Originally committed as revision 26206 to svn://svn.ffmpeg.org/ffmpeg/trunktags/n0.8
@@ -54,7 +54,7 @@ OBJS-$(CONFIG_AAC_ENCODER) += aacenc.o aaccoder.o \ | |||
mpeg4audio.o | |||
OBJS-$(CONFIG_AASC_DECODER) += aasc.o msrledec.o | |||
OBJS-$(CONFIG_AC3_DECODER) += ac3dec.o ac3dec_data.o ac3.o | |||
OBJS-$(CONFIG_AC3_ENCODER) += ac3enc.o ac3tab.o ac3.o | |||
OBJS-$(CONFIG_AC3_ENCODER) += ac3enc_fixed.o ac3tab.o ac3.o | |||
OBJS-$(CONFIG_ALAC_DECODER) += alac.o | |||
OBJS-$(CONFIG_ALAC_ENCODER) += alacenc.o | |||
OBJS-$(CONFIG_ALS_DECODER) += alsdec.o bgmc.o mpeg4audio.o | |||
@@ -43,34 +43,10 @@ | |||
/** Scale a float value by 2^bits and convert to an integer. */ | |||
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) | |||
typedef int16_t SampleType; | |||
typedef int32_t CoefType; | |||
#define SCALE_COEF(a) (a) | |||
/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */ | |||
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767) | |||
#include "ac3enc_fixed.h" | |||
/** | |||
* Compex number. | |||
* Used in fixed-point MDCT calculation. | |||
*/ | |||
typedef struct IComplex { | |||
int16_t re,im; | |||
} IComplex; | |||
typedef struct AC3MDCTContext { | |||
const int16_t *window; ///< MDCT window function | |||
int nbits; ///< log2(transform size) | |||
int16_t *costab; ///< FFT cos table | |||
int16_t *sintab; ///< FFT sin table | |||
int16_t *xcos1; ///< MDCT cos table | |||
int16_t *xsin1; ///< MDCT sin table | |||
int16_t *rot_tmp; ///< temp buffer for pre-rotated samples | |||
IComplex *cplx_tmp; ///< temp buffer for complex pre-rotated samples | |||
} AC3MDCTContext; | |||
/** | |||
* Data for a single audio block. | |||
*/ | |||
@@ -154,6 +130,21 @@ typedef struct AC3EncodeContext { | |||
} AC3EncodeContext; | |||
/* prototypes for functions in ac3enc_fixed.c */ | |||
static av_cold void mdct_end(AC3MDCTContext *mdct); | |||
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, | |||
int nbits); | |||
static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in); | |||
static void apply_window(SampleType *output, const SampleType *input, | |||
const SampleType *window, int n); | |||
static int normalize_samples(AC3EncodeContext *s); | |||
/** | |||
* LUT for number of exponent groups. | |||
* exponent_group_tab[exponent strategy-1][number of coefficients] | |||
@@ -233,291 +224,6 @@ static void deinterleave_input_samples(AC3EncodeContext *s, | |||
} | |||
/** | |||
* Finalize MDCT and free allocated memory. | |||
*/ | |||
static av_cold void mdct_end(AC3MDCTContext *mdct) | |||
{ | |||
mdct->nbits = 0; | |||
av_freep(&mdct->costab); | |||
av_freep(&mdct->sintab); | |||
av_freep(&mdct->xcos1); | |||
av_freep(&mdct->xsin1); | |||
av_freep(&mdct->rot_tmp); | |||
av_freep(&mdct->cplx_tmp); | |||
} | |||
/** | |||
* Initialize FFT tables. | |||
* @param ln log2(FFT size) | |||
*/ | |||
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln) | |||
{ | |||
int i, n, n2; | |||
float alpha; | |||
n = 1 << ln; | |||
n2 = n >> 1; | |||
FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail); | |||
for (i = 0; i < n2; i++) { | |||
alpha = 2.0 * M_PI * i / n; | |||
mdct->costab[i] = FIX15(cos(alpha)); | |||
mdct->sintab[i] = FIX15(sin(alpha)); | |||
} | |||
return 0; | |||
fft_alloc_fail: | |||
mdct_end(mdct); | |||
return AVERROR(ENOMEM); | |||
} | |||
/** | |||
* Initialize MDCT tables. | |||
* @param nbits log2(MDCT size) | |||
*/ | |||
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, | |||
int nbits) | |||
