| @@ -3,423 +3,215 @@ | |||
| #include "dsp/resampler.hpp" | |||
| // =================================================================================== | |||
| /** | |||
| The filter DSP code has been derived from | |||
| Miller Puckette's code hosted at | |||
| https://github.com/ddiakopoulos/MoogLadders/blob/master/src/RKSimulationModel.h | |||
| which is licensed for use under the following terms (MIT license): | |||
| Copyright (c) 2015, Miller Puckette. All rights reserved. | |||
| Redistribution and use in source and binary forms, with or without | |||
| modification, are permitted provided that the following conditions are met: | |||
| * Redistributions of source code must retain the above copyright notice, this | |||
| list of conditions and the following disclaimer. | |||
| * Redistributions in binary form must reproduce the above copyright notice, | |||
| this list of conditions and the following disclaimer in the documentation | |||
| and/or other materials provided with the distribution. | |||
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||
| AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
| IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | |||
| DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | |||
| FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
| DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |||
| SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||
| CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |||
| OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |||
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
| */ | |||
| struct LadderFilterRK4 | |||
| { | |||
| public: | |||
| // =================================================================================== | |||
| void process(float input, float dt, float &outLP, float &outHP) | |||
| { | |||
| float deriv1[4], deriv2[4], deriv3[4], deriv4[4], tempState[4]; | |||
| calculateDerivatives(input, deriv1, state); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + 0.5f * dt * deriv1[i]; | |||
| calculateDerivatives(input, deriv2, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + 0.5f * dt * deriv2[i]; | |||
| calculateDerivatives(input, deriv3, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + dt * deriv3[i]; | |||
| calculateDerivatives(input, deriv4, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| state[i] += (1.0f / 6.0f) * dt * (deriv1[i] + 2.0f * deriv2[i] + 2.0f * deriv3[i] + deriv4[i]); | |||
| This code is derived from the algorithm described in "Modeling and Measuring a | |||
| Moog Voltage-Controlled Filter, by Effrosyni Paschou, Fabián Esqueda, Vesa Välimäki | |||
| and John Mourjopoulos, for APSIPA Annual Summit and Conference 2017. | |||
| outLP = state[3]; | |||
| outHP = clip((input - resonance*state[3]) - 4 * state[0] + 6*state[1] - 4*state[2] + state[3]); | |||
| } | |||
| void reset() | |||
| { | |||
| for (int i = 0; i < 4; i++) | |||
| state[i] = 0.0f; | |||
| } | |||
| It is a 0df algorithm using Newton-Raphson's method (4 iterations) for solving | |||
| implicit equations, and midpoint integration method. | |||
| // =================================================================================== | |||
| // parameters | |||
| float cutoff = 1000.0f; | |||
| Derived from the article and adapted to VCV Rack by Ivan COHEN. | |||
| */ | |||
| struct LadderFilter0dfMidPoint { | |||
| float cutoff = 1000.f; | |||
| float resonance = 1.0f; | |||
| float gainFactor = 0.2f; | |||
| float A; | |||
| /** State variables */ | |||
| float lastInput = 0.f; | |||
