Browse Source

Change variable names, add example to documentation

tags/v0.6.2b
Andrew Belt 6 years ago
parent
commit
7b4a0ee778
1 changed files with 34 additions and 18 deletions
  1. +34
    -18
      include/dsp/ode.hpp

+ 34
- 18
include/dsp/ode.hpp View File

@@ -2,71 +2,87 @@




namespace rack { namespace rack {
namespace ode {


/** The callback function `f` in each of these stepping functions must have the signature /** The callback function `f` in each of these stepping functions must have the signature
void f(float x, const float y[], float dydt[])

void f(float t, const float x[], float dxdt[])

A capturing lambda is ideal for this. A capturing lambda is ideal for this.
For example,

float x[2] = {1.f, 0.f};
float dt = 0.01f;
for (float t = 0.f; t < 1.f; t += dt) {
rack::ode::stepRK4(t, dt, x, 2, [&](float t, const float x[], float dxdt[]) {
dxdt[0] = x[1];
dxdt[1] = -x[0];
});
printf("%f\n", x[0]);
}

*/ */


/** Solves an ODE system using the 1st order Euler method */ /** Solves an ODE system using the 1st order Euler method */
template<typename F> template<typename F>
void stepEuler(float x, float dx, float y[], int len, F f) {
void stepEuler(float t, float dt, float x[], int len, F f) {
float k[len]; float k[len];


f(x, y, k);
f(t, x, k);
for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
y[i] += dx * k[i];
x[i] += dt * k[i];
} }
} }


/** Solves an ODE system using the 2nd order Runge-Kutta method */ /** Solves an ODE system using the 2nd order Runge-Kutta method */
template<typename F> template<typename F>
void stepRK2(float x, float dx, float y[], int len, F f) {
void stepRK2(float t, float dt, float x[], int len, F f) {
float k1[len]; float k1[len];
float k2[len]; float k2[len];
float yi[len]; float yi[len];


f(x, y, k1);
f(t, x, k1);


for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
yi[i] = y[i] + k1[i] * dx / 2.f;
yi[i] = x[i] + k1[i] * dt / 2.f;
} }
f(x + dx / 2.f, yi, k2);
f(t + dt / 2.f, yi, k2);


for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
y[i] += dx * k2[i];
x[i] += dt * k2[i];
} }
} }


/** Solves an ODE system using the 4th order Runge-Kutta method */ /** Solves an ODE system using the 4th order Runge-Kutta method */
template<typename F> template<typename F>
void stepRK4(float x, float dx, float y[], int len, F f) {
void stepRK4(float t, float dt, float x[], int len, F f) {
float k1[len]; float k1[len];
float k2[len]; float k2[len];
float k3[len]; float k3[len];
float k4[len]; float k4[len];
float yi[len]; float yi[len];


f(x, y, k1);
f(t, x, k1);


for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
yi[i] = y[i] + k1[i] * dx / 2.f;
yi[i] = x[i] + k1[i] * dt / 2.f;
} }
f(x + dx / 2.f, yi, k2);
f(t + dt / 2.f, yi, k2);


for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
yi[i] = y[i] + k2[i] * dx / 2.f;
yi[i] = x[i] + k2[i] * dt / 2.f;
} }
f(x + dx / 2.f, yi, k3);
f(t + dt / 2.f, yi, k3);


for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
yi[i] = y[i] + k3[i] * dx;
yi[i] = x[i] + k3[i] * dt;
} }
f(x + dx, yi, k4);
f(t + dt, yi, k4);


for (int i = 0; i < len; i++) { for (int i = 0; i < len; i++) {
y[i] += dx * (k1[i] + 2.f * k2[i] + 2.f * k3[i] + k4[i]) / 6.f;
x[i] += dt * (k1[i] + 2.f * k2[i] + 2.f * k3[i] + k4[i]) / 6.f;
} }
} }


} // namespace ode
} // namespace rack } // namespace rack

Loading…
Cancel
Save