| 
							- /*
 -  * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
 -  * ALL RIGHTS RESERVED
 -  * Permission to use, copy, modify, and distribute this software for
 -  * any purpose and without fee is hereby granted, provided that the above
 -  * copyright notice appear in all copies and that both the copyright notice
 -  * and this permission notice appear in supporting documentation, and that
 -  * the name of Silicon Graphics, Inc. not be used in advertising
 -  * or publicity pertaining to distribution of the software without specific,
 -  * written prior permission.
 -  *
 -  * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
 -  * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
 -  * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
 -  * FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL SILICON
 -  * GRAPHICS, INC.  BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
 -  * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
 -  * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
 -  * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
 -  * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC.  HAS BEEN
 -  * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
 -  * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
 -  * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
 -  *
 -  * US Government Users Restricted Rights
 -  * Use, duplication, or disclosure by the Government is subject to
 -  * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
 -  * (c)(1)(ii) of the Rights in Technical Data and Computer Software
 -  * clause at DFARS 252.227-7013 and/or in similar or successor
 -  * clauses in the FAR or the DOD or NASA FAR Supplement.
 -  * Unpublished-- rights reserved under the copyright laws of the
 -  * United States.  Contractor/manufacturer is Silicon Graphics,
 -  * Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94039-7311.
 -  *
 -  * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
 -  */
 - /*
 -  * Trackball code:
 -  *
 -  * Implementation of a virtual trackball.
 -  * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
 -  *   the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
 -  *
 -  * Vector manip code:
 -  *
 -  * Original code from:
 -  * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
 -  *
 -  * Much mucking with by:
 -  * Gavin Bell
 -  */
 - #include <math.h>
 - #include "trackball.h"
 - 
 - /*
 -  * This size should really be based on the distance from the center of
 -  * rotation to the point on the object underneath the mouse.  That
 -  * point would then track the mouse as closely as possible.  This is a
 -  * simple example, though, so that is left as an Exercise for the
 -  * Programmer.
 -  */
 - #define TRACKBALLSIZE  (0.8)
 - 
 - /*
 -  * Local function prototypes (not defined in trackball.h)
 -  */
 - static float tb_project_to_sphere(float, float, float);
 - static void normalize_quat(float [4]);
 - 
 - void
 - vzero(float *v)
 - {
 -     v[0] = 0.0;
 -     v[1] = 0.0;
 -     v[2] = 0.0;
 - }
 - 
 - void
 - vset(float *v, float x, float y, float z)
 - {
 -     v[0] = x;
 -     v[1] = y;
 -     v[2] = z;
 - }
 - 
 - void
 - vsub(const float *src1, const float *src2, float *dst)
 - {
 -     dst[0] = src1[0] - src2[0];
 -     dst[1] = src1[1] - src2[1];
 -     dst[2] = src1[2] - src2[2];
 - }
 - 
 - void
 - vcopy(const float *v1, float *v2)
 - {
 -     register int i;
 -     for (i = 0 ; i < 3 ; i++)
 -         v2[i] = v1[i];
 - }
 - 
 - void
 - vcross(const float *v1, const float *v2, float *cross)
 - {
 -     float temp[3];
 - 
 -     temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
 -     temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
 -     temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
 -     vcopy(temp, cross);
 - }
 - 
 - float
 - vlength(const float *v)
 - {
 -     return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
 - }
 - 
 - void
 - vscale(float *v, float div)
 - {
 -     v[0] *= div;
 -     v[1] *= div;
 -     v[2] *= div;
 - }
 - 
 - void
 - vnormal(float *v)
 - {
 -     vscale(v,1.0/vlength(v));
 - }
 - 
 - float
 - vdot(const float *v1, const float *v2)
 - {
 -     return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
 - }
 - 
 - void
 - vadd(const float *src1, const float *src2, float *dst)
 - {
 -     dst[0] = src1[0] + src2[0];
 -     dst[1] = src1[1] + src2[1];
 -     dst[2] = src1[2] + src2[2];
 - }
 - 
 - /*
 -  * Ok, simulate a track-ball.  Project the points onto the virtual
 -  * trackball, then figure out the axis of rotation, which is the cross
 -  * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
 -  * Note:  This is a deformed trackball-- is a trackball in the center,
 -  * but is deformed into a hyperbolic sheet of rotation away from the
 -  * center.  This particular function was chosen after trying out
 -  * several variations.