| float lastV[4] = {}; | |||
| /** Outputs */ | |||
| float lowpass; | |||
| float highpass; | |||
| private: | |||
| // =================================================================================== | |||
| // The clipping function of a transistor pair is approximately tanh(x) | |||
| inline float clip(float x) | |||
| { | |||
| return std::tanh(x); | |||
| } | |||
| void calculateDerivatives(float input, float *dstate, const float *_state) | |||
| { | |||
| float cutoff2Pi = 2 * M_PI * cutoff; | |||
| float satstatein = clip(input - resonance * _state[3]); | |||
| float satstate0 = clip(_state[0]); | |||
| float satstate1 = clip(_state[1]); | |||
| float satstate2 = clip(_state[2]); | |||
| float satstate3 = clip(_state[3]); | |||
| LadderFilter0dfMidPoint() { | |||
| float VT = 26e-3f; | |||
| A = gainFactor / (2.f * VT); | |||
| } | |||
| dstate[0] = cutoff2Pi * (satstatein - satstate0); | |||
| dstate[1] = cutoff2Pi * (satstate0 - satstate1); | |||
| dstate[2] = cutoff2Pi * (satstate1 - satstate2); | |||
| dstate[3] = cutoff2Pi * (satstate2 - satstate3); | |||
| inline float clip(float x) { | |||
| return tanhf(x); | |||
| } | |||
| // =================================================================================== | |||
| // state variables | |||
| float state[4] = {}; | |||
| }; | |||
| void process(float input, float dt) { | |||
| float F[4]; | |||
| float V[4]; | |||
| float wc = 2 * M_PI * cutoff / A; | |||
| input *= gainFactor; | |||
| // =================================================================================== | |||
| /** | |||
| Same than before but with oversampling x4 | |||
| */ | |||
| struct LadderFilterRK4Oversampled | |||
| { | |||
| public: | |||
| // =================================================================================== | |||
| void process(float input, float dt, float &outLP, float &outHP) | |||
| { | |||
| // upsampling | |||
| float inup[4], outLPup[4], outHPup[4]; | |||
| upsampler.process(input, inup); | |||
| // processing | |||
| float deriv1[4], deriv2[4], deriv3[4], deriv4[4], tempState[4]; | |||
| for (int n = 0; n < 4; n++) | |||
| { | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i]; | |||
| calculateDerivatives(inup[n], deriv1, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + 0.5f * dt * 0.25f * deriv1[i]; | |||
| calculateDerivatives(inup[n], deriv2, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + 0.5f * dt * 0.25f * deriv2[i]; | |||
| calculateDerivatives(inup[n], deriv3, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| tempState[i] = state[i] + dt * 0.25f * deriv3[i]; | |||
| calculateDerivatives(inup[n], deriv4, tempState); | |||
| for (int i = 0; i < 4; i++) | |||
| state[i] += (1.0f / 6.0f) * dt * 0.25f * (deriv1[i] + 2.0f * deriv2[i] + 2.0f * deriv3[i] + deriv4[i]); | |||
| outLPup[n] = state[3]; | |||
| outHPup[n] = clip((inup[n] - resonance*state[3]) - 4 * state[0] + 6*state[1] - 4*state[2] + state[3]); | |||
| for (int i = 0; i < 4; i++) { | |||
| V[i] = lastV[i]; | |||
| } | |||
| // downsampling | |||
| outLP = decimatorLP.process(outLPup); | |||
| outHP = decimatorHP.process(outHPup); | |||
| } | |||
| for (int i = 0; i < 4; i++) { | |||
| float S0 = A * (input + lastInput + resonance * (V[3] + lastV[3])) * 0.5f; | |||
| float S1 = A * (V[0] + lastV[0]) * 0.5f; | |||
| float S2 = A * (V[1] + lastV[1]) * 0.5f; | |||
| float S3 = A * (V[2] + lastV[2]) * 0.5f; | |||
| float S4 = A * (V[3] + lastV[3]) * 0.5f; | |||
| float t0 = clip(S0); | |||
| float t1 = clip(S1); | |||
| float t2 = clip(S2); | |||
| float t3 = clip(S3); | |||