{ | |||
int i, n, n4, ret; | |||
n = 1 << nbits; | |||
n4 = n >> 2; | |||
mdct->nbits = nbits; | |||
ret = fft_init(avctx, mdct, nbits - 2); | |||
if (ret) | |||
return ret; | |||
mdct->window = ff_ac3_window; | |||
FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail); | |||
for (i = 0; i < n4; i++) { | |||
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; | |||
mdct->xcos1[i] = FIX15(-cos(alpha)); | |||
mdct->xsin1[i] = FIX15(-sin(alpha)); | |||
} | |||
return 0; | |||
mdct_alloc_fail: | |||
mdct_end(mdct); | |||
return AVERROR(ENOMEM); | |||
} | |||
/** Butterfly op */ | |||
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ | |||
{ \ | |||
int ax, ay, bx, by; \ | |||
bx = pre1; \ | |||
by = pim1; \ | |||
ax = qre1; \ | |||
ay = qim1; \ | |||
pre = (bx + ax) >> 1; \ | |||
pim = (by + ay) >> 1; \ | |||
qre = (bx - ax) >> 1; \ | |||
qim = (by - ay) >> 1; \ | |||
} | |||
/** Complex multiply */ | |||
#define CMUL(pre, pim, are, aim, bre, bim) \ | |||
{ \ | |||
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \ | |||
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \ | |||
} | |||
/** | |||
* Calculate a 2^n point complex FFT on 2^ln points. | |||
* @param z complex input/output samples | |||
* @param ln log2(FFT size) | |||
*/ | |||
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln) | |||
{ | |||
int j, l, np, np2; | |||
int nblocks, nloops; | |||
register IComplex *p,*q; | |||
int tmp_re, tmp_im; | |||
np = 1 << ln; | |||
/* reverse */ | |||
for (j = 0; j < np; j++) { | |||
int k = av_reverse[j] >> (8 - ln); | |||
if (k < j) | |||
FFSWAP(IComplex, z[k], z[j]); | |||
} | |||
/* pass 0 */ | |||
p = &z[0]; | |||
j = np >> 1; | |||
do { | |||
BF(p[0].re, p[0].im, p[1].re, p[1].im, | |||
p[0].re, p[0].im, p[1].re, p[1].im); | |||
p += 2; | |||
} while (--j); | |||
/* pass 1 */ | |||
p = &z[0]; | |||
j = np >> 2; | |||
do { | |||
BF(p[0].re, p[0].im, p[2].re, p[2].im, | |||
p[0].re, p[0].im, p[2].re, p[2].im); | |||
BF(p[1].re, p[1].im, p[3].re, p[3].im, | |||
p[1].re, p[1].im, p[3].im, -p[3].re); | |||
p+=4; | |||
} while (--j); | |||
/* pass 2 .. ln-1 */ | |||
nblocks = np >> 3; | |||
nloops = 1 << 2; | |||
np2 = np >> 1; | |||
do { | |||
p = z; | |||
q = z + nloops; | |||
for (j = 0; j < nblocks; j++) { | |||
BF(p->re, p->im, q->re, q->im, | |||
p->re, p->im, q->re, q->im); | |||
p++; | |||
q++; | |||
for(l = nblocks; l < np2; l += nblocks) { | |||
CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im); | |||
BF(p->re, p->im, q->re, q->im, | |||
p->re, p->im, tmp_re, tmp_im); | |||
p++; | |||
q++; | |||
} | |||
p += nloops; | |||
q += nloops; | |||
} | |||
nblocks = nblocks >> 1; | |||
nloops = nloops << 1; | |||
} while (nblocks); | |||
} | |||
/** | |||
* Calculate a 512-point MDCT | |||
* @param out 256 output frequency coefficients | |||
* @param in 512 windowed input audio samples | |||
*/ | |||
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in) | |||
{ | |||
int i, re, im, n, n2, n4; | |||
int16_t *rot = mdct->rot_tmp; | |||
IComplex *x = mdct->cplx_tmp; | |||
n = 1 << mdct->nbits; | |||
n2 = n >> 1; | |||
n4 = n >> 2; | |||
/* shift to simplify computations */ | |||
for (i = 0; i <n4; i++) | |||
rot[i] = -in[i + 3*n4]; | |||
memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in)); | |||
/* pre rotation */ | |||
for (i = 0; i < n4; i++) { | |||
re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1; | |||
im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1; | |||
CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]); | |||
} | |||
fft(mdct, x, mdct->nbits - 2); | |||
/* post rotation */ | |||
for (i = 0; i < n4; i++) { | |||
re = x[i].re; | |||
im = x[i].im; | |||
CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]); | |||
} | |||
} | |||
/** | |||
* Apply KBD window to input samples prior to MDCT. | |||
*/ | |||
static void apply_window(int16_t *output, const int16_t *input, | |||
const int16_t *window, int n) | |||
{ | |||
int i; | |||
int n2 = n >> 1; | |||
for (i = 0; i < n2; i++) { | |||
output[i] = MUL16(input[i], window[i]) >> 15; | |||
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; | |||
} | |||
} | |||
/** | |||
* Calculate the log2() of the maximum absolute value in an array. | |||
* @param tab input array | |||
* @param n number of values in the array | |||
* @return log2(max(abs(tab[]))) | |||
*/ | |||
static int log2_tab(int16_t *tab, int n) | |||
{ | |||
int i, v; | |||
v = 0; | |||
for (i = 0; i < n; i++) | |||
v |= abs(tab[i]); | |||
return av_log2(v); | |||
} | |||
/** | |||
* Left-shift each value in an array by a specified amount. | |||
* @param tab input array | |||
* @param n number of values in the array | |||
* @param lshift left shift amount. a negative value means right shift. | |||
*/ | |||
static void lshift_tab(int16_t *tab, int n, int lshift) | |||
{ | |||
int i; | |||
if (lshift > 0) { | |||
for (i = 0; i < n; i++) | |||
tab[i] <<= lshift; | |||
} else if (lshift < 0) { | |||
lshift = -lshift; | |||
for (i = 0; i < n; i++) | |||
tab[i] >>= lshift; | |||
} | |||
} | |||
/** | |||
* Normalize the input samples to use the maximum available precision. | |||
* This assumes signed 16-bit input samples. Exponents are reduced by 9 to | |||
* match the 24-bit internal precision for MDCT coefficients. | |||
* | |||
* @return exponent shift | |||
*/ | |||
static int normalize_samples(AC3EncodeContext *s) | |||
{ | |||
int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE); | |||
v = FFMAX(0, v); | |||
lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v); | |||
return v - 9; | |||
} | |||
/** | |||
* Apply the MDCT to input samples to generate frequency coefficients. | |||
* This applies the KBD window and normalizes the input to reduce precision | |||
@@ -1982,113 +1688,3 @@ init_fail: | |||
ac3_encode_close(avctx); | |||
return ret; | |||
} | |||
#ifdef TEST | |||
/*************************************************************************/ | |||
/* TEST */ | |||
#include "libavutil/lfg.h" | |||
#define MDCT_NBITS 9 | |||
#define MDCT_SAMPLES (1 << MDCT_NBITS) | |||
#define FN (MDCT_SAMPLES/4) | |||
static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||
{ | |||
IComplex in[FN], in1[FN]; | |||
int k, n, i; | |||
float sum_re, sum_im, a; | |||
for (i = 0; i < FN; i++) { | |||
in[i].re = av_lfg_get(lfg) % 65535 - 32767; | |||
in[i].im = av_lfg_get(lfg) % 65535 - 32767; | |||
in1[i] = in[i]; | |||
} | |||
fft(mdct, in, 7); | |||
/* do it by hand */ | |||
for (k = 0; k < FN; k++) { | |||
sum_re = 0; | |||
sum_im = 0; | |||
for (n = 0; n < FN; n++) { | |||
a = -2 * M_PI * (n * k) / FN; | |||
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); | |||
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); | |||
} | |||
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", | |||
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); | |||
} | |||
} | |||
static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||
{ | |||
int16_t input[MDCT_SAMPLES]; | |||
