/* Copyright (C) 2000 Paul Davis This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #define _ISOC9X_SOURCE 1 #define _ISOC99_SOURCE 1 #define __USE_ISOC9X 1 #define __USE_ISOC99 1 #include #include #include #include #include #include #include #ifdef __linux__ #include #endif #include "memops.h" #if defined (__SSE2__) && !defined (__sun__) #include #ifdef __SSE4_1__ #include #endif #endif #if defined (__ARM_NEON__) || defined (__ARM_NEON) #include #endif /* Notes about these *_SCALING values. the MAX_BIT values are floating point. when multiplied by a full-scale normalized floating point sample value (-1.0..+1.0) they should give the maximum value representable with an integer sample type of N bits. Note that this is asymmetric. Sample ranges for signed integer, 2's complement values are -(2^(N-1) to +(2^(N-1)-1) Complications ------------- If we use +2^(N-1) for the scaling factors, we run into a problem: if we start with a normalized float value of -1.0, scaling to 24 bits would give -8388608 (-2^23), which is ideal. But with +1.0, we get +8388608, which is technically out of range. We never multiply a full range normalized value by this constant, but we could multiply it by a positive value that is close enough to +1.0 to produce a value > +(2^(N-1)-1. There is no way around this paradox without wasting CPU cycles to determine which scaling factor to use (i.e. determine if its negative or not, use the right factor). So, for now (October 2008) we use 2^(N-1)-1 as the scaling factor. */ #define SAMPLE_32BIT_SCALING 2147483647.0 #define SAMPLE_24BIT_SCALING 8388607.0f #define SAMPLE_16BIT_SCALING 32767.0f /* these are just values to use if the floating point value was out of range advice from Fons Adriaensen: make the limits symmetrical */ #define SAMPLE_32BIT_MAX 2147483647 #define SAMPLE_32BIT_MIN -2147483647 #define SAMPLE_32BIT_MAX_D 2147483647.0 #define SAMPLE_32BIT_MIN_D -2147483647.0 #define SAMPLE_24BIT_MAX 8388607 #define SAMPLE_24BIT_MIN -8388607 #define SAMPLE_24BIT_MAX_F 8388607.0f #define SAMPLE_24BIT_MIN_F -8388607.0f #define SAMPLE_16BIT_MAX 32767 #define SAMPLE_16BIT_MIN -32767 #define SAMPLE_16BIT_MAX_F 32767.0f #define SAMPLE_16BIT_MIN_F -32767.0f /* these mark the outer edges of the range considered "within" range for a floating point sample value. values outside (and on the boundaries) of this range will be clipped before conversion; values within this range will be scaled to appropriate values for the target sample type. */ #define NORMALIZED_FLOAT_MIN -1.0f #define NORMALIZED_FLOAT_MAX 1.0f /* define this in case we end up on a platform that is missing the real lrintf functions */ #define f_round(f) lrintf(f) #define d_round(f) lrint(f) #define float_16(s, d)\ if ((s) <= NORMALIZED_FLOAT_MIN) {\ (d) = SAMPLE_16BIT_MIN;\ } else if ((s) >= NORMALIZED_FLOAT_MAX) {\ (d) = SAMPLE_16BIT_MAX;\ } else {\ (d) = f_round ((s) * SAMPLE_16BIT_SCALING);\ } /* call this when "s" has already been scaled (e.g. when dithering) */ #define float_16_scaled(s, d)\ if ((s) <= SAMPLE_16BIT_MIN_F) {\ (d) = SAMPLE_16BIT_MIN_F;\ } else if ((s) >= SAMPLE_16BIT_MAX_F) { \ (d) = SAMPLE_16BIT_MAX;\ } else {\ (d) = f_round ((s));\ } #define float_24u32(s, d) \ if ((s) <= NORMALIZED_FLOAT_MIN) {\ (d) = SAMPLE_24BIT_MIN << 8;\ } else if ((s) >= NORMALIZED_FLOAT_MAX) {\ (d) = SAMPLE_24BIT_MAX << 8;\ } else {\ (d) = f_round ((s) * SAMPLE_24BIT_SCALING) << 8;\ } #define float_24l32(s, d) \ if ((s) <= NORMALIZED_FLOAT_MIN) {\ (d) = SAMPLE_24BIT_MIN; \ } else if ((s) >= NORMALIZED_FLOAT_MAX) {\ (d) = SAMPLE_24BIT_MAX; \ } else {\ (d) = f_round ((s) * SAMPLE_24BIT_SCALING); \ } #define float_32(s, d) \ do { \ double clipped = fmin(NORMALIZED_FLOAT_MAX, \ fmax((double)(s), NORMALIZED_FLOAT_MIN)); \ double scaled = clipped * SAMPLE_32BIT_MAX_D; \ (d) = d_round(scaled); \ } \ while (0) /* call this when "s" has already been scaled (e.g. when dithering) */ #define float_24u32_scaled(s, d)\ if ((s) <= SAMPLE_24BIT_MIN_F) {\ (d) = SAMPLE_24BIT_MIN << 8;\ } else if ((s) >= SAMPLE_24BIT_MAX_F) { \ (d) = SAMPLE_24BIT_MAX << 8; \ } else {\ (d) = f_round ((s)) << 8; \ } #define float_24(s, d) \ if ((s) <= NORMALIZED_FLOAT_MIN) {\ (d) = SAMPLE_24BIT_MIN;\ } else if ((s) >= NORMALIZED_FLOAT_MAX) {\ (d) = SAMPLE_24BIT_MAX;\ } else {\ (d) = f_round ((s) * SAMPLE_24BIT_SCALING);\ } /* call this when "s" has already been scaled (e.g. when dithering) */ #define float_24_scaled(s, d)\ if ((s) <= SAMPLE_24BIT_MIN_F) {\ (d) = SAMPLE_24BIT_MIN;\ } else if ((s) >= SAMPLE_24BIT_MAX_F) { \ (d) = SAMPLE_24BIT_MAX; \ } else {\ (d) = f_round ((s)); \ } #if defined (__SSE2__) && !defined (__sun__) /* generates same as _mm_set_ps(1.f, 1.f, 1f., 1f) but faster */ static inline __m128 gen_one(void) { volatile __m128i x = { 0 }; /* shut up, GCC */ __m128i ones = _mm_cmpeq_epi32(x, x); return (__m128)_mm_slli_epi32 (_mm_srli_epi32(ones, 25), 23); } static inline __m128 clip(__m128 s, __m128 min, __m128 max) { return _mm_min_ps(max, _mm_max_ps(s, min)); } static inline __m128d clip_double(__m128d s, __m128d min, __m128d max) { return _mm_min_pd(max, _mm_max_pd(s, min)); } static inline __m128i float_24_sse(__m128 s) { const __m128 upper_bound = gen_one(); /* NORMALIZED_FLOAT_MAX */ const __m128 lower_bound = _mm_sub_ps(_mm_setzero_ps(), upper_bound); __m128 clipped = clip(s, lower_bound, upper_bound); __m128 scaled = _mm_mul_ps(clipped, _mm_set1_ps(SAMPLE_24BIT_SCALING)); return _mm_cvtps_epi32(scaled); } #endif #if defined (__ARM_NEON__) || defined (__ARM_NEON) static inline float32x4_t clip(float32x4_t s, float32x4_t min, float32x4_t max) { return vminq_f32(max, vmaxq_f32(s, min)); } static inline int32x4_t float_24_neon(float32x4_t s) { const float32x4_t upper_bound = vdupq_n_f32(NORMALIZED_FLOAT_MAX); const float32x4_t lower_bound = vdupq_n_f32(NORMALIZED_FLOAT_MIN); float32x4_t clipped = clip(s, lower_bound, upper_bound); float32x4_t scaled = vmulq_f32(clipped, vdupq_n_f32(SAMPLE_24BIT_SCALING)); return vcvtq_s32_f32(scaled); } static inline int16x4_t float_16_neon(float32x4_t s) { const float32x4_t upper_bound = vdupq_n_f32(NORMALIZED_FLOAT_MAX); const float32x4_t lower_bound = vdupq_n_f32(NORMALIZED_FLOAT_MIN); float32x4_t clipped = clip(s, lower_bound, upper_bound); float32x4_t scaled = vmulq_f32(clipped, vdupq_n_f32(SAMPLE_16BIT_SCALING)); return vmovn_s32(vcvtq_s32_f32(scaled)); } #endif /* Linear Congruential noise generator. From the music-dsp list * less random than rand(), but good enough and 10x faster */ static unsigned int seed = 22222; static inline unsigned int fast_rand() { seed = (seed * 196314165) + 907633515; return seed; } /* functions for native float sample data */ void sample_move_floatLE_sSs (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { while (nsamples--) { *dst = *((float *) src); dst++; src += src_skip; } } void sample_move_dS_floatLE (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { while (nsamples--) { *((float *) dst) = *src; dst += dst_skip; src++; } } /* NOTES on function naming: foo_bar_d_s the "d" component defines the destination type for the operation the "s" component defines the source type for the operation TYPE can be one of: S - sample is a jack_default_audio_sample_t, currently (October 2008) a 32 bit floating point value Ss - like S but reverse endian from the host CPU 32 - sample is a signed 32 bit integer value 32u24 - sample is a signed 32 bit integer value, but data is in upper 24 bits only 32u24s - like 32u24 but reverse endian from the host CPU 32l24 - sample is a signed 32 bit integer value, but data is in lower 24 bits only 32l24s - like 32l24 but reverse endian from the host CPU 24 - sample is a signed 24 bit integer value 24s - like 24 but reverse endian from the host CPU 16 - sample is a signed 16 bit integer value 16s - like 16 but reverse endian from the host CPU For obvious reasons, the reverse endian versions only show as source types. This covers all known sample formats at 16 bits or larger. */ /* functions for native integer sample data */ void sample_move_d32_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { while (nsamples--) { int32_t