| float t4 = clip(S4); | |||
| // F function (the one for which we need to find the roots with NR) | |||
| F[0] = V[0] - lastV[0] + wc * dt * (t0 + t1); | |||
| F[1] = V[1] - lastV[1] - wc * dt * (t1 - t2); | |||
| F[2] = V[2] - lastV[2] - wc * dt * (t2 - t3); | |||
| F[3] = V[3] - lastV[3] - wc * dt * (t3 - t4); | |||
| float g = wc * dt * A * 0.5f; | |||
| // derivatives of ti | |||
| float J0 = 1 - t0 * t0; | |||
| float J1 = 1 - t1 * t1; | |||
| float J2 = 1 - t2 * t2; | |||
| float J3 = 1 - t3 * t3; | |||
| float J4 = 1 - t4 * t4; | |||
| // Jacobian matrix elements | |||
| float a11 = 1 + g * J1; | |||
| float a14 = resonance * g * J0; | |||
| float a21 = -g * J1; | |||
| float a22 = 1 + g * J2; | |||
| float a32 = -g * J2; | |||
| float a33 = 1 + g * J3; | |||
| float a43 = -g * J3; | |||
| float a44 = 1 + g * J4; | |||
| // Newton-Raphson algorithm with Jacobian inverting | |||
| float deninv = 1.f / (a11 * a22 * a33 * a44 - a14 * a21 * a32 * a43); | |||
| float delta0 = ( F[0] * a22 * a33 * a44 - F[1] * a14 * a32 * a43 + F[2] * a14 * a22 * a43 - F[3] * a14 * a22 * a33) * deninv; | |||
| float delta1 = (-F[0] * a21 * a33 * a44 + F[1] * a11 * a33 * a44 - F[2] * a14 * a21 * a43 + F[3] * a14 * a21 * a33) * deninv; | |||
| float delta2 = ( F[0] * a21 * a32 * a44 - F[1] * a11 * a32 * a44 + F[2] * a11 * a22 * a44 - F[3] * a14 * a21 * a32) * deninv; | |||
| float delta3 = (-F[0] * a21 * a32 * a43 + F[1] * a11 * a32 * a43 - F[2] * a11 * a22 * a43 + F[3] * a11 * a22 * a33) * deninv; | |||
| delta0 = isfinite(delta0) ? delta0 : 0.f; | |||
| delta1 = isfinite(delta1) ? delta1 : 0.f; | |||
| delta2 = isfinite(delta2) ? delta2 : 0.f; | |||
| delta3 = isfinite(delta3) ? delta3 : 0.f; | |||
| V[0] -= delta0; | |||
| V[1] -= delta1; | |||
| V[2] -= delta2; | |||
| V[3] -= delta3; | |||
| } | |||
| void reset() | |||
| { | |||
| lastInput = input; | |||
| for (int i = 0; i < 4; i++) | |||
| state[i] = 0.0f; | |||
| lastV[i] = V[i]; | |||
| upsampler.reset(); | |||
| decimatorLP.reset(); | |||
| decimatorHP.reset(); | |||
| // outputs are inverted | |||
| lowpass = -clip(V[3] / gainFactor); | |||
| highpass = -clip(((input + resonance * V[3]) + 4 * V[0] - 6 * V[1] + 4 * V[2] - V[3]) / gainFactor); | |||
| } | |||
| // =================================================================================== | |||
| // parameters | |||
| float cutoff = 1000.0f; | |||
| float resonance = 1.0f; | |||
| private: | |||
| // =================================================================================== | |||
| // The clipping function of a transistor pair is approximately tanh(x) | |||
| inline float clip(float x) | |||
| { | |||
| return std::tanh(x); | |||
| void reset() { | |||
| for (int i = 0; i < 4; i++) { | |||
| lastV[i] = 0.f; | |||
| } | |||
| lastInput = 0.f; | |||
| } | |||
| }; | |||
| void calculateDerivatives(float input, float *dstate, const float *_state) | |||
| { | |||
| float cutoff2Pi = 2 * M_PI * cutoff; | |||
| float satstatein = clip(input - resonance * _state[3]); | |||
| float satstate0 = clip(_state[0]); | |||
| float satstate1 = clip(_state[1]); | |||
| float satstate2 = clip(_state[2]); | |||
| float satstate3 = clip(_state[3]); | |||
| dstate[0] = cutoff2Pi * (satstatein - satstate0); | |||
| dstate[1] = cutoff2Pi * (satstate0 - satstate1); | |||
| dstate[2] = cutoff2Pi * (satstate1 - satstate2); | |||
| dstate[3] = cutoff2Pi * (satstate2 - satstate3); | |||
| struct VCF : Module { | |||
| enum ParamIds { | |||
| FREQ_PARAM, | |||
| FINE_PARAM, | |||
| RES_PARAM, | |||
| FREQ_CV_PARAM, | |||
| DRIVE_PARAM, | |||
