| @@ -2,71 +2,87 @@ | |||
| namespace rack { | |||
| namespace ode { | |||
| /** The callback function `f` in each of these stepping functions must have the signature | |||
| void f(float x, const float y[], float dydt[]) | |||
| void f(float t, const float x[], float dxdt[]) | |||
| A capturing lambda is ideal for this. | |||
| For example, | |||
| float x[2] = {1.f, 0.f}; | |||
| float dt = 0.01f; | |||
| for (float t = 0.f; t < 1.f; t += dt) { | |||
| rack::ode::stepRK4(t, dt, x, 2, [&](float t, const float x[], float dxdt[]) { | |||
| dxdt[0] = x[1]; | |||
| dxdt[1] = -x[0]; | |||
| }); | |||
| printf("%f\n", x[0]); | |||
| } | |||
| */ | |||
| /** Solves an ODE system using the 1st order Euler method */ | |||
| template<typename F> | |||
| void stepEuler(float x, float dx, float y[], int len, F f) { | |||
| void stepEuler(float t, float dt, float x[], int len, F f) { | |||
| float k[len]; | |||
| f(x, y, k); | |||
| f(t, x, k); | |||
| for (int i = 0; i < len; i++) { | |||
| y[i] += dx * k[i]; | |||
| x[i] += dt * k[i]; | |||
| } | |||
| } | |||
| /** Solves an ODE system using the 2nd order Runge-Kutta method */ | |||
| template<typename F> | |||
| void stepRK2(float x, float dx, float y[], int len, F f) { | |||
| void stepRK2(float t, float dt, float x[], int len, F f) { | |||
| float k1[len]; | |||
| float k2[len]; | |||
| float yi[len]; | |||
| f(x, y, k1); | |||
| f(t, x, k1); | |||
| for (int i = 0; i < len; i++) { | |||
| yi[i] = y[i] + k1[i] * dx / 2.f; | |||
| yi[i] = x[i] + k1[i] * dt / 2.f; | |||
| } | |||
| f(x + dx / 2.f, yi, k2); | |||
| f(t + dt / 2.f, yi, k2); | |||
| for (int i = 0; i < len; i++) { | |||
| y[i] += dx * k2[i]; | |||
| x[i] += dt * k2[i]; | |||
| } | |||
| } | |||
| /** Solves an ODE system using the 4th order Runge-Kutta method */ | |||
| template<typename F> | |||
| void stepRK4(float x, float dx, float y[], int len, F f) { | |||
| void stepRK4(float t, float dt, float x[], int len, F f) { | |||
| float k1[len]; | |||
| float k2[len]; | |||
| float k3[len]; | |||
| float k4[len]; | |||
| float yi[len]; | |||
| f(x, y, k1); | |||
| f(t, x, k1); | |||
| for (int i = 0; i < len; i++) { | |||
| yi[i] = y[i] + k1[i] * dx / 2.f; | |||
| yi[i] = x[i] + k1[i] * dt / 2.f; | |||
| } | |||
| f(x + dx / 2.f, yi, k2); | |||
| f(t + dt / 2.f, yi, k2); | |||
| for (int i = 0; i < len; i++) { | |||
| yi[i] = y[i] + k2[i] * dx / 2.f; | |||
| yi[i] = x[i] + k2[i] * dt / 2.f; | |||
| } | |||
| f(x + dx / 2.f, yi, k3); | |||
| f(t + dt / 2.f, yi, k3); | |||
| for (int i = 0; i < len; i++) { | |||
| yi[i] = y[i] + k3[i] * dx; | |||
| yi[i] = x[i] + k3[i] * dt; | |||
| } | |||
| f(x + dx, yi, k4); | |||
| f(t + dt, yi, k4); | |||
| for (int i = 0; i < len; i++) { | |||
| y[i] += dx * (k1[i] + 2.f * k2[i] + 2.f * k3[i] + k4[i]) / 6.f; | |||
| x[i] += dt * (k1[i] + 2.f * k2[i] + 2.f * k3[i] + k4[i]) / 6.f; | |||
| } | |||
| } | |||
| } // namespace ode | |||
| } // namespace rack | |||