You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

380 lines
10KB

  1. /*
  2. Copyright (C) 2006-2011 Nasca Octavian Paul
  3. Author: Nasca Octavian Paul
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of version 2 of the GNU General Public License
  6. as published by the Free Software Foundation.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License (version 2) for more details.
  11. You should have received a copy of the GNU General Public License (version 2)
  12. along with this program; if not, write to the Free Software Foundation,
  13. Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  14. */
  15. #include "Stretch.h"
  16. #include <stdlib.h>
  17. #include <math.h>
  18. FFT::FFT(int nsamples_, bool no_inverse)
  19. {
  20. nsamples=nsamples_;
  21. if (nsamples%2!=0) {
  22. nsamples+=1;
  23. Logger::writeToLog("WARNING: Odd sample size on FFT::FFT() "+String(nsamples));
  24. };
  25. smp.resize(nsamples);
  26. for (int i = 0; i < nsamples; i++)
  27. smp[i] = 0.0;
  28. freq.resize(nsamples/2+1);
  29. for (int i=0;i<nsamples/2+1;i++)
  30. freq[i]=0.0;
  31. window.data.resize(nsamples);
  32. for (int i=0;i<nsamples;i++)
  33. window.data[i]=0.707f;
  34. window.type=W_RECTANGULAR;
  35. data.resize(nsamples,true);
  36. bool allow_long_planning = false; // g_propsfile->getBoolValue("fftw_allow_long_planning", false);
  37. //double t0 = Time::getMillisecondCounterHiRes();
  38. if (allow_long_planning)
  39. {
  40. //fftwf_plan_with_nthreads(2);
  41. planfftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_R2HC,FFTW_MEASURE);
  42. if (no_inverse == false)
  43. planifftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_HC2R,FFTW_MEASURE);
  44. } else
  45. {
  46. //fftwf_plan_with_nthreads(2);
  47. planfftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_R2HC,FFTW_ESTIMATE);
  48. //fftwf_plan_with_nthreads(2);
  49. if (no_inverse == false)
  50. planifftw=fftwf_plan_r2r_1d(nsamples,data.data(),data.data(),FFTW_HC2R,FFTW_ESTIMATE);
  51. }
  52. //double t1 = Time::getMillisecondCounterHiRes();
  53. //Logger::writeToLog("Creating FFTW3 plans took "+String(t1-t0)+ "ms");
  54. static int seed = 0;
  55. m_randgen = std::mt19937(seed);
  56. ++seed;
  57. };
  58. FFT::~FFT()
  59. {
  60. fftwf_destroy_plan(planfftw);
  61. if (planifftw!=nullptr)
  62. fftwf_destroy_plan(planifftw);
  63. };
  64. void FFT::smp2freq()
  65. {
  66. for (int i=0;i<nsamples;i++)
  67. data[i]=smp[i];
  68. fftwf_execute(planfftw);
  69. for (int i=1;i<nsamples/2;i++)
  70. {
  71. REALTYPE c=data[i];
  72. REALTYPE s=data[nsamples-i];
  73. freq[i]=sqrt(c*c+s*s);
  74. };
  75. freq[0]=0.0;
  76. };
  77. void FFT::freq2smp()
  78. {
  79. REALTYPE inv_2p15_2pi=1.0f/16384.0f*(float)c_PI;
  80. for (int i=1;i<nsamples/2;i++)
  81. {
  82. unsigned int rand = m_randdist(m_randgen);
  83. REALTYPE phase=rand*inv_2p15_2pi;
  84. data[i]=freq[i]*cos(phase);
  85. data[nsamples-i]=freq[i]*sin(phase);
  86. };
  87. data[0]=data[nsamples/2+1]=data[nsamples/2]=0.0;
  88. fftwf_execute(planifftw);
  89. for (int i=0;i<nsamples;i++)
  90. smp[i]=data[i]/nsamples;
  91. };
  92. void FFT::applywindow(FFTWindow type)
  93. {
  94. if (window.type!=type){
  95. window.type=type;
  96. switch (type){
  97. case W_RECTANGULAR:
  98. for (int i=0;i<nsamples;i++) window.data[i]=0.707f;
  99. break;
  100. case W_HAMMING:
  101. for (int i=0;i<nsamples;i++) window.data[i]=(float)(0.53836-0.46164*cos(2.0*c_PI*i/(nsamples+1.0)));
  102. break;
  103. case W_HANN:
  104. for (int i=0;i<nsamples;i++) window.data[i]=(float)(0.5*(1.0-cos(2*c_PI*i/(nsamples-1.0))));
  105. break;
  106. case W_BLACKMAN:
  107. for (int i=0;i<nsamples;i++) window.data[i]=(float)(0.42-0.5*cos(2*c_PI*i/(nsamples-1.0))+0.08*cos(4*c_PI*i/(nsamples-1.0)));
  108. break;
  109. case W_BLACKMAN_HARRIS:
  110. for (int i=0;i<nsamples;i++) window.data[i]=(float)(0.35875-0.48829*cos(2*c_PI*i/(nsamples-1.0))+0.14128*cos(4*c_PI*i/(nsamples-1.0))-0.01168*cos(6*c_PI*i/(nsamples-1.0)));
