| 
							- /*
 -  * jidctfst.c
 -  *
 -  * Copyright (C) 1994-1998, Thomas G. Lane.
 -  * This file is part of the Independent JPEG Group's software.
 -  * For conditions of distribution and use, see the accompanying README file.
 -  *
 -  * This file contains a fast, not so accurate integer implementation of the
 -  * inverse DCT (Discrete Cosine Transform).  In the IJG code, this routine
 -  * must also perform dequantization of the input coefficients.
 -  *
 -  * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
 -  * on each row (or vice versa, but it's more convenient to emit a row at
 -  * a time).  Direct algorithms are also available, but they are much more
 -  * complex and seem not to be any faster when reduced to code.
 -  *
 -  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
 -  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
 -  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
 -  * JPEG textbook (see REFERENCES section in file README).  The following code
 -  * is based directly on figure 4-8 in P&M.
 -  * While an 8-point DCT cannot be done in less than 11 multiplies, it is
 -  * possible to arrange the computation so that many of the multiplies are
 -  * simple scalings of the final outputs.  These multiplies can then be
 -  * folded into the multiplications or divisions by the JPEG quantization
 -  * table entries.  The AA&N method leaves only 5 multiplies and 29 adds
 -  * to be done in the DCT itself.
 -  * The primary disadvantage of this method is that with fixed-point math,
 -  * accuracy is lost due to imprecise representation of the scaled
 -  * quantization values.  The smaller the quantization table entry, the less
 -  * precise the scaled value, so this implementation does worse with high-
 -  * quality-setting files than with low-quality ones.
 -  */
 - 
 - #define JPEG_INTERNALS
 - #include "jinclude.h"
 - #include "jpeglib.h"
 - #include "jdct.h"		/* Private declarations for DCT subsystem */
 - 
 - #ifdef DCT_IFAST_SUPPORTED
 - 
 - 
 - /*
 -  * This module is specialized to the case DCTSIZE = 8.
 -  */
 - 
 - #if DCTSIZE != 8
 -   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
 - #endif
 - 
 - 
 - /* Scaling decisions are generally the same as in the LL&M algorithm;
 -  * see jidctint.c for more details.  However, we choose to descale
 -  * (right shift) multiplication products as soon as they are formed,
 -  * rather than carrying additional fractional bits into subsequent additions.
 -  * This compromises accuracy slightly, but it lets us save a few shifts.
 -  * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples)
 -  * everywhere except in the multiplications proper; this saves a good deal
 -  * of work on 16-bit-int machines.
 -  *
 -  * The dequantized coefficients are not integers because the AA&N scaling
 -  * factors have been incorporated.  We represent them scaled up by PASS1_BITS,
 -  * so that the first and second IDCT rounds have the same input scaling.
 -  * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to
 -  * avoid a descaling shift; this compromises accuracy rather drastically
 -  * for small quantization table entries, but it saves a lot of shifts.
 -  * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway,
 -  * so we use a much larger scaling factor to preserve accuracy.
 -  *
 -  * A final compromise is to represent the multiplicative constants to only
 -  * 8 fractional bits, rather than 13.  This saves some shifting work on some
 -  * machines, and may also reduce the cost of multiplication (since there
 -  * are fewer one-bits in the constants).
 -  */
 - 
 - #if BITS_IN_JSAMPLE == 8
 - #define CONST_BITS  8
 - #define PASS1_BITS  2
 - #else
 - #define CONST_BITS  8
 - #define PASS1_BITS  1		/* lose a little precision to avoid overflow */
 - #endif
 - 
 - /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 -  * causing a lot of useless floating-point operations at run time.
 -  * To get around this we use the following pre-calculated constants.
 -  * If you change CONST_BITS you may want to add appropriate values.
 -  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 -  */
 - 
 - #if CONST_BITS == 8
 - #define FIX_1_082392200  ((INT32)  277)		/* FIX(1.082392200) */
 - #define FIX_1_414213562  ((INT32)  362)		/* FIX(1.414213562) */
 - #define FIX_1_847759065  ((INT32)  473)		/* FIX(1.847759065) */
 - #define FIX_2_613125930  ((INT32)  669)		/* FIX(2.613125930) */
 - #else
 - #define FIX_1_082392200  FIX(1.082392200)
 - #define FIX_1_414213562  FIX(1.414213562)
 - #define FIX_1_847759065  FIX(1.847759065)
 - #define FIX_2_613125930  FIX(2.613125930)
 - #endif
 - 
 - 
 - /* We can gain a little more speed, with a further compromise in accuracy,
 -  * by omitting the addition in a descaling shift.  This yields an incorrectly
 -  * rounded result half the time...
 -  */
 - 
 - #ifndef USE_ACCURATE_ROUNDING
 - #undef DESCALE
 - #define DESCALE(x,n)  RIGHT_SHIFT(x, n)
 - #endif
 - 
 - 
 - /* Multiply a DCTELEM variable by an INT32 constant, and immediately
 -  * descale to yield a DCTELEM result.
