@@ -5,7 +5,7 @@ | |||||
namespace rack { | namespace rack { | ||||
/** Digital signal processing routines for plugins | |||||
/** Digital signal processing routines | |||||
*/ | */ | ||||
namespace dsp { | namespace dsp { | ||||
@@ -69,5 +69,12 @@ inline float exponentialBipolar(float b, float x) { | |||||
} | } | ||||
/** Useful for storing arrays of samples in ring buffers and casting them to `float*` to be used by interleaved processors, like SampleRateConverter */ | |||||
template <size_t CHANNELS> | |||||
struct Frame { | |||||
float samples[CHANNELS]; | |||||
}; | |||||
} // namespace dsp | } // namespace dsp | ||||
} // namespace rack | } // namespace rack |
@@ -6,87 +6,64 @@ namespace rack { | |||||
namespace dsp { | namespace dsp { | ||||
/** Detects when a boolean changes from false to true */ | |||||
struct BooleanTrigger { | |||||
bool state = true; | |||||
void reset() { | |||||
state = true; | |||||
} | |||||
bool process(bool state) { | |||||
bool triggered = (state && !this->state); | |||||
this->state = state; | |||||
return triggered; | |||||
} | |||||
}; | |||||
/** Turns HIGH when value reaches 1.f, turns LOW when value reaches 0.f. */ | /** Turns HIGH when value reaches 1.f, turns LOW when value reaches 0.f. */ | ||||
struct SchmittTrigger { | struct SchmittTrigger { | ||||
enum State { | |||||
LOW, | |||||
HIGH, | |||||
UNKNOWN | |||||
}; | |||||
State state; | |||||
SchmittTrigger() { | |||||
reset(); | |||||
} | |||||
bool state = true; | |||||
void reset() { | void reset() { | ||||
state = UNKNOWN; | |||||
state = true; | |||||
} | } | ||||
/** Updates the state of the Schmitt Trigger given a value. | /** Updates the state of the Schmitt Trigger given a value. | ||||
Returns true if triggered, i.e. the value increases from 0 to 1. | Returns true if triggered, i.e. the value increases from 0 to 1. | ||||
If different trigger thresholds are needed, use | If different trigger thresholds are needed, use | ||||
process(math::rescale(in, low, high, 0.f, 1.f)) | |||||
process(rescale(in, low, high, 0.f, 1.f)) | |||||
for example. | for example. | ||||
*/ | */ | ||||
bool process(float in) { | bool process(float in) { | ||||
switch (state) { | |||||
case LOW: | |||||
if (in >= 1.f) { | |||||
state = HIGH; | |||||
return true; | |||||
} | |||||
break; | |||||
case HIGH: | |||||
if (in <= 0.f) { | |||||
state = LOW; | |||||
} | |||||
break; | |||||
default: | |||||
if (in >= 1.f) { | |||||
state = HIGH; | |||||
} | |||||
else if (in <= 0.f) { | |||||
state = LOW; | |||||
} | |||||
break; | |||||
if (state) { | |||||
// HIGH to LOW | |||||
if (in <= 0.f) { | |||||
state = false; | |||||
} | |||||
} | |||||
else { | |||||
// LOW to HIGH | |||||
if (in >= 1.f) { | |||||
state = true; | |||||
return true; | |||||
} | |||||
} | } | ||||
return false; | return false; | ||||
} | } | ||||
bool isHigh() { | bool isHigh() { | ||||
return state == HIGH; | |||||
} | |||||
}; | |||||
/** Detects when a boolean changes from false to true */ | |||||
struct BooleanTrigger { | |||||
bool state; | |||||
BooleanTrigger() { | |||||
reset(); | |||||
} | |||||
void reset() { | |||||
state = true; | |||||
} | |||||
bool process(bool state) { | |||||
