|  | /*
* bitset.h -- some simple bit vector set operations.
*
* This is useful for sets of small non-negative integers.  There are
* some obvious set operations that are not implemented because I
* don't need them right now.
*
* These functions represent sets as arrays of unsigned 32-bit
* integers allocated on the heap.  The first entry contains the set
* cardinality (number of elements allowed), followed by one or more
* words containing bit vectors.
*
*  $Id: bitset.h,v 1.2 2005/11/23 11:24:29 letz Exp $
*/
/*
 *  Copyright (C) 2005 Jack O'Quin
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License as
 *  published by the Free Software Foundation; either version 2 of the
 *  License, or (at your option) any later version.
 *  
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  General Public License for more details.
 *  
 *  You should have received a copy of the GNU General Public License
 *  along with this program; if not, write to the Free Software
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */
#ifndef __bitset_h__
#define __bitset_h__
#include <inttypes.h>			/* POSIX standard fixed-size types */
#include <assert.h>			/* `#define NDEBUG' to disable */
/* On some 64-bit machines, this implementation may be slightly
 * inefficient, depending on how compilers allocate space for
 * uint32_t.  For the set sizes I currently need, this is acceptable.
 * It should not be hard to pack the bits better, if that becomes
 * worthwhile.
 */
typedef uint32_t _bitset_word_t;
typedef _bitset_word_t *bitset_t;
#define WORD_SIZE(cardinality) (1+((cardinality)+31)/32)
#define BYTE_SIZE(cardinality) (WORD_SIZE(cardinality)*sizeof(_bitset_word_t))
#define WORD_INDEX(element) (1+(element)/32)
#define BIT_INDEX(element) ((element)&037)
static inline void
bitset_add(bitset_t set
               , unsigned int element)
{
    assert(element < set
               [0]);
    set
        [WORD_INDEX(element)] |= (1 << BIT_INDEX(element));
}
static inline void
bitset_copy(bitset_t to_set, bitset_t from_set)
{
    assert(to_set[0] == from_set[0]);
    memcpy(to_set, from_set, BYTE_SIZE(to_set[0]));
}
static inline void
bitset_create(bitset_t *set
              , unsigned int cardinality)
{
    *set
    = (bitset_t) calloc(WORD_SIZE(cardinality),
                        sizeof(_bitset_word_t));
    assert(*set
          );
    *set
    [0] = cardinality;
}
static inline void
bitset_destroy(bitset_t *set
              )
{
    if (*set
       ) {
        free(*set
            );
        *set
        = (bitset_t) 0;
    }
}
static inline int
bitset_empty(bitset_t set
                )
{
    int i;
    _bitset_word_t result = 0;
    int nwords = WORD_SIZE(set
                           [0]);
    for (i = 1; i < nwords; i++) {
        result |= set
                      [i];
    }
    return (result == 0);
}
static inline int
bitset_contains(bitset_t set
                    , unsigned int element)
{
    assert(element < set
               [0]);
    return (0 != (set
                  [WORD_INDEX(element)] & (1 << BIT_INDEX(element))));
}
static inline void
bitset_remove(bitset_t set
                  , unsigned int element)
{
    assert(element < set
               [0]);
    set
        [WORD_INDEX(element)] &= ~(1 << BIT_INDEX(element));
}
#endif /* __bitset_h__ */
 |