| NUM_PARAMS | |||
| }; | |||
| enum InputIds { | |||
| FREQ_INPUT, | |||
| RES_INPUT, | |||
| DRIVE_INPUT, | |||
| IN_INPUT, | |||
| NUM_INPUTS | |||
| }; | |||
| enum OutputIds { | |||
| LPF_OUTPUT, | |||
| HPF_OUTPUT, | |||
| NUM_OUTPUTS | |||
| }; | |||
| LadderFilter0dfMidPoint filter; | |||
| VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void onReset() override { | |||
| filter.reset(); | |||
| } | |||
| // =================================================================================== | |||
| // oversampling classes | |||
| Upsampler<4, 32> upsampler; | |||
| Decimator<4, 24> decimatorLP, decimatorHP; | |||
| // state variables | |||
| float state[4] = {}; | |||
| }; | |||
| // =================================================================================== | |||
| /** | |||
| This code is derived from the algorithm described in "Modeling and Measuring a | |||
| Moog Voltage-Controlled Filter, by Effrosyni Paschou, Fabián Esqueda, Vesa Välimäki | |||
| and John Mourjopoulos, for APSIPA Annual Summit and Conference 2017. | |||
| void step() override { | |||
| if (!outputs[LPF_OUTPUT].active && !outputs[HPF_OUTPUT].active) { | |||
| outputs[LPF_OUTPUT].value = 0.f; | |||
| outputs[HPF_OUTPUT].value = 0.f; | |||
| return; | |||
| } | |||
| It is a 0df algorithm using Newton-Raphson's method (4 iterations) for solving | |||
| implicit equations, and midpoint integration method. | |||
| float input = inputs[IN_INPUT].value / 5.f; | |||
| float drive = clamp(params[DRIVE_PARAM].value + inputs[DRIVE_INPUT].value / 10.f, 0.f, 1.f); | |||
| float gain = powf(1.f + drive, 5); | |||
| input *= gain; | |||
| Derived from the article and adapted to VCV Rack by Ivan COHEN. | |||
| */ | |||
| struct LadderFilter0dfMidPoint | |||
| { | |||
| public: | |||
| // =================================================================================== | |||
| // parameters | |||
| float cutoff = 1000.f; | |||
| float resonance = 1.0f; | |||
| LadderFilter0dfMidPoint() | |||
| { | |||
| A = gainfactor / (2.f * VT); | |||
| } | |||
| void process(float input, float dt, float &outLP, float &outHP) | |||
| { | |||
| float F[4], V[4]; | |||
| const float wc = 2*M_PI*cutoff / A; | |||
| input *= gainfactor; | |||
| for(int i = 0; i < 4; i++) | |||
| V[i] = lastV[i]; | |||
| for(int i = 0; i < 4; i++) | |||
| { | |||
| const float S0 = A * (input + lastinput + resonance * (V[3] + lastV[3])) * 0.5f; | |||
| const float S1 = A * (V[0] + lastV[0]) * 0.5f; | |||
| const float S2 = A * (V[1] + lastV[1]) * 0.5f; | |||
| const float S3 = A * (V[2] + lastV[2]) * 0.5f; | |||
| const float S4 = A * (V[3] + lastV[3]) * 0.5f; | |||
| const float t0 = clip(S0); | |||
| const float t1 = clip(S1); | |||
| const float t2 = clip(S2); | |||
| const float t3 = clip(S3); | |||
| const float t4 = clip(S4); | |||
| // F function (the one for which we need to find the roots with NR) | |||
| F[0] = V[0] - lastV[0] + wc*dt*(t0 + t1); | |||
| F[1] = V[1] - lastV[1] - wc*dt*(t1 - t2); | |||
| F[2] = V[2] - lastV[2] - wc*dt*(t2 - t3); | |||
| F[3] = V[3] - lastV[3] - wc*dt*(t3 - t4); | |||
| const float g = wc*dt*A*0.5f; | |||
| // derivatives of ti | |||
| const float J0 = 1 - t0 * t0; | |||
| const float J1 = 1 - t1 * t1; | |||
| const float J2 = 1 - t2 * t2; | |||
| const float J3 = 1 - t3 * t3; | |||
| const float J4 = 1 - t4 * t4; | |||
| // Jacobian matrix elements | |||
| const float a11 = 1 + g*J1; | |||
| const float a14 = resonance*g*J0; | |||
| const float a21 = -g*J1; | |||
| const float a22 = 1 + g*J2; | |||
| const float a32 = -g*J2; | |||