bool triggered = (state && !this->state); | |||||
this->state = state; | |||||
return triggered; | |||||
return state; | |||||
} | } | ||||
}; | }; | ||||
/** When triggered, holds a high value for a specified time before going low again */ | /** When triggered, holds a high value for a specified time before going low again */ | ||||
struct PulseGenerator { | struct PulseGenerator { | ||||
float remaining; | |||||
PulseGenerator() { | |||||
reset(); | |||||
} | |||||
float remaining = 0.f; | |||||
/** Immediately disables the pulse */ | /** Immediately disables the pulse */ | ||||
void reset() { | void reset() { | ||||
@@ -113,16 +90,13 @@ struct PulseGenerator { | |||||
struct Timer { | struct Timer { | ||||
float time; | |||||
Timer() { | |||||
reset(); | |||||
} | |||||
float time = 0.f; | |||||
void reset() { | void reset() { | ||||
time = 0.f; | time = 0.f; | ||||
} | } | ||||
/** Returns the time since last reset or initialization. */ | |||||
float process(float deltaTime) { | float process(float deltaTime) { | ||||
time += deltaTime; | time += deltaTime; | ||||
return time; | return time; | ||||
@@ -131,26 +105,22 @@ struct Timer { | |||||
struct ClockDivider { | struct ClockDivider { | ||||
int clock; | |||||
int division = 1; | |||||
ClockDivider() { | |||||
reset(); | |||||
} | |||||
uint32_t clock = 0; | |||||
uint32_t division = 1; | |||||
void reset() { | void reset() { | ||||
clock = 0; | clock = 0; | ||||
} | } | ||||
void setDivision(int division) { | |||||
void setDivision(uint32_t division) { | |||||
this->division = division; | this->division = division; | ||||
} | } | ||||
int getDivision() { | |||||
uint32_t getDivision() { | |||||
return division; | return division; | ||||
} | } | ||||
int getClock() { | |||||
uint32_t getClock() { | |||||
return clock; | return clock; | ||||
} | } | ||||
@@ -7,13 +7,16 @@ namespace rack { | |||||
namespace dsp { | namespace dsp { | ||||
template<typename T> | |||||
T *alignedNew(size_t len) { | |||||
/** Allocates an array to 64-byte boundaries. | |||||
Must call alignedFree() on the buffer to free. | |||||
*/ | |||||
template <typename T> | |||||
T *alignedMalloc(size_t len) { | |||||
return (T*) pffft_aligned_malloc(len * sizeof(T)); | return (T*) pffft_aligned_malloc(len * sizeof(T)); | ||||
} | } | ||||
template<typename T> | |||||
void alignedDelete(T *p) { | |||||
template <typename T> | |||||
void alignedFree(T *p) { | |||||
pffft_aligned_free(p); | pffft_aligned_free(p); | ||||
} | } | ||||
@@ -21,6 +24,7 @@ void alignedDelete(T *p) { | |||||
/** Real-valued FFT context. | /** Real-valued FFT context. | ||||
Wrapper for [PFFFT](https://bitbucket.org/jpommier/pffft/) | Wrapper for [PFFFT](https://bitbucket.org/jpommier/pffft/) | ||||
`length` must be a multiple of 32. | `length` must be a multiple of 32. | ||||
Buffers must be aligned to 16-byte boundaries, e.g. with alignedMalloc(). | |||||
*/ | */ | ||||
struct RealFFT { | struct RealFFT { | ||||
PFFFT_Setup *setup; | PFFFT_Setup *setup; | ||||
@@ -106,29 +106,20 @@ struct ExponentialSlewLimiter { | |||||
\f$ \frac{dy}{dt} = x \lambda \f$. | \f$ \frac{dy}{dt} = x \lambda \f$. | ||||
*/ | */ | ||||
struct ExponentialFilter { | struct ExponentialFilter { | ||||
