_CHUNK_CACHE_LIMIT_SUPPORTED | |||
#define PNG_WRITE_iCCP_SUPPORTED | |||
#define PNG_READ_TRANSFORMS_SUPPORTED | |||
#define PNG_READ_GAMMA_SUPPORTED | |||
#define PNG_READ_bKGD_SUPPORTED | |||
#define PNG_UNKNOWN_CHUNKS_SUPPORTED | |||
#define PNG_READ_sCAL_SUPPORTED | |||
#define PNG_WRITE_hIST_SUPPORTED | |||
#define PNG_READ_OPT_PLTE_SUPPORTED | |||
#define PNG_SET_CHUNK_MALLOC_LIMIT_SUPPORTED | |||
#define PNG_WRITE_gAMA_SUPPORTED | |||
#define PNG_READ_GRAY_TO_RGB_SUPPORTED | |||
#define PNG_WRITE_pCAL_SUPPORTED | |||
#define PNG_READ_INVERT_ALPHA_SUPPORTED | |||
#define PNG_WRITE_TRANSFORMS_SUPPORTED | |||
#define PNG_READ_sBIT_SUPPORTED | |||
#define PNG_READ_PACK_SUPPORTED | |||
#define PNG_WRITE_SWAP_SUPPORTED | |||
#define PNG_READ_cHRM_SUPPORTED | |||
#define PNG_WRITE_tIME_SUPPORTED | |||
#define PNG_READ_INTERLACING_SUPPORTED | |||
#define PNG_READ_tRNS_SUPPORTED | |||
#define PNG_WRITE_pHYs_SUPPORTED | |||
#define PNG_WRITE_INVERT_SUPPORTED | |||
#define PNG_READ_RGB_TO_GRAY_SUPPORTED | |||
#define PNG_WRITE_sRGB_SUPPORTED | |||
#define PNG_READ_oFFs_SUPPORTED | |||
#define PNG_WRITE_FILLER_SUPPORTED | |||
#define PNG_WRITE_TEXT_SUPPORTED | |||
#define PNG_WRITE_SHIFT_SUPPORTED | |||
#define PNG_PROGRESSIVE_READ_SUPPORTED | |||
#define PNG_READ_SHIFT_SUPPORTED | |||
#define PNG_CONVERT_tIME_SUPPORTED | |||
#define PNG_READ_USER_TRANSFORM_SUPPORTED | |||
#define PNG_READ_INT_FUNCTIONS_SUPPORTED | |||
#define PNG_READ_USER_CHUNKS_SUPPORTED | |||
#define PNG_READ_hIST_SUPPORTED | |||
#define PNG_READ_16BIT_SUPPORTED | |||
#define PNG_READ_SWAP_ALPHA_SUPPORTED | |||
#define PNG_READ_COMPOSITE_NODIV_SUPPORTED | |||
#define PNG_SEQUENTIAL_READ_SUPPORTED | |||
#define PNG_READ_BACKGROUND_SUPPORTED | |||
#define PNG_READ_QUANTIZE_SUPPORTED | |||
#define PNG_READ_iCCP_SUPPORTED | |||
#define PNG_READ_STRIP_ALPHA_SUPPORTED | |||
#define PNG_READ_PACKSWAP_SUPPORTED | |||
#define PNG_READ_sRGB_SUPPORTED | |||
#define PNG_WRITE_tEXt_SUPPORTED | |||
#define PNG_READ_gAMA_SUPPORTED | |||
#define PNG_READ_pCAL_SUPPORTED | |||
#define PNG_READ_EXPAND_SUPPORTED | |||
#define PNG_WRITE_sPLT_SUPPORTED | |||
#define PNG_READ_SWAP_SUPPORTED | |||
#define PNG_READ_tIME_SUPPORTED | |||
#define PNG_READ_pHYs_SUPPORTED | |||
#define PNG_WRITE_SWAP_ALPHA_SUPPORTED | |||
#define PNG_TIME_RFC1123_SUPPORTED | |||
#define PNG_READ_TEXT_SUPPORTED | |||
#define PNG_WRITE_BGR_SUPPORTED | |||
#define PNG_USER_CHUNKS_SUPPORTED | |||
#define PNG_CONSOLE_IO_SUPPORTED | |||
#define PNG_WRITE_PACK_SUPPORTED | |||
#define PNG_READ_FILLER_SUPPORTED | |||
#define PNG_WRITE_bKGD_SUPPORTED | |||
#define PNG_WRITE_tRNS_SUPPORTED | |||
#define PNG_READ_sPLT_SUPPORTED | |||
#define PNG_WRITE_sCAL_SUPPORTED | |||
#define PNG_WRITE_oFFs_SUPPORTED | |||
#define PNG_READ_tEXt_SUPPORTED | |||
#define PNG_WRITE_sBIT_SUPPORTED | |||
#define PNG_READ_INVERT_SUPPORTED | |||
#define PNG_READ_16_TO_8_SUPPORTED | |||
#define PNG_WRITE_cHRM_SUPPORTED | |||
#define PNG_16BIT_SUPPORTED | |||
#define PNG_WRITE_USER_TRANSFORM_SUPPORTED | |||
#define PNG_READ_BGR_SUPPORTED | |||
#define PNG_WRITE_PACKSWAP_SUPPORTED | |||
#define PNG_WRITE_INVERT_ALPHA_SUPPORTED | |||
#define PNG_sCAL_SUPPORTED | |||
#define PNG_WRITE_zTXt_SUPPORTED | |||
#define PNG_USER_TRANSFORM_INFO_SUPPORTED | |||
#define PNG_sBIT_SUPPORTED | |||
#define PNG_cHRM_SUPPORTED | |||
#define PNG_bKGD_SUPPORTED | |||
#define PNG_tRNS_SUPPORTED | |||
#define PNG_WRITE_iTXt_SUPPORTED | |||
#define PNG_oFFs_SUPPORTED | |||
#define PNG_USER_TRANSFORM_PTR_SUPPORTED | |||
#define PNG_hIST_SUPPORTED | |||
#define PNG_iCCP_SUPPORTED | |||
#define PNG_sRGB_SUPPORTED | |||
#define PNG_READ_zTXt_SUPPORTED | |||
#define PNG_gAMA_SUPPORTED | |||
#define PNG_pCAL_SUPPORTED | |||
#define PNG_CHECK_cHRM_SUPPORTED | |||
#define PNG_tIME_SUPPORTED | |||
#define PNG_pHYs_SUPPORTED | |||
#define PNG_READ_iTXt_SUPPORTED | |||
#define PNG_TEXT_SUPPORTED | |||
#define PNG_SAVE_INT_32_SUPPORTED | |||
#define PNG_sPLT_SUPPORTED | |||
#define PNG_tEXt_SUPPORTED | |||
#define PNG_zTXt_SUPPORTED | |||
#define PNG_iTXt_SUPPORTED | |||
/* end of options */ | |||
#endif /* PNGLCONF_H */ |
@@ -1,658 +0,0 @@ | |||
/* pngmem.c - stub functions for memory allocation | |||
* | |||
* Last changed in libpng 1.5.1 [February 3, 2011] | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
* | |||
* This file provides a location for all memory allocation. Users who | |||
* need special memory handling are expected to supply replacement | |||
* functions for png_malloc() and png_free(), and to use | |||
* png_create_read_struct_2() and png_create_write_struct_2() to | |||
* identify the replacement functions. | |||
*/ | |||
#include "pngpriv.h" | |||
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |||
/* Borland DOS special memory handler */ | |||
#if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__) | |||
/* If you change this, be sure to change the one in png.h also */ | |||
/* Allocate memory for a png_struct. The malloc and memset can be replaced | |||
by a single call to calloc() if this is thought to improve performance. */ | |||
PNG_FUNCTION(png_voidp /* PRIVATE */, | |||
png_create_struct,(int type),PNG_ALLOCATED) | |||
{ | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
return (png_create_struct_2(type, NULL, NULL)); | |||
} | |||
/* Alternate version of png_create_struct, for use with user-defined malloc. */ | |||
PNG_FUNCTION(png_voidp /* PRIVATE */, | |||
png_create_struct_2,(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr), | |||
PNG_ALLOCATED) | |||
{ | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
png_size_t size; | |||
png_voidp struct_ptr; | |||
if (type == PNG_STRUCT_INFO) | |||
size = png_sizeof(png_info); | |||
else if (type == PNG_STRUCT_PNG) | |||
size = png_sizeof(png_struct); | |||
else | |||
return (png_get_copyright(NULL)); | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (malloc_fn != NULL) | |||
{ | |||
png_struct dummy_struct; | |||
png_structp png_ptr = &dummy_struct; | |||
png_ptr->mem_ptr=mem_ptr; | |||
struct_ptr = (*(malloc_fn))(png_ptr, (png_uint_32)size); | |||
} | |||
else | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
struct_ptr = (png_voidp)farmalloc(size); | |||
if (struct_ptr != NULL) | |||
png_memset(struct_ptr, 0, size); | |||
return (struct_ptr); | |||
} | |||
/* Free memory allocated by a png_create_struct() call */ | |||
void /* PRIVATE */ | |||
png_destroy_struct(png_voidp struct_ptr) | |||
{ | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
png_destroy_struct_2(struct_ptr, NULL, NULL); | |||
} | |||
/* Free memory allocated by a png_create_struct() call */ | |||
void /* PRIVATE */ | |||
png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn, | |||
png_voidp mem_ptr) | |||
{ | |||
# endif | |||
if (struct_ptr != NULL) | |||
{ | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (free_fn != NULL) | |||
{ | |||
png_struct dummy_struct; | |||
png_structp png_ptr = &dummy_struct; | |||
png_ptr->mem_ptr=mem_ptr; | |||
(*(free_fn))(png_ptr, struct_ptr); | |||
return; | |||
} | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
farfree (struct_ptr); | |||
} | |||
} | |||
/* Allocate memory. For reasonable files, size should never exceed | |||
* 64K. However, zlib may allocate more then 64K if you don't tell | |||
* it not to. See zconf.h and png.h for more information. zlib does | |||
* need to allocate exactly 64K, so whatever you call here must | |||
* have the ability to do that. | |||
* | |||
* Borland seems to have a problem in DOS mode for exactly 64K. | |||
* It gives you a segment with an offset of 8 (perhaps to store its | |||
* memory stuff). zlib doesn't like this at all, so we have to | |||
* detect and deal with it. This code should not be needed in | |||
* Windows or OS/2 modes, and only in 16 bit mode. This code has | |||
* been updated by Alexander Lehmann for version 0.89 to waste less | |||
* memory. | |||
* | |||
* Note that we can't use png_size_t for the "size" declaration, | |||
* since on some systems a png_size_t is a 16-bit quantity, and as a | |||
* result, we would be truncating potentially larger memory requests | |||
* (which should cause a fatal error) and introducing major problems. | |||
*/ | |||
PNG_FUNCTION(png_voidp,PNGAPI | |||
png_calloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED) | |||
{ | |||
png_voidp ret; | |||
ret = (png_malloc(png_ptr, size)); | |||
if (ret != NULL) | |||
png_memset(ret,0,(png_size_t)size); | |||
return (ret); | |||
} | |||
PNG_FUNCTION(png_voidp,PNGAPI | |||
png_malloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED) | |||
{ | |||
png_voidp ret; | |||
