Not support pooling strides in channel dimension yet. Signed-off-by: Ting Fu <ting.fu@intel.com> Reviewed-by: Guo, Yejun <yejun.guo@intel.com>tags/n4.4
@@ -1,6 +1,7 @@ | |||||
OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o | OBJS-$(CONFIG_DNN) += dnn/dnn_interface.o | ||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o | OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o | ||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o | OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o | ||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o | |||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o | OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o | ||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o | OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o | ||||
OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o | OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o | ||||
@@ -43,10 +43,12 @@ typedef enum { | |||||
DLT_MAXIMUM = 4, | DLT_MAXIMUM = 4, | ||||
DLT_MATH_BINARY = 5, | DLT_MATH_BINARY = 5, | ||||
DLT_MATH_UNARY = 6, | DLT_MATH_UNARY = 6, | ||||
DLT_AVG_POOL = 7, | |||||
DLT_COUNT | DLT_COUNT | ||||
} DNNLayerType; | } DNNLayerType; | ||||
typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType; | typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType; | ||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam; | |||||
typedef struct Layer{ | typedef struct Layer{ | ||||
DNNLayerType type; | DNNLayerType type; | ||||
@@ -0,0 +1,141 @@ | |||||
/* | |||||
* Copyright (c) 2020 | |||||
* | |||||
* This file is part of FFmpeg. | |||||
* | |||||
* FFmpeg is free software; you can redistribute it and/or | |||||
* modify it under the terms of the GNU Lesser General Public | |||||
* License as published by the Free Software Foundation; either | |||||
* version 2.1 of the License, or (at your option) any later version. | |||||
* | |||||
* FFmpeg is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||||
* Lesser General Public License for more details. | |||||
* | |||||
* You should have received a copy of the GNU Lesser General Public | |||||
* License along with FFmpeg; if not, write to the Free Software | |||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||||
*/ | |||||
/** | |||||
* @file | |||||
* DNN native backend implementation. | |||||
*/ | |||||
#include "libavutil/avassert.h" | |||||
#include "dnn_backend_native_layer_avgpool.h" | |||||
int dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) | |||||
{ | |||||
AvgPoolParams *avgpool_params; | |||||
int dnn_size = 0; | |||||
avgpool_params = av_malloc(sizeof(*avgpool_params)); | |||||
if(!avgpool_params) | |||||
return 0; | |||||
avgpool_params->strides = (int32_t)avio_rl32(model_file_context); | |||||
avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); | |||||
avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); | |||||
dnn_size += 12; | |||||
if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ | |||||
av_freep(&avgpool_params); | |||||
return 0; | |||||
} | |||||
layer->params = avgpool_params; | |||||
layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); | |||||
layer->output_operand_index = (int32_t)avio_rl32(model_file_context); | |||||
dnn_size += 8; | |||||
if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { | |||||
return 0; | |||||
} | |||||
return dnn_size; | |||||
} | |||||
int dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, | |||||
int32_t output_operand_index, const void *parameters) | |||||
{ | |||||
float *output; | |||||
int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; | |||||
int32_t input_operand_index = input_operand_indexes[0]; | |||||
int number = operands[input_operand_index].dims[0]; | |||||
int height = operands[input_operand_index].dims[1]; | |||||
int width = operands[input_operand_index].dims[2]; | |||||
int channel = operands[input_operand_index].dims[3]; | |||||
const float *input = operands[input_operand_index].data; | |||||
const AvgPoolParams *avgpool_params = (const AvgPoolParams *)parameters; | |||||
int kernel_strides = avgpool_params->strides; | |||||
int src_linesize = width * channel; | |||||
DnnOperand *output_operand = &operands[output_operand_index]; | |||||
/** | |||||
* When padding_method = SAME, the tensorflow will only padding the hald number of 0 pxiels | |||||
* except the remainders. | |||||
* Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 | |||||
* and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, | |||||
* and 5 - 2 - 1 = 2 lines after the last line of input image. | |||||
* and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, | |||||
