You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

306 lines
8.5KB

  1. /*
  2. Copyright (C) 2006-2009 Nasca Octavian Paul
  3. Author: Nasca Octavian Paul
  4. This program is free software; you can redistribute it and/or modify
  5. it under the terms of version 2 of the GNU General Public License
  6. as published by the Free Software Foundation.
  7. This program is distributed in the hope that it will be useful,
  8. but WITHOUT ANY WARRANTY; without even the implied warranty of
  9. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  10. GNU General Public License (version 2) for more details.
  11. You should have received a copy of the GNU General Public License (version 2)
  12. along with this program; if not, write to the Free Software Foundation,
  13. Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  14. */
  15. #include "Stretch.h"
  16. #include <stdlib.h>
  17. #include <math.h>
  18. unsigned int FFT::start_rand_seed=1;
  19. FFT::FFT(int nsamples_){
  20. nsamples=nsamples_;
  21. if (nsamples%2!=0) {
  22. nsamples+=1;
  23. printf("WARNING: Odd sample size on FFT::FFT() (%d)",nsamples);
  24. };
  25. smp=new REALTYPE[nsamples];for (int i=0;i<nsamples;i++) smp[i]=0.0;
  26. freq=new REALTYPE[nsamples/2+1];for (int i=0;i<nsamples/2+1;i++) freq[i]=0.0;
  27. window.data=new REALTYPE[nsamples];for (int i=0;i<nsamples;i++) window.data[i]=0.707;
  28. window.type=W_RECTANGULAR;
  29. #ifdef KISSFFT
  30. datar=new kiss_fft_scalar[nsamples+2];
  31. for (int i=0;i<nsamples+2;i++) datar[i]=0.0;
  32. datac=new kiss_fft_cpx[nsamples/2+2];
  33. for (int i=0;i<nsamples/2+2;i++) datac[i].r=datac[i].i=0.0;
  34. plankfft = kiss_fftr_alloc(nsamples,0,0,0);
  35. plankifft = kiss_fftr_alloc(nsamples,1,0,0);
  36. #else
  37. data=new REALTYPE[nsamples];for (int i=0;i<nsamples;i++) data[i]=0.0;
  38. planfftw=fftwf_plan_r2r_1d(nsamples,data,data,FFTW_R2HC,FFTW_ESTIMATE);
  39. planifftw=fftwf_plan_r2r_1d(nsamples,data,data,FFTW_HC2R,FFTW_ESTIMATE);
  40. #endif
  41. rand_seed=start_rand_seed;
  42. start_rand_seed+=161103;
  43. };
  44. FFT::~FFT(){
  45. delete []smp;
  46. delete []freq;
  47. delete []window.data;
  48. #ifdef KISSFFT
  49. delete []datar;
  50. delete []datac;
  51. free(plankfft);
  52. free(plankifft);
  53. #else
  54. delete []data;
  55. fftwf_destroy_plan(planfftw);
  56. fftwf_destroy_plan(planifftw);
  57. #endif
  58. };
  59. void FFT::smp2freq(){
  60. #ifdef KISSFFT
  61. for (int i=0;i<nsamples;i++) datar[i]=smp[i];
  62. kiss_fftr(plankfft,datar,datac);
  63. #else
  64. for (int i=0;i<nsamples;i++) data[i]=smp[i];
  65. fftwf_execute(planfftw);
  66. #endif
  67. for (int i=1;i<nsamples/2;i++) {
  68. #ifdef KISSFFT
  69. REALTYPE c=datac[i].r;
  70. REALTYPE s=datac[i].i;
  71. #else
  72. REALTYPE c=data[i];
  73. REALTYPE s=data[nsamples-i];
  74. #endif
  75. freq[i]=sqrt(c*c+s*s);
  76. };
  77. freq[0]=0.0;
  78. };
  79. void FFT::freq2smp(){
  80. REALTYPE inv_2p15_2pi=1.0/16384.0*M_PI;
  81. for (int i=1;i<nsamples/2;i++) {
  82. rand_seed=(rand_seed*1103515245+12345);
  83. unsigned int rand=(rand_seed>>16)&0x7fff;
  84. REALTYPE phase=rand*inv_2p15_2pi;
  85. #ifdef KISSFFT
  86. datac[i].r=freq[i]*cos(phase);
  87. datac[i].i=freq[i]*sin(phase);
  88. #else
  89. data[i]=freq[i]*cos(phase);
  90. data[nsamples-i]=freq[i]*sin(phase);