float out; | |||||
float out = 0.f; | |||||
float lambda = 0.f; | float lambda = 0.f; | ||||
ExponentialFilter() { | |||||
reset(); | |||||
} | |||||
void reset() { | void reset() { | ||||
out = NAN; | |||||
out = 0.f; | |||||
} | } | ||||
float process(float deltaTime, float in) { | float process(float deltaTime, float in) { | ||||
if (std::isnan(out)) { | |||||
float y = out + (in - out) * lambda * deltaTime; | |||||
// If no change was made between the old and new output, assume float granularity is too small and snap output to input | |||||
if (out == y) | |||||
out = in; | out = in; | ||||
} | |||||
else { | |||||
float y = out + (in - out) * lambda * deltaTime; | |||||
// If no change was detected, assume float granularity is too small and snap output to input | |||||
if (out == y) | |||||
out = in; | |||||
else | |||||
out = y; | |||||
} | |||||
else | |||||
out = y; | |||||
return out; | return out; | ||||
} | } | ||||
@@ -1,17 +0,0 @@ | |||||
#pragma once | |||||
#include "dsp/common.hpp" | |||||
namespace rack { | |||||
namespace dsp { | |||||
/** Useful for storing arrays of samples in ring buffers and casting them to `float*` to be used by interleaved processors, like SampleRateConverter */ | |||||
template <size_t CHANNELS> | |||||
struct Frame { | |||||
float samples[CHANNELS]; | |||||
}; | |||||
} // namespace dsp | |||||
} // namespace rack |
@@ -15,7 +15,7 @@ https://www.cs.cmu.edu/~eli/papers/icmc01-hardsync.pdf | |||||
void minBlepImpulse(int z, int o, float *output); | void minBlepImpulse(int z, int o, float *output); | ||||
template<int Z, int O> | |||||
template <int Z, int O> | |||||
struct MinBlepGenerator { | struct MinBlepGenerator { | ||||
float buf[2 * Z] = {}; | float buf[2 * Z] = {}; | ||||
int pos = 0; | int pos = 0; | ||||
@@ -26,7 +26,7 @@ For example, the following solves the system x''(t) = -x(t) using a fixed timest | |||||
*/ | */ | ||||
/** Solves an ODE system using the 1st order Euler method */ | /** Solves an ODE system using the 1st order Euler method */ | ||||
template<typename F> | |||||
template <typename F> | |||||
void stepEuler(float t, float dt, float x[], int len, F f) { | void stepEuler(float t, float dt, float x[], int len, F f) { | ||||
float k[len]; | float k[len]; | ||||
@@ -37,7 +37,7 @@ void stepEuler(float t, float dt, float x[], int len, F f) { | |||||
} | } | ||||
/** Solves an ODE system using the 2nd order Runge-Kutta method */ | /** Solves an ODE system using the 2nd order Runge-Kutta method */ | ||||
template<typename F> | |||||
template <typename F> | |||||
void stepRK2(float t, float dt, float x[], int len, F f) { | void stepRK2(float t, float dt, float x[], int len, F f) { | ||||
float k1[len]; | float k1[len]; | ||||
float k2[len]; | float k2[len]; | ||||
@@ -56,7 +56,7 @@ void stepRK2(float t, float dt, float x[], int len, F f) { | |||||
} | } | ||||
/** Solves an ODE system using the 4th order Runge-Kutta method */ | /** Solves an ODE system using the 4th order Runge-Kutta method */ | ||||
template<typename F> | |||||
template <typename F> | |||||
void stepRK4(float t, float dt, float x[], int len, F f) { | void stepRK4(float t, float dt, float x[], int len, F f) { | ||||