int32_t output[AC3_MAX_COEFS]; | |||
float input1[MDCT_SAMPLES]; | |||
float output1[AC3_MAX_COEFS]; | |||
float s, a, err, e, emax; | |||
int i, k, n; | |||
for (i = 0; i < MDCT_SAMPLES; i++) { | |||
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; | |||
input1[i] = input[i]; | |||
} | |||
mdct512(mdct, output, input); | |||
/* do it by hand */ | |||
for (k = 0; k < AC3_MAX_COEFS; k++) { | |||
s = 0; | |||
for (n = 0; n < MDCT_SAMPLES; n++) { | |||
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); | |||
s += input1[n] * cos(a); | |||
} | |||
output1[k] = -2 * s / MDCT_SAMPLES; | |||
} | |||
err = 0; | |||
emax = 0; | |||
for (i = 0; i < AC3_MAX_COEFS; i++) { | |||
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); | |||
e = output[i] - output1[i]; | |||
if (e > emax) | |||
emax = e; | |||
err += e * e; | |||
} | |||
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); | |||
} | |||
int main(void) | |||
{ | |||
AVLFG lfg; | |||
AC3MDCTContext mdct; | |||
mdct.avctx = NULL; | |||
av_log_set_level(AV_LOG_DEBUG); | |||
mdct_init(&mdct, 9); | |||
fft_test(&mdct, &lfg); | |||
mdct_test(&mdct, &lfg); | |||
return 0; | |||
} | |||
#endif /* TEST */ | |||
AVCodec ac3_encoder = { | |||
"ac3", | |||
AVMEDIA_TYPE_AUDIO, | |||
CODEC_ID_AC3, | |||
sizeof(AC3EncodeContext), | |||
ac3_encode_init, | |||
ac3_encode_frame, | |||
ac3_encode_close, | |||
NULL, | |||
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"), | |||
.channel_layouts = ac3_channel_layouts, | |||
}; |
@@ -0,0 +1,428 @@ | |||
/* | |||
* The simplest AC-3 encoder | |||
* Copyright (c) 2000 Fabrice Bellard | |||
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com> | |||
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> | |||
* | |||
* This file is part of FFmpeg. | |||
* | |||
* FFmpeg is free software; you can redistribute it and/or | |||
* modify it under the terms of the GNU Lesser General Public | |||
* License as published by the Free Software Foundation; either | |||
* version 2.1 of the License, or (at your option) any later version. | |||
* | |||
* FFmpeg is distributed in the hope that it will be useful, | |||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
* Lesser General Public License for more details. | |||
* | |||
* You should have received a copy of the GNU Lesser General Public | |||
* License along with FFmpeg; if not, write to the Free Software | |||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
*/ | |||
/** | |||
* @file | |||
* fixed-point AC-3 encoder. | |||
*/ | |||
#include "ac3enc.c" | |||
/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */ | |||
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767) | |||
/** | |||
* Finalize MDCT and free allocated memory. | |||
*/ | |||
static av_cold void mdct_end(AC3MDCTContext *mdct) | |||
{ | |||
mdct->nbits = 0; | |||
av_freep(&mdct->costab); | |||
av_freep(&mdct->sintab); | |||
av_freep(&mdct->xcos1); | |||
av_freep(&mdct->xsin1); | |||
av_freep(&mdct->rot_tmp); | |||
av_freep(&mdct->cplx_tmp); | |||
} | |||
/** | |||
* Initialize FFT tables. | |||
* @param ln log2(FFT size) | |||
*/ | |||
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln) | |||
{ | |||
int i, n, n2; | |||
float alpha; | |||
n = 1 << ln; | |||
n2 = n >> 1; | |||
FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail); | |||
for (i = 0; i < n2; i++) { | |||
alpha = 2.0 * M_PI * i / n; | |||
mdct->costab[i] = FIX15(cos(alpha)); | |||
mdct->sintab[i] = FIX15(sin(alpha)); | |||