if (png_ptr == NULL || size == 0) | |||
return (NULL); | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (png_ptr->malloc_fn != NULL) | |||
ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size)); | |||
else | |||
ret = (png_malloc_default(png_ptr, size)); | |||
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Out of memory"); | |||
return (ret); | |||
} | |||
PNG_FUNCTION(png_voidp,PNGAPI | |||
png_malloc_default,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED) | |||
{ | |||
png_voidp ret; | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
if (png_ptr == NULL || size == 0) | |||
return (NULL); | |||
# ifdef PNG_MAX_MALLOC_64K | |||
if (size > (png_uint_32)65536L) | |||
{ | |||
png_warning(png_ptr, "Cannot Allocate > 64K"); | |||
ret = NULL; | |||
} | |||
else | |||
# endif | |||
if (size != (size_t)size) | |||
ret = NULL; | |||
else if (size == (png_uint_32)65536L) | |||
{ | |||
if (png_ptr->offset_table == NULL) | |||
{ | |||
/* Try to see if we need to do any of this fancy stuff */ | |||
ret = farmalloc(size); | |||
if (ret == NULL || ((png_size_t)ret & 0xffff)) | |||
{ | |||
int num_blocks; | |||
png_uint_32 total_size; | |||
png_bytep table; | |||
int i; | |||
png_byte huge * hptr; | |||
if (ret != NULL) | |||
{ | |||
farfree(ret); | |||
ret = NULL; | |||
} | |||
if (png_ptr->zlib_window_bits > 14) | |||
num_blocks = (int)(1 << (png_ptr->zlib_window_bits - 14)); | |||
else | |||
num_blocks = 1; | |||
if (png_ptr->zlib_mem_level >= 7) | |||
num_blocks += (int)(1 << (png_ptr->zlib_mem_level - 7)); | |||
else | |||
num_blocks++; | |||
total_size = ((png_uint_32)65536L) * (png_uint_32)num_blocks+16; | |||
table = farmalloc(total_size); | |||
if (table == NULL) | |||
{ | |||
# ifndef PNG_USER_MEM_SUPPORTED | |||
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Out Of Memory"); /* Note "O", "M" */ | |||
else | |||
png_warning(png_ptr, "Out Of Memory"); | |||
# endif | |||
return (NULL); | |||
} | |||
if ((png_size_t)table & 0xfff0) | |||
{ | |||
# ifndef PNG_USER_MEM_SUPPORTED | |||
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, | |||
"Farmalloc didn't return normalized pointer"); | |||
else | |||
png_warning(png_ptr, | |||
"Farmalloc didn't return normalized pointer"); | |||
# endif | |||
return (NULL); | |||
} | |||
png_ptr->offset_table = table; | |||
png_ptr->offset_table_ptr = farmalloc(num_blocks * | |||
png_sizeof(png_bytep)); | |||
if (png_ptr->offset_table_ptr == NULL) | |||
{ | |||
# ifndef PNG_USER_MEM_SUPPORTED | |||
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Out Of memory"); /* Note "O", "m" */ | |||
else | |||
png_warning(png_ptr, "Out Of memory"); | |||
# endif | |||
return (NULL); | |||
} | |||
hptr = (png_byte huge *)table; | |||
if ((png_size_t)hptr & 0xf) | |||
{ | |||
hptr = (png_byte huge *)((long)(hptr) & 0xfffffff0L); | |||
hptr = hptr + 16L; /* "hptr += 16L" fails on Turbo C++ 3.0 */ | |||
} | |||
for (i = 0; i < num_blocks; i++) | |||
{ | |||
png_ptr->offset_table_ptr[i] = (png_bytep)hptr; | |||
hptr = hptr + (png_uint_32)65536L; /* "+=" fails on TC++3.0 */ | |||
} | |||
png_ptr->offset_table_number = num_blocks; | |||
png_ptr->offset_table_count = 0; | |||
png_ptr->offset_table_count_free = 0; | |||
} | |||
} | |||
if (png_ptr->offset_table_count >= png_ptr->offset_table_number) | |||
{ | |||
# ifndef PNG_USER_MEM_SUPPORTED | |||
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Out of Memory"); /* Note "o" and "M" */ | |||
else | |||
png_warning(png_ptr, "Out of Memory"); | |||
# endif | |||
return (NULL); | |||
} | |||
ret = png_ptr->offset_table_ptr[png_ptr->offset_table_count++]; | |||
} | |||
else | |||
ret = farmalloc(size); | |||
# ifndef PNG_USER_MEM_SUPPORTED | |||
if (ret == NULL) | |||
{ | |||
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Out of memory"); /* Note "o" and "m" */ | |||
else | |||
png_warning(png_ptr, "Out of memory"); /* Note "o" and "m" */ | |||
} | |||
# endif | |||
return (ret); | |||
} | |||
/* Free a pointer allocated by png_malloc(). In the default | |||
* configuration, png_ptr is not used, but is passed in case it | |||
* is needed. If ptr is NULL, return without taking any action. | |||
*/ | |||
void PNGAPI | |||
png_free(png_structp png_ptr, png_voidp ptr) | |||
{ | |||
if (png_ptr == NULL || ptr == NULL) | |||
return; | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (png_ptr->free_fn != NULL) | |||
{ | |||
(*(png_ptr->free_fn))(png_ptr, ptr); | |||
return; | |||
} | |||
else | |||
png_free_default(png_ptr, ptr); | |||
} | |||
void PNGAPI | |||
png_free_default(png_structp png_ptr, png_voidp ptr) | |||
{ | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
if (png_ptr == NULL || ptr == NULL) | |||
return; | |||
if (png_ptr->offset_table != NULL) | |||
{ | |||
int i; | |||
for (i = 0; i < png_ptr->offset_table_count; i++) | |||
{ | |||
if (ptr == png_ptr->offset_table_ptr[i]) | |||
{ | |||
ptr = NULL; | |||
png_ptr->offset_table_count_free++; | |||
break; | |||
} | |||
} | |||
if (png_ptr->offset_table_count_free == png_ptr->offset_table_count) | |||
{ | |||
farfree(png_ptr->offset_table); | |||
farfree(png_ptr->offset_table_ptr); | |||
png_ptr->offset_table = NULL; | |||
png_ptr->offset_table_ptr = NULL; | |||
} | |||
} | |||
if (ptr != NULL) | |||
farfree(ptr); | |||
} | |||
#else /* Not the Borland DOS special memory handler */ | |||
/* Allocate memory for a png_struct or a png_info. The malloc and | |||
memset can be replaced by a single call to calloc() if this is thought | |||
to improve performance noticably. */ | |||
PNG_FUNCTION(png_voidp /* PRIVATE */, | |||
png_create_struct,(int type),PNG_ALLOCATED) | |||
{ | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
return (png_create_struct_2(type, NULL, NULL)); | |||
} | |||
/* Allocate memory for a png_struct or a png_info. The malloc and | |||
memset can be replaced by a single call to calloc() if this is thought | |||
to improve performance noticably. */ | |||
PNG_FUNCTION(png_voidp /* PRIVATE */, | |||
png_create_struct_2,(int type, png_malloc_ptr malloc_fn, png_voidp mem_ptr), | |||
PNG_ALLOCATED) | |||
{ | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
png_size_t size; | |||
png_voidp struct_ptr; | |||
if (type == PNG_STRUCT_INFO) | |||
size = png_sizeof(png_info); | |||
else if (type == PNG_STRUCT_PNG) | |||
size = png_sizeof(png_struct); | |||
else | |||
return (NULL); | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (malloc_fn != NULL) | |||
{ | |||
png_struct dummy_struct; | |||
png_structp png_ptr = &dummy_struct; | |||
png_ptr->mem_ptr=mem_ptr; | |||
struct_ptr = (*(malloc_fn))(png_ptr, size); | |||
if (struct_ptr != NULL) | |||
png_memset(struct_ptr, 0, size); | |||
return (struct_ptr); | |||
} | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
# if defined(__TURBOC__) && !defined(__FLAT__) | |||
struct_ptr = (png_voidp)farmalloc(size); | |||
# else | |||
# if defined(_MSC_VER) && defined(MAXSEG_64K) | |||
struct_ptr = (png_voidp)halloc(size, 1); | |||
# else | |||
struct_ptr = (png_voidp)malloc(size); | |||
# endif | |||
# endif | |||
if (struct_ptr != NULL) | |||
png_memset(struct_ptr, 0, size); | |||
return (struct_ptr); | |||
} | |||
/* Free memory allocated by a png_create_struct() call */ | |||
void /* PRIVATE */ | |||
png_destroy_struct(png_voidp struct_ptr) | |||
{ | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
png_destroy_struct_2(struct_ptr, NULL, NULL); | |||
} | |||
/* Free memory allocated by a png_create_struct() call */ | |||
void /* PRIVATE */ | |||
png_destroy_struct_2(png_voidp struct_ptr, png_free_ptr free_fn, | |||
png_voidp mem_ptr) | |||
{ | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
if (struct_ptr != NULL) | |||
{ | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (free_fn != NULL) | |||
{ | |||
png_struct dummy_struct; | |||
png_structp png_ptr = &dummy_struct; | |||
png_ptr->mem_ptr=mem_ptr; | |||
(*(free_fn))(png_ptr, struct_ptr); | |||
return; | |||
} | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
# if defined(__TURBOC__) && !defined(__FLAT__) | |||
farfree(struct_ptr); | |||
# else | |||
# if defined(_MSC_VER) && defined(MAXSEG_64K) | |||
hfree(struct_ptr); | |||
# else | |||
free(struct_ptr); | |||
# endif | |||
# endif | |||
} | |||
} | |||
/* Allocate memory. For reasonable files, size should never exceed | |||
* 64K. However, zlib may allocate more then 64K if you don't tell | |||
* it not to. See zconf.h and png.h for more information. zlib does | |||
* need to allocate exactly 64K, so whatever you call here must | |||
* have the ability to do that. | |||
*/ | |||
PNG_FUNCTION(png_voidp,PNGAPI | |||
png_calloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED) | |||
