| @@ -63,7 +63,7 @@ struct EvenVCO : Module { | |||
| pw = rescale(clamp(pw, -1.f, 1.f), -1.f, 1.f, minPw, 1.f - minPw); | |||
| // Advance phase | |||
| float deltaPhase = clamp(freq * app()->engine->getSampleTime(), 1e-6f, 0.5f); | |||
| float deltaPhase = clamp(freq * APP->engine->getSampleTime(), 1e-6f, 0.5f); | |||
| float oldPhase = phase; | |||
| phase += deltaPhase; | |||
| @@ -95,8 +95,8 @@ struct EvenVCO : Module { | |||
| triSquare += triSquareMinBlep.process(); | |||
| // Integrate square for triangle | |||
| tri += 4.f * triSquare * freq * app()->engine->getSampleTime(); | |||
| tri *= (1.f - 40.f * app()->engine->getSampleTime()); | |||
| tri += 4.f * triSquare * freq * APP->engine->getSampleTime(); | |||
| tri *= (1.f - 40.f * APP->engine->getSampleTime()); | |||
| float sine = -std::cos(2*M_PI * phase); | |||
| float doubleSaw = (phase < 0.5) ? (-1.f + 4.f*phase) : (-1.f + 4.f*(phase - 0.5)); | |||
| @@ -124,7 +124,7 @@ struct Rampage : Module { | |||
| float riseCv = params[RISE_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value / 10.0 + inputs[RISE_CV_A_INPUT + c].value / 10.0; | |||
| riseCv = clamp(riseCv, 0.0f, 1.0f); | |||
| float rise = minTime * std::pow(2.0, riseCv * 10.0); | |||
| out[c] += shapeDelta(delta, rise, shape) * app()->engine->getSampleTime(); | |||
| out[c] += shapeDelta(delta, rise, shape) * APP->engine->getSampleTime(); | |||
| rising = (in - out[c] > 1e-3); | |||
| if (!rising) { | |||
| gate[c] = false; | |||
| @@ -135,7 +135,7 @@ struct Rampage : Module { | |||
| float fallCv = params[FALL_A_PARAM + c].value - inputs[EXP_CV_A_INPUT + c].value / 10.0 + inputs[FALL_CV_A_INPUT + c].value / 10.0; | |||
| fallCv = clamp(fallCv, 0.0f, 1.0f); | |||
| float fall = minTime * std::pow(2.0, fallCv * 10.0); | |||
| out[c] += shapeDelta(delta, fall, shape) * app()->engine->getSampleTime(); | |||
| out[c] += shapeDelta(delta, fall, shape) * APP->engine->getSampleTime(); | |||
| falling = (in - out[c] < -1e-3); | |||
| if (!falling) { | |||
| // End of cycle, check if we should turn the gate back on (cycle mode) | |||
| @@ -157,7 +157,7 @@ struct Rampage : Module { | |||
| outputs[FALLING_A_OUTPUT + c].value = (falling ? 10.0 : 0.0); | |||
| lights[RISING_A_LIGHT + c].setBrightnessSmooth(rising ? 1.0 : 0.0); | |||
| lights[FALLING_A_LIGHT + c].setBrightnessSmooth(falling ? 1.0 : 0.0); | |||
| outputs[EOC_A_OUTPUT + c].value = (endOfCyclePulse[c].process(app()->engine->getSampleTime()) ? 10.0 : 0.0); | |||
| outputs[EOC_A_OUTPUT + c].value = (endOfCyclePulse[c].process(APP->engine->getSampleTime()) ? 10.0 : 0.0); | |||
| outputs[OUT_A_OUTPUT + c].value = out[c]; | |||
| lights[OUT_A_LIGHT + c].setBrightnessSmooth(out[c] / 10.0); | |||
| } | |||
| @@ -42,7 +42,7 @@ struct SlewLimiter : Module { | |||
| if (in > out) { | |||
| float rise = inputs[RISE_INPUT].value / 10.f + params[RISE_PARAM].value; | |||
| float slew = slewMax * powf(slewMin / slewMax, rise); | |||
| out += slew * crossfade(1.f, shapeScale * (in - out), shape) * app()->engine->getSampleTime(); | |||
| out += slew * crossfade(1.f, shapeScale * (in - out), shape) * APP->engine->getSampleTime(); | |||
| if (out > in) | |||
| out = in; | |||
| } | |||
| @@ -50,7 +50,7 @@ struct SlewLimiter : Module { | |||
| else if (in < out) { | |||
| float fall = inputs[FALL_INPUT].value / 10.f + params[FALL_PARAM].value; | |||
| float slew = slewMax * powf(slewMin / slewMax, fall); | |||
| out -= slew * crossfade(1.f, shapeScale * (out - in), shape) * app()->engine->getSampleTime(); | |||
| out -= slew * crossfade(1.f, shapeScale * (out - in), shape) * APP->engine->getSampleTime(); | |||
| if (out < in) | |||
| out = in; | |||
| } | |||
| @@ -74,7 +74,7 @@ struct SpringReverb : Module { | |||
| float dry = in1 * level1 + in2 * level2; | |||
| // HPF on dry | |||
| float dryCutoff = 200.0 * std::pow(20.0, params[HPF_PARAM].value) * app()->engine->getSampleTime(); | |||
| float dryCutoff = 200.0 * std::pow(20.0, params[HPF_PARAM].value) * APP->engine->getSampleTime(); | |||
| dryFilter.setCutoff(dryCutoff); | |||
| dryFilter.process(dry); | |||
| @@ -91,7 +91,7 @@ struct SpringReverb : Module { | |||
| float output[BLOCK_SIZE]; | |||
| // Convert input buffer | |||
| { | |||
| inputSrc.setRates(app()->engine->getSampleRate(), 48000); | |||
| inputSrc.setRates(APP->engine->getSampleRate(), 48000); | |||
| int inLen = inputBuffer.size(); | |||
| int outLen = BLOCK_SIZE; | |||
| inputSrc.process(inputBuffer.startData(), &inLen, (dsp::Frame<1>*) input, &outLen); | |||
| @@ -103,7 +103,7 @@ struct SpringReverb : Module { | |||
| // Convert output buffer | |||
| { | |||
| outputSrc.setRates(48000, app()->engine->getSampleRate()); | |||
| outputSrc.setRates(48000, APP->engine->getSampleRate()); | |||
| int inLen = BLOCK_SIZE; | |||
| int outLen = outputBuffer.capacity(); | |||
| outputSrc.process((dsp::Frame<1>*) output, &inLen, outputBuffer.endData(), &outLen); | |||
| @@ -122,7 +122,7 @@ struct SpringReverb : Module { | |||
| outputs[MIX_OUTPUT].value = clamp(mix, -10.0f, 10.0f); | |||
| // Set lights | |||
| float lightRate = 5.0 * app()->engine->getSampleTime(); | |||
| float lightRate = 5.0 * APP->engine->getSampleTime(); | |||
| vuFilter.setRate(lightRate); | |||
| vuFilter.process(std::abs(wet)); | |||
| lightFilter.setRate(lightRate); | |||