You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

235 lines
6.7KB

  1. /*
  2. Copyright (c) 2018 bsp
  3. Permission is hereby granted, free of charge, to any person obtaining a copy
  4. of this software and associated documentation files (the "Software"), to deal
  5. in the Software without restriction, including without limitation the rights
  6. to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  7. copies of the Software, and to permit persons to whom the Software is
  8. furnished to do so, subject to the following conditions:
  9. The above copyright notice and this permission notice shall be included in all
  10. copies or substantial portions of the Software.
  11. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  12. IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  13. FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  14. AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  15. LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  16. OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  17. SOFTWARE.
  18. */
  19. /// When defined, use linear interpolation when reading samples from delay line
  20. // #define USE_FRAC defined
  21. #include <math.h>
  22. #include <stdlib.h> // memset
  23. #include "bsp.hpp"
  24. namespace rack_plugin_bsp {
  25. struct TunedDelayLine : Module {
  26. enum ParamIds {
  27. DRYWET_PARAM,
  28. FB_AMT_PARAM,
  29. FINETUNE_PARAM, // or delaytime in seconds when no V/OCT input is connected
  30. POSTFB_PARAM,
  31. NUM_PARAMS
  32. };
  33. enum InputIds {
  34. VOCT_INPUT,
  35. AUDIO_INPUT,
  36. FB_RET_INPUT,
  37. NUM_INPUTS
  38. };
  39. enum OutputIds {
  40. FB_SEND_OUTPUT,
  41. AUDIO_OUTPUT,
  42. NUM_OUTPUTS
  43. };
  44. #define BUF_SIZE (256u*1024u)
  45. #define BUF_SIZE_MASK (BUF_SIZE - 1u)
  46. float delay_buf[BUF_SIZE];
  47. uint32_t delay_buf_idx;
  48. float last_dly_val;
  49. float sample_rate;
  50. TunedDelayLine() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {
  51. delay_buf_idx = 0u;
  52. ::memset((void*)delay_buf, 0, sizeof(delay_buf));
  53. handleSampleRateChanged();
  54. last_dly_val = 0.0f;
  55. }
  56. void handleSampleRateChanged(void) {
  57. sample_rate = engineGetSampleRate();
  58. }
  59. void onSampleRateChange() override {
  60. Module::onSampleRateChange();
  61. handleSampleRateChanged();
  62. }
  63. void step() override;
  64. };
  65. void TunedDelayLine::step() {
  66. // Calculate delay length
  67. float dlySmpOff;
  68. if(inputs[VOCT_INPUT].active)
  69. {
  70. // (note) Freq calculation borrowed from Fundamental.VCO
  71. float pitch = inputs[VOCT_INPUT].value + params[FINETUNE_PARAM].value * (1.0f / 12.0f);
  72. // Note C4
  73. float freq = 261.626f * powf(2.0f, pitch);
  74. dlySmpOff = (1.0f * sample_rate) / freq;
  75. }
  76. else
  77. {
  78. // No input connected, set delay time in the range 0..1 seconds
  79. dlySmpOff = sample_rate * (0.5f + 0.5f * params[FINETUNE_PARAM].value);
  80. }
  81. // Read delayed sample from ring buffer
  82. #ifdef USE_FRAC
  83. uint32_t dlySmpOffI = uint32_t(dlySmpOff);
  84. float dlySmpFrac = dlySmpOff - dlySmpOffI;
  85. dlySmpOffI = (delay_buf_idx - dlySmpOffI) & BUF_SIZE_MASK;
  86. float dlyVal = delay_buf[dlySmpOffI] + (delay_buf[(dlySmpOffI+1u) & BUF_SIZE_MASK] - delay_buf[dlySmpOffI]) * dlySmpFrac;
  87. #else
  88. uint32_t dlySmpOffI = uint32_t(delay_buf_idx - dlySmpOff) & BUF_SIZE_MASK;
  89. float dlyVal = delay_buf[dlySmpOffI];
  90. #endif
  91. bool bPostFBOnly = (params[POSTFB_PARAM].value >= 0.5f);
  92. // Add input signal
  93. float inSmp = inputs[AUDIO_INPUT].value;
  94. if(bPostFBOnly)
  95. {
  96. dlyVal += inSmp;
  97. }