* and 7 - 2 - 2 = 3 lines after the last line of input image. | |||||
*/ | |||||
if (avgpool_params->padding_method == SAME) { | |||||
height_end = height; | |||||
width_end = width; | |||||
height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); | |||||
width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); | |||||
height_radius = height_radius < 0 ? 0 : height_radius >> 1; | |||||
width_radius = width_radius < 0 ? 0 : width_radius >> 1; | |||||
output_height = ceil(height / (kernel_strides * 1.0)); | |||||
output_width = ceil(width / (kernel_strides * 1.0)); | |||||
} else { | |||||
assert(avgpool_params->padding_method = VALID); | |||||
height_end = height - avgpool_params->kernel_size + 1; | |||||
width_end = width - avgpool_params->kernel_size + 1; | |||||
height_radius = 0; | |||||
width_radius = 0; | |||||
output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); | |||||
output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); | |||||
} | |||||
output_operand->dims[0] = number; | |||||
output_operand->dims[1] = output_height; | |||||
output_operand->dims[2] = output_width; | |||||
// not support pooling in channel dimension now | |||||
output_operand->dims[3] = channel; | |||||
output_operand->data_type = operands[input_operand_index].data_type; | |||||
output_operand->length = calculate_operand_data_length(output_operand); | |||||
output_operand->data = av_realloc(output_operand->data, output_operand->length); | |||||
if (!output_operand->data) | |||||
return -1; | |||||
output = output_operand->data; | |||||
for (int y = 0; y < height_end; y += kernel_strides) { | |||||
for (int x = 0; x < width_end; x += kernel_strides) { | |||||
for (int n_channel = 0; n_channel < channel; ++n_channel) { | |||||
output[n_channel] = 0.0; | |||||
kernel_area = 0; | |||||
for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { | |||||
for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { | |||||
float input_pel; | |||||
int y_pos = y + (kernel_y - height_radius); | |||||
int x_pos = x + (kernel_x - width_radius); | |||||
if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { | |||||
input_pel = 0.0; | |||||
} else { | |||||
kernel_area++; | |||||
input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; | |||||
} | |||||
output[n_channel] += input_pel; | |||||
} | |||||
} | |||||
output[n_channel] /= kernel_area; | |||||
} | |||||
output += channel; | |||||
} | |||||
} | |||||
return 0; | |||||
} |
@@ -0,0 +1,40 @@ | |||||
/* | |||||
* Copyright (c) 2020 | |||||
* | |||||
* This file is part of FFmpeg. | |||||
* | |||||
* FFmpeg is free software; you can redistribute it and/or | |||||
* modify it under the terms of the GNU Lesser General Public | |||||
* License as published by the Free Software Foundation; either | |||||
* version 2.1 of the License, or (at your option) any later version. | |||||
* | |||||
* FFmpeg is distributed in the hope that it will be useful, | |||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | |||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | |||||
* Lesser General Public License for more details. | |||||
* | |||||
* You should have received a copy of the GNU Lesser General Public | |||||
* License along with FFmpeg; if not, write to the Free Software | |||||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | |||||
*/ | |||||
/** | |||||
* @file | |||||
* DNN inference functions interface for native backend. | |||||
*/ | |||||
#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H | |||||
#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H | |||||
#include "dnn_backend_native.h" | |||||
typedef struct AvgPoolParams{ | |||||
int32_t strides, kernel_size; | |||||
DNNPaddingParam padding_method; | |||||
} AvgPoolParams; | |||||
int dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); | |||||
int dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, | |||||
int32_t output_operand_index, const void *parameters); | |||||
#endif |
@@ -24,12 +24,11 @@ | |||||
#include "dnn_backend_native.h" | #include "dnn_backend_native.h" | ||||
typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; | typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; | ||||
typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNConvPaddingParam; | |||||
typedef struct ConvolutionalParams{ | typedef struct ConvolutionalParams{ | ||||
int32_t input_num, output_num, kernel_size; | int32_t input_num, output_num, kernel_size; | ||||
DNNActivationFunc activation; | DNNActivationFunc activation; | ||||
DNNConvPaddingParam padding_method; | |||||
DNNPaddingParam padding_method; | |||||