{ | |||
png_voidp ret; | |||
ret = (png_malloc(png_ptr, size)); | |||
if (ret != NULL) | |||
png_memset(ret,0,(png_size_t)size); | |||
return (ret); | |||
} | |||
PNG_FUNCTION(png_voidp,PNGAPI | |||
png_malloc,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED) | |||
{ | |||
png_voidp ret; | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (png_ptr == NULL || size == 0) | |||
return (NULL); | |||
if (png_ptr->malloc_fn != NULL) | |||
ret = ((png_voidp)(*(png_ptr->malloc_fn))(png_ptr, (png_size_t)size)); | |||
else | |||
ret = (png_malloc_default(png_ptr, size)); | |||
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Out of Memory"); | |||
return (ret); | |||
} | |||
PNG_FUNCTION(png_voidp,PNGAPI | |||
png_malloc_default,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED) | |||
{ | |||
png_voidp ret; | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
if (png_ptr == NULL || size == 0) | |||
return (NULL); | |||
# ifdef PNG_MAX_MALLOC_64K | |||
if (size > (png_uint_32)65536L) | |||
{ | |||
# ifndef PNG_USER_MEM_SUPPORTED | |||
if ((png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Cannot Allocate > 64K"); | |||
else | |||
# endif | |||
return NULL; | |||
} | |||
# endif | |||
/* Check for overflow */ | |||
# if defined(__TURBOC__) && !defined(__FLAT__) | |||
if (size != (unsigned long)size) | |||
ret = NULL; | |||
else | |||
ret = farmalloc(size); | |||
# else | |||
# if defined(_MSC_VER) && defined(MAXSEG_64K) | |||
if (size != (unsigned long)size) | |||
ret = NULL; | |||
else | |||
ret = halloc(size, 1); | |||
# else | |||
if (size != (size_t)size) | |||
ret = NULL; | |||
else | |||
ret = malloc((size_t)size); | |||
# endif | |||
# endif | |||
# ifndef PNG_USER_MEM_SUPPORTED | |||
if (ret == NULL && (png_ptr->flags&PNG_FLAG_MALLOC_NULL_MEM_OK) == 0) | |||
png_error(png_ptr, "Out of Memory"); | |||
# endif | |||
return (ret); | |||
} | |||
/* Free a pointer allocated by png_malloc(). If ptr is NULL, return | |||
* without taking any action. | |||
*/ | |||
void PNGAPI | |||
png_free(png_structp png_ptr, png_voidp ptr) | |||
{ | |||
if (png_ptr == NULL || ptr == NULL) | |||
return; | |||
# ifdef PNG_USER_MEM_SUPPORTED | |||
if (png_ptr->free_fn != NULL) | |||
{ | |||
(*(png_ptr->free_fn))(png_ptr, ptr); | |||
return; | |||
} | |||
else | |||
png_free_default(png_ptr, ptr); | |||
} | |||
void PNGAPI | |||
png_free_default(png_structp png_ptr, png_voidp ptr) | |||
{ | |||
if (png_ptr == NULL || ptr == NULL) | |||
return; | |||
# endif /* PNG_USER_MEM_SUPPORTED */ | |||
# if defined(__TURBOC__) && !defined(__FLAT__) | |||
farfree(ptr); | |||
# else | |||
# if defined(_MSC_VER) && defined(MAXSEG_64K) | |||
hfree(ptr); | |||
# else | |||
free(ptr); | |||
# endif | |||
# endif | |||
} | |||
#endif /* Not Borland DOS special memory handler */ | |||
/* This function was added at libpng version 1.2.3. The png_malloc_warn() | |||
* function will set up png_malloc() to issue a png_warning and return NULL | |||
* instead of issuing a png_error, if it fails to allocate the requested | |||
* memory. | |||
*/ | |||
PNG_FUNCTION(png_voidp,PNGAPI | |||
png_malloc_warn,(png_structp png_ptr, png_alloc_size_t size),PNG_ALLOCATED) | |||
{ | |||
png_voidp ptr; | |||
png_uint_32 save_flags; | |||
if (png_ptr == NULL) | |||
return (NULL); | |||
save_flags = png_ptr->flags; | |||
png_ptr->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK; | |||
ptr = (png_voidp)png_malloc((png_structp)png_ptr, size); | |||
png_ptr->flags=save_flags; | |||
return(ptr); | |||
} | |||
#ifdef PNG_USER_MEM_SUPPORTED | |||
/* This function is called when the application wants to use another method | |||
* of allocating and freeing memory. | |||
*/ | |||
void PNGAPI | |||
png_set_mem_fn(png_structp png_ptr, png_voidp mem_ptr, png_malloc_ptr | |||
malloc_fn, png_free_ptr free_fn) | |||
{ | |||
if (png_ptr != NULL) | |||
{ | |||
png_ptr->mem_ptr = mem_ptr; | |||
png_ptr->malloc_fn = malloc_fn; | |||
png_ptr->free_fn = free_fn; | |||
} | |||
} | |||
/* This function returns a pointer to the mem_ptr associated with the user | |||
* functions. The application should free any memory associated with this | |||
* pointer before png_write_destroy and png_read_destroy are called. | |||
*/ | |||
png_voidp PNGAPI | |||
png_get_mem_ptr(png_const_structp png_ptr) | |||
{ | |||
if (png_ptr == NULL) | |||
return (NULL); | |||
return ((png_voidp)png_ptr->mem_ptr); | |||
} | |||
#endif /* PNG_USER_MEM_SUPPORTED */ | |||
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ |
@@ -1,176 +0,0 @@ | |||
/* pngrio.c - functions for data input | |||
* | |||
* Last changed in libpng 1.5.0 [January 6, 2011] | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
* | |||
* This file provides a location for all input. Users who need | |||
* special handling are expected to write a function that has the same | |||
* arguments as this and performs a similar function, but that possibly | |||
* has a different input method. Note that you shouldn't change this | |||
* function, but rather write a replacement function and then make | |||
* libpng use it at run time with png_set_read_fn(...). | |||
*/ | |||
#include "pngpriv.h" | |||
#ifdef PNG_READ_SUPPORTED | |||
/* Read the data from whatever input you are using. The default routine | |||
* reads from a file pointer. Note that this routine sometimes gets called | |||
* with very small lengths, so you should implement some kind of simple | |||
* buffering if you are using unbuffered reads. This should never be asked | |||
* to read more then 64K on a 16 bit machine. | |||
*/ | |||
void /* PRIVATE */ | |||
png_read_data(png_structp png_ptr, png_bytep data, png_size_t length) | |||
{ | |||
png_debug1(4, "reading %d bytes", (int)length); | |||
if (png_ptr->read_data_fn != NULL) | |||
(*(png_ptr->read_data_fn))(png_ptr, data, length); | |||
else | |||
png_error(png_ptr, "Call to NULL read function"); | |||
} | |||
#ifdef PNG_STDIO_SUPPORTED | |||
/* This is the function that does the actual reading of data. If you are | |||
* not reading from a standard C stream, you should create a replacement | |||
* read_data function and use it at run time with png_set_read_fn(), rather | |||
* than changing the library. | |||
*/ | |||
# ifndef USE_FAR_KEYWORD | |||
void PNGCBAPI | |||
png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length) | |||
{ | |||
png_size_t check; | |||
if (png_ptr == NULL) | |||
return; | |||
/* fread() returns 0 on error, so it is OK to store this in a png_size_t | |||
* instead of an int, which is what fread() actually returns. | |||
*/ | |||
check = fread(data, 1, length, (png_FILE_p)png_ptr->io_ptr); | |||
if (check != length) | |||
png_error(png_ptr, "Read Error"); | |||
} | |||
# else | |||
/* This is the model-independent version. Since the standard I/O library | |||
can't handle far buffers in the medium and small models, we have to copy | |||
the data. | |||
*/ | |||
#define NEAR_BUF_SIZE 1024 | |||
#define MIN(a,b) (a <= b ? a : b) | |||
static void PNGCBAPI | |||
png_default_read_data(png_structp png_ptr, png_bytep data, png_size_t length) | |||
{ | |||
png_size_t check; | |||
png_byte *n_data; | |||
png_FILE_p io_ptr; | |||
if (png_ptr == NULL) | |||
return; | |||
/* Check if data really is near. If so, use usual code. */ | |||
n_data = (png_byte *)CVT_PTR_NOCHECK(data); | |||
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr); | |||
if ((png_bytep)n_data == data) | |||
{ | |||
check = fread(n_data, 1, length, io_ptr); | |||
} | |||
else | |||
{ | |||
png_byte buf[NEAR_BUF_SIZE]; | |||
png_size_t read, remaining, err; | |||
check = 0; | |||
remaining = length; | |||
do | |||
{ | |||
read = MIN(NEAR_BUF_SIZE, remaining); | |||
err = fread(buf, 1, read, io_ptr); | |||
png_memcpy(data, buf, read); /* copy far buffer to near buffer */ | |||
if (err != read) | |||
break; | |||
else | |||
check += err; | |||
data += read; | |||
remaining -= read; | |||
} | |||
while (remaining != 0); | |||
} | |||
if ((png_uint_32)check != (png_uint_32)length) | |||
png_error(png_ptr, "read Error"); | |||
} | |||
# endif | |||
#endif | |||
/* This function allows the application to supply a new input function | |||
* for libpng if standard C streams aren't being used. | |||
* | |||
* This function takes as its arguments: | |||
* | |||
* png_ptr - pointer to a png input data structure | |||
* | |||
* io_ptr - pointer to user supplied structure containing info about | |||
* the input functions. May be NULL. | |||
* | |||
* read_data_fn - pointer to a new input function that takes as its | |||
* arguments a pointer to a png_struct, a pointer to | |||