z; float_32(*src, z); #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(z>>24); dst[1]=(char)(z>>16); dst[2]=(char)(z>>8); dst[3]=(char)(z); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(z); dst[1]=(char)(z>>8); dst[2]=(char)(z>>16); dst[3]=(char)(z>>24); #endif dst += dst_skip; src++; } } void sample_move_d32_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { while (nsamples--) { float_32(*src, *(int32_t *)dst); dst += dst_skip; src++; } } void sample_move_d32u24_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { float32x4_t samples = vld1q_f32(src); int32x4_t converted = float_24_neon(samples); int32x4_t shifted = vshlq_n_s32(converted, 8); shifted = vreinterpretq_s32_u8(vrev32q_u8(vreinterpretq_u8_s32(shifted))); switch(dst_skip) { case 4: vst1q_s32((int32_t*)dst, shifted); break; default: vst1q_lane_s32((int32_t*)(dst), shifted, 0); vst1q_lane_s32((int32_t*)(dst+dst_skip), shifted, 1); vst1q_lane_s32((int32_t*)(dst+2*dst_skip), shifted, 2); vst1q_lane_s32((int32_t*)(dst+3*dst_skip), shifted, 3); break; } dst += 4*dst_skip; src+= 4; } #endif int32_t z; while (nsamples--) { float_24u32 (*src, z); #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(z>>24); dst[1]=(char)(z>>16); dst[2]=(char)(z>>8); dst[3]=(char)(z); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(z); dst[1]=(char)(z>>8); dst[2]=(char)(z>>16); dst[3]=(char)(z>>24); #endif dst += dst_skip; src++; } } void sample_move_d32u24_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__SSE2__) && !defined (__sun__) __m128 int_max = _mm_set1_ps(SAMPLE_24BIT_MAX_F); __m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max); __m128 factor = int_max; unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { __m128 in = _mm_load_ps(src); __m128 scaled = _mm_mul_ps(in, factor); __m128 clipped = clip(scaled, int_min, int_max); __m128i y = _mm_cvttps_epi32(clipped); __m128i shifted = _mm_slli_epi32(y, 8); #ifdef __SSE4_1__ *(int32_t*)dst = _mm_extract_epi32(shifted, 0); *(int32_t*)(dst+dst_skip) = _mm_extract_epi32(shifted, 1); *(int32_t*)(dst+2*dst_skip) = _mm_extract_epi32(shifted, 2); *(int32_t*)(dst+3*dst_skip) = _mm_extract_epi32(shifted, 3); #else __m128i shuffled1 = _mm_shuffle_epi32(shifted, _MM_SHUFFLE(0, 3, 2, 1)); __m128i shuffled2 = _mm_shuffle_epi32(shifted, _MM_SHUFFLE(1, 0, 3, 2)); __m128i shuffled3 = _mm_shuffle_epi32(shifted, _MM_SHUFFLE(2, 1, 0, 3)); _mm_store_ss((float*)dst, (__m128)shifted); _mm_store_ss((float*)(dst+dst_skip), (__m128)shuffled1); _mm_store_ss((float*)(dst+2*dst_skip), (__m128)shuffled2); _mm_store_ss((float*)(dst+3*dst_skip), (__m128)shuffled3); #endif dst += 4*dst_skip; src+= 4; } while (nsamples--) { __m128 in = _mm_load_ss(src); __m128 scaled = _mm_mul_ss(in, factor); __m128 clipped = _mm_min_ss(int_max, _mm_max_ss(scaled, int_min)); int y = _mm_cvttss_si32(clipped); *((int *) dst) = y<<8; dst += dst_skip; src++; } #elif defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { float32x4_t samples = vld1q_f32(src); int32x4_t converted = float_24_neon(samples); int32x4_t shifted = vshlq_n_s32(converted, 8); switch(dst_skip) { case 4: vst1q_s32((int32_t*)dst, shifted); break; default: vst1q_lane_s32((int32_t*)(dst), shifted, 0); vst1q_lane_s32((int32_t*)(dst+dst_skip), shifted, 1); vst1q_lane_s32((int32_t*)(dst+2*dst_skip), shifted, 2); vst1q_lane_s32((int32_t*)(dst+3*dst_skip), shifted, 3); break; } dst += 4*dst_skip; src+= 4; } #endif #if !defined (__SSE2__) while (nsamples--) { float_24u32 (*src, *((int32_t*) dst)); dst += dst_skip; src++; } #endif } void sample_move_dS_s32u24s (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { #if defined (__ARM_NEON__) || defined (__ARM_NEON) float32x4_t factor = vdupq_n_f32(1.0 / SAMPLE_24BIT_SCALING); unsigned long unrolled = nsamples / 4; while (unrolled--) { int32x4_t src128; switch(src_skip) { case 4: src128 = vld1q_s32((int32_t*)src); break; case 8: src128 = vld2q_s32((int32_t*)src).val[0]; break; default: src128 = vld1q_lane_s32((int32_t*)src, src128, 0); src128 = vld1q_lane_s32((int32_t*)(src+src_skip), src128, 1); src128 = vld1q_lane_s32((int32_t*)(src+2*src_skip), src128, 