int32_t dilation; | int32_t dilation; | ||||
int32_t has_bias; | int32_t has_bias; | ||||
float *kernel; | float *kernel; | ||||
@@ -26,6 +26,7 @@ | |||||
#include "dnn_backend_native_layer_maximum.h" | #include "dnn_backend_native_layer_maximum.h" | ||||
#include "dnn_backend_native_layer_mathbinary.h" | #include "dnn_backend_native_layer_mathbinary.h" | ||||
#include "dnn_backend_native_layer_mathunary.h" | #include "dnn_backend_native_layer_mathunary.h" | ||||
#include "dnn_backend_native_layer_avgpool.h" | |||||
LayerFunc layer_funcs[DLT_COUNT] = { | LayerFunc layer_funcs[DLT_COUNT] = { | ||||
{NULL, NULL}, | {NULL, NULL}, | ||||
@@ -35,4 +36,5 @@ LayerFunc layer_funcs[DLT_COUNT] = { | |||||
{dnn_execute_layer_maximum, dnn_load_layer_maximum}, | {dnn_execute_layer_maximum, dnn_load_layer_maximum}, | ||||
{dnn_execute_layer_math_binary, dnn_load_layer_math_binary}, | {dnn_execute_layer_math_binary, dnn_load_layer_math_binary}, | ||||
{dnn_execute_layer_math_unary, dnn_load_layer_math_unary}, | {dnn_execute_layer_math_unary, dnn_load_layer_math_unary}, | ||||
{dnn_execute_layer_avg_pool, dnn_load_layer_avg_pool}, | |||||
}; | }; |
@@ -67,10 +67,12 @@ class TFConverter: | |||||
self.edges = {} | self.edges = {} | ||||
self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} | self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4} | ||||
self.conv_paddings = {'VALID':0, 'SAME':1} | self.conv_paddings = {'VALID':0, 'SAME':1} | ||||
self.pool_paddings = {'VALID':0, 'SAME':1} | |||||
self.converted_nodes = set() | self.converted_nodes = set() | ||||
self.conv2d_scope_names = set() | self.conv2d_scope_names = set() | ||||
self.conv2d_scopename_inputname_dict = {} | self.conv2d_scopename_inputname_dict = {} | ||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, 'MathBinary':5, 'MathUnary':6} | |||||
self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3, 'Maximum':4, | |||||
'MathBinary':5, 'MathUnary':6, 'AvgPool':7} | |||||
self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4} | self.mathbin2code = {'Sub':0, 'Add':1, 'Mul':2, 'RealDiv':3, 'Minimum':4} | ||||
self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, | self.mathun2code = {'Abs':0, 'Sin':1, 'Cos':2, 'Tan':3, 'Asin':4, | ||||
'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, | 'Acos':5, 'Atan':6, 'Sinh':7, 'Cosh':8, 'Tanh':9, 'Asinh':10, | ||||
@@ -300,6 +302,37 @@ class TFConverter: | |||||
np.array([output_operand_index],dtype=np.uint32).tofile(f) | np.array([output_operand_index],dtype=np.uint32).tofile(f) | ||||
def dump_avg_pool_to_file(self, node, f): | |||||
assert(node.op == 'AvgPool') | |||||
self.layer_number = self.layer_number + 1 | |||||
self.converted_nodes.add(node.name) | |||||
node0 = self.name_node_dict[node.input[0]] | |||||
strides = node.attr['strides'] | |||||
# Tensorflow do not support pooling strides in batch dimension and | |||||
# current native NN do not support pooling strides in channel dimension, added assert() here. | |||||
assert(strides.list.i[1]==strides.list.i[2]) | |||||
assert(strides.list.i[0]==1) | |||||
assert(strides.list.i[3]==1) | |||||
strides = strides.list.i[1] | |||||
filter_node = node.attr['ksize'] | |||||
input_name = node.input[0] | |||||
# Tensorflow do not support pooling ksize in batch dimension and channel dimension. | |||||
assert(filter_node.list.i[0]==1) | |||||
assert(filter_node.list.i[3]==1) | |||||
filter_height = filter_node.list.i[1] | |||||
filter_width = filter_node.list.i[2] | |||||
padding = node.attr['padding'].s.decode("utf-8") | |||||
np.array([self.op2code[node.op], strides, self.pool_paddings[padding], filter_height], | |||||
dtype=np.uint32).tofile(f) | |||||
input_operand_index = self.add_operand(input_name, Operand.IOTYPE_INPUT) | |||||
output_operand_index = self.add_operand(node.name, Operand.IOTYPE_OUTPUT) | |||||
np.array([input_operand_index, output_operand_index],dtype=np.uint32).tofile(f) | |||||
def dump_layers_to_file(self, f): | def dump_layers_to_file(self, f): | ||||
for node in self.nodes: | for node in self.nodes: | ||||
if node.name in self.converted_nodes: | if node.name in self.converted_nodes: | ||||
@@ -313,6 +346,8 @@ class TFConverter: | |||||
if node.op == 'Conv2D': | if node.op == 'Conv2D': | ||||
self.dump_simple_conv2d_to_file(node, f) | self.dump_simple_conv2d_to_file(node, f) | ||||
if node.op == 'AvgPool': | |||||
self.dump_avg_pool_to_file(node, f) | |||||
elif node.op == 'DepthToSpace': | elif node.op == 'DepthToSpace': | ||||
self.dump_depth2space_to_file(node, f) | self.dump_depth2space_to_file(node, f) | ||||
elif node.op == 'MirrorPad': | elif node.op == 'MirrorPad': | ||||