/* Copyright (c) 2018 bsp Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /// When defined, use linear interpolation when reading samples from delay line // #define USE_FRAC defined #include #include // memset #include "bsp.hpp" namespace rack_plugin_bsp { struct TunedDelayLine : Module { enum ParamIds { DRYWET_PARAM, FB_AMT_PARAM, FINETUNE_PARAM, // or delaytime in seconds when no V/OCT input is connected POSTFB_PARAM, NUM_PARAMS }; enum InputIds { VOCT_INPUT, AUDIO_INPUT, FB_RET_INPUT, NUM_INPUTS }; enum OutputIds { FB_SEND_OUTPUT, AUDIO_OUTPUT, NUM_OUTPUTS }; #define BUF_SIZE (256u*1024u) #define BUF_SIZE_MASK (BUF_SIZE - 1u) float delay_buf[BUF_SIZE]; uint32_t delay_buf_idx; float last_dly_val; float sample_rate; TunedDelayLine() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) { delay_buf_idx = 0u; ::memset((void*)delay_buf, 0, sizeof(delay_buf)); handleSampleRateChanged(); last_dly_val = 0.0f; } void handleSampleRateChanged(void) { sample_rate = engineGetSampleRate(); } void onSampleRateChange() override { Module::onSampleRateChange(); handleSampleRateChanged(); } void step() override; }; void TunedDelayLine::step() { // Calculate delay length float dlySmpOff; if(inputs[VOCT_INPUT].active) { // (note) Freq calculation borrowed from Fundamental.VCO float pitch = inputs[VOCT_INPUT].value + params[FINETUNE_PARAM].value * (1.0f / 12.0f); // Note C4 float freq = 261.626f * powf(2.0f, pitch); dlySmpOff = (1.0f * sample_rate) / freq; } else { // No input connected, set delay time in the range 0..1 seconds dlySmpOff = sample_rate * (0.5f + 0.5f * params[FINETUNE_PARAM].value); } // Read delayed sample from ring buffer #ifdef USE_FRAC uint32_t dlySmpOffI = uint32_t(dlySmpOff); float dlySmpFrac = dlySmpOff - dlySmpOffI; dlySmpOffI = (delay_buf_idx - dlySmpOffI) & BUF_SIZE_MASK; float dlyVal = delay_buf[dlySmpOffI] + (delay_buf[(dlySmpOffI+1u) & BUF_SIZE_MASK] - delay_buf[dlySmpOffI]) * dlySmpFrac; #else uint32_t dlySmpOffI = uint32_t(delay_buf_idx - dlySmpOff) & BUF_SIZE_MASK; float dlyVal = delay_buf[dlySmpOffI]; #endif bool bPostFBOnly = (params[POSTFB_PARAM].value >= 0.5f); // Add input signal float inSmp = inputs[AUDIO_INPUT].value; if(bPostFBOnly) { dlyVal += inSmp; } // Send it to external module(s) outputs[FB_SEND_OUTPUT].value = dlyVal; float fbVal; // Read back processed feedback value if(inputs[FB_RET_INPUT].active) { // Use externally processed feedback sample // (note) this is actually shifted / delayed by one sample fbVal = inputs[FB_RET_INPUT].value; } else { // Fallback: feedback send+return not connected, use builtin filter instead fbVal = (last_dly_val + dlyVal) * 0.5f; last_dly_val = dlyVal; } // Apply feedback amount float fbAmt = params[FB_AMT_PARAM].value; fbAmt = 1.0f - fbAmt; fbAmt *= fbAmt; fbAmt *= fbAmt; fbAmt = 1.0f - fbAmt; fbVal *= fbAmt; if(!bPostFBOnly) { // Add input signal fbVal += inSmp; } // Write new delay sample to ring buffer delay_buf[delay_buf_idx] = fbVal; delay_buf_idx = (delay_buf_idx + 1u) & BUF_SIZE_MASK; // Final output float outVal; if(bPostFBOnly) { outVal = inSmp + (fbVal - inSmp) * params[DRYWET_PARAM].value; } else { outVal = inSmp + (dlyVal - inSmp) * params[DRYWET_PARAM].value; } outputs[AUDIO_OUTPUT].value = outVal; #if 0 static int xxx = 0; if(0 == (++xxx & 32767)) { printf("xxx V/OCT=%f freq=%f inSmp=%f dlySmpOff=%f dlyVal=%f fbVal=%f outVal=%f fbAmt=%f\n", inputs[VOCT_INPUT].value, freq, inSmp, dlySmpOff, dlyVal, fbVal, outVal, fbAmt); } #endif } struct TunedDelayLineWidget : ModuleWidget { TunedDelayLineWidget(TunedDelayLine *module); }; TunedDelayLineWidget::TunedDelayLineWidget(TunedDelayLine *module) : ModuleWidget(module) { setPanel(SVG::load(assetPlugin(plugin, "res/TunedDelayLine.svg"))); addChild(Widget::create(Vec(15, 0))); addChild(Widget::create(Vec(15, 365))); float cx; float cy; cx = 9.0f; cy = 37.0f; addInput(Port::create(Vec(cx+2.0f, cy), Port::INPUT, module, TunedDelayLine::VOCT_INPUT)); addParam(ParamWidget::create(Vec(cx, cy + 32), module, TunedDelayLine::FINETUNE_PARAM, -1.0f, 1.0f, 0.0f)); #define STY 32.0f cx = 11.0f; cy = 120.0f; addOutput(Port::create(Vec(cx, cy), Port::OUTPUT, module, TunedDelayLine::FB_SEND_OUTPUT)); cy += STY; addInput(Port::create(Vec(cx, cy), Port::INPUT, module, TunedDelayLine::FB_RET_INPUT)); cy += STY; addParam(ParamWidget::create(Vec(cx-2.0f, cy), module, TunedDelayLine::FB_AMT_PARAM, 0.0f, 1.0f, 0.3f)); #undef STY cx = 16.0f; cy = 218.0f; addParam(ParamWidget::create(Vec(cx, cy), module, TunedDelayLine::POSTFB_PARAM, 0.0f, 1.0f, 1.0f)); cx = 9.0f; cy = 245.0f; addParam(ParamWidget::create(Vec(cx, cy), module, TunedDelayLine::DRYWET_PARAM, 0.0f, 1.0f, 1.0f)); #define STY 40.0f cx = 11.0f; cy = 325.0f; addInput(Port::create(Vec(cx, cy - STY), Port::INPUT, module, TunedDelayLine::AUDIO_INPUT)); addOutput(Port::create(Vec(cx, 325), Port::OUTPUT, module, TunedDelayLine::AUDIO_OUTPUT)); #undef STY } } // namespace rack_plugin_bsp using namespace rack_plugin_bsp; RACK_PLUGIN_MODEL_INIT(bsp, TunedDelayLine) { Model *modelTunedDelayLine = Model::create("bsp", "TunedDelayLine", "Tuned Delay Line", ATTENUATOR_TAG, MIXER_TAG); return modelTunedDelayLine; }