2); src128 = vld1q_lane_s32((int32_t*)(src+3*src_skip), src128, 3); break; } src128 = vreinterpretq_s32_u8(vrev32q_u8(vreinterpretq_u8_s32(src128))); int32x4_t shifted = vshrq_n_s32(src128, 8); float32x4_t as_float = vcvtq_f32_s32(shifted); float32x4_t divided = vmulq_f32(as_float, factor); vst1q_f32(dst, divided); src += 4*src_skip; dst += 4; } nsamples = nsamples & 3; #endif /* ALERT: signed sign-extension portability !!! */ const jack_default_audio_sample_t scaling = 1.0/SAMPLE_24BIT_SCALING; while (nsamples--) { int x; #if __BYTE_ORDER == __LITTLE_ENDIAN x = (unsigned char)(src[0]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[2]); x <<= 8; x |= (unsigned char)(src[3]); #elif __BYTE_ORDER == __BIG_ENDIAN x = (unsigned char)(src[3]); x <<= 8; x |= (unsigned char)(src[2]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[0]); #endif *dst = (x >> 8) * scaling; dst++; src += src_skip; } } void sample_move_dS_s32u24 (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { #if defined (__SSE2__) && !defined (__sun__) unsigned long unrolled = nsamples / 4; static float inv_sample_max_24bit = 1.0 / SAMPLE_24BIT_SCALING; __m128 factor = _mm_set1_ps(inv_sample_max_24bit); while (unrolled--) { int i1 = *((int *) src); src+= src_skip; int i2 = *((int *) src); src+= src_skip; int i3 = *((int *) src); src+= src_skip; int i4 = *((int *) src); src+= src_skip; __m128i src = _mm_set_epi32(i4, i3, i2, i1); __m128i shifted = _mm_srai_epi32(src, 8); __m128 as_float = _mm_cvtepi32_ps(shifted); __m128 divided = _mm_mul_ps(as_float, factor); _mm_storeu_ps(dst, divided); dst += 4; } nsamples = nsamples & 3; #elif defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; float32x4_t factor = vdupq_n_f32(1.0 / SAMPLE_24BIT_SCALING); while (unrolled--) { int32x4_t src128; switch(src_skip) { case 4: src128 = vld1q_s32((int32_t*)src); break; case 8: src128 = vld2q_s32((int32_t*)src).val[0]; break; default: src128 = vld1q_lane_s32((int32_t*)src, src128, 0); src128 = vld1q_lane_s32((int32_t*)(src+src_skip), src128, 1); src128 = vld1q_lane_s32((int32_t*)(src+2*src_skip), src128, 2); src128 = vld1q_lane_s32((int32_t*)(src+3*src_skip), src128, 3); break; } int32x4_t shifted = vshrq_n_s32(src128, 8); float32x4_t as_float = vcvtq_f32_s32(shifted); float32x4_t divided = vmulq_f32(as_float, factor); vst1q_f32(dst, divided); src += 4*src_skip; dst += 4; } nsamples = nsamples & 3; #endif /* ALERT: signed sign-extension portability !!! */ const jack_default_audio_sample_t scaling = 1.0/SAMPLE_24BIT_SCALING; while (nsamples--) { *dst = (*((int *) src) >> 8) * scaling; dst++; src += src_skip; } } void sample_move_d32l24_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { float32x4_t samples = vld1q_f32(src); int32x4_t converted = float_24_neon(samples); converted = vreinterpretq_s32_u8(vrev32q_u8(vreinterpretq_u8_s32(converted))); switch(dst_skip) { case 4: vst1q_s32((int32_t*)dst, converted); break; default: vst1q_lane_s32((int32_t*)(dst), converted, 0); vst1q_lane_s32((int32_t*)(dst+dst_skip), converted, 1); vst1q_lane_s32((int32_t*)(dst+2*dst_skip), converted, 2); vst1q_lane_s32((int32_t*)(dst+3*dst_skip), converted, 3); break; } dst += 4*dst_skip; src+= 4; } #endif int32_t z; while (nsamples--) { float_24l32 (*src, z); #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(z>>24); dst[1]=(char)(z>>16); dst[2]=(char)(z>>8); dst[3]=(char)(z); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(z); dst[1]=(char)(z>>8); dst[2]=(char)(z>>16); dst[3]=(char)(z>>24); #endif dst += dst_skip; src++; } } void sample_move_d32l24_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__SSE2__) && !defined (__sun__) __m128 int_max = _mm_set1_ps(SAMPLE_24BIT_MAX_F); __m128 int_min = _mm_sub_ps(_mm_setzero_ps(), int_max); __m128 factor = int_max; unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { __m128 in = _mm_load_ps(src); __m128 scaled = _mm_mul_ps(in, factor); __m128 clipped = clip(scaled, int_min, int_max); __m128i shifted = _mm_cvttps_epi32(clipped); #ifdef __SSE4_1__ *(int32_t*)dst = _mm_extract_epi32(shifted, 0); *(int32_t*)(dst+dst_skip) = _mm_extract_epi32(shifted, 