* a location where input data can be stored, and a 32-bit | |||
* unsigned int that is the number of bytes to be read. | |||
* To exit and output any fatal error messages the new write | |||
* function should call png_error(png_ptr, "Error msg"). | |||
* May be NULL, in which case libpng's default function will | |||
* be used. | |||
*/ | |||
void PNGAPI | |||
png_set_read_fn(png_structp png_ptr, png_voidp io_ptr, | |||
png_rw_ptr read_data_fn) | |||
{ | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->io_ptr = io_ptr; | |||
#ifdef PNG_STDIO_SUPPORTED | |||
if (read_data_fn != NULL) | |||
png_ptr->read_data_fn = read_data_fn; | |||
else | |||
png_ptr->read_data_fn = png_default_read_data; | |||
#else | |||
png_ptr->read_data_fn = read_data_fn; | |||
#endif | |||
/* It is an error to write to a read device */ | |||
if (png_ptr->write_data_fn != NULL) | |||
{ | |||
png_ptr->write_data_fn = NULL; | |||
png_warning(png_ptr, | |||
"Can't set both read_data_fn and write_data_fn in the" | |||
" same structure"); | |||
} | |||
#ifdef PNG_WRITE_FLUSH_SUPPORTED | |||
png_ptr->output_flush_fn = NULL; | |||
#endif | |||
} | |||
#endif /* PNG_READ_SUPPORTED */ |
@@ -1,308 +0,0 @@ | |||
/* pngstruct.h - header file for PNG reference library | |||
* | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* Last changed in libpng 1.5.0 [January 6, 2011] | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
*/ | |||
/* The structure that holds the information to read and write PNG files. | |||
* The only people who need to care about what is inside of this are the | |||
* people who will be modifying the library for their own special needs. | |||
* It should NOT be accessed directly by an application. | |||
*/ | |||
#ifndef PNGSTRUCT_H | |||
#define PNGSTRUCT_H | |||
/* zlib.h defines the structure z_stream, an instance of which is included | |||
* in this structure and is required for decompressing the LZ compressed | |||
* data in PNG files. | |||
*/ | |||
#include "zlib.h" | |||
struct png_struct_def | |||
{ | |||
#ifdef PNG_SETJMP_SUPPORTED | |||
jmp_buf png_jmpbuf; /* used in png_error */ | |||
png_longjmp_ptr longjmp_fn;/* setjmp non-local goto function. */ | |||
#endif | |||
png_error_ptr error_fn; /* function for printing errors and aborting */ | |||
png_error_ptr warning_fn; /* function for printing warnings */ | |||
png_voidp error_ptr; /* user supplied struct for error functions */ | |||
png_rw_ptr write_data_fn; /* function for writing output data */ | |||
png_rw_ptr read_data_fn; /* function for reading input data */ | |||
png_voidp io_ptr; /* ptr to application struct for I/O functions */ | |||
#ifdef PNG_READ_USER_TRANSFORM_SUPPORTED | |||
png_user_transform_ptr read_user_transform_fn; /* user read transform */ | |||
#endif | |||
#ifdef PNG_WRITE_USER_TRANSFORM_SUPPORTED | |||
png_user_transform_ptr write_user_transform_fn; /* user write transform */ | |||
#endif | |||
/* These were added in libpng-1.0.2 */ | |||
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED | |||
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ | |||
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) | |||
png_voidp user_transform_ptr; /* user supplied struct for user transform */ | |||
png_byte user_transform_depth; /* bit depth of user transformed pixels */ | |||
png_byte user_transform_channels; /* channels in user transformed pixels */ | |||
#endif | |||
#endif | |||
png_uint_32 mode; /* tells us where we are in the PNG file */ | |||
png_uint_32 flags; /* flags indicating various things to libpng */ | |||
png_uint_32 transformations; /* which transformations to perform */ | |||
z_stream zstream; /* pointer to decompression structure (below) */ | |||
png_bytep zbuf; /* buffer for zlib */ | |||
uInt zbuf_size; /* size of zbuf (typically 65536) */ | |||
int zlib_level; /* holds zlib compression level */ | |||
int zlib_method; /* holds zlib compression method */ | |||
int zlib_window_bits; /* holds zlib compression window bits */ | |||
int zlib_mem_level; /* holds zlib compression memory level */ | |||
int zlib_strategy; /* holds zlib compression strategy */ | |||
png_uint_32 width; /* width of image in pixels */ | |||
png_uint_32 height; /* height of image in pixels */ | |||
png_uint_32 num_rows; /* number of rows in current pass */ | |||
png_uint_32 usr_width; /* width of row at start of write */ | |||
png_size_t rowbytes; /* size of row in bytes */ | |||
png_uint_32 iwidth; /* width of current interlaced row in pixels */ | |||
png_uint_32 row_number; /* current row in interlace pass */ | |||
png_bytep prev_row; /* buffer to save previous (unfiltered) row */ | |||
png_bytep row_buf; /* buffer to save current (unfiltered) row */ | |||
png_bytep sub_row; /* buffer to save "sub" row when filtering */ | |||
png_bytep up_row; /* buffer to save "up" row when filtering */ | |||
png_bytep avg_row; /* buffer to save "avg" row when filtering */ | |||
png_bytep paeth_row; /* buffer to save "Paeth" row when filtering */ | |||
png_row_info row_info; /* used for transformation routines */ | |||
png_uint_32 idat_size; /* current IDAT size for read */ | |||
png_uint_32 crc; /* current chunk CRC value */ | |||
png_colorp palette; /* palette from the input file */ | |||
png_uint_16 num_palette; /* number of color entries in palette */ | |||
png_uint_16 num_trans; /* number of transparency values */ | |||
png_byte chunk_name[5]; /* null-terminated name of current chunk */ | |||
png_byte compression; /* file compression type (always 0) */ | |||
png_byte filter; /* file filter type (always 0) */ | |||
png_byte interlaced; /* PNG_INTERLACE_NONE, PNG_INTERLACE_ADAM7 */ | |||
png_byte pass; /* current interlace pass (0 - 6) */ | |||
png_byte do_filter; /* row filter flags (see PNG_FILTER_ below ) */ | |||
png_byte color_type; /* color type of file */ | |||
png_byte bit_depth; /* bit depth of file */ | |||
png_byte usr_bit_depth; /* bit depth of users row */ | |||
png_byte pixel_depth; /* number of bits per pixel */ | |||
png_byte channels; /* number of channels in file */ | |||
png_byte usr_channels; /* channels at start of write */ | |||
png_byte sig_bytes; /* magic bytes read/written from start of file */ | |||
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED) | |||
png_uint_16 filler; /* filler bytes for pixel expansion */ | |||
#endif | |||
#ifdef PNG_bKGD_SUPPORTED | |||
png_byte background_gamma_type; | |||
png_fixed_point background_gamma; | |||
png_color_16 background; /* background color in screen gamma space */ | |||
#ifdef PNG_READ_GAMMA_SUPPORTED | |||
png_color_16 background_1; /* background normalized to gamma 1.0 */ | |||
#endif | |||
#endif /* PNG_bKGD_SUPPORTED */ | |||
#ifdef PNG_WRITE_FLUSH_SUPPORTED | |||
png_flush_ptr output_flush_fn; /* Function for flushing output */ | |||
png_uint_32 flush_dist; /* how many rows apart to flush, 0 - no flush */ | |||
png_uint_32 flush_rows; /* number of rows written since last flush */ | |||
#endif | |||
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) | |||
int gamma_shift; /* number of "insignificant" bits in 16-bit gamma */ | |||
png_fixed_point gamma; /* file gamma value */ | |||
png_fixed_point screen_gamma; /* screen gamma value (display_exponent) */ | |||
#endif | |||
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) | |||
png_bytep gamma_table; /* gamma table for 8-bit depth files */ | |||
png_bytep gamma_from_1; /* converts from 1.0 to screen */ | |||
png_bytep gamma_to_1; /* converts from file to 1.0 */ | |||
png_uint_16pp gamma_16_table; /* gamma table for 16-bit depth files */ | |||
png_uint_16pp gamma_16_from_1; /* converts from 1.0 to screen */ | |||
png_uint_16pp gamma_16_to_1; /* converts from file to 1.0 */ | |||
#endif | |||
#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_sBIT_SUPPORTED) | |||
png_color_8 sig_bit; /* significant bits in each available channel */ | |||
#endif | |||
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED) | |||
png_color_8 shift; /* shift for significant bit tranformation */ | |||
#endif | |||
#if defined(PNG_tRNS_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) \ | |||
|| defined(PNG_READ_EXPAND_SUPPORTED) || defined(PNG_READ_BACKGROUND_SUPPORTED) | |||
png_bytep trans_alpha; /* alpha values for paletted files */ | |||
png_color_16 trans_color; /* transparent color for non-paletted files */ | |||
#endif | |||
png_read_status_ptr read_row_fn; /* called after each row is decoded */ | |||
png_write_status_ptr write_row_fn; /* called after each row is encoded */ | |||
#ifdef PNG_PROGRESSIVE_READ_SUPPORTED | |||
png_progressive_info_ptr info_fn; /* called after header data fully read */ | |||
png_progressive_row_ptr row_fn; /* called after a prog. row is decoded */ | |||