float k1[len]; | float k1[len]; | ||||
float k2[len]; | float k2[len]; | ||||
@@ -1,6 +1,5 @@ | |||||
#pragma once | #pragma once | ||||
#include "dsp/common.hpp" | #include "dsp/common.hpp" | ||||
#include "dsp/frame.hpp" | |||||
#include "dsp/ringbuffer.hpp" | #include "dsp/ringbuffer.hpp" | ||||
#include "dsp/fir.hpp" | #include "dsp/fir.hpp" | ||||
#include "dsp/window.hpp" | #include "dsp/window.hpp" | ||||
@@ -14,10 +13,10 @@ namespace dsp { | |||||
/** Resamples by a fixed rational factor. */ | /** Resamples by a fixed rational factor. */ | ||||
template<int CHANNELS> | |||||
template <int MAX_CHANNELS> | |||||
struct SampleRateConverter { | struct SampleRateConverter { | ||||
SpeexResamplerState *st = NULL; | SpeexResamplerState *st = NULL; | ||||
int channels = CHANNELS; | |||||
int channels = MAX_CHANNELS; | |||||
int quality = SPEEX_RESAMPLER_QUALITY_DEFAULT; | int quality = SPEEX_RESAMPLER_QUALITY_DEFAULT; | ||||
int inRate = 44100; | int inRate = 44100; | ||||
int outRate = 44100; | int outRate = 44100; | ||||
@@ -31,9 +30,9 @@ struct SampleRateConverter { | |||||
} | } | ||||
} | } | ||||
/** Sets the number of channels to actually process. This can be at most CHANNELS. */ | |||||
/** Sets the number of channels to actually process. This can be at most MAX_CHANNELS. */ | |||||
void setChannels(int channels) { | void setChannels(int channels) { | ||||
assert(channels <= CHANNELS); | |||||
assert(channels <= MAX_CHANNELS); | |||||
if (channels == this->channels) | if (channels == this->channels) | ||||
return; | return; | ||||
this->channels = channels; | this->channels = channels; | ||||
@@ -68,13 +67,13 @@ struct SampleRateConverter { | |||||
assert(st); | assert(st); | ||||
assert(err == RESAMPLER_ERR_SUCCESS); | assert(err == RESAMPLER_ERR_SUCCESS); | ||||
speex_resampler_set_input_stride(st, CHANNELS); | |||||
speex_resampler_set_output_stride(st, CHANNELS); | |||||
speex_resampler_set_input_stride(st, MAX_CHANNELS); | |||||
speex_resampler_set_output_stride(st, MAX_CHANNELS); | |||||
} | } | ||||
} | } | ||||
/** `in` and `out` are interlaced with the number of channels */ | /** `in` and `out` are interlaced with the number of channels */ | ||||
void process(const Frame<CHANNELS> *in, int *inFrames, Frame<CHANNELS> *out, int *outFrames) { | |||||
void process(const Frame<MAX_CHANNELS> *in, int *inFrames, Frame<MAX_CHANNELS> *out, int *outFrames) { | |||||
assert(in); | assert(in); | ||||
assert(inFrames); | assert(inFrames); | ||||
assert(out); | assert(out); | ||||
@@ -95,7 +94,7 @@ struct SampleRateConverter { | |||||
else { | else { | ||||
// Simply copy the buffer without conversion | // Simply copy the buffer without conversion | ||||
int frames = std::min(*inFrames, *outFrames); | int frames = std::min(*inFrames, *outFrames); | ||||
std::memcpy(out, in, frames * sizeof(Frame<CHANNELS>)); | |||||
std::memcpy(out, in, frames * sizeof(Frame<MAX_CHANNELS>)); | |||||
*inFrames = frames; | *inFrames = frames; | ||||
*outFrames = frames; | *outFrames = frames; | ||||
} | } | ||||
@@ -104,7 +103,7 @@ struct SampleRateConverter { | |||||
/** Downsamples by an integer factor. */ | /** Downsamples by an integer factor. */ | ||||
