Originally committed as revision 26206 to svn://svn.ffmpeg.org/ffmpeg/trunktags/n0.8
@@ -54,7 +54,7 @@ OBJS-$(CONFIG_AAC_ENCODER) += aacenc.o aaccoder.o \ | |||||
mpeg4audio.o | mpeg4audio.o | ||||
OBJS-$(CONFIG_AASC_DECODER) += aasc.o msrledec.o | OBJS-$(CONFIG_AASC_DECODER) += aasc.o msrledec.o | ||||
OBJS-$(CONFIG_AC3_DECODER) += ac3dec.o ac3dec_data.o ac3.o | OBJS-$(CONFIG_AC3_DECODER) += ac3dec.o ac3dec_data.o ac3.o | ||||
OBJS-$(CONFIG_AC3_ENCODER) += ac3enc.o ac3tab.o ac3.o | |||||
OBJS-$(CONFIG_AC3_ENCODER) += ac3enc_fixed.o ac3tab.o ac3.o | |||||
OBJS-$(CONFIG_ALAC_DECODER) += alac.o | OBJS-$(CONFIG_ALAC_DECODER) += alac.o | ||||
OBJS-$(CONFIG_ALAC_ENCODER) += alacenc.o | OBJS-$(CONFIG_ALAC_ENCODER) += alacenc.o | ||||
OBJS-$(CONFIG_ALS_DECODER) += alsdec.o bgmc.o mpeg4audio.o | OBJS-$(CONFIG_ALS_DECODER) += alsdec.o bgmc.o mpeg4audio.o | ||||
@@ -43,34 +43,10 @@ | |||||
/** Scale a float value by 2^bits and convert to an integer. */ | /** Scale a float value by 2^bits and convert to an integer. */ | ||||
#define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) | #define SCALE_FLOAT(a, bits) lrintf((a) * (float)(1 << (bits))) | ||||
typedef int16_t SampleType; | |||||
typedef int32_t CoefType; | |||||
#define SCALE_COEF(a) (a) | |||||
/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */ | |||||
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767) | |||||
#include "ac3enc_fixed.h" | |||||
/** | |||||
* Compex number. | |||||
* Used in fixed-point MDCT calculation. | |||||
*/ | |||||
typedef struct IComplex { | |||||
int16_t re,im; | |||||
} IComplex; | |||||
typedef struct AC3MDCTContext { | |||||
const int16_t *window; ///< MDCT window function | |||||
int nbits; ///< log2(transform size) | |||||
int16_t *costab; ///< FFT cos table | |||||
int16_t *sintab; ///< FFT sin table | |||||
int16_t *xcos1; ///< MDCT cos table | |||||
int16_t *xsin1; ///< MDCT sin table | |||||
int16_t *rot_tmp; ///< temp buffer for pre-rotated samples | |||||
IComplex *cplx_tmp; ///< temp buffer for complex pre-rotated samples | |||||
} AC3MDCTContext; | |||||
/** | /** | ||||
* Data for a single audio block. | * Data for a single audio block. | ||||
*/ | */ | ||||
@@ -154,6 +130,21 @@ typedef struct AC3EncodeContext { | |||||
} AC3EncodeContext; | } AC3EncodeContext; | ||||
/* prototypes for functions in ac3enc_fixed.c */ | |||||
static av_cold void mdct_end(AC3MDCTContext *mdct); | |||||
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, | |||||
int nbits); | |||||
static void mdct512(AC3MDCTContext *mdct, CoefType *out, SampleType *in); | |||||
static void apply_window(SampleType *output, const SampleType *input, | |||||
const SampleType *window, int n); | |||||
static int normalize_samples(AC3EncodeContext *s); | |||||
/** | /** | ||||
* LUT for number of exponent groups. | * LUT for number of exponent groups. | ||||
* exponent_group_tab[exponent strategy-1][number of coefficients] | * exponent_group_tab[exponent strategy-1][number of coefficients] | ||||
@@ -233,291 +224,6 @@ static void deinterleave_input_samples(AC3EncodeContext *s, | |||||
} | } | ||||
/** | |||||
* Finalize MDCT and free allocated memory. | |||||
*/ | |||||
static av_cold void mdct_end(AC3MDCTContext *mdct) | |||||
{ | |||||
mdct->nbits = 0; | |||||
av_freep(&mdct->costab); | |||||
av_freep(&mdct->sintab); | |||||
av_freep(&mdct->xcos1); | |||||
av_freep(&mdct->xsin1); | |||||
