| @@ -5,7 +5,7 @@ | |||
| namespace rack { | |||
| /** Digital signal processing routines for plugins | |||
| /** Digital signal processing routines | |||
| */ | |||
| namespace dsp { | |||
| @@ -69,5 +69,12 @@ inline float exponentialBipolar(float b, float x) { | |||
| } | |||
| /** Useful for storing arrays of samples in ring buffers and casting them to `float*` to be used by interleaved processors, like SampleRateConverter */ | |||
| template <size_t CHANNELS> | |||
| struct Frame { | |||
| float samples[CHANNELS]; | |||
| }; | |||
| } // namespace dsp | |||
| } // namespace rack | |||
| @@ -6,87 +6,64 @@ namespace rack { | |||
| namespace dsp { | |||
| /** Detects when a boolean changes from false to true */ | |||
| struct BooleanTrigger { | |||
| bool state = true; | |||
| void reset() { | |||
| state = true; | |||
| } | |||
| bool process(bool state) { | |||
| bool triggered = (state && !this->state); | |||
| this->state = state; | |||
| return triggered; | |||
| } | |||
| }; | |||
| /** Turns HIGH when value reaches 1.f, turns LOW when value reaches 0.f. */ | |||
| struct SchmittTrigger { | |||
| enum State { | |||
| LOW, | |||
| HIGH, | |||
| UNKNOWN | |||
| }; | |||
| State state; | |||
| SchmittTrigger() { | |||
| reset(); | |||
| } | |||
| bool state = true; | |||
| void reset() { | |||
| state = UNKNOWN; | |||
| state = true; | |||
| } | |||
| /** Updates the state of the Schmitt Trigger given a value. | |||
| Returns true if triggered, i.e. the value increases from 0 to 1. | |||
| If different trigger thresholds are needed, use | |||
| process(math::rescale(in, low, high, 0.f, 1.f)) | |||
| process(rescale(in, low, high, 0.f, 1.f)) | |||
| for example. | |||
| */ | |||
| bool process(float in) { | |||
| switch (state) { | |||
| case LOW: | |||
| if (in >= 1.f) { | |||
| state = HIGH; | |||
| return true; | |||
| } | |||
| break; | |||
| case HIGH: | |||
| if (in <= 0.f) { | |||
| state = LOW; | |||
| } | |||
| break; | |||
| default: | |||
| if (in >= 1.f) { | |||
| state = HIGH; | |||
| } | |||
| else if (in <= 0.f) { | |||
| state = LOW; | |||
| } | |||
| break; | |||
| if (state) { | |||
| // HIGH to LOW | |||
| if (in <= 0.f) { | |||
| state = false; | |||
| } | |||
| } | |||
| else { | |||
| // LOW to HIGH | |||
| if (in >= 1.f) { | |||
| state = true; | |||
| return true; | |||
| } | |||
| } | |||
| return false; | |||
| } | |||
| bool isHigh() { | |||
| return state == HIGH; | |||
| } | |||
| }; | |||
| /** Detects when a boolean changes from false to true */ | |||
| struct BooleanTrigger { | |||
| bool state; | |||
| BooleanTrigger() { | |||
| reset(); | |||
| } | |||
| void reset() { | |||
| state = true; | |||
| } | |||
| bool process(bool state) { | |||
| bool triggered = (state && !this->state); | |||
| this->state = state; | |||
| return triggered; | |||
| return state; | |||
| } | |||
| }; | |||
| /** When triggered, holds a high value for a specified time before going low again */ | |||
| struct PulseGenerator { | |||
| float remaining; | |||
| PulseGenerator() { | |||
| reset(); | |||
| } | |||
| float remaining = 0.f; | |||
| /** Immediately disables the pulse */ | |||
| void reset() { | |||
| @@ -113,16 +90,13 @@ struct PulseGenerator { | |||
| struct Timer { | |||
| float time; | |||
| Timer() { | |||
| reset(); | |||
| } | |||
| float time = 0.f; | |||
| void reset() { | |||