template<int OVERSAMPLE, int QUALITY> | |||||
template <int OVERSAMPLE, int QUALITY> | |||||
struct Decimator { | struct Decimator { | ||||
float inBuffer[OVERSAMPLE*QUALITY]; | float inBuffer[OVERSAMPLE*QUALITY]; | ||||
float kernel[OVERSAMPLE*QUALITY]; | float kernel[OVERSAMPLE*QUALITY]; | ||||
@@ -139,7 +138,7 @@ struct Decimator { | |||||
/** Upsamples by an integer factor. */ | /** Upsamples by an integer factor. */ | ||||
template<int OVERSAMPLE, int QUALITY> | |||||
template <int OVERSAMPLE, int QUALITY> | |||||
struct Upsampler { | struct Upsampler { | ||||
float inBuffer[QUALITY]; | float inBuffer[QUALITY]; | ||||
float kernel[OVERSAMPLE*QUALITY]; | float kernel[OVERSAMPLE*QUALITY]; | ||||
@@ -54,14 +54,10 @@ struct VuMeter2 { | |||||
}; | }; | ||||
Mode mode = PEAK; | Mode mode = PEAK; | ||||
/** Either the smoothed peak or the mean-square of the brightness, depending on the mode. */ | /** Either the smoothed peak or the mean-square of the brightness, depending on the mode. */ | ||||
float v; | |||||
float v = 0.f; | |||||
/** Inverse time constant in 1/seconds */ | /** Inverse time constant in 1/seconds */ | ||||
float lambda = 30.f; | float lambda = 30.f; | ||||
VuMeter2() { | |||||
reset(); | |||||
} | |||||
void reset() { | void reset() { | ||||
v = 0.f; | v = 0.f; | ||||
} | } | ||||
@@ -14,7 +14,7 @@ inline float hann(float p) { | |||||
return 0.5f * (1.f - std::cos(2*M_PI * p)); | return 0.5f * (1.f - std::cos(2*M_PI * p)); | ||||
} | } | ||||
/** Applies the Hann window to a signal `x`. */ | |||||
/** Multiplies the Hann window by a signal `x` of length `len` in-place. */ | |||||
inline void hannWindow(float *x, int len) { | inline void hannWindow(float *x, int len) { | ||||
for (int i = 0; i < len; i++) { | for (int i = 0; i < len; i++) { | ||||
x[i] *= hann((float) i / (len - 1)); | x[i] *= hann((float) i / (len - 1)); | ||||
@@ -36,7 +36,7 @@ inline int clamp(int x, int a, int b) { | |||||
If `b < a`, switches the two values. | If `b < a`, switches the two values. | ||||
*/ | */ | ||||
inline int clampSafe(int x, int a, int b) { | inline int clampSafe(int x, int a, int b) { | ||||
return clamp(x, std::min(a, b), std::max(a, b)); | |||||
return (a <= b) ? clamp(x, a, b) : clamp(x, b, a); | |||||
} | } | ||||
/** Euclidean modulus. Always returns `0 <= mod < b`. | /** Euclidean modulus. Always returns `0 <= mod < b`. | ||||
@@ -101,14 +101,14 @@ inline float clamp(float x, float a, float b) { | |||||
If `b < a`, switches the two values. | If `b < a`, switches the two values. | ||||
*/ | */ | ||||
inline float clampSafe(float x, float a, float b) { | inline float clampSafe(float x, float a, float b) { | ||||
return clamp(x, std::fmin(a, b), std::fmax(a, b)); | |||||
return (a <= b) ? clamp(x, a, b) : clamp(x, b, a); | |||||
} | } | ||||
/** Returns 1 for positive numbers, -1 for negative numbers, and 0 for zero. | /** Returns 1 for positive numbers, -1 for negative numbers, and 0 for zero. | ||||
See https://en.wikipedia.org/wiki/Sign_function. | See https://en.wikipedia.org/wiki/Sign_function. | ||||
*/ | */ | ||||
inline float sgn(float x) { | inline float sgn(float x) { | ||||
return x > 0.f ? 1.f : x < 0.f ? -1.f : 0.f; | |||||