av_freep(&mdct->rot_tmp); | |||||
av_freep(&mdct->cplx_tmp); | |||||
} | |||||
/** | |||||
* Initialize FFT tables. | |||||
* @param ln log2(FFT size) | |||||
*/ | |||||
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln) | |||||
{ | |||||
int i, n, n2; | |||||
float alpha; | |||||
n = 1 << ln; | |||||
n2 = n >> 1; | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail); | |||||
for (i = 0; i < n2; i++) { | |||||
alpha = 2.0 * M_PI * i / n; | |||||
mdct->costab[i] = FIX15(cos(alpha)); | |||||
mdct->sintab[i] = FIX15(sin(alpha)); | |||||
} | |||||
return 0; | |||||
fft_alloc_fail: | |||||
mdct_end(mdct); | |||||
return AVERROR(ENOMEM); | |||||
} | |||||
/** | |||||
* Initialize MDCT tables. | |||||
* @param nbits log2(MDCT size) | |||||
*/ | |||||
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, | |||||
int nbits) | |||||
{ | |||||
int i, n, n4, ret; | |||||
n = 1 << nbits; | |||||
n4 = n >> 2; | |||||
mdct->nbits = nbits; | |||||
ret = fft_init(avctx, mdct, nbits - 2); | |||||
if (ret) | |||||
return ret; | |||||
mdct->window = ff_ac3_window; | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail); | |||||
for (i = 0; i < n4; i++) { | |||||
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; | |||||
mdct->xcos1[i] = FIX15(-cos(alpha)); | |||||
mdct->xsin1[i] = FIX15(-sin(alpha)); | |||||
} | |||||
return 0; | |||||
mdct_alloc_fail: | |||||
mdct_end(mdct); | |||||
return AVERROR(ENOMEM); | |||||
} | |||||
/** Butterfly op */ | |||||
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ | |||||
{ \ | |||||
int ax, ay, bx, by; \ | |||||
bx = pre1; \ | |||||
by = pim1; \ | |||||
ax = qre1; \ | |||||
ay = qim1; \ | |||||
pre = (bx + ax) >> 1; \ | |||||
pim = (by + ay) >> 1; \ | |||||
qre = (bx - ax) >> 1; \ | |||||
qim = (by - ay) >> 1; \ | |||||
} | |||||
/** Complex multiply */ | |||||
#define CMUL(pre, pim, are, aim, bre, bim) \ | |||||
{ \ | |||||
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \ | |||||
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \ | |||||
} | |||||
/** | |||||
* Calculate a 2^n point complex FFT on 2^ln points. | |||||
* @param z complex input/output samples | |||||
* @param ln log2(FFT size) | |||||
*/ | |||||
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln) | |||||
{ | |||||
int j, l, np, np2; | |||||
int nblocks, nloops; | |||||
register IComplex *p,*q; | |||||
int tmp_re, tmp_im; | |||||
np = 1 << ln; | |||||
/* reverse */ | |||||
for (j = 0; j < np; j++) { | |||||
int k = av_reverse[j] >> (8 - ln); | |||||
if (k < j) | |||||
FFSWAP(IComplex, z[k], z[j]); | |||||
} | |||||
/* pass 0 */ | |||||
p = &z[0]; | |||||
j = np >> 1; | |||||
do { | |||||
BF(p[0].re, p[0].im, p[1].re, p[1].im, | |||||
p[0].re, p[0].im, p[1].re, p[1].im); | |||||
p += 2; | |||||
} while (--j); | |||||
/* pass 1 */ | |||||
p = &z[0]; | |||||
j = np >> 2; | |||||
do { | |||||
BF(p[0].re, p[0].im, p[2].re, p[2].im, | |||||
p[0].re, p[0].im, p[2].re, p[2].im); | |||||
BF(p[1].re, p[1].im, p[3].re, p[3].im, | |||||
p[1].re, p[1].im, p[3].im, -p[3].re); | |||||
p+=4; | |||||
} while (--j); | |||||
/* pass 2 .. ln-1 */ | |||||
nblocks = np >> 3; | |||||
nloops = 1 << 2; | |||||
np2 = np >> 1; | |||||
do { | |||||
p = z; | |||||
q = z + nloops; | |||||
for (j = 0; j < nblocks; j++) { | |||||
BF(p->re, p->im, q->re, q->im, | |||||
p->re, p->im, q->re, q->im); | |||||
p++; | |||||
q++; | |||||
for(l = nblocks; l < np2; l += nblocks) { | |||||
CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im); | |||||
BF(p->re, p->im, q->re, q->im, | |||||
p->re, p->im, tmp_re, tmp_im); | |||||
p++; | |||||
q++; | |||||
} | |||||
p += nloops; | |||||
q += nloops; | |||||
} | |||||
nblocks = nblocks >> 1; | |||||
nloops = nloops << 1; | |||||
} while (nblocks); | |||||
} | |||||
/** | |||||
* Calculate a 512-point MDCT | |||||
* @param out 256 output frequency coefficients | |||||
* @param in 512 windowed input audio samples | |||||
*/ | |||||
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in) | |||||
{ | |||||
int i, re, im, n, n2, n4; | |||||
int16_t *rot = mdct->rot_tmp; | |||||
IComplex *x = mdct->cplx_tmp; | |||||
n = 1 << mdct->nbits; | |||||
n2 = n >> 1; | |||||
n4 = n >> 2; | |||||
/* shift to simplify computations */ | |||||
for (i = 0; i <n4; i++) | |||||
rot[i] = -in[i + 3*n4]; | |||||
memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in)); | |||||
/* pre rotation */ | |||||
for (i = 0; i < n4; i++) { | |||||
re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1; | |||||
im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1; | |||||
CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]); | |||||
} | |||||
fft(mdct, x, mdct->nbits - 2); | |||||
/* post rotation */ | |||||
for (i = 0; i < n4; i++) { | |||||
re = x[i].re; | |||||
im = x[i].im; | |||||
CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]); | |||||
} | |||||
} | |||||
/** | |||||
* Apply KBD window to input samples prior to MDCT. | |||||
*/ | |||||
static void apply_window(int16_t *output, const int16_t *input, | |||||
const int16_t *window, int n) | |||||
{ | |||||
int i; | |||||
int n2 = n >> 1; | |||||
for (i = 0; i < n2; i++) { | |||||
output[i] = MUL16(input[i], window[i]) >> 15; | |||||
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; | |||||
} | |||||
} | |||||
/** | |||||
* Calculate the log2() of the maximum absolute value in an array. | |||||
* @param tab input array | |||||
* @param n number of values in the array | |||||
* @return log2(max(abs(tab[]))) | |||||
*/ | |||||
static int log2_tab(int16_t *tab, int n) | |||||
{ | |||||
int i, v; | |||||
v = 0; | |||||
for (i = 0; i < n; i++) | |||||
v |= abs(tab[i]); | |||||
return av_log2(v); | |||||
} | |||||
/** | |||||
* Left-shift each value in an array by a specified amount. | |||||
* @param tab input array | |||||
* @param n number of values in the array | |||||
* @param lshift left shift amount. a negative value means right shift. | |||||
*/ | |||||
static void lshift_tab(int16_t *tab, int n, int lshift) | |||||
{ | |||||
int i; | |||||
if (lshift > 0) { | |||||
for (i = 0; i < n; i++) | |||||
tab[i] <<= lshift; | |||||
} else if (lshift < 0) { | |||||
lshift = -lshift; | |||||
for (i = 0; i < n; i++) | |||||
tab[i] >>= lshift; | |||||
} | |||||
} | |||||
/** | |||||
* Normalize the input samples to use the maximum available precision. | |||||
* This assumes signed 16-bit input samples. Exponents are reduced by 9 to | |||||
* match the 24-bit internal precision for MDCT coefficients. | |||||
* | |||||
* @return exponent shift | |||||
*/ | |||||
static int normalize_samples(AC3EncodeContext *s) | |||||
{ | |||||
int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE); | |||||
v = FFMAX(0, v); | |||||
lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v); | |||||
return v - 9; | |||||
} | |||||
/** | /** | ||||