} | |||
return 0; | |||
fft_alloc_fail: | |||
mdct_end(mdct); | |||
return AVERROR(ENOMEM); | |||
} | |||
/** | |||
* Initialize MDCT tables. | |||
* @param nbits log2(MDCT size) | |||
*/ | |||
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, | |||
int nbits) | |||
{ | |||
int i, n, n4, ret; | |||
n = 1 << nbits; | |||
n4 = n >> 2; | |||
mdct->nbits = nbits; | |||
ret = fft_init(avctx, mdct, nbits - 2); | |||
if (ret) | |||
return ret; | |||
mdct->window = ff_ac3_window; | |||
FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail); | |||
FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail); | |||
for (i = 0; i < n4; i++) { | |||
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; | |||
mdct->xcos1[i] = FIX15(-cos(alpha)); | |||
mdct->xsin1[i] = FIX15(-sin(alpha)); | |||
} | |||
return 0; | |||
mdct_alloc_fail: | |||
mdct_end(mdct); | |||
return AVERROR(ENOMEM); | |||
} | |||
/** Butterfly op */ | |||
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ | |||
{ \ | |||
int ax, ay, bx, by; \ | |||
bx = pre1; \ | |||
by = pim1; \ | |||
ax = qre1; \ | |||
ay = qim1; \ | |||
pre = (bx + ax) >> 1; \ | |||
pim = (by + ay) >> 1; \ | |||
qre = (bx - ax) >> 1; \ | |||
qim = (by - ay) >> 1; \ | |||
} | |||
/** Complex multiply */ | |||
#define CMUL(pre, pim, are, aim, bre, bim) \ | |||
{ \ | |||
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \ | |||
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \ | |||
} | |||
/** | |||
* Calculate a 2^n point complex FFT on 2^ln points. | |||
* @param z complex input/output samples | |||
* @param ln log2(FFT size) | |||
*/ | |||
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln) | |||
{ | |||
int j, l, np, np2; | |||
int nblocks, nloops; | |||
register IComplex *p,*q; | |||
int tmp_re, tmp_im; | |||
np = 1 << ln; | |||
/* reverse */ | |||
for (j = 0; j < np; j++) { | |||
int k = av_reverse[j] >> (8 - ln); | |||
if (k < j) | |||
FFSWAP(IComplex, z[k], z[j]); | |||
} | |||
/* pass 0 */ | |||
p = &z[0]; | |||
j = np >> 1; | |||
do { | |||
BF(p[0].re, p[0].im, p[1].re, p[1].im, | |||
p[0].re, p[0].im, p[1].re, p[1].im); | |||
p += 2; | |||
} while (--j); | |||
/* pass 1 */ | |||
p = &z[0]; | |||
j = np >> 2; | |||
do { | |||
BF(p[0].re, p[0].im, p[2].re, p[2].im, | |||
p[0].re, p[0].im, p[2].re, p[2].im); | |||
BF(p[1].re, p[1].im, p[3].re, p[3].im, | |||
p[1].re, p[1].im, p[3].im, -p[3].re); | |||
p+=4; | |||
} while (--j); | |||
/* pass 2 .. ln-1 */ | |||
nblocks = np >> 3; | |||
nloops = 1 << 2; | |||
np2 = np >> 1; | |||
do { | |||
p = z; | |||
q = z + nloops; | |||
for (j = 0; j < nblocks; j++) { | |||
BF(p->re, p->im, q->re, q->im, | |||
p->re, p->im, q->re, q->im); | |||
p++; | |||
q++; | |||
for(l = nblocks; l < np2; l += nblocks) { | |||
CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im); | |||
BF(p->re, p->im, q->re, q->im, | |||
p->re, p->im, tmp_re, tmp_im); | |||
p++; | |||
q++; | |||
} | |||
p += nloops; | |||
q += nloops; | |||
} | |||
nblocks = nblocks >> 1; | |||
nloops = nloops << 1; | |||
} while (nblocks); | |||
} | |||
/** | |||
* Calculate a 512-point MDCT | |||
* @param out 256 output frequency coefficients | |||
* @param in 512 windowed input audio samples | |||
*/ | |||
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in) | |||
{ | |||
int i, re, im, n, n2, n4; | |||
int16_t *rot = mdct->rot_tmp; | |||
IComplex *x = mdct->cplx_tmp; | |||
n = 1 << mdct->nbits; | |||
n2 = n >> 1; | |||
n4 = n >> 2; | |||