 -  *
 -  * It is assumed that the arguments to this routine are in the range
 -  * (-1.0 ... 1.0)
 -  */
 - void
 - trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
 - {
 -     float a[3]; /* Axis of rotation */
 -     float phi;  /* how much to rotate about axis */
 -     float p1[3], p2[3], d[3];
 -     float t;
 - 
 -     if (p1x == p2x && p1y == p2y) {
 -         /* Zero rotation */
 -         vzero(q);
 -         q[3] = 1.0;
 -         return;
 -     }
 - 
 -     /*
 -      * First, figure out z-coordinates for projection of P1 and P2 to
 -      * deformed sphere
 -      */
 -     vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
 -     vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
 - 
 -     /*
 -      *  Now, we want the cross product of P1 and P2
 -      */
 -     vcross(p2,p1,a);
 - 
 -     /*
 -      *  Figure out how much to rotate around that axis.
 -      */
 -     vsub(p1,p2,d);
 -     t = vlength(d) / (2.0*TRACKBALLSIZE);
 - 
 -     /*
 -      * Avoid problems with out-of-control values...
 -      */
 -     if (t > 1.0) t = 1.0;
 -     if (t < -1.0) t = -1.0;
 -     phi = 2.0 * asin(t);
 - 
 -     axis_to_quat(a,phi,q);
 - }
 - 
 - /*
 -  *  Given an axis and angle, compute quaternion.
 -  */
 - void
 - axis_to_quat(float a[3], float phi, float q[4])
 - {
 -     vnormal(a);
 -     vcopy(a,q);
 -     vscale(q,sin(phi/2.0));
 -     q[3] = cos(phi/2.0);
 - }
 - 
 - /*
 -  * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
 -  * if we are away from the center of the sphere.
 -  */
 - static float
 - tb_project_to_sphere(float r, float x, float y)
 - {
 -     float d, t, z;
 - 
 -     d = sqrt(x*x + y*y);
 -     if (d < r * 0.70710678118654752440) {    /* Inside sphere */
 -         z = sqrt(r*r - d*d);
 -     } else {           /* On hyperbola */
 -         t = r / 1.41421356237309504880;
 -         z = t*t / d;
 -     }
 -     return z;
 - }
 - 
 - /*
 -  * Given two rotations, e1 and e2, expressed as quaternion rotations,
 -  * figure out the equivalent single rotation and stuff it into dest.
 -  *
 -  * This routine also normalizes the result every RENORMCOUNT times it is
 -  * called, to keep error from creeping in.
 -  *
 -  * NOTE: This routine is written so that q1 or q2 may be the same
 -  * as dest (or each other).
 -  */
 - 
 - #define RENORMCOUNT 97
 - 
 - void
 - add_quats(float q1[4], float q2[4], float dest[4])
 - {
 -     static int count=0;
 -     float t1[4], t2[4], t3[4];
 -     float tf[4];
 - 
 -     vcopy(q1,t1);
 -     vscale(t1,q2[3]);
 - 
 -     vcopy(q2,t2);
 -     vscale(t2,q1[3]);
 - 
 -     vcross(q2,q1,t3);
 -     vadd(t1,t2,tf);
 -     vadd(t3,tf,tf);
 -     tf[3] = q1[3] * q2[3] - vdot(q1,q2);
 - 
 -     dest[0] = tf[0];
 -     dest[1] = tf[1];
 -     dest[2] = tf[2];
 -     dest[3] = tf[3];
 - 
 -     if (++count > RENORMCOUNT) {
 -         count = 0;
 -         normalize_quat(dest);
 -     }
 - }
 - 
 - /*
 -  * Quaternions always obey:  a^2 + b^2 + c^2 + d^2 = 1.0
 -  * If they don't add up to 1.0, dividing by their magnitued will
 -  * renormalize them.
 -  *
 -  * Note: See the following for more information on quaternions:
 -  *
 -  * - Shoemake, K., Animating rotation with quaternion curves, Computer
 -  *   Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
 -  * - Pletinckx, D., Quaternion calculus as a basic tool in computer
 -  *   graphics, The Visual Computer 5, 2-13, 1989.
 -  */
 - static void
 - normalize_quat(float q[4])
 - {
 -     int i;
 -     float mag;
 - 
 -     mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
 -     for (i = 0; i < 4; i++) q[i] /= mag;
 - }
 - 
 - /*
 -  * Build a rotation matrix, given a quaternion rotation.
 -  *
 -  */
 - void
 - build_rotmatrix(float m[4][4], float q[4])
 - {
 -     m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
 -     m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
 -     m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
 -     m[0][3] = 0.0;
 - 
 -     m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
 -     m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
 -     m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
 -     m[1][3] = 0.0;
 - 
 -     m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
 -     m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
 -     m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
 -     m[2][3] = 0.0;
 - 
 -     m[3][0] = 0.0;
 -     m[3][1] = 0.0;
 -     m[3][2] = 0.0;
 -     m[3][3] = 1.0;
 - }
 
 
  |