return x > 0.f ? 1.f : (x < 0.f ? -1.f : 0.f); | |||||
} | } | ||||
/** Converts -0.f to 0.f. Leaves all other values unchanged. */ | /** Converts -0.f to 0.f. Leaves all other values unchanged. */ | ||||
@@ -119,9 +119,12 @@ inline float normalizeZero(float x) { | |||||
/** Euclidean modulus. Always returns `0 <= mod < b`. | /** Euclidean modulus. Always returns `0 <= mod < b`. | ||||
See https://en.wikipedia.org/wiki/Euclidean_division. | See https://en.wikipedia.org/wiki/Euclidean_division. | ||||
*/ | */ | ||||
inline float eucMod(float a, float base) { | |||||
float mod = std::fmod(a, base); | |||||
return (mod >= 0.f) ? mod : mod + base; | |||||
inline float eucMod(float a, float b) { | |||||
int mod = std::fmod(a, b); | |||||
if (mod < 0.f) { | |||||
mod += b; | |||||
} | |||||
return mod; | |||||
} | } | ||||
/** Returns whether `a` is within epsilon distance from `b`. */ | /** Returns whether `a` is within epsilon distance from `b`. */ | ||||
@@ -131,7 +134,7 @@ inline bool isNear(float a, float b, float epsilon = 1e-6f) { | |||||
/** If the magnitude of `x` if less than epsilon, return 0. */ | /** If the magnitude of `x` if less than epsilon, return 0. */ | ||||
inline float chop(float x, float epsilon = 1e-6f) { | inline float chop(float x, float epsilon = 1e-6f) { | ||||
return isNear(x, 0.f, epsilon) ? 0.f : x; | |||||
return std::fabs(x) <= epsilon ? 0.f : x; | |||||
} | } | ||||
inline float rescale(float x, float xMin, float xMax, float yMin, float yMax) { | inline float rescale(float x, float xMin, float xMax, float yMin, float yMax) { | ||||
@@ -155,9 +158,9 @@ inline float interpolateLinear(const float *p, float x) { | |||||
Arguments may be the same pointers. | Arguments may be the same pointers. | ||||
Example: | Example: | ||||
cmultf(&ar, &ai, ar, ai, br, bi); | |||||
cmultf(ar, ai, br, bi, &ar, &ai); | |||||
*/ | */ | ||||
inline void complexMult(float *cr, float *ci, float ar, float ai, float br, float bi) { | |||||
inline void complexMult(float ar, float ai, float br, float bi, float *cr, float *ci) { | |||||
*cr = ar * br - ai * bi; | *cr = ar * br - ai * bi; | ||||
*ci = ar * bi + ai * br; | *ci = ar * bi + ai * br; | ||||
} | } | ||||
@@ -202,6 +205,9 @@ struct Vec { | |||||
float dot(Vec b) const { | float dot(Vec b) const { | ||||
return x * b.x + y * b.y; | return x * b.x + y * b.y; | ||||
} | } | ||||
float arg() const { | |||||
return std::atan2(y, x); | |||||
} | |||||
float norm() const { | float norm() const { | ||||
return std::hypot(x, y); | return std::hypot(x, y); | ||||
} | } | ||||
@@ -229,6 +235,9 @@ struct Vec { | |||||
Vec max(Vec b) const { | Vec max(Vec b) const { | ||||
return Vec(std::fmax(x, b.x), std::fmax(y, b.y)); | return Vec(std::fmax(x, b.x), std::fmax(y, b.y)); | ||||
} | } | ||||
Vec abs() const { | |||||
return Vec(std::fabs(x), std::fabs(y)); | |||||
} | |||||
Vec round() const { | Vec round() const { | ||||
return Vec(std::round(x), std::round(y)); | return Vec(std::round(x), std::round(y)); | ||||
} | } | ||||
@@ -323,7 +332,7 @@ struct Rect { | |||||
r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y); | r.pos.y = math::clampSafe(pos.y, bound.pos.y, bound.pos.y + bound.size.y - size.y); | ||||