/* shift to simplify computations */ | |||
for (i = 0; i <n4; i++) | |||
rot[i] = -in[i + 3*n4]; | |||
memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in)); | |||
/* pre rotation */ | |||
for (i = 0; i < n4; i++) { | |||
re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1; | |||
im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1; | |||
CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]); | |||
} | |||
fft(mdct, x, mdct->nbits - 2); | |||
/* post rotation */ | |||
for (i = 0; i < n4; i++) { | |||
re = x[i].re; | |||
im = x[i].im; | |||
CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]); | |||
} | |||
} | |||
/** | |||
* Apply KBD window to input samples prior to MDCT. | |||
*/ | |||
static void apply_window(int16_t *output, const int16_t *input, | |||
const int16_t *window, int n) | |||
{ | |||
int i; | |||
int n2 = n >> 1; | |||
for (i = 0; i < n2; i++) { | |||
output[i] = MUL16(input[i], window[i]) >> 15; | |||
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; | |||
} | |||
} | |||
/** | |||
* Calculate the log2() of the maximum absolute value in an array. | |||
* @param tab input array | |||
* @param n number of values in the array | |||
* @return log2(max(abs(tab[]))) | |||
*/ | |||
static int log2_tab(int16_t *tab, int n) | |||
{ | |||
int i, v; | |||
v = 0; | |||
for (i = 0; i < n; i++) | |||
v |= abs(tab[i]); | |||
return av_log2(v); | |||
} | |||
/** | |||
* Left-shift each value in an array by a specified amount. | |||
* @param tab input array | |||
* @param n number of values in the array | |||
* @param lshift left shift amount. a negative value means right shift. | |||
*/ | |||
static void lshift_tab(int16_t *tab, int n, int lshift) | |||
{ | |||
int i; | |||
if (lshift > 0) { | |||
for (i = 0; i < n; i++) | |||
tab[i] <<= lshift; | |||
} else if (lshift < 0) { | |||
lshift = -lshift; | |||
for (i = 0; i < n; i++) | |||
tab[i] >>= lshift; | |||
} | |||
} | |||
/** | |||
* Normalize the input samples to use the maximum available precision. | |||
* This assumes signed 16-bit input samples. Exponents are reduced by 9 to | |||
* match the 24-bit internal precision for MDCT coefficients. | |||
* | |||
* @return exponent shift | |||
*/ | |||
static int normalize_samples(AC3EncodeContext *s) | |||
{ | |||
int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE); | |||
v = FFMAX(0, v); | |||
lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v); | |||
return v - 9; | |||
} | |||
#ifdef TEST | |||
/*************************************************************************/ | |||
/* TEST */ | |||
#include "libavutil/lfg.h" | |||
#define MDCT_NBITS 9 | |||
#define MDCT_SAMPLES (1 << MDCT_NBITS) | |||
#define FN (MDCT_SAMPLES/4) | |||
static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||
{ | |||
IComplex in[FN], in1[FN]; | |||
int k, n, i; | |||
float sum_re, sum_im, a; | |||
for (i = 0; i < FN; i++) { | |||
in[i].re = av_lfg_get(lfg) % 65535 - 32767; | |||
in[i].im = av_lfg_get(lfg) % 65535 - 32767; | |||
in1[i] = in[i]; | |||
} | |||
fft(mdct, in, 7); | |||
/* do it by hand */ | |||
for (k = 0; k < FN; k++) { | |||
sum_re = 0; | |||
sum_im = 0; | |||
for (n = 0; n < FN; n++) { | |||
a = -2 * M_PI * (n * k) / FN; | |||
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); | |||
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); | |||
} | |||
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", | |||
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); | |||
} | |||
} | |||