png_progressive_end_ptr end_fn; /* called after image is complete */ | |||
png_bytep save_buffer_ptr; /* current location in save_buffer */ | |||
png_bytep save_buffer; /* buffer for previously read data */ | |||
png_bytep current_buffer_ptr; /* current location in current_buffer */ | |||
png_bytep current_buffer; /* buffer for recently used data */ | |||
png_uint_32 push_length; /* size of current input chunk */ | |||
png_uint_32 skip_length; /* bytes to skip in input data */ | |||
png_size_t save_buffer_size; /* amount of data now in save_buffer */ | |||
png_size_t save_buffer_max; /* total size of save_buffer */ | |||
png_size_t buffer_size; /* total amount of available input data */ | |||
png_size_t current_buffer_size; /* amount of data now in current_buffer */ | |||
int process_mode; /* what push library is currently doing */ | |||
int cur_palette; /* current push library palette index */ | |||
# ifdef PNG_TEXT_SUPPORTED | |||
png_size_t current_text_size; /* current size of text input data */ | |||
png_size_t current_text_left; /* how much text left to read in input */ | |||
png_charp current_text; /* current text chunk buffer */ | |||
png_charp current_text_ptr; /* current location in current_text */ | |||
# endif /* PNG_PROGRESSIVE_READ_SUPPORTED && PNG_TEXT_SUPPORTED */ | |||
#endif /* PNG_PROGRESSIVE_READ_SUPPORTED */ | |||
#if defined(__TURBOC__) && !defined(_Windows) && !defined(__FLAT__) | |||
/* For the Borland special 64K segment handler */ | |||
png_bytepp offset_table_ptr; | |||
png_bytep offset_table; | |||
png_uint_16 offset_table_number; | |||
png_uint_16 offset_table_count; | |||
png_uint_16 offset_table_count_free; | |||
#endif | |||
#ifdef PNG_READ_QUANTIZE_SUPPORTED | |||
png_bytep palette_lookup; /* lookup table for quantizing */ | |||
png_bytep quantize_index; /* index translation for palette files */ | |||
#endif | |||
#if defined(PNG_READ_QUANTIZE_SUPPORTED) || defined(PNG_hIST_SUPPORTED) | |||
png_uint_16p hist; /* histogram */ | |||
#endif | |||
#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED | |||
png_byte heuristic_method; /* heuristic for row filter selection */ | |||
png_byte num_prev_filters; /* number of weights for previous rows */ | |||
png_bytep prev_filters; /* filter type(s) of previous row(s) */ | |||
png_uint_16p filter_weights; /* weight(s) for previous line(s) */ | |||
png_uint_16p inv_filter_weights; /* 1/weight(s) for previous line(s) */ | |||
png_uint_16p filter_costs; /* relative filter calculation cost */ | |||
png_uint_16p inv_filter_costs; /* 1/relative filter calculation cost */ | |||
#endif | |||
#ifdef PNG_TIME_RFC1123_SUPPORTED | |||
png_charp time_buffer; /* String to hold RFC 1123 time text */ | |||
#endif | |||
/* New members added in libpng-1.0.6 */ | |||
png_uint_32 free_me; /* flags items libpng is responsible for freeing */ | |||
#ifdef PNG_USER_CHUNKS_SUPPORTED | |||
png_voidp user_chunk_ptr; | |||
png_user_chunk_ptr read_user_chunk_fn; /* user read chunk handler */ | |||
#endif | |||
#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED | |||
int num_chunk_list; | |||
png_bytep chunk_list; | |||
#endif | |||
/* New members added in libpng-1.0.3 */ | |||
#ifdef PNG_READ_RGB_TO_GRAY_SUPPORTED | |||
png_byte rgb_to_gray_status; | |||
/* These were changed from png_byte in libpng-1.0.6 */ | |||
png_uint_16 rgb_to_gray_red_coeff; | |||
png_uint_16 rgb_to_gray_green_coeff; | |||
png_uint_16 rgb_to_gray_blue_coeff; | |||
#endif | |||
/* New member added in libpng-1.0.4 (renamed in 1.0.9) */ | |||
#if defined(PNG_MNG_FEATURES_SUPPORTED) || \ | |||
defined(PNG_READ_EMPTY_PLTE_SUPPORTED) || \ | |||
defined(PNG_WRITE_EMPTY_PLTE_SUPPORTED) | |||
/* Changed from png_byte to png_uint_32 at version 1.2.0 */ | |||
png_uint_32 mng_features_permitted; | |||
#endif | |||
/* New member added in libpng-1.0.9, ifdef'ed out in 1.0.12, enabled in 1.2.0 */ | |||
#ifdef PNG_MNG_FEATURES_SUPPORTED | |||
png_byte filter_type; | |||
#endif | |||
/* New members added in libpng-1.2.0 */ | |||
/* New members added in libpng-1.0.2 but first enabled by default in 1.2.0 */ | |||
#ifdef PNG_USER_MEM_SUPPORTED | |||
png_voidp mem_ptr; /* user supplied struct for mem functions */ | |||
png_malloc_ptr malloc_fn; /* function for allocating memory */ | |||
png_free_ptr free_fn; /* function for freeing memory */ | |||
#endif | |||
/* New member added in libpng-1.0.13 and 1.2.0 */ | |||
png_bytep big_row_buf; /* buffer to save current (unfiltered) row */ | |||
#ifdef PNG_READ_QUANTIZE_SUPPORTED | |||
/* The following three members were added at version 1.0.14 and 1.2.4 */ | |||
png_bytep quantize_sort; /* working sort array */ | |||
png_bytep index_to_palette; /* where the original index currently is | |||
in the palette */ | |||
png_bytep palette_to_index; /* which original index points to this | |||
palette color */ | |||
#endif | |||
/* New members added in libpng-1.0.16 and 1.2.6 */ | |||
png_byte compression_type; | |||
#ifdef PNG_USER_LIMITS_SUPPORTED | |||
png_uint_32 user_width_max; | |||
png_uint_32 user_height_max; | |||
/* Added in libpng-1.4.0: Total number of sPLT, text, and unknown | |||
* chunks that can be stored (0 means unlimited). | |||
*/ | |||
png_uint_32 user_chunk_cache_max; | |||
/* Total memory that a zTXt, sPLT, iTXt, iCCP, or unknown chunk | |||
* can occupy when decompressed. 0 means unlimited. | |||
*/ | |||
png_alloc_size_t user_chunk_malloc_max; | |||
#endif | |||
/* New member added in libpng-1.0.25 and 1.2.17 */ | |||
#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED | |||
/* Storage for unknown chunk that the library doesn't recognize. */ | |||
png_unknown_chunk unknown_chunk; | |||
#endif | |||
/* New members added in libpng-1.2.26 */ | |||
png_size_t old_big_row_buf_size; | |||
png_size_t old_prev_row_size; | |||
/* New member added in libpng-1.2.30 */ | |||
png_charp chunkdata; /* buffer for reading chunk data */ | |||
#ifdef PNG_IO_STATE_SUPPORTED | |||
/* New member added in libpng-1.4.0 */ | |||
png_uint_32 io_state; | |||
#endif | |||
}; | |||
#endif /* PNGSTRUCT_H */ |
@@ -1,723 +0,0 @@ | |||
/* pngtrans.c - transforms the data in a row (used by both readers and writers) | |||
* | |||
* Last changed in libpng 1.5.1 [February 3, 2011] | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
*/ | |||
#include "pngpriv.h" | |||
#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |||
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED) | |||
/* Turn on BGR-to-RGB mapping */ | |||
void PNGAPI | |||
png_set_bgr(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_bgr"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->transformations |= PNG_BGR; | |||
} | |||
#endif | |||
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED) | |||
/* Turn on 16 bit byte swapping */ | |||
void PNGAPI | |||
png_set_swap(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_swap"); | |||
if (png_ptr == NULL) | |||
return; | |||
if (png_ptr->bit_depth == 16) | |||
png_ptr->transformations |= PNG_SWAP_BYTES; | |||
} | |||
#endif | |||
#if defined(PNG_READ_PACK_SUPPORTED) || defined(PNG_WRITE_PACK_SUPPORTED) | |||
/* Turn on pixel packing */ | |||
void PNGAPI | |||
png_set_packing(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_packing"); | |||
if (png_ptr == NULL) | |||
return; | |||
if (png_ptr->bit_depth < 8) | |||
{ | |||
png_ptr->transformations |= PNG_PACK; | |||
png_ptr->usr_bit_depth = 8; | |||
} | |||
} | |||
#endif | |||
#if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED) | |||
/* Turn on packed pixel swapping */ | |||
void PNGAPI | |||
png_set_packswap(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_packswap"); | |||
if (png_ptr == NULL) | |||
return; | |||
if (png_ptr->bit_depth < 8) | |||
png_ptr->transformations |= PNG_PACKSWAP; | |||
} | |||
#endif | |||
#if defined(PNG_READ_SHIFT_SUPPORTED) || defined(PNG_WRITE_SHIFT_SUPPORTED) | |||
void PNGAPI | |||
png_set_shift(png_structp png_ptr, png_const_color_8p true_bits) | |||
{ | |||
png_debug(1, "in png_set_shift"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->transformations |= PNG_SHIFT; | |||
png_ptr->shift = *true_bits; | |||
} | |||
#endif | |||
#if defined(PNG_READ_INTERLACING_SUPPORTED) || \ | |||
defined(PNG_WRITE_INTERLACING_SUPPORTED) | |||
int PNGAPI | |||
png_set_interlace_handling(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_interlace handling"); | |||
if (png_ptr && png_ptr->interlaced) | |||
{ | |||
png_ptr->transformations |= PNG_INTERLACE; | |||
return (7); | |||
} | |||
return (1); | |||
} | |||
#endif | |||
#if defined(PNG_READ_FILLER_SUPPORTED) || defined(PNG_WRITE_FILLER_SUPPORTED) | |||