  91. #endif
  92. };
  93. #ifdef KISSFFT
  94. datac[0].r=datac[0].i=0.0;
  95. kiss_fftri(plankifft,datac,datar);
  96. for (int i=0;i<nsamples;i++) smp[i]=datar[i]/nsamples;
  97. #else
  98. data[0]=data[nsamples/2+1]=data[nsamples/2]=0.0;
  99. fftwf_execute(planifftw);
  100. for (int i=0;i<nsamples;i++) smp[i]=data[i]/nsamples;
  101. #endif
  102. };
  103. void FFT::applywindow(FFTWindow type){
  104. if (window.type!=type){
  105. window.type=type;
  106. switch (type){
  107. case W_RECTANGULAR:
  108. for (int i=0;i<nsamples;i++) window.data[i]=0.707;
  109. break;
  110. case W_HAMMING:
  111. for (int i=0;i<nsamples;i++) window.data[i]=0.53836-0.46164*cos(2*M_PI*i/(nsamples+1.0));
  112. break;
  113. case W_HANN:
  114. for (int i=0;i<nsamples;i++) window.data[i]=0.5*(1.0-cos(2*M_PI*i/(nsamples-1.0)));
  115. break;
  116. case W_BLACKMAN:
  117. for (int i=0;i<nsamples;i++) window.data[i]=0.42-0.5*cos(2*M_PI*i/(nsamples-1.0))+0.08*cos(4*M_PI*i/(nsamples-1.0));
  118. break;
  119. case W_BLACKMAN_HARRIS:
  120. for (int i=0;i<nsamples;i++) window.data[i]=0.35875-0.48829*cos(2*M_PI*i/(nsamples-1.0))+0.14128*cos(4*M_PI*i/(nsamples-1.0))-0.01168*cos(6*M_PI*i/(nsamples-1.0));
  121. break;
  122. };
  123. };
  124. for (int i=0;i<nsamples;i++) smp[i]*=window.data[i];
  125. };
  126. /*******************************************/
  127. Stretch::Stretch(REALTYPE rap_,int in_bufsize_,FFTWindow w,bool bypass_,REALTYPE samplerate_,int stereo_mode_){
  128. samplerate=samplerate_;
  129. rap=rap_;
  130. in_bufsize=in_bufsize_;
  131. bypass=bypass_;
  132. stereo_mode=stereo_mode_;
  133. if (rap>=1.0){//stretch
  134. out_bufsize=in_bufsize;
  135. }else{
  136. //shorten
  137. out_bufsize=(int)(in_bufsize*rap);
  138. };
  139. if (out_bufsize<8) out_bufsize=8;
  140. if (bypass) out_bufsize=in_bufsize;
  141. out_buf=new REALTYPE[out_bufsize];
  142. old_out_smp_buf=new REALTYPE[out_bufsize*2];for (int i=0;i<out_bufsize*2;i++) old_out_smp_buf[i]=0.0;
  143. poolsize=in_bufsize_*2;
  144. in_pool=new REALTYPE[poolsize];for (int i=0;i<poolsize;i++) in_pool[i]=0.0;
  145. infft=new FFT(poolsize);
  146. outfft=new FFT(out_bufsize*2);
  147. remained_samples=0.0;
  148. window_type=w;
  149. };
  150. Stretch::~Stretch(){
  151. delete [] out_buf;
  152. delete [] old_out_smp_buf;
  153. delete [] in_pool;
  154. delete infft;
  155. delete outfft;
  156. };
  157. void Stretch::set_rap(REALTYPE newrap){
  158. if ((rap>=1.0)&&(newrap>=1.0)) rap=newrap;
  159. };
  160. void Stretch::process(REALTYPE *smps,int nsmps){
  161. if (bypass){
  162. for (int i=0;i<out_bufsize;i++) out_buf[i]=smps[i];
  163. //post-process the output
  164. // process_output(out_buf,out_bufsize);
  165. return;
  166. };
  167. //add new samples to the pool
  168. if ((smps!=NULL)&&(nsmps!=0)){
  169. if (nsmps>poolsize){
  170. printf("Warning nsmps> inbufsize on Stretch::process() %d>%d\n",nsmps,poolsize);
  171. nsmps=poolsize;
  172. };
  173. int nleft=poolsize-nsmps;
  174. //move left the samples from the pool to make room for new samples
  175. for (int i=0;i<nleft;i++) in_pool[i]=in_pool[i+nsmps];
  176. //add new samples to the pool
  177. for (int i=0;i<nsmps;i++) in_pool[i+nleft]=smps[i];
  178. };
  179. //get the samples from the pool
  180. for (int i=0;i<poolsize;i++) infft->smp[i]=in_pool[i];