1); *(int32_t*)(dst+2*dst_skip) = _mm_extract_epi32(shifted, 2); *(int32_t*)(dst+3*dst_skip) = _mm_extract_epi32(shifted, 3); #else __m128i shuffled1 = _mm_shuffle_epi32(shifted, _MM_SHUFFLE(0, 3, 2, 1)); __m128i shuffled2 = _mm_shuffle_epi32(shifted, _MM_SHUFFLE(1, 0, 3, 2)); __m128i shuffled3 = _mm_shuffle_epi32(shifted, _MM_SHUFFLE(2, 1, 0, 3)); _mm_store_ss((float*)dst, (__m128)shifted); _mm_store_ss((float*)(dst+dst_skip), (__m128)shuffled1); _mm_store_ss((float*)(dst+2*dst_skip), (__m128)shuffled2); _mm_store_ss((float*)(dst+3*dst_skip), (__m128)shuffled3); #endif dst += 4*dst_skip; src+= 4; } while (nsamples--) { __m128 in = _mm_load_ss(src); __m128 scaled = _mm_mul_ss(in, factor); __m128 clipped = _mm_min_ss(int_max, _mm_max_ss(scaled, int_min)); int y = _mm_cvttss_si32(clipped); *((int *) dst) = y<<8; dst += dst_skip; src++; } #elif defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { float32x4_t samples = vld1q_f32(src); int32x4_t converted = float_24_neon(samples); switch(dst_skip) { case 4: vst1q_s32((int32_t*)dst, converted); break; default: vst1q_lane_s32((int32_t*)(dst), converted, 0); vst1q_lane_s32((int32_t*)(dst+dst_skip), converted, 1); vst1q_lane_s32((int32_t*)(dst+2*dst_skip), converted, 2); vst1q_lane_s32((int32_t*)(dst+3*dst_skip), converted, 3); break; } dst += 4*dst_skip; src+= 4; } #endif #if !defined (__SSE2__) while (nsamples--) { float_24l32 (*src, *((int32_t*) dst)); dst += dst_skip; src++; } #endif } void sample_move_dS_s32s (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { const jack_default_audio_sample_t scaling = 1.0/SAMPLE_32BIT_SCALING; while (nsamples--) { int32_t x; #if __BYTE_ORDER == __LITTLE_ENDIAN x = (unsigned char)(src[0]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[2]); x <<= 8; x |= (unsigned char)(src[3]); #elif __BYTE_ORDER == __BIG_ENDIAN x = (unsigned char)(src[3]); x <<= 8; x |= (unsigned char)(src[2]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[0]); #endif double extended = x * scaling; *dst = (float)extended; dst++; src += src_skip; } } void sample_move_dS_s32l24s (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { #if defined (__ARM_NEON__) || defined (__ARM_NEON) float32x4_t factor = vdupq_n_f32(1.0 / SAMPLE_24BIT_SCALING); unsigned long unrolled = nsamples / 4; while (unrolled--) { uint32x4_t src128; switch(src_skip) { case 4: src128 = vld1q_u32((uint32_t*)src); break; case 8: src128 = vld2q_u32((uint32_t*)src).val[0]; break; default: src128 = vld1q_lane_u32((uint32_t*)src, src128, 0); src128 = vld1q_lane_u32((uint32_t*)(src+src_skip), src128, 1); src128 = vld1q_lane_u32((uint32_t*)(src+2*src_skip), src128, 2); src128 = vld1q_lane_u32((uint32_t*)(src+3*src_skip), src128, 3); break; } src128 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(src128))); uint32x4_t toupper = vshlq_n_u32(src128, 8); int32x4_t shifted = vshrq_n_s32((int32x4_t)toupper, 8); float32x4_t as_float = vcvtq_f32_s32(shifted); float32x4_t divided = vmulq_f32(as_float, factor); vst1q_f32(dst, divided); src += 4*src_skip; dst += 4; } nsamples = nsamples & 3; #endif /* ALERT: signed sign-extension portability !!! */ const jack_default_audio_sample_t scaling = 1.0/SAMPLE_24BIT_SCALING; while (nsamples--) { int32_t x; #if __BYTE_ORDER == __LITTLE_ENDIAN x = (unsigned char)(src[0]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[2]); x <<= 8; x |= (unsigned char)(src[3]); #elif __BYTE_ORDER == __BIG_ENDIAN x = (unsigned char)(src[3]); x <<= 8; x |= (unsigned char)(src[2]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[0]); #endif *dst = (x >> 0) * scaling; dst++; src += src_skip; } } void sample_move_dS_s32 (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { const double scaling = 1.0 / SAMPLE_32BIT_SCALING; while (nsamples--) { int32_t val=(*((int32_t*)src)); double extended = val * scaling; *dst = (float)extended; dst++; src += src_skip; } } void sample_move_dS_s32l24 (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { #if defined (__SSE2__) && !defined (__sun__) unsigned long unrolled = nsamples / 4; static