* Apply the MDCT to input samples to generate frequency coefficients. | * Apply the MDCT to input samples to generate frequency coefficients. | ||||
* This applies the KBD window and normalizes the input to reduce precision | * This applies the KBD window and normalizes the input to reduce precision | ||||
@@ -1982,113 +1688,3 @@ init_fail: | |||||
ac3_encode_close(avctx); | ac3_encode_close(avctx); | ||||
return ret; | return ret; | ||||
} | } | ||||
#ifdef TEST | |||||
/*************************************************************************/ | |||||
/* TEST */ | |||||
#include "libavutil/lfg.h" | |||||
#define MDCT_NBITS 9 | |||||
#define MDCT_SAMPLES (1 << MDCT_NBITS) | |||||
#define FN (MDCT_SAMPLES/4) | |||||
static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||||
{ | |||||
IComplex in[FN], in1[FN]; | |||||
int k, n, i; | |||||
float sum_re, sum_im, a; | |||||
for (i = 0; i < FN; i++) { | |||||
in[i].re = av_lfg_get(lfg) % 65535 - 32767; | |||||
in[i].im = av_lfg_get(lfg) % 65535 - 32767; | |||||
in1[i] = in[i]; | |||||
} | |||||
fft(mdct, in, 7); | |||||
/* do it by hand */ | |||||
for (k = 0; k < FN; k++) { | |||||
sum_re = 0; | |||||
sum_im = 0; | |||||
for (n = 0; n < FN; n++) { | |||||
a = -2 * M_PI * (n * k) / FN; | |||||
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); | |||||
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); | |||||
} | |||||
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", | |||||
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); | |||||
} | |||||
} | |||||
static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||||
{ | |||||
int16_t input[MDCT_SAMPLES]; | |||||
int32_t output[AC3_MAX_COEFS]; | |||||
float input1[MDCT_SAMPLES]; | |||||
float output1[AC3_MAX_COEFS]; | |||||
float s, a, err, e, emax; | |||||
int i, k, n; | |||||
for (i = 0; i < MDCT_SAMPLES; i++) { | |||||
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; | |||||
input1[i] = input[i]; | |||||
} | |||||
mdct512(mdct, output, input); | |||||
/* do it by hand */ | |||||
for (k = 0; k < AC3_MAX_COEFS; k++) { | |||||
s = 0; | |||||
for (n = 0; n < MDCT_SAMPLES; n++) { | |||||
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); | |||||
s += input1[n] * cos(a); | |||||
} | |||||
output1[k] = -2 * s / MDCT_SAMPLES; | |||||
} | |||||
err = 0; | |||||
emax = 0; | |||||
for (i = 0; i < AC3_MAX_COEFS; i++) { | |||||
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); | |||||
e = output[i] - output1[i]; | |||||
if (e > emax) | |||||
emax = e; | |||||
err += e * e; | |||||
} | |||||
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); | |||||
} | |||||
int main(void) | |||||
{ | |||||
AVLFG lfg; | |||||
AC3MDCTContext mdct; | |||||
mdct.avctx = NULL; | |||||
av_log_set_level(AV_LOG_DEBUG); | |||||
mdct_init(&mdct, 9); | |||||
fft_test(&mdct, &lfg); | |||||
mdct_test(&mdct, &lfg); | |||||
return 0; | |||||
} | |||||
#endif /* TEST */ | |||||
AVCodec ac3_encoder = { | |||||
"ac3", | |||||
AVMEDIA_TYPE_AUDIO, | |||||
CODEC_ID_AC3, | |||||
sizeof(AC3EncodeContext), | |||||
ac3_encode_init, | |||||
ac3_encode_frame, | |||||
ac3_encode_close, | |||||
NULL, | |||||
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||||
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"), | |||||
.channel_layouts = ac3_channel_layouts, | |||||
}; |
@@ -0,0 +1,428 @@ | |||||
/* | |||||
* The simplest AC-3 encoder | |||||