/* Add a filler byte on read, or remove a filler or alpha byte on write. | |||
* The filler type has changed in v0.95 to allow future 2-byte fillers | |||
* for 48-bit input data, as well as to avoid problems with some compilers | |||
* that don't like bytes as parameters. | |||
*/ | |||
void PNGAPI | |||
png_set_filler(png_structp png_ptr, png_uint_32 filler, int filler_loc) | |||
{ | |||
png_debug(1, "in png_set_filler"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->transformations |= PNG_FILLER; | |||
png_ptr->filler = (png_uint_16)filler; | |||
if (filler_loc == PNG_FILLER_AFTER) | |||
png_ptr->flags |= PNG_FLAG_FILLER_AFTER; | |||
else | |||
png_ptr->flags &= ~PNG_FLAG_FILLER_AFTER; | |||
/* This should probably go in the "do_read_filler" routine. | |||
* I attempted to do that in libpng-1.0.1a but that caused problems | |||
* so I restored it in libpng-1.0.2a | |||
*/ | |||
if (png_ptr->color_type == PNG_COLOR_TYPE_RGB) | |||
{ | |||
png_ptr->usr_channels = 4; | |||
} | |||
/* Also I added this in libpng-1.0.2a (what happens when we expand | |||
* a less-than-8-bit grayscale to GA?) */ | |||
if (png_ptr->color_type == PNG_COLOR_TYPE_GRAY && png_ptr->bit_depth >= 8) | |||
{ | |||
png_ptr->usr_channels = 2; | |||
} | |||
} | |||
/* Added to libpng-1.2.7 */ | |||
void PNGAPI | |||
png_set_add_alpha(png_structp png_ptr, png_uint_32 filler, int filler_loc) | |||
{ | |||
png_debug(1, "in png_set_add_alpha"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_set_filler(png_ptr, filler, filler_loc); | |||
png_ptr->transformations |= PNG_ADD_ALPHA; | |||
} | |||
#endif | |||
#if defined(PNG_READ_SWAP_ALPHA_SUPPORTED) || \ | |||
defined(PNG_WRITE_SWAP_ALPHA_SUPPORTED) | |||
void PNGAPI | |||
png_set_swap_alpha(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_swap_alpha"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->transformations |= PNG_SWAP_ALPHA; | |||
} | |||
#endif | |||
#if defined(PNG_READ_INVERT_ALPHA_SUPPORTED) || \ | |||
defined(PNG_WRITE_INVERT_ALPHA_SUPPORTED) | |||
void PNGAPI | |||
png_set_invert_alpha(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_invert_alpha"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->transformations |= PNG_INVERT_ALPHA; | |||
} | |||
#endif | |||
#if defined(PNG_READ_INVERT_SUPPORTED) || defined(PNG_WRITE_INVERT_SUPPORTED) | |||
void PNGAPI | |||
png_set_invert_mono(png_structp png_ptr) | |||
{ | |||
png_debug(1, "in png_set_invert_mono"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->transformations |= PNG_INVERT_MONO; | |||
} | |||
/* Invert monochrome grayscale data */ | |||
void /* PRIVATE */ | |||
png_do_invert(png_row_infop row_info, png_bytep row) | |||
{ | |||
png_debug(1, "in png_do_invert"); | |||
/* This test removed from libpng version 1.0.13 and 1.2.0: | |||
* if (row_info->bit_depth == 1 && | |||
*/ | |||
if (row_info->color_type == PNG_COLOR_TYPE_GRAY) | |||
{ | |||
png_bytep rp = row; | |||
png_size_t i; | |||
png_size_t istop = row_info->rowbytes; | |||
for (i = 0; i < istop; i++) | |||
{ | |||
*rp = (png_byte)(~(*rp)); | |||
rp++; | |||
} | |||
} | |||
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA && | |||
row_info->bit_depth == 8) | |||
{ | |||
png_bytep rp = row; | |||
png_size_t i; | |||
png_size_t istop = row_info->rowbytes; | |||
for (i = 0; i < istop; i += 2) | |||
{ | |||
*rp = (png_byte)(~(*rp)); | |||
rp += 2; | |||
} | |||
} | |||
#ifdef PNG_16BIT_SUPPORTED | |||
else if (row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA && | |||
row_info->bit_depth == 16) | |||
{ | |||
png_bytep rp = row; | |||
png_size_t i; | |||
png_size_t istop = row_info->rowbytes; | |||
for (i = 0; i < istop; i += 4) | |||
{ | |||
*rp = (png_byte)(~(*rp)); | |||
*(rp + 1) = (png_byte)(~(*(rp + 1))); | |||
rp += 4; | |||
} | |||
} | |||
#endif | |||
} | |||
#endif | |||
#ifdef PNG_16BIT_SUPPORTED | |||
#if defined(PNG_READ_SWAP_SUPPORTED) || defined(PNG_WRITE_SWAP_SUPPORTED) | |||
/* Swaps byte order on 16 bit depth images */ | |||
void /* PRIVATE */ | |||
png_do_swap(png_row_infop row_info, png_bytep row) | |||
{ | |||
png_debug(1, "in png_do_swap"); | |||
if (row_info->bit_depth == 16) | |||
{ | |||
png_bytep rp = row; | |||
png_uint_32 i; | |||
png_uint_32 istop= row_info->width * row_info->channels; | |||
for (i = 0; i < istop; i++, rp += 2) | |||
{ | |||
png_byte t = *rp; | |||
*rp = *(rp + 1); | |||
*(rp + 1) = t; | |||
} | |||
} | |||
} | |||
#endif | |||
#endif | |||
#if defined(PNG_READ_PACKSWAP_SUPPORTED)||defined(PNG_WRITE_PACKSWAP_SUPPORTED) | |||
static PNG_CONST png_byte onebppswaptable[256] = { | |||
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, | |||
0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, | |||
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, | |||
0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, | |||
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, | |||
0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, | |||
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, | |||
0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, | |||
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, | |||
0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, | |||
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, | |||
0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, | |||
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, | |||
0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, | |||
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, | |||
0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, | |||
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, | |||
0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, | |||
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, | |||
0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, | |||
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, | |||
0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, | |||
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, | |||
0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, | |||
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, | |||
0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, | |||
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, | |||
0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, | |||
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, | |||
0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, | |||
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, | |||
0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF | |||
}; | |||
static PNG_CONST png_byte twobppswaptable[256] = { | |||
0x00, 0x40, 0x80, 0xC0, 0x10, 0x50, 0x90, 0xD0, | |||
0x20, 0x60, 0xA0, 0xE0, 0x30, 0x70, 0xB0, 0xF0, | |||
0x04, 0x44, 0x84, 0xC4, 0x14, 0x54, 0x94, 0xD4, | |||
0x24, 0x64, 0xA4, 0xE4, 0x34, 0x74, 0xB4, 0xF4, | |||
0x08, 0x48, 0x88, 0xC8, 0x18, 0x58, 0x98, 0xD8, | |||
0x28, 0x68, 0xA8, 0xE8, 0x38, 0x78, 0xB8, 0xF8, | |||
0x0C, 0x4C, 0x8C, 0xCC, 0x1C, 0x5C, 0x9C, 0xDC, | |||
0x2C, 0x6C, 0xAC, 0xEC, 0x3C, 0x7C, 0xBC, 0xFC, | |||
0x01, 0x41, 0x81, 0xC1, 0x11, 0x51, 0x91, 0xD1, | |||
0x21, 0x61, 0xA1, 0xE1, 0x31, 0x71, 0xB1, 0xF1, | |||
0x05, 0x45, 0x85, 0xC5, 0x15, 0x55, 0x95, 0xD5, | |||
0x25, 0x65, 0xA5, 0xE5, 0x35, 0x75, 0xB5, 0xF5, | |||
0x09, 0x49, 0x89, 0xC9, 0x19, 0x59, 0x99, 0xD9, | |||
0x29, 0x69, 0xA9, 0xE9, 0x39, 0x79, 0xB9, 0xF9, | |||
0x0D, 0x4D, 0x8D, 0xCD, 0x1D, 0x5D, 0x9D, 0xDD, | |||
0x2D, 0x6D, 0xAD, 0xED, 0x3D, 0x7D, 0xBD, 0xFD, | |||
0x02, 0x42, 0x82, 0xC2, 0x12, 0x52, 0x92, 0xD2, | |||
0x22, 0x62, 0xA2, 0xE2, 0x32, 0x72, 0xB2, 0xF2, | |||
0x06, 0x46, 0x86, 0xC6, 0x16, 0x56, 0x96, 0xD6, | |||
0x26, 0x66, 0xA6, 0xE6, 0x36, 0x76, 0xB6, 0xF6, | |||
0x0A, 0x4A, 0x8A, 0xCA, 0x1A, 0x5A, 0x9A, 0xDA, | |||
0x2A, 0x6A, 0xAA, 0xEA, 0x3A, 0x7A, 0xBA, 0xFA, | |||
0x0E, 0x4E, 0x8E, 0xCE, 0x1E, 0x5E, 0x9E, 0xDE, | |||
0x2E, 0x6E, 0xAE, 0xEE, 0x3E, 0x7E, 0xBE, 0xFE, | |||
0x03, 0x43, 0x83, 0xC3, 0x13, 0x53, 0x93, 0xD3, | |||
0x23, 0x63, 0xA3, 0xE3, 0x33, 0x73, 0xB3, 0xF3, | |||
0x07, 0x47, 0x87, 0xC7, 0x17, 0x57, 0x97, 0xD7, | |||
0x27, 0x67, 0xA7, 0xE7, 0x37, 0x77, 0xB7, 0xF7, | |||
0x0B, 0x4B, 0x8B, 0xCB, 0x1B, 0x5B, 0x9B, 0xDB, | |||
0x2B, 0x6B, 0xAB, 0xEB, 0x3B, 0x7B, 0xBB, 0xFB, | |||
0x0F, 0x4F, 0x8F, 0xCF, 0x1F, 0x5F, 0x9F, 0xDF, | |||
0x2F, 0x6F, 0xAF, 0xEF, 0x3F, 0x7F, 0xBF, 0xFF | |||
}; | |||
static PNG_CONST png_byte fourbppswaptable[256] = { | |||
0x00, 0x10, 0x20, 0x30, 0x40, 0x50, 0x60, 0x70, | |||
0x80, 0x90, 0xA0, 0xB0, 0xC0, 0xD0, 0xE0, 0xF0, | |||
0x01, 0x11, 0x21, 0x31, 0x41, 0x51, 0x61, 0x71, | |||
0x81, 0x91, 0xA1, 0xB1, 0xC1, 0xD1, 0xE1, 0xF1, | |||
0x02, 0x12, 0x22, 0x32, 0x42, 0x52, 0x62, 0x72, | |||