static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||
{ | |||
int16_t input[MDCT_SAMPLES]; | |||
int32_t output[AC3_MAX_COEFS]; | |||
float input1[MDCT_SAMPLES]; | |||
float output1[AC3_MAX_COEFS]; | |||
float s, a, err, e, emax; | |||
int i, k, n; | |||
for (i = 0; i < MDCT_SAMPLES; i++) { | |||
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; | |||
input1[i] = input[i]; | |||
} | |||
mdct512(mdct, output, input); | |||
/* do it by hand */ | |||
for (k = 0; k < AC3_MAX_COEFS; k++) { | |||
s = 0; | |||
for (n = 0; n < MDCT_SAMPLES; n++) { | |||
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); | |||
s += input1[n] * cos(a); | |||
} | |||
output1[k] = -2 * s / MDCT_SAMPLES; | |||
} | |||
err = 0; | |||
emax = 0; | |||
for (i = 0; i < AC3_MAX_COEFS; i++) { | |||
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); | |||
e = output[i] - output1[i]; | |||
if (e > emax) | |||
emax = e; | |||
err += e * e; | |||
} | |||
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); | |||
} | |||
int main(void) | |||
{ | |||
AVLFG lfg; | |||
AC3MDCTContext mdct; | |||
mdct.avctx = NULL; | |||
av_log_set_level(AV_LOG_DEBUG); | |||
mdct_init(&mdct, 9); | |||
fft_test(&mdct, &lfg); | |||
mdct_test(&mdct, &lfg); | |||
return 0; | |||
} | |||
#endif /* TEST */ | |||
AVCodec ac3_encoder = { | |||
"ac3", | |||
AVMEDIA_TYPE_AUDIO, | |||
CODEC_ID_AC3, | |||
sizeof(AC3EncodeContext), | |||
ac3_encode_init, | |||
ac3_encode_frame, | |||
ac3_encode_close, | |||
NULL, | |||
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"), | |||
.channel_layouts = ac3_channel_layouts, | |||
}; |
@@ -0,0 +1,60 @@ | |||
/* | |||
* The simplest AC-3 encoder | |||
* Copyright (c) 2000 Fabrice Bellard | |||
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com> | |||
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> | |||
* | |||
* This file is part of FFmpeg. | |||
* | |||
* FFmpeg is free software; you can redistribute it and/or | |||
* modify it under the terms of the GNU Lesser General Public | |||
* License as published by the Free Software Foundation; either | |||
* version 2.1 of the License, or (at your option) any later version. | |||
* | |||
* FFmpeg is distributed in the hope that it will be useful, | |||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
* Lesser General Public License for more details. | |||
* | |||
* You should have received a copy of the GNU Lesser General Public | |||
* License along with FFmpeg; if not, write to the Free Software | |||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
*/ | |||
/** | |||
* @file | |||
* fixed-point AC-3 encoder header. | |||
*/ | |||
#ifndef AVCODEC_AC3ENC_FIXED_H | |||
#define AVCODEC_AC3ENC_FIXED_H | |||
#include <stdint.h> | |||
typedef int16_t SampleType; | |||
typedef int32_t CoefType; | |||
#define SCALE_COEF(a) (a) | |||
/** | |||
* Compex number. | |||
* Used in fixed-point MDCT calculation. | |||
*/ | |||
typedef struct IComplex { | |||
int16_t re,im; | |||
} IComplex; | |||
typedef struct AC3MDCTContext { | |||
const int16_t *window; ///< MDCT window function | |||
int nbits; ///< log2(transform size) | |||
int16_t *costab; ///< FFT cos table | |||
int16_t *sintab; ///< FFT sin table | |||
int16_t *xcos1; ///< MDCT cos table | |||
int16_t *xsin1; ///< MDCT sin table | |||
int16_t *rot_tmp; ///< temp buffer for pre-rotated samples | |||
IComplex *cplx_tmp; ///< temp buffer for complex pre-rotated samples | |||
} AC3MDCTContext; | |||
#endif /* AVCODEC_AC3ENC_FIXED_H */ |