* Copyright (c) 2000 Fabrice Bellard | |||||
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com> | |||||
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> | |||||
* | |||||
* This file is part of FFmpeg. | |||||
* | |||||
* FFmpeg is free software; you can redistribute it and/or | |||||
* modify it under the terms of the GNU Lesser General Public | |||||
* License as published by the Free Software Foundation; either | |||||
* version 2.1 of the License, or (at your option) any later version. | |||||
* | |||||
* FFmpeg is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||||
* Lesser General Public License for more details. | |||||
* | |||||
* You should have received a copy of the GNU Lesser General Public | |||||
* License along with FFmpeg; if not, write to the Free Software | |||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||||
*/ | |||||
/** | |||||
* @file | |||||
* fixed-point AC-3 encoder. | |||||
*/ | |||||
#include "ac3enc.c" | |||||
/** Scale a float value by 2^15, convert to an integer, and clip to range -32767..32767. */ | |||||
#define FIX15(a) av_clip(SCALE_FLOAT(a, 15), -32767, 32767) | |||||
/** | |||||
* Finalize MDCT and free allocated memory. | |||||
*/ | |||||
static av_cold void mdct_end(AC3MDCTContext *mdct) | |||||
{ | |||||
mdct->nbits = 0; | |||||
av_freep(&mdct->costab); | |||||
av_freep(&mdct->sintab); | |||||
av_freep(&mdct->xcos1); | |||||
av_freep(&mdct->xsin1); | |||||
av_freep(&mdct->rot_tmp); | |||||
av_freep(&mdct->cplx_tmp); | |||||
} | |||||
/** | |||||
* Initialize FFT tables. | |||||
* @param ln log2(FFT size) | |||||
*/ | |||||
static av_cold int fft_init(AVCodecContext *avctx, AC3MDCTContext *mdct, int ln) | |||||
{ | |||||
int i, n, n2; | |||||
float alpha; | |||||
n = 1 << ln; | |||||
n2 = n >> 1; | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->costab, n2 * sizeof(*mdct->costab), fft_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->sintab, n2 * sizeof(*mdct->sintab), fft_alloc_fail); | |||||
for (i = 0; i < n2; i++) { | |||||
alpha = 2.0 * M_PI * i / n; | |||||
mdct->costab[i] = FIX15(cos(alpha)); | |||||
mdct->sintab[i] = FIX15(sin(alpha)); | |||||
} | |||||
return 0; | |||||
fft_alloc_fail: | |||||
mdct_end(mdct); | |||||
return AVERROR(ENOMEM); | |||||
} | |||||
/** | |||||
* Initialize MDCT tables. | |||||
* @param nbits log2(MDCT size) | |||||
*/ | |||||
static av_cold int mdct_init(AVCodecContext *avctx, AC3MDCTContext *mdct, | |||||
int nbits) | |||||
{ | |||||
int i, n, n4, ret; | |||||
n = 1 << nbits; | |||||
n4 = n >> 2; | |||||
mdct->nbits = nbits; | |||||
ret = fft_init(avctx, mdct, nbits - 2); | |||||
if (ret) | |||||
return ret; | |||||
mdct->window = ff_ac3_window; | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->xcos1, n4 * sizeof(*mdct->xcos1), mdct_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->xsin1, n4 * sizeof(*mdct->xsin1), mdct_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->rot_tmp, n * sizeof(*mdct->rot_tmp), mdct_alloc_fail); | |||||
FF_ALLOC_OR_GOTO(avctx, mdct->cplx_tmp, n4 * sizeof(*mdct->cplx_tmp), mdct_alloc_fail); | |||||
for (i = 0; i < n4; i++) { | |||||
float alpha = 2.0 * M_PI * (i + 1.0 / 8.0) / n; | |||||
mdct->xcos1[i] = FIX15(-cos(alpha)); | |||||
mdct->xsin1[i] = FIX15(-sin(alpha)); | |||||
} | |||||
return 0; | |||||
mdct_alloc_fail: | |||||
mdct_end(mdct); | |||||
return AVERROR(ENOMEM); | |||||
} | |||||
/** Butterfly op */ | |||||