  181. infft->applywindow(window_type);
  182. infft->smp2freq();
  183. if (out_bufsize==in_bufsize){//output is the same as the input (as usual)
  184. for (int i=0;i<in_bufsize;i++) outfft->freq[i]=infft->freq[i];
  185. } else {
  186. if (out_bufsize>in_bufsize){//output is longer
  187. REALTYPE rap=(REALTYPE)in_bufsize/(REALTYPE)out_bufsize;
  188. for (int i=0;i<out_bufsize;i++) {
  189. REALTYPE pos=i*rap;
  190. int poshi=(int)floor(pos);
  191. REALTYPE poslo=pos-floor(pos);
  192. outfft->freq[i]=infft->freq[poshi]*(1.0-poslo)+infft->freq[poshi+1]*poslo;
  193. };
  194. }else{//output is shorter
  195. for (int i=0;i<out_bufsize;i++) outfft->freq[i]=0.0;
  196. REALTYPE rap=(REALTYPE)out_bufsize/(REALTYPE)in_bufsize;
  197. for (int i=0;i<in_bufsize;i++) {
  198. REALTYPE pos=i*rap;
  199. int poshi=(int)(floor(pos));
  200. // #warning sa folosesc si poslo
  201. outfft->freq[poshi]+=infft->freq[i];
  202. };
  203. };
  204. };
  205. process_spectrum(outfft->freq);
  206. outfft->freq2smp();
  207. //make the output buffer
  208. REALTYPE tmp=1.0/(float) out_bufsize*M_PI;
  209. REALTYPE hinv_sqrt2=0.853553390593;//(1.0+1.0/sqrt(2))*0.5;
  210. REALTYPE ampfactor=1.0;
  211. if (rap<1.0) ampfactor=rap*0.707;
  212. else ampfactor=(out_bufsize/(float)poolsize)*4.0;
  213. for (int i=0;i<out_bufsize;i++) {
  214. REALTYPE a=(0.5+0.5*cos(i*tmp));
  215. REALTYPE out=outfft->smp[i+out_bufsize]*(1.0-a)+old_out_smp_buf[i]*a;
  216. out_buf[i]=out*(hinv_sqrt2-(1.0-hinv_sqrt2)*cos(i*2.0*tmp))*ampfactor;
  217. };
  218. //copy the current output buffer to old buffer
  219. for (int i=0;i<out_bufsize*2;i++) old_out_smp_buf[i]=outfft->smp[i];
  220. //post-process the output
  221. //process_output(out_buf,out_bufsize);
  222. };
  223. int Stretch::get_nsamples(REALTYPE current_pos_percents){
  224. if (bypass) return out_bufsize;
  225. if (rap<1.0) return poolsize/2;//pentru shorten
  226. long double used_rap=rap*get_stretch_multiplier(current_pos_percents);
  227. long double r=out_bufsize/used_rap;
  228. int ri=(int)floor(r);
  229. long double rf=r-floor(r);
  230. long double old_remained_samples_test=remained_samples;
  231. remained_samples+=rf;
  232. if (remained_samples>=1.0){
  233. ri+=(int)floor(remained_samples);
  234. remained_samples=remained_samples-floor(remained_samples);
  235. };
  236. long double rf_test=remained_samples-old_remained_samples_test;//this value should be almost like "rf" (for most of the time with the exception of changing the "ri" value) for extremely long stretches (otherwise the shown stretch value is not accurate)
  237. //for stretch up to 10^18x "long double" must have at least 64 bits in the fraction part (true for gcc compiler on x86 and macosx)
  238. // long double zzz=1.0;//quick test by adding a "largish" number and substracting it again
  239. // rf_test+=zzz;
  240. // rf_test-=zzz;
  241. // printf("remained_samples=%.20Lg rf=%.20Lg rf_test=%.20Lg\n",remained_samples,rf,rf_test);
  242. // printf("rf=%g rf_test=%g\n",(double)rf,(double)(rf_test));
  243. if (ri>poolsize){
  244. ri=poolsize;
  245. };
  246. return ri;
  247. };
  248. int Stretch::get_nsamples_for_fill(){
  249. return poolsize;
  250. };
  251. REALTYPE Stretch::get_stretch_multiplier(REALTYPE pos_percents){
  252. return 1.0;
  253. };