 -  */
 - 
 - #define MULTIPLY(var,const)  ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
 - 
 - 
 - /* Dequantize a coefficient by multiplying it by the multiplier-table
 -  * entry; produce a DCTELEM result.  For 8-bit data a 16x16->16
 -  * multiplication will do.  For 12-bit data, the multiplier table is
 -  * declared INT32, so a 32-bit multiply will be used.
 -  */
 - 
 - #if BITS_IN_JSAMPLE == 8
 - #define DEQUANTIZE(coef,quantval)  (((IFAST_MULT_TYPE) (coef)) * (quantval))
 - #else
 - #define DEQUANTIZE(coef,quantval)  \
 - 	DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS)
 - #endif
 - 
 - 
 - /* Like DESCALE, but applies to a DCTELEM and produces an int.
 -  * We assume that int right shift is unsigned if INT32 right shift is.
 -  */
 - 
 - #ifdef RIGHT_SHIFT_IS_UNSIGNED
 - #define ISHIFT_TEMPS	DCTELEM ishift_temp;
 - #if BITS_IN_JSAMPLE == 8
 - #define DCTELEMBITS  16		/* DCTELEM may be 16 or 32 bits */
 - #else
 - #define DCTELEMBITS  32		/* DCTELEM must be 32 bits */
 - #endif
 - #define IRIGHT_SHIFT(x,shft)  \
 -     ((ishift_temp = (x)) < 0 ? \
 -      (ishift_temp >> (shft)) | ((~((DCTELEM) 0)) << (DCTELEMBITS-(shft))) : \
 -      (ishift_temp >> (shft)))
 - #else
 - #define ISHIFT_TEMPS
 - #define IRIGHT_SHIFT(x,shft)	((x) >> (shft))
 - #endif
 - 
 - #ifdef USE_ACCURATE_ROUNDING
 - #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT((x) + (1 << ((n)-1)), n))
 - #else
 - #define IDESCALE(x,n)  ((int) IRIGHT_SHIFT(x, n))
 - #endif
 - 
 - 
 - /*
 -  * Perform dequantization and inverse DCT on one block of coefficients.
 -  */
 - 
 - GLOBAL(void)
 - jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,
 - 		 JCOEFPTR coef_block,
 - 		 JSAMPARRAY output_buf, JDIMENSION output_col)
 - {
 -   DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
 -   DCTELEM tmp10, tmp11, tmp12, tmp13;
 -   DCTELEM z5, z10, z11, z12, z13;
 -   JCOEFPTR inptr;
 -   IFAST_MULT_TYPE * quantptr;
 -   int * wsptr;
 -   JSAMPROW outptr;
 -   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
 -   int ctr;
 -   int workspace[DCTSIZE2];	/* buffers data between passes */
 -   SHIFT_TEMPS			/* for DESCALE */
 -   ISHIFT_TEMPS			/* for IDESCALE */
 - 
 -   /* Pass 1: process columns from input, store into work array. */
 - 
 -   inptr = coef_block;
 -   quantptr = (IFAST_MULT_TYPE *) compptr->dct_table;
 -   wsptr = workspace;
 -   for (ctr = DCTSIZE; ctr > 0; ctr--) {
 -     /* Due to quantization, we will usually find that many of the input
 -      * coefficients are zero, especially the AC terms.  We can exploit this
 -      * by short-circuiting the IDCT calculation for any column in which all
 -      * the AC terms are zero.  In that case each output is equal to the
 -      * DC coefficient (with scale factor as needed).
 -      * With typical images and quantization tables, half or more of the
 -      * column DCT calculations can be simplified this way.