| const float a33 = 1 + g*J3; | |||
| const float a43 = -g*J3; | |||
| const float a44 = 1 + g*J4; | |||
| // Newton-Raphson algorithm with Jacobian inverting | |||
| const float deninv = 1.f / (a11*a22*a33*a44 - a14*a21*a32*a43); | |||
| float delta0 = ( F[0]*a22*a33*a44 - F[1]*a14*a32*a43 + F[2]*a14*a22*a43 - F[3]*a14*a22*a33) * deninv; | |||
| float delta1 = (-F[0]*a21*a33*a44 + F[1]*a11*a33*a44 - F[2]*a14*a21*a43 + F[3]*a14*a21*a33) * deninv; | |||
| float delta2 = ( F[0]*a21*a32*a44 - F[1]*a11*a32*a44 + F[2]*a11*a22*a44 - F[3]*a14*a21*a32) * deninv; | |||
| float delta3 = (-F[0]*a21*a32*a43 + F[1]*a11*a32*a43 - F[2]*a11*a22*a43 + F[3]*a11*a22*a33) * deninv; | |||
| delta0 = isfinite(delta0) ? delta0 : 0.f; | |||
| delta1 = isfinite(delta1) ? delta1 : 0.f; | |||
| delta2 = isfinite(delta2) ? delta2 : 0.f; | |||
| delta3 = isfinite(delta3) ? delta3 : 0.f; | |||
| V[0] -= delta0; | |||
| V[1] -= delta1; | |||
| V[2] -= delta2; | |||
| V[3] -= delta3; | |||
| } | |||
| lastinput = input; | |||
| for(int i = 0; i < 4; i++) | |||
| lastV[i] = V[i]; | |||
| // outputs are inverted | |||
| outLP = -clip(V[3] / gainfactor); | |||
| outHP = -clip(((input + resonance*V[3]) + 4 * V[0] - 6*V[1] + 4*V[2] - V[3]) / gainfactor); | |||
| } | |||
| void reset() | |||
| { | |||
| for (int i = 0; i < 4; i++) | |||
| lastV[i] = 0.0f; | |||
| lastinput = 0.f; | |||
| } | |||
| private: | |||
| // =================================================================================== | |||
| inline float clip(float x) | |||
| { | |||
| return std::tanh(x); | |||
| } | |||
| // Add -60dB noise to bootstrap self-oscillation | |||
| input += 1e-6f * (2.f * randomUniform() - 1.f); | |||
| // =================================================================================== | |||
| // constants | |||
| float VT = 26e-3f; | |||
| float gainfactor = 0.2f; | |||
| float A; | |||
| // Set resonance | |||
| float res = clamp(params[RES_PARAM].value + inputs[RES_INPUT].value / 10.f, 0.f, 1.f); | |||
| filter.resonance = powf(res, 2) * 10.f; | |||
| // state variables | |||
| float lastinput = 0.f; | |||
| float lastV[4] = {}; | |||
| }; | |||
| // Set cutoff frequency | |||
| float pitch = inputs[FREQ_INPUT].value * quadraticBipolar(params[FREQ_CV_PARAM].value); | |||
| pitch += params[FREQ_PARAM].value * 10.f - 3.f; | |||
| pitch += quadraticBipolar(params[FINE_PARAM].value * 2.f - 1.f) * 7.f / 12.f; | |||
| float cutoff = 261.626f * powf(2.f, pitch); | |||
| filter.cutoff = clamp(cutoff, 1.f, 20000.f); | |||
| // Step the filter | |||
| filter.process(input, engineGetSampleTime()); | |||
| // =================================================================================== | |||
| struct VCF : Module { | |||
| enum ParamIds { | |||
| FREQ_PARAM, | |||
| FINE_PARAM, | |||
| RES_PARAM, | |||
| FREQ_CV_PARAM, | |||
| DRIVE_PARAM, | |||
| NUM_PARAMS | |||
| }; | |||
| enum InputIds { | |||
| FREQ_INPUT, | |||
| RES_INPUT, | |||
| DRIVE_INPUT, | |||
| IN_INPUT, | |||
| NUM_INPUTS | |||
| }; | |||
| enum OutputIds { | |||
| LPF_OUTPUT, | |||
| HPF_OUTPUT, | |||
| NUM_OUTPUTS | |||
| }; | |||
| //LadderFilter0dfMidPoint filter; | |||
| LadderFilterRK4Oversampled filter; | |||
| //LadderFilterRK4 filter; | |||
| VCF() : Module(NUM_PARAMS, NUM_INPUTS, NUM_OUTPUTS) {} | |||
| void step() override; | |||
| void onReset() override { | |||
| filter.reset(); | |||
| } | |||
| // Set outputs | |||
| outputs[LPF_OUTPUT].value = 5.f * filter.lowpass; | |||
| outputs[HPF_OUTPUT].value = 5.f * filter.highpass; | |||
| } | |||
| }; | |||
| void VCF::step() | |||
| { | |||