  98. // Send it to external module(s)
  99. outputs[FB_SEND_OUTPUT].value = dlyVal;
  100. float fbVal;
  101. // Read back processed feedback value
  102. if(inputs[FB_RET_INPUT].active)
  103. {
  104. // Use externally processed feedback sample
  105. // (note) this is actually shifted / delayed by one sample
  106. fbVal = inputs[FB_RET_INPUT].value;
  107. }
  108. else
  109. {
  110. // Fallback: feedback send+return not connected, use builtin filter instead
  111. fbVal = (last_dly_val + dlyVal) * 0.5f;
  112. last_dly_val = dlyVal;
  113. }
  114. // Apply feedback amount
  115. float fbAmt = params[FB_AMT_PARAM].value;
  116. fbAmt = 1.0f - fbAmt;
  117. fbAmt *= fbAmt;
  118. fbAmt *= fbAmt;
  119. fbAmt = 1.0f - fbAmt;
  120. fbVal *= fbAmt;
  121. if(!bPostFBOnly)
  122. {
  123. // Add input signal
  124. fbVal += inSmp;
  125. }
  126. // Write new delay sample to ring buffer
  127. delay_buf[delay_buf_idx] = fbVal;
  128. delay_buf_idx = (delay_buf_idx + 1u) & BUF_SIZE_MASK;
  129. // Final output
  130. float outVal;
  131. if(bPostFBOnly)
  132. {
  133. outVal = inSmp + (fbVal - inSmp) * params[DRYWET_PARAM].value;
  134. }
  135. else
  136. {
  137. outVal = inSmp + (dlyVal - inSmp) * params[DRYWET_PARAM].value;
  138. }
  139. outputs[AUDIO_OUTPUT].value = outVal;
  140. #if 0
  141. static int xxx = 0;
  142. if(0 == (++xxx & 32767))
  143. {
  144. printf("xxx V/OCT=%f freq=%f inSmp=%f dlySmpOff=%f dlyVal=%f fbVal=%f outVal=%f fbAmt=%f\n", inputs[VOCT_INPUT].value, freq, inSmp, dlySmpOff, dlyVal, fbVal, outVal, fbAmt);
  145. }
  146. #endif
  147. }
  148. struct TunedDelayLineWidget : ModuleWidget {
  149. TunedDelayLineWidget(TunedDelayLine *module);
  150. };
  151. TunedDelayLineWidget::TunedDelayLineWidget(TunedDelayLine *module) : ModuleWidget(module) {
  152. setPanel(SVG::load(assetPlugin(plugin, "res/TunedDelayLine.svg")));
  153. addChild(Widget::create<ScrewSilver>(Vec(15, 0)));
  154. addChild(Widget::create<ScrewSilver>(Vec(15, 365)));
  155. float cx;
  156. float cy;
  157. cx = 9.0f;
  158. cy = 37.0f;
  159. addInput(Port::create<PJ301MPort>(Vec(cx+2.0f, cy), Port::INPUT, module, TunedDelayLine::VOCT_INPUT));
  160. addParam(ParamWidget::create<RoundBlackKnob>(Vec(cx, cy + 32), module, TunedDelayLine::FINETUNE_PARAM, -1.0f, 1.0f, 0.0f));
  161. #define STY 32.0f
  162. cx = 11.0f;
  163. cy = 120.0f;
  164. addOutput(Port::create<PJ301MPort>(Vec(cx, cy), Port::OUTPUT, module, TunedDelayLine::FB_SEND_OUTPUT));
  165. cy += STY;
  166. addInput(Port::create<PJ301MPort>(Vec(cx, cy), Port::INPUT, module, TunedDelayLine::FB_RET_INPUT));
  167. cy += STY;
  168. addParam(ParamWidget::create<RoundBlackKnob>(Vec(cx-2.0f, cy), module, TunedDelayLine::FB_AMT_PARAM, 0.0f, 1.0f, 0.3f));
  169. #undef STY
  170. cx = 16.0f;
  171. cy = 218.0f;
  172. addParam(ParamWidget::create<CKSS>(Vec(cx, cy), module, TunedDelayLine::POSTFB_PARAM, 0.0f, 1.0f, 1.0f));
  173. cx = 9.0f;
  174. cy = 245.0f;
  175. addParam(ParamWidget::create<RoundBlackKnob>(Vec(cx, cy), module, TunedDelayLine::DRYWET_PARAM, 0.0f, 1.0f, 1.0f));
  176. #define STY 40.0f
  177. cx = 11.0f;
  178. cy = 325.0f;
  179. addInput(Port::create<PJ301MPort>(Vec(cx, cy - STY), Port::INPUT, module, TunedDelayLine::AUDIO_INPUT));
  180. addOutput(Port::create<PJ301MPort>(Vec(cx, 325), Port::OUTPUT, module, TunedDelayLine::AUDIO_OUTPUT));
  181. #undef STY
  182. }
  183. } // namespace rack_plugin_bsp
  184. using namespace rack_plugin_bsp;
  185. RACK_PLUGIN_MODEL_INIT(bsp, TunedDelayLine) {
  186. Model *modelTunedDelayLine = Model::create<TunedDelayLine, TunedDelayLineWidget>("bsp", "TunedDelayLine", "Tuned Delay Line", ATTENUATOR_TAG, MIXER_TAG);
  187. return modelTunedDelayLine;
  188. }