  111. break;
  112. };
  113. };
  114. for (int i=0;i<nsamples;i++) smp[i]*=window.data[i];
  115. }
  116. Stretch::Stretch(REALTYPE rap_,int /*bufsize_*/,FFTWindow w,bool bypass_,REALTYPE samplerate_,int /*stereo_mode_*/)
  117. {
  118. freezing=false;
  119. onset_detection_sensitivity=0.0;
  120. samplerate=samplerate_;
  121. rap=rap_;
  122. bypass = bypass_;
  123. remained_samples=0.0;
  124. window_type=w;
  125. require_new_buffer=false;
  126. c_pos_percents=0.0;
  127. extra_onset_time_credit=0.0;
  128. skip_samples=0;
  129. };
  130. Stretch::~Stretch()
  131. {
  132. };
  133. void Stretch::set_rap(REALTYPE newrap){
  134. //if ((rap>=1.0)&&(newrap>=1.0))
  135. rap=newrap;
  136. };
  137. void Stretch::do_analyse_inbuf(REALTYPE *smps){
  138. //get the frequencies
  139. for (int i=0;i<bufsize;i++) {
  140. infft->smp[i]=old_smps[i];
  141. infft->smp[i+bufsize]=smps[i];
  142. old_freq[i]=infft->freq[i];
  143. };
  144. infft->applywindow(window_type);
  145. infft->smp2freq();
  146. };
  147. void Stretch::do_next_inbuf_smps(REALTYPE *smps){
  148. for (int i=0;i<bufsize;i++) {
  149. very_old_smps[i]=old_smps[i];
  150. old_smps[i]=new_smps[i];
  151. new_smps[i]=smps[i];
  152. };
  153. };
  154. REALTYPE Stretch::do_detect_onset(){
  155. REALTYPE result=0.0;
  156. if (onset_detection_sensitivity>1e-3){
  157. REALTYPE os=0.0,osinc=0.0;
  158. REALTYPE osincold=1e-5f;
  159. int maxk=1+(int)(bufsize*500.0/(samplerate*0.5));
  160. int k=0;
  161. for (int i=0;i<bufsize;i++) {
  162. osinc+=infft->freq[i]-old_freq[i];
  163. osincold+=old_freq[i];
  164. if (k>=maxk) {
  165. k=0;
  166. os+=osinc/osincold;
  167. osinc=0;
  168. };
  169. k++;
  170. };
  171. os+=osinc;
  172. if (os<0.0) os=0.0;
  173. //if (os>1.0) os=1.0;
  174. REALTYPE os_strength=(float)(pow(20.0,1.0-onset_detection_sensitivity)-1.0);
  175. REALTYPE os_strength_h=os_strength*0.75f;
  176. if (os>os_strength_h){
  177. result=(os-os_strength_h)/(os_strength-os_strength_h);
  178. if (result>1.0f) result=1.0f;
  179. };
  180. if (result>1.0f) result=1.0f;
  181. };
  182. return result;
  183. };
  184. void Stretch::setBufferSize(int bufsize_)
  185. {
  186. if (bufsize == 0 || bufsize_ != bufsize)
  187. {
  188. bufsize = bufsize_;
  189. if (bufsize < 8) bufsize = 8;
  190. out_buf = floatvector(bufsize);
  191. old_freq = floatvector(bufsize);
  192. very_old_smps = floatvector(bufsize);
  193. new_smps = floatvector(bufsize);
  194. old_smps = floatvector(bufsize);
  195. old_out_smps = floatvector(bufsize * 2);
  196. infft = std::make_unique<FFT>(bufsize * 2);
  197. fft = std::make_unique<FFT>(bufsize * 2);
  198. outfft = std::make_unique<FFT>(bufsize * 2);
  199. }
  200. jassert(infft != nullptr && fft != nullptr && outfft != nullptr);
  201. fill_container(outfft->smp, 0.0f);
  202. for (int i = 0; i<bufsize * 2; i++) {
  203. old_out_smps[i] = 0.0;
  204. };
  205. for (int i = 0; i<bufsize; i++) {
  206. old_freq[i] = 0.0f;
  207. new_smps[i] = 0.0f;
  208. old_smps[i] = 0.0f;
  209. very_old_smps[i] = 0.0f;
  210. };
  211. }
  212. REALTYPE Stretch::process(REALTYPE *smps,int nsmps)
  213. {
  214. jassert(bufsize > 0);
  215. REALTYPE onset=0.0;
  216. if (bypass){
  217. for (int i=0;i<bufsize;i++) out_buf[i]=smps[i];
  218. return 0.0;
  219. };
  220. if (smps!=NULL){
  221. if ((nsmps!=0)&&(nsmps!=bufsize)&&(nsmps!=get_max_bufsize())){
  222. printf("Warning wrong nsmps on Stretch::process() %d,%d\n",nsmps,bufsize);
  223. return 0.0;
  224. };
  225. if (nsmps!=0){//new data arrived: update the frequency components
  226. do_analyse_inbuf(smps);
  227. if (nsmps==get_max_bufsize()) {
  228. for (int k=bufsize;k<get_max_bufsize();k+=bufsize) do_analyse_inbuf(smps+k);
  229. };
  230. if (onset_detection_sensitivity>1e-3) onset=do_detect_onset();
  231. };
  232. //move the buffers