float inv_sample_max_24bit = 1.0 / SAMPLE_24BIT_SCALING; __m128 factor = _mm_set1_ps(inv_sample_max_24bit); while (unrolled--) { int i1 = *((int *) src); src+= src_skip; int i2 = *((int *) src); src+= src_skip; int i3 = *((int *) src); src+= src_skip; int i4 = *((int *) src); src+= src_skip; __m128i shifted = _mm_set_epi32(i4, i3, i2, i1); __m128 as_float = _mm_cvtepi32_ps(shifted); __m128 divided = _mm_mul_ps(as_float, factor); _mm_storeu_ps(dst, divided); dst += 4; } nsamples = nsamples & 3; #elif defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; float32x4_t factor = vdupq_n_f32(1.0 / SAMPLE_24BIT_SCALING); while (unrolled--) { uint32x4_t src128; switch(src_skip) { case 4: src128 = vld1q_u32((uint32_t*)src); break; case 8: src128 = vld2q_u32((uint32_t*)src).val[0]; break; default: src128 = vld1q_lane_u32((uint32_t*)src, src128, 0); src128 = vld1q_lane_u32((uint32_t*)(src+src_skip), src128, 1); src128 = vld1q_lane_u32((uint32_t*)(src+2*src_skip), src128, 2); src128 = vld1q_lane_u32((uint32_t*)(src+3*src_skip), src128, 3); break; } // Sign extension by moving to upper as unsigned, then down uint32x4_t toupper = vshlq_n_u32(src128, 8); int32x4_t shifted = vshrq_n_s32((int32x4_t)toupper, 8); float32x4_t as_float = vcvtq_f32_s32(shifted); float32x4_t divided = vmulq_f32(as_float, factor); vst1q_f32(dst, divided); src += 4*src_skip; dst += 4; } nsamples = nsamples & 3; #endif /* ALERT: signed sign-extension portability !!! */ const jack_default_audio_sample_t scaling = 1.0/SAMPLE_24BIT_SCALING; while (nsamples--) { uint32_t val=(*((uint32_t*)src)); if (val & 0x800000u) val|=0xFF000000u; *dst = (*((int32_t *) &val)) * scaling; dst++; src += src_skip; } } void sample_move_d24_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; while (unrolled--) { int i; int32_t z[4]; float32x4_t samples = vld1q_f32(src); int32x4_t converted = float_24_neon(samples); converted = vreinterpretq_s32_u8(vrev32q_u8(vreinterpretq_u8_s32(converted))); vst1q_s32(z, converted); for (i = 0; i != 4; ++i) { memcpy (dst, ((char*)(z+i))+1, 3); dst += dst_skip; } src += 4; } nsamples = nsamples & 3; #endif int32_t z; while (nsamples--) { float_24 (*src, z); #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(z>>16); dst[1]=(char)(z>>8); dst[2]=(char)(z); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(z); dst[1]=(char)(z>>8); dst[2]=(char)(z>>16); #endif dst += dst_skip; src++; } } void sample_move_d24_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__SSE2__) && !defined (__sun__) _MM_SET_ROUNDING_MODE(_MM_ROUND_NEAREST); while (nsamples >= 4) { int i; int32_t z[4]; __m128 samples = _mm_loadu_ps(src); __m128i converted = float_24_sse(samples); #ifdef __SSE4_1__ z[0] = _mm_extract_epi32(converted, 0); z[1] = _mm_extract_epi32(converted, 1); z[2] = _mm_extract_epi32(converted, 2); z[3] = _mm_extract_epi32(converted, 3); #else __m128i shuffled1 = _mm_shuffle_epi32(converted, _MM_SHUFFLE(0, 3, 2, 1)); __m128i shuffled2 = _mm_shuffle_epi32(converted, _MM_SHUFFLE(1, 0, 3, 2)); __m128i shuffled3 = _mm_shuffle_epi32(converted, _MM_SHUFFLE(2, 1, 0, 3)); _mm_store_ss((float*)z, (__m128)converted); _mm_store_ss((float*)z+1, (__m128)shuffled1); _mm_store_ss((float*)z+2, (__m128)shuffled2); _mm_store_ss((float*)z+3, (__m128)shuffled3); #endif for (i = 0; i != 4; ++i) { memcpy (dst, z+i, 3); dst += dst_skip; } nsamples -= 4; src += 4; } #elif defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; while (unrolled--) { int i; int32_t z[4]; float32x4_t samples = vld1q_f32(src); int32x4_t converted = float_24_neon(samples); vst1q_s32(z, converted); for (i = 0; i != 4; ++i) { memcpy (dst, z+i, 3); dst += dst_skip; } src += 4; } nsamples = nsamples & 3; #endif int32_t z; while (nsamples--) { float_24 (*src, z); #if __BYTE_ORDER == __LITTLE_ENDIAN memcpy (dst, &z, 3); #elif __BYTE_ORDER == __BIG_ENDIAN memcpy (dst, (char *)&z + 1, 3); #endif dst += dst_skip; src++; } } void sample_move_dS_s24s (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { const jack_default_audio_sample_t scaling = 1.0/SAMPLE_24BIT_SCALING; #if defined (__ARM_NEON__) || defined (__ARM_NEON) // we shift 8 to the right by dividing by 256.0 -> no sign extra handling const float32x4_t vscaling = vdupq_n_f32(scaling/256.0); int32_t x[4]; memset(x, 0, sizeof(x)); unsigned long unrolled = nsamples / 4; while (unrolled--) { #if __BYTE_ORDER == __BIG_ENDIAN /* ARM big endian?? */ // right aligned / inverse sequence below -> *256 memcpy(((char*)&x[0])+1, src, 3); memcpy(((char*)&x[1])+1, src+src_skip, 3); memcpy(((char*)&x[2])+1, src+2*src_skip, 3); memcpy(((char*)&x[3])+1, src+3*src_skip, 3); #else memcpy(&x[0], src, 3); memcpy(&x[1], src+src_skip, 3); memcpy(&x[2], src+2*src_skip, 3); memcpy(&x[3], src+3*src_skip, 3); #endif src += 4 * src_skip; int32x4_t source = vld1q_s32(x); source = vreinterpretq_s32_u8(vrev32q_u8(vreinterpretq_u8_s32(source))); float32x4_t converted = vcvtq_f32_s32(source); float32x4_t scaled = vmulq_f32(converted, vscaling); vst1q_f32(dst, scaled); dst += 4; } nsamples = nsamples & 3; #endif /* ALERT: signed sign-extension portability !!! */ while (nsamples--) { int x; #if __BYTE_ORDER == __LITTLE_ENDIAN x = (unsigned char)(src[0]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[2]); /* correct sign bit and the rest of the top byte */ if (src[0] & 0x80) { x |= 0xff << 24; } #elif __BYTE_ORDER == __BIG_ENDIAN x = (unsigned char)(src[2]); x <<= 8; x |= (unsigned char)(src[1]); x <<= 8; x |= (unsigned char)(src[0]); /* correct sign bit and the rest of the top byte */ if (src[2] & 0x80) { x |= 0xff << 24; } #endif *dst = x * scaling; dst++; src += src_skip; } } void sample_move_dS_s24 (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { const jack_default_audio_sample_t scaling = 1.f/SAMPLE_24BIT_SCALING; #if defined (__SSE2__) && !defined (__sun__) const __m128 scaling_block = _mm_set_ps1(scaling); while (nsamples >= 4) { int x0, x1, x2, x3; memcpy((char*)&x0 + 1, src, 3); memcpy((char*)&x1 + 1, src+src_skip, 3); memcpy((char*)&x2 + 1, src+2*src_skip, 3); memcpy((char*)&x3 + 1, src+3*src_skip, 3); src += 4 * src_skip; const __m128i block_i = _mm_set_epi32(x3, x2, x1, x0); const __m128i shifted = _mm_srai_epi32(block_i, 8); const __m128 converted = _mm_cvtepi32_ps (shifted); const __m128 scaled = _mm_mul_ps(converted, scaling_block); _mm_storeu_ps(dst, scaled); dst += 4; nsamples -= 4; } #elif defined (__ARM_NEON__) || defined (__ARM_NEON) // we shift 8 to the right by dividing by 256.0 -> no sign extra handling const float32x4_t vscaling = vdupq_n_f32(scaling/256.0); int32_t x[4]; memset(x, 0, sizeof(x)); unsigned long unrolled = nsamples / 4; while (unrolled--) { #if __BYTE_ORDER == __BIG_ENDIAN /* ARM big endian?? */ // left aligned -> *256 memcpy(&x[0], src, 3); memcpy(&x[1], src+src_skip, 3); memcpy(&x[2], src+2*src_skip, 3); memcpy(&x[3], src+3*src_skip, 3); #else memcpy(((char*)&x[0])+1, src, 3); memcpy(((char*)&x[1])+1, src+src_skip, 3); memcpy(((char*)&x[2])+1, src+2*src_skip, 3); memcpy(((char*)&x[3])+1, src+3*src_skip, 3); #endif src += 4 * src_skip; int32x4_t source = vld1q_s32(x); float32x4_t converted = vcvtq_f32_s32(source); float32x4_t scaled = vmulq_f32(converted, vscaling); vst1q_f32(dst, scaled); dst += 4; } nsamples = nsamples & 3; #endif while (nsamples--) { int x; #if __BYTE_ORDER == __LITTLE_ENDIAN memcpy((char*)&x + 1, src, 3); #elif __BYTE_ORDER == __BIG_ENDIAN memcpy(&x, src, 3); #endif x >>= 8; *dst = x * scaling; dst++; src += src_skip; } } void sample_move_d16_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { float32x4_t samples = vld1q_f32(src); int16x4_t converted = float_16_neon(samples); converted = vreinterpret_s16_u8(vrev16_u8(vreinterpret_u8_s16(converted))); switch(dst_skip) { case 2: vst1_s16((int16_t*)dst, converted); break; default: vst1_lane_s16((int16_t*)(dst), converted, 0); vst1_lane_s16((int16_t*)(dst+dst_skip), converted, 1); vst1_lane_s16((int16_t*)(dst+2*dst_skip), converted, 2); vst1_lane_s16((int16_t*)(dst+3*dst_skip), converted, 3); break; } dst += 4*dst_skip; src+= 4; } #endif int16_t tmp; while (nsamples--) { // float_16 (*src, tmp); if (*src <= NORMALIZED_FLOAT_MIN) { tmp = SAMPLE_16BIT_MIN; } else