#define BF(pre, pim, qre, qim, pre1, pim1, qre1, qim1) \ | |||||
{ \ | |||||
int ax, ay, bx, by; \ | |||||
bx = pre1; \ | |||||
by = pim1; \ | |||||
ax = qre1; \ | |||||
ay = qim1; \ | |||||
pre = (bx + ax) >> 1; \ | |||||
pim = (by + ay) >> 1; \ | |||||
qre = (bx - ax) >> 1; \ | |||||
qim = (by - ay) >> 1; \ | |||||
} | |||||
/** Complex multiply */ | |||||
#define CMUL(pre, pim, are, aim, bre, bim) \ | |||||
{ \ | |||||
pre = (MUL16(are, bre) - MUL16(aim, bim)) >> 15; \ | |||||
pim = (MUL16(are, bim) + MUL16(bre, aim)) >> 15; \ | |||||
} | |||||
/** | |||||
* Calculate a 2^n point complex FFT on 2^ln points. | |||||
* @param z complex input/output samples | |||||
* @param ln log2(FFT size) | |||||
*/ | |||||
static void fft(AC3MDCTContext *mdct, IComplex *z, int ln) | |||||
{ | |||||
int j, l, np, np2; | |||||
int nblocks, nloops; | |||||
register IComplex *p,*q; | |||||
int tmp_re, tmp_im; | |||||
np = 1 << ln; | |||||
/* reverse */ | |||||
for (j = 0; j < np; j++) { | |||||
int k = av_reverse[j] >> (8 - ln); | |||||
if (k < j) | |||||
FFSWAP(IComplex, z[k], z[j]); | |||||
} | |||||
/* pass 0 */ | |||||
p = &z[0]; | |||||
j = np >> 1; | |||||
do { | |||||
BF(p[0].re, p[0].im, p[1].re, p[1].im, | |||||
p[0].re, p[0].im, p[1].re, p[1].im); | |||||
p += 2; | |||||
} while (--j); | |||||
/* pass 1 */ | |||||
p = &z[0]; | |||||
j = np >> 2; | |||||
do { | |||||
BF(p[0].re, p[0].im, p[2].re, p[2].im, | |||||
p[0].re, p[0].im, p[2].re, p[2].im); | |||||
BF(p[1].re, p[1].im, p[3].re, p[3].im, | |||||
p[1].re, p[1].im, p[3].im, -p[3].re); | |||||
p+=4; | |||||
} while (--j); | |||||
/* pass 2 .. ln-1 */ | |||||
nblocks = np >> 3; | |||||
nloops = 1 << 2; | |||||
np2 = np >> 1; | |||||
do { | |||||
p = z; | |||||
q = z + nloops; | |||||
for (j = 0; j < nblocks; j++) { | |||||
BF(p->re, p->im, q->re, q->im, | |||||
p->re, p->im, q->re, q->im); | |||||
p++; | |||||
q++; | |||||
for(l = nblocks; l < np2; l += nblocks) { | |||||
CMUL(tmp_re, tmp_im, mdct->costab[l], -mdct->sintab[l], q->re, q->im); | |||||
BF(p->re, p->im, q->re, q->im, | |||||
p->re, p->im, tmp_re, tmp_im); | |||||
p++; | |||||
q++; | |||||
} | |||||
p += nloops; | |||||
q += nloops; | |||||
} | |||||
nblocks = nblocks >> 1; | |||||
nloops = nloops << 1; | |||||
} while (nblocks); | |||||
} | |||||
/** | |||||
* Calculate a 512-point MDCT | |||||
* @param out 256 output frequency coefficients | |||||
* @param in 512 windowed input audio samples | |||||
*/ | |||||
static void mdct512(AC3MDCTContext *mdct, int32_t *out, int16_t *in) | |||||
{ | |||||
int i, re, im, n, n2, n4; | |||||
int16_t *rot = mdct->rot_tmp; | |||||
IComplex *x = mdct->cplx_tmp; | |||||
n = 1 << mdct->nbits; | |||||
n2 = n >> 1; | |||||
n4 = n >> 2; | |||||
/* shift to simplify computations */ | |||||
for (i = 0; i <n4; i++) | |||||
rot[i] = -in[i + 3*n4]; | |||||
memcpy(&rot[n4], &in[0], 3*n4*sizeof(*in)); | |||||
/* pre rotation */ | |||||
for (i = 0; i < n4; i++) { | |||||
re = ((int)rot[ 2*i] - (int)rot[ n-1-2*i]) >> 1; | |||||
im = -((int)rot[n2+2*i] - (int)rot[n2-1-2*i]) >> 1; | |||||
CMUL(x[i].re, x[i].im, re, im, -mdct->xcos1[i], mdct->xsin1[i]); | |||||
} | |||||
fft(mdct, x, mdct->nbits - 2); | |||||
/* post rotation */ | |||||
for (i = 0; i < n4; i++) { | |||||
re = x[i].re; | |||||
im = x[i].im; | |||||
CMUL(out[n2-1-2*i], out[2*i], re, im, mdct->xsin1[i], mdct->xcos1[i]); | |||||
} | |||||
} | |||||