  233. if (nsmps!=0){//new data arrived: update the frequency components
  234. do_next_inbuf_smps(smps);
  235. if (nsmps==get_max_bufsize()) {
  236. for (int k=bufsize;k<get_max_bufsize();k+=bufsize) do_next_inbuf_smps(smps+k);
  237. };
  238. };
  239. //construct the input fft
  240. int start_pos=(int)(floor(remained_samples*bufsize));
  241. if (start_pos>=bufsize) start_pos=bufsize-1;
  242. for (int i=0;i<bufsize-start_pos;i++) fft->smp[i]=very_old_smps[i+start_pos];
  243. for (int i=0;i<bufsize;i++) fft->smp[i+bufsize-start_pos]=old_smps[i];
  244. for (int i=0;i<start_pos;i++) fft->smp[i+2*bufsize-start_pos]=new_smps[i];
  245. //compute the output spectrum
  246. fft->applywindow(window_type);
  247. fft->smp2freq();
  248. for (int i=0;i<bufsize;i++) outfft->freq[i]=fft->freq[i];
  249. //for (int i=0;i<bufsize;i++) outfft->freq[i]=infft->freq[i]*remained_samples+old_freq[i]*(1.0-remained_samples);
  250. process_spectrum(outfft->freq.data());
  251. outfft->freq2smp();
  252. //make the output buffer
  253. REALTYPE tmp=(float)(1.0/(float) bufsize*c_PI);
  254. REALTYPE hinv_sqrt2=0.853553390593f;//(1.0+1.0/sqrt(2))*0.5;
  255. REALTYPE ampfactor=2.0f;
  256. //remove the resulted unwanted amplitude modulation (caused by the interference of N and N+1 windowed buffer and compute the output buffer
  257. for (int i=0;i<bufsize;i++) {
  258. REALTYPE a=(float)((0.5+0.5*cos(i*tmp)));
  259. REALTYPE out=(float)(outfft->smp[i+bufsize]*(1.0-a)+old_out_smps[i]*a);
  260. out_buf[i]=(float)(out*(hinv_sqrt2-(1.0-hinv_sqrt2)*cos(i*2.0*tmp))*ampfactor);
  261. };
  262. //copy the current output buffer to old buffer
  263. for (int i=0;i<bufsize*2;i++) old_out_smps[i]=outfft->smp[i];
  264. };
  265. if (!freezing){
  266. long double used_rap=rap*get_stretch_multiplier(c_pos_percents);
  267. long double r=1.0/used_rap;
  268. if (extra_onset_time_credit>0){
  269. REALTYPE credit_get=(float)(0.5*r);//must be smaller than r
  270. extra_onset_time_credit-=credit_get;
  271. if (extra_onset_time_credit<0.0) extra_onset_time_credit=0.0;
  272. r-=credit_get;
  273. };
  274. //long double old_remained_samples_test=remained_samples;
  275. remained_samples+=r;
  276. //int result=0;
  277. if (remained_samples>=1.0){
  278. skip_samples=(int)(floor(remained_samples-1.0)*bufsize);
  279. remained_samples=remained_samples-floor(remained_samples);
  280. require_new_buffer=true;
  281. }else{
  282. require_new_buffer=false;
  283. };
  284. };
  285. // long double rf_test=remained_samples-old_remained_samples_test;//this value should be almost like "rf" (for most of the time with the exception of changing the "ri" value) for extremely long stretches (otherwise the shown stretch value is not accurate)
  286. //for stretch up to 10^18x "long double" must have at least 64 bits in the fraction part (true for gcc compiler on x86 and macosx)
  287. return onset;
  288. };
  289. void Stretch::set_onset_detection_sensitivity(REALTYPE detection_sensitivity)
  290. {
  291. onset_detection_sensitivity = detection_sensitivity;
  292. if (detection_sensitivity<1e-3) extra_onset_time_credit = 0.0;
  293. }
  294. void Stretch::here_is_onset(REALTYPE onset){
  295. if (freezing) return;
  296. if (onset>0.5){
  297. require_new_buffer=true;
  298. extra_onset_time_credit+=1.0-remained_samples;
  299. remained_samples=0.0;
  300. skip_samples=0;
  301. };
  302. };
  303. int Stretch::get_nsamples(REALTYPE current_pos_percents){
  304. if (bypass) return bufsize;
  305. if (freezing) return 0;
  306. c_pos_percents=current_pos_percents;
  307. return require_new_buffer?bufsize:0;
  308. };
  309. int Stretch::get_nsamples_for_fill(){
  310. return get_max_bufsize();
  311. };
  312. int Stretch::get_skip_nsamples(){
  313. if (freezing||bypass) return 0;
  314. return skip_samples;
  315. };
  316. REALTYPE Stretch::get_stretch_multiplier(REALTYPE /*pos_percents*/){
  317. return 1.0;
  318. };