0x82, 0x92, 0xA2, 0xB2, 0xC2, 0xD2, 0xE2, 0xF2, | |||
0x03, 0x13, 0x23, 0x33, 0x43, 0x53, 0x63, 0x73, | |||
0x83, 0x93, 0xA3, 0xB3, 0xC3, 0xD3, 0xE3, 0xF3, | |||
0x04, 0x14, 0x24, 0x34, 0x44, 0x54, 0x64, 0x74, | |||
0x84, 0x94, 0xA4, 0xB4, 0xC4, 0xD4, 0xE4, 0xF4, | |||
0x05, 0x15, 0x25, 0x35, 0x45, 0x55, 0x65, 0x75, | |||
0x85, 0x95, 0xA5, 0xB5, 0xC5, 0xD5, 0xE5, 0xF5, | |||
0x06, 0x16, 0x26, 0x36, 0x46, 0x56, 0x66, 0x76, | |||
0x86, 0x96, 0xA6, 0xB6, 0xC6, 0xD6, 0xE6, 0xF6, | |||
0x07, 0x17, 0x27, 0x37, 0x47, 0x57, 0x67, 0x77, | |||
0x87, 0x97, 0xA7, 0xB7, 0xC7, 0xD7, 0xE7, 0xF7, | |||
0x08, 0x18, 0x28, 0x38, 0x48, 0x58, 0x68, 0x78, | |||
0x88, 0x98, 0xA8, 0xB8, 0xC8, 0xD8, 0xE8, 0xF8, | |||
0x09, 0x19, 0x29, 0x39, 0x49, 0x59, 0x69, 0x79, | |||
0x89, 0x99, 0xA9, 0xB9, 0xC9, 0xD9, 0xE9, 0xF9, | |||
0x0A, 0x1A, 0x2A, 0x3A, 0x4A, 0x5A, 0x6A, 0x7A, | |||
0x8A, 0x9A, 0xAA, 0xBA, 0xCA, 0xDA, 0xEA, 0xFA, | |||
0x0B, 0x1B, 0x2B, 0x3B, 0x4B, 0x5B, 0x6B, 0x7B, | |||
0x8B, 0x9B, 0xAB, 0xBB, 0xCB, 0xDB, 0xEB, 0xFB, | |||
0x0C, 0x1C, 0x2C, 0x3C, 0x4C, 0x5C, 0x6C, 0x7C, | |||
0x8C, 0x9C, 0xAC, 0xBC, 0xCC, 0xDC, 0xEC, 0xFC, | |||
0x0D, 0x1D, 0x2D, 0x3D, 0x4D, 0x5D, 0x6D, 0x7D, | |||
0x8D, 0x9D, 0xAD, 0xBD, 0xCD, 0xDD, 0xED, 0xFD, | |||
0x0E, 0x1E, 0x2E, 0x3E, 0x4E, 0x5E, 0x6E, 0x7E, | |||
0x8E, 0x9E, 0xAE, 0xBE, 0xCE, 0xDE, 0xEE, 0xFE, | |||
0x0F, 0x1F, 0x2F, 0x3F, 0x4F, 0x5F, 0x6F, 0x7F, | |||
0x8F, 0x9F, 0xAF, 0xBF, 0xCF, 0xDF, 0xEF, 0xFF | |||
}; | |||
/* Swaps pixel packing order within bytes */ | |||
void /* PRIVATE */ | |||
png_do_packswap(png_row_infop row_info, png_bytep row) | |||
{ | |||
png_debug(1, "in png_do_packswap"); | |||
if (row_info->bit_depth < 8) | |||
{ | |||
png_bytep rp; | |||
png_const_bytep end, table; | |||
end = row + row_info->rowbytes; | |||
if (row_info->bit_depth == 1) | |||
table = onebppswaptable; | |||
else if (row_info->bit_depth == 2) | |||
table = twobppswaptable; | |||
else if (row_info->bit_depth == 4) | |||
table = fourbppswaptable; | |||
else | |||
return; | |||
for (rp = row; rp < end; rp++) | |||
*rp = table[*rp]; | |||
} | |||
} | |||
#endif /* PNG_READ_PACKSWAP_SUPPORTED or PNG_WRITE_PACKSWAP_SUPPORTED */ | |||
#if defined(PNG_WRITE_FILLER_SUPPORTED) || \ | |||
defined(PNG_READ_STRIP_ALPHA_SUPPORTED) | |||
/* Remove filler or alpha byte(s) */ | |||
void /* PRIVATE */ | |||
png_do_strip_filler(png_row_infop row_info, png_bytep row, png_uint_32 flags) | |||
{ | |||
png_debug(1, "in png_do_strip_filler"); | |||
{ | |||
png_bytep sp = row; | |||
png_bytep dp = row; | |||
png_uint_32 row_width = row_info->width; | |||
png_uint_32 i; | |||
if ((row_info->color_type == PNG_COLOR_TYPE_RGB || | |||
(row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA && | |||
(flags & PNG_FLAG_STRIP_ALPHA))) && | |||
row_info->channels == 4) | |||
{ | |||
if (row_info->bit_depth == 8) | |||
{ | |||
/* This converts from RGBX or RGBA to RGB */ | |||
if (flags & PNG_FLAG_FILLER_AFTER) | |||
{ | |||
dp += 3; sp += 4; | |||
for (i = 1; i < row_width; i++) | |||
{ | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
sp++; | |||
} | |||
} | |||
/* This converts from XRGB or ARGB to RGB */ | |||
else | |||
{ | |||
for (i = 0; i < row_width; i++) | |||
{ | |||
sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
} | |||
} | |||
row_info->pixel_depth = 24; | |||
row_info->rowbytes = row_width * 3; | |||
} | |||
else /* if (row_info->bit_depth == 16) */ | |||
{ | |||
if (flags & PNG_FLAG_FILLER_AFTER) | |||
{ | |||
/* This converts from RRGGBBXX or RRGGBBAA to RRGGBB */ | |||
sp += 8; dp += 6; | |||
for (i = 1; i < row_width; i++) | |||
{ | |||
/* This could be (although png_memcpy is probably slower): | |||
png_memcpy(dp, sp, 6); | |||
sp += 8; | |||
dp += 6; | |||
*/ | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
sp += 2; | |||
} | |||
} | |||
else | |||
{ | |||
/* This converts from XXRRGGBB or AARRGGBB to RRGGBB */ | |||
for (i = 0; i < row_width; i++) | |||
{ | |||
/* This could be (although png_memcpy is probably slower): | |||
png_memcpy(dp, sp, 6); | |||
sp += 8; | |||
dp += 6; | |||
*/ | |||
sp += 2; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
} | |||
} | |||
row_info->pixel_depth = 48; | |||
row_info->rowbytes = row_width * 6; | |||
} | |||
row_info->channels = 3; | |||
} | |||
else if ((row_info->color_type == PNG_COLOR_TYPE_GRAY || | |||
(row_info->color_type == PNG_COLOR_TYPE_GRAY_ALPHA && | |||
(flags & PNG_FLAG_STRIP_ALPHA))) && | |||
row_info->channels == 2) | |||
{ | |||
if (row_info->bit_depth == 8) | |||
{ | |||
if (flags & PNG_FLAG_FILLER_AFTER) | |||
{ | |||
/* This converts from GX or GA to G */ | |||
for (i = 0; i < row_width; i++) | |||
{ | |||
*dp++ = *sp++; | |||
sp++; | |||
} | |||
} | |||
else | |||
{ | |||
/* This converts from XG or AG to G */ | |||
for (i = 0; i < row_width; i++) | |||
{ | |||
sp++; | |||
*dp++ = *sp++; | |||
} | |||
} | |||
row_info->pixel_depth = 8; | |||
row_info->rowbytes = row_width; | |||
} | |||
else /* if (row_info->bit_depth == 16) */ | |||
{ | |||
if (flags & PNG_FLAG_FILLER_AFTER) | |||
{ | |||
/* This converts from GGXX or GGAA to GG */ | |||
sp += 4; dp += 2; | |||
for (i = 1; i < row_width; i++) | |||
{ | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
sp += 2; | |||
} | |||
} | |||
else | |||
{ | |||
/* This converts from XXGG or AAGG to GG */ | |||
for (i = 0; i < row_width; i++) | |||
{ | |||
sp += 2; | |||
*dp++ = *sp++; | |||
*dp++ = *sp++; | |||
} | |||
} | |||
row_info->pixel_depth = 16; | |||
row_info->rowbytes = row_width * 2; | |||
} | |||
row_info->channels = 1; | |||
} | |||
if (flags & PNG_FLAG_STRIP_ALPHA) | |||
row_info->color_type = (png_byte)(row_info->color_type & | |||
~PNG_COLOR_MASK_ALPHA); | |||
} | |||
} | |||
#endif | |||
#if defined(PNG_READ_BGR_SUPPORTED) || defined(PNG_WRITE_BGR_SUPPORTED) | |||
/* Swaps red and blue bytes within a pixel */ | |||
void /* PRIVATE */ | |||
png_do_bgr(png_row_infop row_info, png_bytep row) | |||
{ | |||
png_debug(1, "in png_do_bgr"); | |||
if ((row_info->color_type & PNG_COLOR_MASK_COLOR)) | |||
{ | |||
png_uint_32 row_width = row_info->width; | |||
if (row_info->bit_depth == 8) | |||
{ | |||
if (row_info->color_type == PNG_COLOR_TYPE_RGB) | |||
{ | |||
png_bytep rp; | |||
png_uint_32 i; | |||
for (i = 0, rp = row; i < row_width; i++, rp += 3) | |||
{ | |||
png_byte save = *rp; | |||
*rp = *(rp + 2); | |||
*(rp + 2) = save; | |||
} | |||
} | |||
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) | |||
{ | |||
png_bytep rp; | |||
png_uint_32 i; | |||
for (i = 0, rp = row; i < row_width; i++, rp += 4) | |||
{ | |||
png_byte save = *rp; | |||
*rp = *(rp + 2); | |||
*(rp + 2) = save; | |||
} | |||
} | |||
} | |||
#ifdef PNG_16BIT_SUPPORTED | |||
else if (row_info->bit_depth == 16) | |||
{ | |||
if (row_info->color_type == PNG_COLOR_TYPE_RGB) | |||
{ | |||
png_bytep rp; | |||
png_uint_32 i; | |||
for (i = 0, rp = row; i < row_width; i++, rp += 6) | |||
{ | |||
png_byte save = *rp; | |||
*rp = *(rp + 4); | |||
*(rp + 4) = save; | |||
save = *(rp + 1); | |||
*(rp + 1) = *(rp + 5); | |||
*(rp + 5) = save; | |||
} | |||
} | |||
else if (row_info->color_type == PNG_COLOR_TYPE_RGB_ALPHA) | |||
{ | |||
png_bytep rp; | |||
png_uint_32 i; | |||
for (i = 0, rp = row; i < row_width; i++, rp += 8) | |||
{ | |||
png_byte save = *rp; | |||
*rp = *(rp + 4); | |||
*(rp + 4) = save; | |||
save = *(rp + 1); | |||
*(rp + 1) = *(rp + 5); | |||
*(rp + 5) = save; | |||
} | |||
} | |||
} | |||
#endif | |||
} | |||
} | |||
#endif /* PNG_READ_BGR_SUPPORTED or PNG_WRITE_BGR_SUPPORTED */ | |||
#if defined(PNG_READ_USER_TRANSFORM_SUPPORTED) || \ | |||
defined(PNG_WRITE_USER_TRANSFORM_SUPPORTED) | |||
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED | |||
void PNGAPI | |||
png_set_user_transform_info(png_structp png_ptr, png_voidp | |||
user_transform_ptr, int user_transform_depth, int user_transform_channels) | |||
{ | |||
png_debug(1, "in png_set_user_transform_info"); | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->user_transform_ptr = user_transform_ptr; | |||
png_ptr->user_transform_depth = (png_byte)user_transform_depth; | |||
png_ptr->user_transform_channels = (png_byte)user_transform_channels; | |||
} | |||
#endif | |||
/* This function returns a pointer to the user_transform_ptr associated with | |||
* the user transform functions. The application should free any memory | |||
* associated with this pointer before png_write_destroy and png_read_destroy | |||
* are called. | |||
*/ | |||
#ifdef PNG_USER_TRANSFORM_PTR_SUPPORTED | |||
png_voidp PNGAPI | |||
png_get_user_transform_ptr(png_const_structp png_ptr) | |||
{ | |||
if (png_ptr == NULL) | |||