| // input stage | |||
| float input = inputs[IN_INPUT].value / 5.f; | |||
| float gain = std::pow(1.f + params[DRIVE_PARAM].value, 5); | |||
| if (inputs[DRIVE_INPUT].active) | |||
| gain *= inputs[DRIVE_INPUT].value / 10.f; | |||
| input *= gain; | |||
| // Add -60dB noise to bootstrap self-oscillation | |||
| input += 1e-6f * (2.f*randomUniform() - 1.f); | |||
| // Set resonance | |||
| float res = clamp(params[RES_PARAM].value + inputs[RES_INPUT].value / 10.f, 0.f, 1.f); | |||
| filter.resonance = std::pow(res, 2) * 10.f; | |||
| // Set cutoff frequency | |||
| float pitch = inputs[FREQ_INPUT].value * quadraticBipolar(params[FREQ_CV_PARAM].value); | |||
| pitch += params[FREQ_PARAM].value * 10.f - 3.f; | |||
| pitch += quadraticBipolar(params[FINE_PARAM].value * 2.f - 1.f) * 7.f/12.f; | |||
| float cutoff = 261.626f * std::pow(2.f, pitch); | |||
| filter.cutoff = clamp(cutoff, 1.f, 20000.f); | |||
| // Push a sample to the state filter | |||
| float outLP, outHP; | |||
| filter.process(input, engineGetSampleTime(), outLP, outHP); | |||
| // Set outputs | |||
| outputs[LPF_OUTPUT].value = 5.0f * outLP; | |||
| outputs[HPF_OUTPUT].value = 5.0f * outHP; | |||
| } | |||
| struct VCFWidget : ModuleWidget { | |||
| VCFWidget(VCF *module); | |||
| VCFWidget(VCF *module) : ModuleWidget(module) { | |||
| setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x - 30, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 365))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x - 30, 365))); | |||
| addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.f, 1.f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.f, 1.f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.f, 1.f, 0.f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.f, 1.f, 0.f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.f, 1.f, 0.f)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); | |||
| addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); | |||
| addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); | |||
| } | |||
| }; | |||
| VCFWidget::VCFWidget(VCF *module) : ModuleWidget(module) { | |||
| setPanel(SVG::load(assetPlugin(plugin, "res/VCF.svg"))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 0))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(15, 365))); | |||
| addChild(Widget::create<ScrewSilver>(Vec(box.size.x-30, 365))); | |||
| addParam(ParamWidget::create<RoundHugeBlackKnob>(Vec(33, 61), module, VCF::FREQ_PARAM, 0.f, 1.f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 143), module, VCF::FINE_PARAM, 0.f, 1.f, 0.5f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 143), module, VCF::RES_PARAM, 0.f, 1.f, 0.f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(12, 208), module, VCF::FREQ_CV_PARAM, -1.f, 1.f, 0.f)); | |||
| addParam(ParamWidget::create<RoundLargeBlackKnob>(Vec(71, 208), module, VCF::DRIVE_PARAM, 0.f, 1.f, 0.f)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 276), Port::INPUT, module, VCF::FREQ_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(48, 276), Port::INPUT, module, VCF::RES_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(85, 276), Port::INPUT, module, VCF::DRIVE_INPUT)); | |||
| addInput(Port::create<PJ301MPort>(Vec(10, 320), Port::INPUT, module, VCF::IN_INPUT)); | |||
| addOutput(Port::create<PJ301MPort>(Vec(48, 320), Port::OUTPUT, module, VCF::LPF_OUTPUT)); | |||
| addOutput(Port::create<PJ301MPort>(Vec(85, 320), Port::OUTPUT, module, VCF::HPF_OUTPUT)); | |||
| } | |||
| Model *modelVCF = Model::create<VCF, VCFWidget>("Fundamental", "VCF", "VCF", FILTER_TAG); | |||