Not support pooling strides in channel dimension yet. Signed-off-by: Ting Fu <ting.fu@intel.com> Reviewed-by: Guo, Yejun <yejun.guo@intel.com>tags/n4.4
@@ -1,6 +1,7 @@ | |||
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o | |||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o | |||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o | |||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o | |||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o | |||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o | |||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o | |||
@@ -43,10 +43,12 @@ typedef enum { | |||
DLT_MAXIMUM = 4, | |||
DLT_MATH_BINARY = 5, | |||
DLT_MATH_UNARY = 6, | |||
DLT_AVG_POOL = 7, | |||
DLT_COUNT | |||
} DNNLayerType; | |||
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType; | |||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam; | |||
typedef struct Layer{ | |||
DNNLayerType type; | |||
@@ -0,0 +1,141 @@ | |||
/* | |||
* Copyright (c) 2020 | |||
* | |||
* This file is part of FFmpeg. | |||
* | |||
* FFmpeg is free software; you can redistribute it and/or | |||
* modify it under the terms of the GNU Lesser General Public | |||
* License as published by the Free Software Foundation; either | |||
* version 2.1 of the License, or (at your option) any later version. | |||
* | |||
* FFmpeg is distributed in the hope that it will be useful, | |||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
* Lesser General Public License for more details. | |||
* | |||
* You should have received a copy of the GNU Lesser General Public | |||
* License along with FFmpeg; if not, write to the Free Software | |||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
*/ | |||
/** | |||
* @file | |||
* DNN native backend implementation. | |||
*/ | |||
#include "libavutil/avassert.h" | |||
#include "dnn_backend_native_layer_avgpool.h" | |||
int dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) | |||
{ | |||
AvgPoolParams *avgpool_params; | |||
int dnn_size = 0; | |||
avgpool_params = av_malloc(sizeof(*avgpool_params)); | |||
if(!avgpool_params) | |||
return 0; | |||
avgpool_params->strides = (int32_t)avio_rl32(model_file_context); | |||
avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); | |||
avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); | |||
dnn_size += 12; | |||
if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ | |||
av_freep(&avgpool_params); | |||
return 0; | |||
} | |||
layer->params = avgpool_params; | |||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); | |||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); | |||
dnn_size += 8; | |||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { | |||
return 0; | |||
} | |||
return dnn_size; | |||
} | |||
int dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, | |||
int32_t output_operand_index, const void *parameters) | |||
{ | |||
float *output; | |||
int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; | |||
int32_t input_operand_index = input_operand_indexes[0]; | |||
int number = operands[input_operand_index].dims[0]; | |||
int height = operands[input_operand_index].dims[1]; | |||
int width = operands[input_operand_index].dims[2]; | |||
int channel = operands[input_operand_index].dims[3]; | |||
const float *input = operands[input_operand_index].data; | |||
const AvgPoolParams *avgpool_params = (const AvgPoolParams *)parameters; | |||
int kernel_strides = avgpool_params->strides; | |||
int src_linesize = width * channel; | |||
DnnOperand *output_operand = &operands[output_operand_index]; | |||
/** | |||
* When padding_method = SAME, the tensorflow will only padding the hald number of 0 pxiels | |||
* except the remainders. | |||
* Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 | |||
* and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, | |||
* and 5 - 2 - 1 = 2 lines after the last line of input image. | |||
* and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, | |||
* and 7 - 2 - 2 = 3 lines after the last line of input image. | |||
*/ | |||
if (avgpool_params->padding_method == SAME) { | |||
height_end = height; | |||
width_end = width; | |||
height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); | |||
width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); | |||
height_radius = height_radius < 0 ? 0 : height_radius >> 1; | |||
width_radius = width_radius < 0 ? 0 : width_radius >> 1; | |||
output_height = ceil(height / (kernel_strides * 1.0)); | |||
output_width = ceil(width / (kernel_strides * 1.0)); | |||
} else { | |||
assert(avgpool_params->padding_method = VALID); | |||
height_end = height - avgpool_params->kernel_size + 1; | |||
width_end = width - avgpool_params->kernel_size + 1; | |||
height_radius = 0; | |||
width_radius = 0; | |||
output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); | |||
output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); | |||
} | |||
output_operand->dims[0] = number; | |||
output_operand->dims[1] = output_height; | |||
output_operand->dims[2] = output_width; | |||
// not support pooling in channel dimension now | |||
output_operand->dims[3] = channel; | |||
output_operand->data_type = operands[input_operand_index].data_type; | |||
output_operand->length = calculate_operand_data_length(output_operand); | |||
output_operand->data = av_realloc(output_operand->data, output_operand->length); | |||
if (!output_operand->data) | |||
return -1; | |||
output = output_operand->data; | |||
for (int y = 0; y < height_end; y += kernel_strides) { | |||
for (int x = 0; x < width_end; x += kernel_strides) { | |||
for (int n_channel = 0; n_channel < channel; ++n_channel) { | |||