return (NULL); | |||
return ((png_voidp)png_ptr->user_transform_ptr); | |||
} | |||
#endif | |||
png_uint_32 PNGAPI | |||
png_get_current_row_number(png_const_structp png_ptr) | |||
{ | |||
if (png_ptr != NULL) | |||
return png_ptr->row_number; | |||
return PNG_UINT_32_MAX; /* help the app not to fail silently */ | |||
} | |||
png_byte PNGAPI | |||
png_get_current_pass_number(png_const_structp png_ptr) | |||
{ | |||
if (png_ptr != NULL) | |||
return png_ptr->pass; | |||
return 8; /* invalid */ | |||
} | |||
#endif /* PNG_READ_USER_TRANSFORM_SUPPORTED || | |||
PNG_WRITE_USER_TRANSFORM_SUPPORTED */ | |||
#endif /* PNG_READ_SUPPORTED || PNG_WRITE_SUPPORTED */ |
@@ -1,254 +0,0 @@ | |||
/* pngwio.c - functions for data output | |||
* | |||
* Last changed in libpng 1.5.0 [January 6, 2011] | |||
* Copyright (c) 1998-2011 Glenn Randers-Pehrson | |||
* (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) | |||
* (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |||
* | |||
* This code is released under the libpng license. | |||
* For conditions of distribution and use, see the disclaimer | |||
* and license in png.h | |||
* | |||
* This file provides a location for all output. Users who need | |||
* special handling are expected to write functions that have the same | |||
* arguments as these and perform similar functions, but that possibly | |||
* use different output methods. Note that you shouldn't change these | |||
* functions, but rather write replacement functions and then change | |||
* them at run time with png_set_write_fn(...). | |||
*/ | |||
#include "pngpriv.h" | |||
#ifdef PNG_WRITE_SUPPORTED | |||
/* Write the data to whatever output you are using. The default routine | |||
* writes to a file pointer. Note that this routine sometimes gets called | |||
* with very small lengths, so you should implement some kind of simple | |||
* buffering if you are using unbuffered writes. This should never be asked | |||
* to write more than 64K on a 16 bit machine. | |||
*/ | |||
void /* PRIVATE */ | |||
png_write_data(png_structp png_ptr, png_const_bytep data, png_size_t length) | |||
{ | |||
/* NOTE: write_data_fn must not change the buffer! */ | |||
if (png_ptr->write_data_fn != NULL ) | |||
(*(png_ptr->write_data_fn))(png_ptr, (png_bytep)data, length); | |||
else | |||
png_error(png_ptr, "Call to NULL write function"); | |||
} | |||
#ifdef PNG_STDIO_SUPPORTED | |||
/* This is the function that does the actual writing of data. If you are | |||
* not writing to a standard C stream, you should create a replacement | |||
* write_data function and use it at run time with png_set_write_fn(), rather | |||
* than changing the library. | |||
*/ | |||
#ifndef USE_FAR_KEYWORD | |||
void PNGCBAPI | |||
png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length) | |||
{ | |||
png_size_t check; | |||
if (png_ptr == NULL) | |||
return; | |||
check = fwrite(data, 1, length, (png_FILE_p)(png_ptr->io_ptr)); | |||
if (check != length) | |||
png_error(png_ptr, "Write Error"); | |||
} | |||
#else | |||
/* This is the model-independent version. Since the standard I/O library | |||
* can't handle far buffers in the medium and small models, we have to copy | |||
* the data. | |||
*/ | |||
#define NEAR_BUF_SIZE 1024 | |||
#define MIN(a,b) (a <= b ? a : b) | |||
void PNGCBAPI | |||
png_default_write_data(png_structp png_ptr, png_bytep data, png_size_t length) | |||
{ | |||
png_uint_32 check; | |||
png_byte *near_data; /* Needs to be "png_byte *" instead of "png_bytep" */ | |||
png_FILE_p io_ptr; | |||
if (png_ptr == NULL) | |||
return; | |||
/* Check if data really is near. If so, use usual code. */ | |||
near_data = (png_byte *)CVT_PTR_NOCHECK(data); | |||
io_ptr = (png_FILE_p)CVT_PTR(png_ptr->io_ptr); | |||
if ((png_bytep)near_data == data) | |||
{ | |||
check = fwrite(near_data, 1, length, io_ptr); | |||
} | |||
else | |||
{ | |||
png_byte buf[NEAR_BUF_SIZE]; | |||
png_size_t written, remaining, err; | |||
check = 0; | |||
remaining = length; | |||
do | |||
{ | |||
written = MIN(NEAR_BUF_SIZE, remaining); | |||
png_memcpy(buf, data, written); /* Copy far buffer to near buffer */ | |||
err = fwrite(buf, 1, written, io_ptr); | |||
if (err != written) | |||
break; | |||
else | |||
check += err; | |||
data += written; | |||
remaining -= written; | |||
} | |||
while (remaining != 0); | |||
} | |||
if (check != length) | |||
png_error(png_ptr, "Write Error"); | |||
} | |||
#endif | |||
#endif | |||
/* This function is called to output any data pending writing (normally | |||
* to disk). After png_flush is called, there should be no data pending | |||
* writing in any buffers. | |||
*/ | |||
#ifdef PNG_WRITE_FLUSH_SUPPORTED | |||
void /* PRIVATE */ | |||
png_flush(png_structp png_ptr) | |||
{ | |||
if (png_ptr->output_flush_fn != NULL) | |||
(*(png_ptr->output_flush_fn))(png_ptr); | |||
} | |||
# ifdef PNG_STDIO_SUPPORTED | |||
void PNGCBAPI | |||
png_default_flush(png_structp png_ptr) | |||
{ | |||
png_FILE_p io_ptr; | |||
if (png_ptr == NULL) | |||
return; | |||
io_ptr = (png_FILE_p)CVT_PTR((png_ptr->io_ptr)); | |||
fflush(io_ptr); | |||
} | |||
# endif | |||
#endif | |||
/* This function allows the application to supply new output functions for | |||
* libpng if standard C streams aren't being used. | |||
* | |||
* This function takes as its arguments: | |||
* png_ptr - pointer to a png output data structure | |||
* io_ptr - pointer to user supplied structure containing info about | |||
* the output functions. May be NULL. | |||
* write_data_fn - pointer to a new output function that takes as its | |||
* arguments a pointer to a png_struct, a pointer to | |||
* data to be written, and a 32-bit unsigned int that is | |||
* the number of bytes to be written. The new write | |||
* function should call png_error(png_ptr, "Error msg") | |||
* to exit and output any fatal error messages. May be | |||
* NULL, in which case libpng's default function will | |||
* be used. | |||
* flush_data_fn - pointer to a new flush function that takes as its | |||
* arguments a pointer to a png_struct. After a call to | |||
* the flush function, there should be no data in any buffers | |||
* or pending transmission. If the output method doesn't do | |||
* any buffering of output, a function prototype must still be | |||
* supplied although it doesn't have to do anything. If | |||
* PNG_WRITE_FLUSH_SUPPORTED is not defined at libpng compile | |||
* time, output_flush_fn will be ignored, although it must be | |||
* supplied for compatibility. May be NULL, in which case | |||
* libpng's default function will be used, if | |||
* PNG_WRITE_FLUSH_SUPPORTED is defined. This is not | |||
* a good idea if io_ptr does not point to a standard | |||
* *FILE structure. | |||
*/ | |||
void PNGAPI | |||
png_set_write_fn(png_structp png_ptr, png_voidp io_ptr, | |||
png_rw_ptr write_data_fn, png_flush_ptr output_flush_fn) | |||
{ | |||
if (png_ptr == NULL) | |||
return; | |||
png_ptr->io_ptr = io_ptr; | |||
#ifdef PNG_STDIO_SUPPORTED | |||
if (write_data_fn != NULL) | |||
png_ptr->write_data_fn = write_data_fn; | |||
else | |||
png_ptr->write_data_fn = png_default_write_data; | |||
#else | |||
png_ptr->write_data_fn = write_data_fn; | |||
#endif | |||
#ifdef PNG_WRITE_FLUSH_SUPPORTED | |||
# ifdef PNG_STDIO_SUPPORTED | |||
if (output_flush_fn != NULL) | |||
png_ptr->output_flush_fn = output_flush_fn; | |||
else | |||
png_ptr->output_flush_fn = png_default_flush; | |||
# else | |||
png_ptr->output_flush_fn = output_flush_fn; | |||
# endif | |||
#endif /* PNG_WRITE_FLUSH_SUPPORTED */ | |||
/* It is an error to read while writing a png file */ | |||
if (png_ptr->read_data_fn != NULL) | |||
{ | |||
png_ptr->read_data_fn = NULL; | |||
png_warning(png_ptr, | |||
"Can't set both read_data_fn and write_data_fn in the" | |||
" same structure"); | |||
} | |||
} | |||
#ifdef USE_FAR_KEYWORD | |||
# ifdef _MSC_VER | |||
void *png_far_to_near(png_structp png_ptr, png_voidp ptr, int check) | |||
{ | |||
void *near_ptr; | |||
void FAR *far_ptr; | |||
FP_OFF(near_ptr) = FP_OFF(ptr); | |||
far_ptr = (void FAR *)near_ptr; | |||
if (check != 0) | |||
if (FP_SEG(ptr) != FP_SEG(far_ptr)) | |||
png_error(png_ptr, "segment lost in conversion"); | |||
return(near_ptr); | |||
} | |||
# else | |||
void *png_far_to_near(png_structp png_ptr, png_voidp ptr, int check) | |||
{ | |||
void *near_ptr; | |||
void FAR *far_ptr; | |||
near_ptr = (void FAR *)ptr; | |||
far_ptr = (void FAR *)near_ptr; | |||
if (check != 0) | |||
if (far_ptr != ptr) | |||
png_error(png_ptr, "segment lost in conversion"); | |||
return(near_ptr); | |||
} | |||
# endif | |||
#endif | |||
#endif /* PNG_WRITE_SUPPORTED */ |