| time = 0.f; | |||
| } | |||
| /** Returns the time since last reset or initialization. */ | |||
| float process(float deltaTime) { | |||
| time += deltaTime; | |||
| return time; | |||
| @@ -131,26 +105,22 @@ struct Timer { | |||
| struct ClockDivider { | |||
| int clock; | |||
| int division = 1; | |||
| ClockDivider() { | |||
| reset(); | |||
| } | |||
| uint32_t clock = 0; | |||
| uint32_t division = 1; | |||
| void reset() { | |||
| clock = 0; | |||
| } | |||
| void setDivision(int division) { | |||
| void setDivision(uint32_t division) { | |||
| this->division = division; | |||
| } | |||
| int getDivision() { | |||
| uint32_t getDivision() { | |||
| return division; | |||
| } | |||
| int getClock() { | |||
| uint32_t getClock() { | |||
| return clock; | |||
| } | |||
| @@ -7,13 +7,16 @@ namespace rack { | |||
| namespace dsp { | |||
| template<typename T> | |||
| T *alignedNew(size_t len) { | |||
| /** Allocates an array to 64-byte boundaries. | |||
| Must call alignedFree() on the buffer to free. | |||
| */ | |||
| template <typename T> | |||
| T *alignedMalloc(size_t len) { | |||
| return (T*) pffft_aligned_malloc(len * sizeof(T)); | |||
| } | |||
| template<typename T> | |||
| void alignedDelete(T *p) { | |||
| template <typename T> | |||
| void alignedFree(T *p) { | |||
| pffft_aligned_free(p); | |||
| } | |||
| @@ -21,6 +24,7 @@ void alignedDelete(T *p) { | |||
| /** Real-valued FFT context. | |||
| Wrapper for [PFFFT](https://bitbucket.org/jpommier/pffft/) | |||
| `length` must be a multiple of 32. | |||
| Buffers must be aligned to 16-byte boundaries, e.g. with alignedMalloc(). | |||
| */ | |||
| struct RealFFT { | |||
| PFFFT_Setup *setup; | |||
| @@ -106,29 +106,20 @@ struct ExponentialSlewLimiter { | |||
| \f$ \frac{dy}{dt} = x \lambda \f$. | |||
| */ | |||
| struct ExponentialFilter { | |||
| float out; | |||
| float out = 0.f; | |||
| float lambda = 0.f; | |||
| ExponentialFilter() { | |||
| reset(); | |||
| } | |||
| void reset() { | |||
| out = NAN; | |||
| out = 0.f; | |||
| } | |||
| float process(float deltaTime, float in) { | |||
| if (std::isnan(out)) { | |||
| float y = out + (in - out) * lambda * deltaTime; | |||
| // If no change was made between the old and new output, assume float granularity is too small and snap output to input | |||
| if (out == y) | |||
| out = in; | |||
| } | |||
| else { | |||
| float y = out + (in - out) * lambda * deltaTime; | |||
| // If no change was detected, assume float granularity is too small and snap output to input | |||
| if (out == y) | |||
| out = in; | |||
| else | |||
| out = y; | |||
| } | |||
| else | |||
| out = y; | |||
| return out; | |||
| } | |||
| @@ -1,17 +0,0 @@ | |||
| #pragma once | |||
| #include "dsp/common.hpp" | |||
| namespace rack { | |||
| namespace dsp { | |||
| /** Useful for storing arrays of samples in ring buffers and casting them to `float*` to be used by interleaved processors, like SampleRateConverter */ | |||
| template <size_t CHANNELS> | |||
| struct Frame { | |||
| float samples[CHANNELS]; | |||
| }; | |||
| } // namespace dsp | |||
| } // namespace rack | |||
| @@ -15,7 +15,7 @@ https://www.cs.cmu.edu/~eli/papers/icmc01-hardsync.pdf | |||
| void minBlepImpulse(int z, int o, float *output); | |||
| template<int Z, int O> | |||
| template <int Z, int O> | |||
| struct MinBlepGenerator { | |||