output[n_channel] = 0.0; | |||
kernel_area = 0; | |||
for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { | |||
for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { | |||
float input_pel; | |||
int y_pos = y + (kernel_y - height_radius); | |||
int x_pos = x + (kernel_x - width_radius); | |||
if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { | |||
input_pel = 0.0; | |||
} else { | |||
kernel_area++; | |||
input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; | |||
} | |||
output[n_channel] += input_pel; | |||
} | |||
} | |||
output[n_channel] /= kernel_area; | |||
} | |||
output += channel; | |||
} | |||
} | |||
return 0; | |||
} |
@@ -0,0 +1,40 @@ | |||
/* | |||
* Copyright (c) 2020 | |||
* | |||
* This file is part of FFmpeg. | |||
* | |||
* FFmpeg is free software; you can redistribute it and/or | |||
* modify it under the terms of the GNU Lesser General Public | |||
* License as published by the Free Software Foundation; either | |||
* version 2.1 of the License, or (at your option) any later version. | |||
* | |||
* FFmpeg is distributed in the hope that it will be useful, | |||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||
* Lesser General Public License for more details. | |||
* | |||
* You should have received a copy of the GNU Lesser General Public | |||
* License along with FFmpeg; if not, write to the Free Software | |||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||
*/ | |||
/** | |||
* @file | |||
* DNN inference functions interface for native backend. | |||
*/ | |||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H | |||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H | |||
#include "dnn_backend_native.h" | |||
typedef struct AvgPoolParams{ | |||
int32_t strides, kernel_size; | |||
DNNPaddingParam padding_method; | |||
} AvgPoolParams; | |||
int dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); | |||
int dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, | |||
int32_t output_operand_index, const void *parameters); | |||
#endif |
@@ -24,12 +24,11 @@ | |||
#include "dnn_backend_native.h" | |||
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; | |||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam; | |||
typedef struct ConvolutionalParams{ | |||
int32_t input_num, output_num, kernel_size; | |||
DNNActivationFunc activation; | |||
DNNConvPaddingParam padding_method; | |||
DNNPaddingParam padding_method; | |||
int32_t dilation; | |||
int32_t has_bias; | |||
float *kernel; | |||
@@ -26,6 +26,7 @@ | |||
#include "dnn_backend_native_layer_maximum.h" | |||
#include "dnn_backend_native_layer_mathbinary.h" | |||
#include "dnn_backend_native_layer_mathunary.h" | |||
#include "dnn_backend_native_layer_avgpool.h" | |||
LayerFunc layer_funcs[DLT_COUNT] = { | |||
{NULL, NULL}, | |||
@@ -35,4 +36,5 @@ LayerFunc layer_funcs[DLT_COUNT] = { | |||
{dnn_execute_layer_maximum, dnn_load_layer_maximum}, | |||
{dnn_execute_layer_math_binary, dnn_load_layer_math_binary}, | |||
{dnn_execute_layer_math_unary, dnn_load_layer_math_unary}, | |||
{dnn_execute_layer_avg_pool, dnn_load_layer_avg_pool}, | |||
}; |
@@ -67,10 +67,12 @@ class TFConverter: | |||
self.edges = {} | |||
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} | |||
self.conv_paddings = {'VALID':0, 'SAME':1} | |||
self.pool_paddings = {'VALID':0, 'SAME':1} | |||
self.converted_nodes = set() | |||
self.conv2d_scope_names = set() | |||
self.conv2d_scopename_inputname_dict = {} | |||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6} | |||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, | |||
'MathBinary':5, 'MathUnary':6, 'AvgPool':7} | |||
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4} | |||
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, | |||
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, | |||
@@ -300,6 +302,37 @@ class TFConverter: | |||
np.array([output_operand_index],dtype=np.uint32).tofile(f) | |||
def dump_avg_pool_to_file(self, node, f): | |||
assert(node.op == 'AvgPool') | |||
self.layer_number = self.layer_number + 1 | |||
self.converted_nodes.add(node.name) | |||
node0 = self.name_node_dict[node.input[0]] | |||
strides = node.attr['strides'] | |||
# Tensorflow do not support pooling strides in batch dimension and | |||
# current native NN do not support pooling strides in channel dimension, added assert() here. | |||
assert(strides.list.i[1]==strides.list.i[2]) | |||
assert(strides.list.i[0]==1) | |||
assert(strides.list.i[3]==1) | |||
strides = strides.list.i[1] | |||
filter_node = node.attr['ksize'] | |||
input_name = node.input[0] | |||
# Tensorflow do not support pooling ksize in batch dimension and channel dimension. | |||
assert(filter_node.list.i[0]==1) | |||
assert(filter_node.list.i[3]==1) | |||
filter_height = filter_node.list.i[1] | |||
filter_width = filter_node.list.i[2] | |||
padding = node.attr['padding'].s.decode("utf-8") | |||
np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height], | |||
dtype=np.uint32).tofile(f) | |||
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) | |||
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) | |||
np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f) | |||
def dump_layers_to_file(self, f): | |||
for node in self.nodes: | |||
if node.name in self.converted_nodes: | |||
@@ -313,6 +346,8 @@ class TFConverter: | |||
if node.op == 'Conv2D': | |||
self.dump_simple_conv2d_to_file(node, f) | |||
if node.op == 'AvgPool': | |||
self.dump_avg_pool_to_file(node, f) | |||
elif node.op == 'DepthToSpace': | |||
self.dump_depth2space_to_file(node, f) | |||
elif node.op == 'MirrorPad': | |||