/** | |||||
* Apply KBD window to input samples prior to MDCT. | |||||
*/ | |||||
static void apply_window(int16_t *output, const int16_t *input, | |||||
const int16_t *window, int n) | |||||
{ | |||||
int i; | |||||
int n2 = n >> 1; | |||||
for (i = 0; i < n2; i++) { | |||||
output[i] = MUL16(input[i], window[i]) >> 15; | |||||
output[n-i-1] = MUL16(input[n-i-1], window[i]) >> 15; | |||||
} | |||||
} | |||||
/** | |||||
* Calculate the log2() of the maximum absolute value in an array. | |||||
* @param tab input array | |||||
* @param n number of values in the array | |||||
* @return log2(max(abs(tab[]))) | |||||
*/ | |||||
static int log2_tab(int16_t *tab, int n) | |||||
{ | |||||
int i, v; | |||||
v = 0; | |||||
for (i = 0; i < n; i++) | |||||
v |= abs(tab[i]); | |||||
return av_log2(v); | |||||
} | |||||
/** | |||||
* Left-shift each value in an array by a specified amount. | |||||
* @param tab input array | |||||
* @param n number of values in the array | |||||
* @param lshift left shift amount. a negative value means right shift. | |||||
*/ | |||||
static void lshift_tab(int16_t *tab, int n, int lshift) | |||||
{ | |||||
int i; | |||||
if (lshift > 0) { | |||||
for (i = 0; i < n; i++) | |||||
tab[i] <<= lshift; | |||||
} else if (lshift < 0) { | |||||
lshift = -lshift; | |||||
for (i = 0; i < n; i++) | |||||
tab[i] >>= lshift; | |||||
} | |||||
} | |||||
/** | |||||
* Normalize the input samples to use the maximum available precision. | |||||
* This assumes signed 16-bit input samples. Exponents are reduced by 9 to | |||||
* match the 24-bit internal precision for MDCT coefficients. | |||||
* | |||||
* @return exponent shift | |||||
*/ | |||||
static int normalize_samples(AC3EncodeContext *s) | |||||
{ | |||||
int v = 14 - log2_tab(s->windowed_samples, AC3_WINDOW_SIZE); | |||||
v = FFMAX(0, v); | |||||
lshift_tab(s->windowed_samples, AC3_WINDOW_SIZE, v); | |||||
return v - 9; | |||||
} | |||||
#ifdef TEST | |||||
/*************************************************************************/ | |||||
/* TEST */ | |||||
#include "libavutil/lfg.h" | |||||
#define MDCT_NBITS 9 | |||||
#define MDCT_SAMPLES (1 << MDCT_NBITS) | |||||
#define FN (MDCT_SAMPLES/4) | |||||
static void fft_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||||
{ | |||||
IComplex in[FN], in1[FN]; | |||||
int k, n, i; | |||||
float sum_re, sum_im, a; | |||||
for (i = 0; i < FN; i++) { | |||||
in[i].re = av_lfg_get(lfg) % 65535 - 32767; | |||||
in[i].im = av_lfg_get(lfg) % 65535 - 32767; | |||||
in1[i] = in[i]; | |||||
} | |||||
fft(mdct, in, 7); | |||||
/* do it by hand */ | |||||
for (k = 0; k < FN; k++) { | |||||
sum_re = 0; | |||||
sum_im = 0; | |||||
for (n = 0; n < FN; n++) { | |||||
a = -2 * M_PI * (n * k) / FN; | |||||
sum_re += in1[n].re * cos(a) - in1[n].im * sin(a); | |||||
sum_im += in1[n].re * sin(a) + in1[n].im * cos(a); | |||||
} | |||||
av_log(NULL, AV_LOG_DEBUG, "%3d: %6d,%6d %6.0f,%6.0f\n", | |||||
k, in[k].re, in[k].im, sum_re / FN, sum_im / FN); | |||||
} | |||||
} | |||||
static void mdct_test(AC3MDCTContext *mdct, AVLFG *lfg) | |||||
{ | |||||
int16_t input[MDCT_SAMPLES]; | |||||
int32_t output[AC3_MAX_COEFS]; | |||||
float input1[MDCT_SAMPLES]; | |||||
float output1[AC3_MAX_COEFS]; | |||||
float s, a, err, e, emax; | |||||
int i, k, n; | |||||
for (i = 0; i < MDCT_SAMPLES; i++) { | |||||
input[i] = (av_lfg_get(lfg) % 65535 - 32767) * 9 / 10; | |||||