| float buf[2 * Z] = {}; | |||
| int pos = 0; | |||
| @@ -26,7 +26,7 @@ For example, the following solves the system x''(t) = -x(t) using a fixed timest | |||
| */ | |||
| /** Solves an ODE system using the 1st order Euler method */ | |||
| template<typename F> | |||
| template <typename F> | |||
| void stepEuler(float t, float dt, float x[], int len, F f) { | |||
| float k[len]; | |||
| @@ -37,7 +37,7 @@ void stepEuler(float t, float dt, float x[], int len, F f) { | |||
| } | |||
| /** Solves an ODE system using the 2nd order Runge-Kutta method */ | |||
| template<typename F> | |||
| template <typename F> | |||
| void stepRK2(float t, float dt, float x[], int len, F f) { | |||
| float k1[len]; | |||
| float k2[len]; | |||
| @@ -56,7 +56,7 @@ void stepRK2(float t, float dt, float x[], int len, F f) { | |||
| } | |||
| /** Solves an ODE system using the 4th order Runge-Kutta method */ | |||
| template<typename F> | |||
| template <typename F> | |||
| void stepRK4(float t, float dt, float x[], int len, F f) { | |||
| float k1[len]; | |||
| float k2[len]; | |||
| @@ -1,6 +1,5 @@ | |||
| #pragma once | |||
| #include "dsp/common.hpp" | |||
| #include "dsp/frame.hpp" | |||
| #include "dsp/ringbuffer.hpp" | |||
| #include "dsp/fir.hpp" | |||
| #include "dsp/window.hpp" | |||
| @@ -14,10 +13,10 @@ namespace dsp { | |||
| /** Resamples by a fixed rational factor. */ | |||
| template<int CHANNELS> | |||
| template <int MAX_CHANNELS> | |||
| struct SampleRateConverter { | |||
| SpeexResamplerState *st = NULL; | |||
| int channels = CHANNELS; | |||
| int channels = MAX_CHANNELS; | |||
| int quality = SPEEX_RESAMPLER_QUALITY_DEFAULT; | |||
| int inRate = 44100; | |||
| int outRate = 44100; | |||
| @@ -31,9 +30,9 @@ struct SampleRateConverter { | |||
| } | |||
| } | |||
| /** Sets the number of channels to actually process. This can be at most CHANNELS. */ | |||
| /** Sets the number of channels to actually process. This can be at most MAX_CHANNELS. */ | |||
| void setChannels(int channels) { | |||
| assert(channels <= CHANNELS); | |||
| assert(channels <= MAX_CHANNELS); | |||
| if (channels == this->channels) | |||
| return; | |||
| this->channels = channels; | |||
| @@ -68,13 +67,13 @@ struct SampleRateConverter { | |||
| assert(st); | |||
| assert(err == RESAMPLER_ERR_SUCCESS); | |||
| speex_resampler_set_input_stride(st, CHANNELS); | |||
| speex_resampler_set_output_stride(st, CHANNELS); | |||
| speex_resampler_set_input_stride(st, MAX_CHANNELS); | |||
| speex_resampler_set_output_stride(st, MAX_CHANNELS); | |||
| } | |||
| } | |||
| /** `in` and `out` are interlaced with the number of channels */ | |||
| void process(const Frame<CHANNELS> *in, int *inFrames, Frame<CHANNELS> *out, int *outFrames) { | |||
| void process(const Frame<MAX_CHANNELS> *in, int *inFrames, Frame<MAX_CHANNELS> *out, int *outFrames) { | |||
| assert(in); | |||
| assert(inFrames); | |||
| assert(out); | |||
| @@ -95,7 +94,7 @@ struct SampleRateConverter { | |||
| else { | |||
| // Simply copy the buffer without conversion | |||
| int frames = std::min(*inFrames, *outFrames); | |||
| std::memcpy(out, in, frames * sizeof(Frame<CHANNELS>)); | |||
| std::memcpy(out, in, frames * sizeof(Frame<MAX_CHANNELS>)); | |||
| *inFrames = frames; | |||
| *outFrames = frames; | |||
| } | |||
| @@ -104,7 +103,7 @@ struct SampleRateConverter { | |||