 -      */
 -     
 -     if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 &&
 - 	inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 &&
 - 	inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 &&
 - 	inptr[DCTSIZE*7] == 0) {
 -       /* AC terms all zero */
 -       int dcval = (int) DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 - 
 -       wsptr[DCTSIZE*0] = dcval;
 -       wsptr[DCTSIZE*1] = dcval;
 -       wsptr[DCTSIZE*2] = dcval;
 -       wsptr[DCTSIZE*3] = dcval;
 -       wsptr[DCTSIZE*4] = dcval;
 -       wsptr[DCTSIZE*5] = dcval;
 -       wsptr[DCTSIZE*6] = dcval;
 -       wsptr[DCTSIZE*7] = dcval;
 -       
 -       inptr++;			/* advance pointers to next column */
 -       quantptr++;
 -       wsptr++;
 -       continue;
 -     }
 -     
 -     /* Even part */
 - 
 -     tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
 -     tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
 -     tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
 -     tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
 - 
 -     tmp10 = tmp0 + tmp2;	/* phase 3 */
 -     tmp11 = tmp0 - tmp2;
 - 
 -     tmp13 = tmp1 + tmp3;	/* phases 5-3 */
 -     tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */
 - 
 -     tmp0 = tmp10 + tmp13;	/* phase 2 */
 -     tmp3 = tmp10 - tmp13;
 -     tmp1 = tmp11 + tmp12;
 -     tmp2 = tmp11 - tmp12;
 -     
 -     /* Odd part */
 - 
 -     tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
 -     tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
 -     tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
 -     tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
 - 
 -     z13 = tmp6 + tmp5;		/* phase 6 */
 -     z10 = tmp6 - tmp5;
 -     z11 = tmp4 + tmp7;
 -     z12 = tmp4 - tmp7;
 - 
 -     tmp7 = z11 + z13;		/* phase 5 */
 -     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
 - 
 -     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
 -     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
 -     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
 - 
 -     tmp6 = tmp12 - tmp7;	/* phase 2 */
 -     tmp5 = tmp11 - tmp6;
 -     tmp4 = tmp10 + tmp5;
 - 
 -     wsptr[DCTSIZE*0] = (int) (tmp0 + tmp7);
 -     wsptr[DCTSIZE*7] = (int) (tmp0 - tmp7);
 -     wsptr[DCTSIZE*1] = (int) (tmp1 + tmp6);
 -     wsptr[DCTSIZE*6] = (int) (tmp1 - tmp6);
 -     wsptr[DCTSIZE*2] = (int) (tmp2 + tmp5);
 -     wsptr[DCTSIZE*5] = (int) (tmp2 - tmp5);
 -     wsptr[DCTSIZE*4] = (int) (tmp3 + tmp4);
 -     wsptr[DCTSIZE*3] = (int) (tmp3 - tmp4);
 - 
 -     inptr++;			/* advance pointers to next column */
 -     quantptr++;
 -     wsptr++;
 -   }
 -   
 -   /* Pass 2: process rows from work array, store into output array. */
 -   /* Note that we must descale the results by a factor of 8 == 2**3, */
 -   /* and also undo the PASS1_BITS scaling. */
 - 
 -   wsptr = workspace;
 -   for (ctr = 0; ctr < DCTSIZE; ctr++) {
 -     outptr = output_buf[ctr] + output_col;
 -     /* Rows of zeroes can be exploited in the same way as we did with columns.
 -      * However, the column calculation has created many nonzero AC terms, so
 -      * the simplification applies less often (typically 5% to 10% of the time).
 -      * On machines with very fast multiplication, it's possible that the
 -      * test takes more time than it's worth.  In that case this section
 -      * may be commented out.
 -      */
 -     
 - #ifndef NO_ZERO_ROW_TEST
 -     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 &&
 - 	wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
 -       /* AC terms all zero */
 -       JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS+3)
 - 				  & RANGE_MASK];
 -       
 -       outptr[0] = dcval;
 -       outptr[1] = dcval;
 -       outptr[2] = dcval;
 -       outptr[3] = dcval;
 -       outptr[4] = dcval;
 -       outptr[5] = dcval;
 -       outptr[6] = dcval;
 -       outptr[7] = dcval;
 - 
 -       wsptr += DCTSIZE;		/* advance pointer to next row */
 -       continue;
 -     }
 - #endif
 -     
 -     /* Even part */
 - 
 -     tmp10 = ((DCTELEM) wsptr[0] + (DCTELEM) wsptr[4]);
 -     tmp11 = ((DCTELEM) wsptr[0] - (DCTELEM) wsptr[4]);
 - 
 -     tmp13 = ((DCTELEM) wsptr[2] + (DCTELEM) wsptr[6]);
 -     tmp12 = MULTIPLY((DCTELEM) wsptr[2] - (DCTELEM) wsptr[6], FIX_1_414213562)
 - 	    - tmp13;
 - 
 -     tmp0 = tmp10 + tmp13;
 -     tmp3 = tmp10 - tmp13;
 -     tmp1 = tmp11 + tmp12;
 -     tmp2 = tmp11 - tmp12;
 - 
 -     /* Odd part */
 - 
 -     z13 = (DCTELEM) wsptr[5] + (DCTELEM) wsptr[3];
 -     z10 = (DCTELEM) wsptr[5] - (DCTELEM) wsptr[3];
 -     z11 = (DCTELEM) wsptr[1] + (DCTELEM) wsptr[7];
 -     z12 = (DCTELEM) wsptr[1] - (DCTELEM) wsptr[7];
 - 
 -     tmp7 = z11 + z13;		/* phase 5 */
 -     tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */
 - 
 -     z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */
 -     tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */
 -     tmp12 = MULTIPLY(z10, - FIX_2_613125930) + z5; /* -2*(c2+c6) */
 - 
 -     tmp6 = tmp12 - tmp7;	/* phase 2 */
 -     tmp5 = tmp11 - tmp6;
 -     tmp4 = tmp10 + tmp5;
 - 
 -     /* Final output stage: scale down by a factor of 8 and range-limit */
 - 
 -     outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 -     outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 -     outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 -     outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 -     outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 -     outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 -     outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 -     outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS+3)
 - 			    & RANGE_MASK];
 - 
 -     wsptr += DCTSIZE;		/* advance pointer to next row */
 -   }
 - }
 - 
 - #endif /* DCT_IFAST_SUPPORTED */
 
 
  |