input1[i] = input[i]; | |||||
} | |||||
mdct512(mdct, output, input); | |||||
/* do it by hand */ | |||||
for (k = 0; k < AC3_MAX_COEFS; k++) { | |||||
s = 0; | |||||
for (n = 0; n < MDCT_SAMPLES; n++) { | |||||
a = (2*M_PI*(2*n+1+MDCT_SAMPLES/2)*(2*k+1) / (4 * MDCT_SAMPLES)); | |||||
s += input1[n] * cos(a); | |||||
} | |||||
output1[k] = -2 * s / MDCT_SAMPLES; | |||||
} | |||||
err = 0; | |||||
emax = 0; | |||||
for (i = 0; i < AC3_MAX_COEFS; i++) { | |||||
av_log(NULL, AV_LOG_DEBUG, "%3d: %7d %7.0f\n", i, output[i], output1[i]); | |||||
e = output[i] - output1[i]; | |||||
if (e > emax) | |||||
emax = e; | |||||
err += e * e; | |||||
} | |||||
av_log(NULL, AV_LOG_DEBUG, "err2=%f emax=%f\n", err / AC3_MAX_COEFS, emax); | |||||
} | |||||
int main(void) | |||||
{ | |||||
AVLFG lfg; | |||||
AC3MDCTContext mdct; | |||||
mdct.avctx = NULL; | |||||
av_log_set_level(AV_LOG_DEBUG); | |||||
mdct_init(&mdct, 9); | |||||
fft_test(&mdct, &lfg); | |||||
mdct_test(&mdct, &lfg); | |||||
return 0; | |||||
} | |||||
#endif /* TEST */ | |||||
AVCodec ac3_encoder = { | |||||
"ac3", | |||||
AVMEDIA_TYPE_AUDIO, | |||||
CODEC_ID_AC3, | |||||
sizeof(AC3EncodeContext), | |||||
ac3_encode_init, | |||||
ac3_encode_frame, | |||||
ac3_encode_close, | |||||
NULL, | |||||
.sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_S16,AV_SAMPLE_FMT_NONE}, | |||||
.long_name = NULL_IF_CONFIG_SMALL("ATSC A/52A (AC-3)"), | |||||
.channel_layouts = ac3_channel_layouts, | |||||
}; |
@@ -0,0 +1,60 @@ | |||||
/* | |||||
* The simplest AC-3 encoder | |||||
* Copyright (c) 2000 Fabrice Bellard | |||||
* Copyright (c) 2006-2010 Justin Ruggles <justin.ruggles@gmail.com> | |||||
* Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de> | |||||
* | |||||
* This file is part of FFmpeg. | |||||
* | |||||
* FFmpeg is free software; you can redistribute it and/or | |||||
* modify it under the terms of the GNU Lesser General Public | |||||
* License as published by the Free Software Foundation; either | |||||
* version 2.1 of the License, or (at your option) any later version. | |||||
* | |||||
* FFmpeg is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||||
* Lesser General Public License for more details. | |||||
* | |||||
* You should have received a copy of the GNU Lesser General Public | |||||
* License along with FFmpeg; if not, write to the Free Software | |||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||||
*/ | |||||
/** | |||||
* @file | |||||
* fixed-point AC-3 encoder header. | |||||
*/ | |||||
#ifndef AVCODEC_AC3ENC_FIXED_H | |||||
#define AVCODEC_AC3ENC_FIXED_H | |||||
#include <stdint.h> | |||||
typedef int16_t SampleType; | |||||
typedef int32_t CoefType; | |||||
#define SCALE_COEF(a) (a) | |||||
/** | |||||
* Compex number. | |||||
* Used in fixed-point MDCT calculation. | |||||
*/ | |||||
typedef struct IComplex { | |||||
int16_t re,im; | |||||
} IComplex; | |||||
typedef struct AC3MDCTContext { | |||||
const int16_t *window; ///< MDCT window function | |||||
int nbits; ///< log2(transform size) | |||||
int16_t *costab; ///< FFT cos table | |||||
int16_t *sintab; ///< FFT sin table | |||||
int16_t *xcos1; ///< MDCT cos table | |||||
int16_t *xsin1; ///< MDCT sin table | |||||
int16_t *rot_tmp; ///< temp buffer for pre-rotated samples | |||||
IComplex *cplx_tmp; ///< temp buffer for complex pre-rotated samples | |||||
} AC3MDCTContext; | |||||
#endif /* AVCODEC_AC3ENC_FIXED_H */ |