| /** Downsamples by an integer factor. */ | |||
| template<int OVERSAMPLE, int QUALITY> | |||
| template <int OVERSAMPLE, int QUALITY> | |||
| struct Decimator { | |||
| float inBuffer[OVERSAMPLE*QUALITY]; | |||
| float kernel[OVERSAMPLE*QUALITY]; | |||
| @@ -139,7 +138,7 @@ struct Decimator { | |||
| /** Upsamples by an integer factor. */ | |||
| template<int OVERSAMPLE, int QUALITY> | |||
| template <int OVERSAMPLE, int QUALITY> | |||
| struct Upsampler { | |||
| float inBuffer[QUALITY]; | |||
| float kernel[OVERSAMPLE*QUALITY]; | |||
| @@ -54,14 +54,10 @@ struct VuMeter2 { | |||
| }; | |||
| Mode mode = PEAK; | |||
| /** Either the smoothed peak or the mean-square of the brightness, depending on the mode. */ | |||
| float v; | |||
| float v = 0.f; | |||
| /** Inverse time constant in 1/seconds */ | |||
| float lambda = 30.f; | |||
| VuMeter2() { | |||
| reset(); | |||
| } | |||
| void reset() { | |||
| v = 0.f; | |||
| } | |||
| @@ -14,7 +14,7 @@ inline float hann(float p) { | |||
| return 0.5f * (1.f - std::cos(2*M_PI * p)); | |||
| } | |||
| /** Applies the Hann window to a signal `x`. */ | |||
| /** Multiplies the Hann window by a signal `x` of length `len` in-place. */ | |||
| inline void hannWindow(float *x, int len) { | |||
| for (int i = 0; i < len; i++) { | |||
| x[i] *= hann((float) i / (len - 1)); | |||
| @@ -36,7 +36,7 @@ inline int clamp(int x, int a, int b) { | |||
| If `b < a`, switches the two values. | |||
| */ | |||
| inline int clampSafe(int x, int a, int b) { | |||
| return clamp(x, std::min(a, b), std::max(a, b)); | |||
| return (a <= b) ? clamp(x, a, b) : clamp(x, b, a); | |||
| } | |||
| /** Euclidean modulus. Always returns `0 <= mod < b`. | |||
| @@ -101,14 +101,14 @@ inline float clamp(float x, float a, float b) { | |||
| If `b < a`, switches the two values. | |||
| */ | |||
| inline float clampSafe(float x, float a, float b) { | |||
| return clamp(x, std::fmin(a, b), std::fmax(a, b)); | |||
| return (a <= b) ? clamp(x, a, b) : clamp(x, b, a); | |||
| } | |||
| /** Returns 1 for positive numbers, -1 for negative numbers, and 0 for zero. | |||
| See https://en.wikipedia.org/wiki/Sign_function. | |||
| */ | |||
| inline float sgn(float x) { | |||
| return x > 0.f ? 1.f : x < 0.f ? -1.f : 0.f; | |||
| return x > 0.f ? 1.f : (x < 0.f ? -1.f : 0.f); | |||
| } | |||
| /** Converts -0.f to 0.f. Leaves all other values unchanged. */ | |||
| @@ -119,9 +119,12 @@ inline float normalizeZero(float x) { | |||
| /** Euclidean modulus. Always returns `0 <= mod < b`. | |||
| See https://en.wikipedia.org/wiki/Euclidean_division. | |||
| */ | |||
| inline float eucMod(float a, float base) { | |||
| float mod = std::fmod(a, base); | |||
| return (mod >= 0.f) ? mod : mod + base; | |||
| inline float eucMod(float a, float b) { | |||
| int mod = std::fmod(a, b); | |||
| if (mod < 0.f) { | |||
| mod += b; | |||
| } | |||
| return mod; | |||
| } | |||
| /** Returns whether `a` is within epsilon distance from `b`. */ | |||
| @@ -131,7 +134,7 @@ inline bool isNear(float a, float b, float epsilon = 1e-6f) { | |||
| /** If the magnitude of `x` if less than epsilon, return 0. */ | |||
| inline float chop(float x, float epsilon = 1e-6f) { | |||
| return isNear(x, 0.f, epsilon) ? 0.f : x; | |||
| return std::fabs(x) <= epsilon ? 0.f : x; | |||
| } | |||
| inline float rescale(float x, float xMin, float xMax, float yMin, float yMax) { | |||