return r; | return r; | ||||
} | } | ||||
/** Expands this Rect to contain `b`. */ | |||||
/** Returns the bounding box of the union of `this` and `b`. */ | |||||
Rect expand(Rect b) const { | Rect expand(Rect b) const { | ||||
Rect r; | Rect r; | ||||
r.pos.x = std::fmin(pos.x, b.pos.x); | r.pos.x = std::fmin(pos.x, b.pos.x); | ||||
@@ -84,7 +84,6 @@ | |||||
#include "dsp/fft.hpp" | #include "dsp/fft.hpp" | ||||
#include "dsp/filter.hpp" | #include "dsp/filter.hpp" | ||||
#include "dsp/fir.hpp" | #include "dsp/fir.hpp" | ||||
#include "dsp/frame.hpp" | |||||
#include "dsp/minblep.hpp" | #include "dsp/minblep.hpp" | ||||
#include "dsp/ode.hpp" | #include "dsp/ode.hpp" | ||||
#include "dsp/resampler.hpp" | #include "dsp/resampler.hpp" | ||||
@@ -45,6 +45,7 @@ DEPRECATED inline float rescalef(float x, float a, float b, float yMin, float yM | |||||
DEPRECATED inline float crossf(float a, float b, float frac) {return crossfade(a, b, frac);} | DEPRECATED inline float crossf(float a, float b, float frac) {return crossfade(a, b, frac);} | ||||
DEPRECATED inline float interpf(const float *p, float x) {return interpolateLinear(p, x);} | DEPRECATED inline float interpf(const float *p, float x) {return interpolateLinear(p, x);} | ||||
DEPRECATED inline void cmultf(float *cr, float *ci, float ar, float ai, float br, float bi) {return complexMult(cr, ci, ar, ai, br, bi);} | DEPRECATED inline void cmultf(float *cr, float *ci, float ar, float ai, float br, float bi) {return complexMult(cr, ci, ar, ai, br, bi);} | ||||
DEPRECATED inline void complexMult(float *cr, float *ci, float ar, float ai, float br, float bi) {complexMult(ar, ai, br, bi, cr, ci);} | |||||
//////////////////// | //////////////////// | ||||
// random | // random | ||||
@@ -10,7 +10,7 @@ namespace dsp { | |||||
void minBlepImpulse(int z, int o, float *output) { | void minBlepImpulse(int z, int o, float *output) { | ||||
// Symmetric sinc array with `z` zero-crossings on each side | // Symmetric sinc array with `z` zero-crossings on each side | ||||
int n = 2 * z * o; | int n = 2 * z * o; | ||||
float *x = alignedNew<float>(n); | |||||
float *x = alignedMalloc<float>(n); | |||||
for (int i = 0; i < n; i++) { | for (int i = 0; i < n; i++) { | ||||
float p = math::rescale((float) i, 0.f, (float) (n - 1), (float) -z, (float) z); | float p = math::rescale((float) i, 0.f, (float) (n - 1), (float) -z, (float) z); | ||||
x[i] = sinc(p); | x[i] = sinc(p); | ||||
@@ -20,7 +20,7 @@ void minBlepImpulse(int z, int o, float *output) { | |||||
blackmanHarrisWindow(x, n); | blackmanHarrisWindow(x, n); | ||||
// Real cepstrum | // Real cepstrum | ||||
float *fx = alignedNew<float>(2*n); | |||||
float *fx = alignedMalloc<float>(2*n); | |||||
RealFFT rfft(n); | RealFFT rfft(n); | ||||
rfft.rfft(x, fx); | rfft.rfft(x, fx); | ||||
// fx = log(abs(fx)) | // fx = log(abs(fx)) | ||||
@@ -73,8 +73,8 @@ void minBlepImpulse(int z, int o, float *output) { | |||||
std::memcpy(output, x, n * sizeof(float)); | std::memcpy(output, x, n * sizeof(float)); | ||||
// Cleanup | // Cleanup | ||||
alignedDelete(x); | |||||
alignedDelete(fx); | |||||
alignedFree(x); | |||||
alignedFree(fx); | |||||
} | } | ||||