| @@ -155,9 +158,9 @@ inline float interpolateLinear(const float *p, float x) { | |||
| Arguments may be the same pointers. | |||
| Example: | |||
| cmultf(&ar, &ai, ar, ai, br, bi); | |||
| cmultf(ar, ai, br, bi, &ar, &ai); | |||
| */ | |||
| inline void complexMult(float *cr, float *ci, float ar, float ai, float br, float bi) { | |||
| inline void complexMult(float ar, float ai, float br, float bi, float *cr, float *ci) { | |||
| *cr = ar * br - ai * bi; | |||
| *ci = ar * bi + ai * br; | |||
| } | |||
| @@ -202,6 +205,9 @@ struct Vec { | |||
| float dot(Vec b) const { | |||
| return x * b.x + y * b.y; | |||
| } | |||
| float arg() const { | |||
| return std::atan2(y, x); | |||
| } | |||
| float norm() const { | |||
| return std::hypot(x, y); | |||
| } | |||
| @@ -229,6 +235,9 @@ struct Vec { | |||
| Vec max(Vec b) const { | |||
| return Vec(std::fmax(x, b.x), std::fmax(y, b.y)); | |||
| } | |||
| Vec abs() const { | |||
| return Vec(std::fabs(x), std::fabs(y)); | |||
| } | |||
| Vec round() const { | |||
| return Vec(std::round(x), std::round(y)); | |||
| } | |||
| @@ -323,7 +332,7 @@ struct Rect { | |||
| r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y); | |||
| return r; | |||
| } | |||
| /** Expands this Rect to contain `b`. */ | |||
| /** Returns the bounding box of the union of `this` and `b`. */ | |||
| Rect expand(Rect b) const { | |||
| Rect r; | |||
| r.pos.x = std::fmin(pos.x, b.pos.x); | |||
| @@ -84,7 +84,6 @@ | |||
| #include "dsp/fft.hpp" | |||
| #include "dsp/filter.hpp" | |||
| #include "dsp/fir.hpp" | |||
| #include "dsp/frame.hpp" | |||
| #include "dsp/minblep.hpp" | |||
| #include "dsp/ode.hpp" | |||
| #include "dsp/resampler.hpp" | |||
| @@ -45,6 +45,7 @@ DEPRECATED inline float rescalef(float x, float a, float b, float yMin, float yM | |||
| DEPRECATED inline float crossf(float a, float b, float frac) {return crossfade(a, b, frac);} | |||
| DEPRECATED inline float interpf(const float *p, float x) {return interpolateLinear(p, x);} | |||
| DEPRECATED inline void cmultf(float *cr, float *ci, float ar, float ai, float br, float bi) {return complexMult(cr, ci, ar, ai, br, bi);} | |||
| DEPRECATED inline void complexMult(float *cr, float *ci, float ar, float ai, float br, float bi) {complexMult(ar, ai, br, bi, cr, ci);} | |||
| //////////////////// | |||
| // random | |||
| @@ -10,7 +10,7 @@ namespace dsp { | |||
| void minBlepImpulse(int z, int o, float *output) { | |||
| // Symmetric sinc array with `z` zero-crossings on each side | |||
| int n = 2 * z * o; | |||
| float *x = alignedNew<float>(n); | |||
| float *x = alignedMalloc<float>(n); | |||
| for (int i = 0; i < n; i++) { | |||
| float p = math::rescale((float) i, 0.f, (float) (n - 1), (float) -z, (float) z); | |||
| x[i] = sinc(p); | |||
| @@ -20,7 +20,7 @@ void minBlepImpulse(int z, int o, float *output) { | |||
| blackmanHarrisWindow(x, n); | |||
| // Real cepstrum | |||
| float *fx = alignedNew<float>(2*n); | |||
| float *fx = alignedMalloc<float>(2*n); | |||
| RealFFT rfft(n); | |||
| rfft.rfft(x, fx); | |||
| // fx = log(abs(fx)) | |||
| @@ -73,8 +73,8 @@ void minBlepImpulse(int z, int o, float *output) { | |||
| std::memcpy(output, x, n * sizeof(float)); | |||
| // Cleanup | |||
| alignedDelete(x); | |||
| alignedDelete(fx); | |||
| alignedFree(x); | |||
| alignedFree(fx); | |||
| } | |||