if (*src >= NORMALIZED_FLOAT_MAX) { tmp = SAMPLE_16BIT_MAX; } else { tmp = (int16_t) f_round (*src * SAMPLE_16BIT_SCALING); } #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(tmp>>8); dst[1]=(char)(tmp); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(tmp); dst[1]=(char)(tmp>>8); #endif dst += dst_skip; src++; } } void sample_move_d16_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { #if defined (__ARM_NEON__) || defined (__ARM_NEON) unsigned long unrolled = nsamples / 4; nsamples = nsamples & 3; while (unrolled--) { float32x4_t samples = vld1q_f32(src); int16x4_t converted = float_16_neon(samples); switch(dst_skip) { case 2: vst1_s16((int16_t*)dst, converted); break; default: vst1_lane_s16((int16_t*)(dst), converted, 0); vst1_lane_s16((int16_t*)(dst+dst_skip), converted, 1); vst1_lane_s16((int16_t*)(dst+2*dst_skip), converted, 2); vst1_lane_s16((int16_t*)(dst+3*dst_skip), converted, 3); break; } dst += 4*dst_skip; src+= 4; } #endif while (nsamples--) { float_16 (*src, *((int16_t*) dst)); dst += dst_skip; src++; } } void sample_move_dither_rect_d16_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { jack_default_audio_sample_t val; int16_t tmp; while (nsamples--) { val = (*src * SAMPLE_16BIT_SCALING) + fast_rand() / (float) UINT_MAX - 0.5f; float_16_scaled (val, tmp); #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(tmp>>8); dst[1]=(char)(tmp); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(tmp); dst[1]=(char)(tmp>>8); #endif dst += dst_skip; src++; } } void sample_move_dither_rect_d16_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { jack_default_audio_sample_t val; while (nsamples--) { val = (*src * SAMPLE_16BIT_SCALING) + fast_rand() / (float)UINT_MAX - 0.5f; float_16_scaled (val, *((int16_t*) dst)); dst += dst_skip; src++; } } void sample_move_dither_tri_d16_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { jack_default_audio_sample_t val; int16_t tmp; while (nsamples--) { val = (*src * SAMPLE_16BIT_SCALING) + ((float)fast_rand() + (float)fast_rand()) / (float)UINT_MAX - 1.0f; float_16_scaled (val, tmp); #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(tmp>>8); dst[1]=(char)(tmp); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(tmp); dst[1]=(char)(tmp>>8); #endif dst += dst_skip; src++; } } void sample_move_dither_tri_d16_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { jack_default_audio_sample_t val; while (nsamples--) { val = (*src * SAMPLE_16BIT_SCALING) + ((float)fast_rand() + (float)fast_rand()) / (float)UINT_MAX - 1.0f; float_16_scaled (val, *((int16_t*) dst)); dst += dst_skip; src++; } } void sample_move_dither_shaped_d16_sSs (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { jack_default_audio_sample_t x; jack_default_audio_sample_t xe; /* the innput sample - filtered error */ jack_default_audio_sample_t xp; /* x' */ float r; float rm1 = state->rm1; unsigned int idx = state->idx; int16_t tmp; while (nsamples--) { x = *src * SAMPLE_16BIT_SCALING; r = ((float)fast_rand() + (float)fast_rand()) / (float)UINT_MAX - 1.0f; /* Filter the error with Lipshitz's minimally audible FIR: [2.033 -2.165 1.959 -1.590 0.6149] */ xe = x - state->e[idx] * 2.033f + state->e[(idx - 1) & DITHER_BUF_MASK] * 2.165f - state->e[(idx - 2) & DITHER_BUF_MASK] * 1.959f + state->e[(idx - 3) & DITHER_BUF_MASK] * 1.590f - state->e[(idx - 4) & DITHER_BUF_MASK] * 0.6149f; xp = xe + r - rm1; rm1 = r; float_16_scaled (xp, tmp); /* Intrinsic z^-1 delay */ idx = (idx + 1) & DITHER_BUF_MASK; state->e[idx] = xp - xe; #if __BYTE_ORDER == __LITTLE_ENDIAN dst[0]=(char)(tmp>>8); dst[1]=(char)(tmp); #elif __BYTE_ORDER == __BIG_ENDIAN dst[0]=(char)(tmp); dst[1]=(char)(tmp>>8); #endif dst += dst_skip; src++; } state->rm1 = rm1; state->idx = idx; } void sample_move_dither_shaped_d16_sS (char *dst, jack_default_audio_sample_t *src, unsigned long nsamples, unsigned long dst_skip, dither_state_t *state) { jack_default_audio_sample_t x; jack_default_audio_sample_t xe; /* the innput sample - filtered error */ jack_default_audio_sample_t xp; /* x' */ float r; float rm1 = state->rm1; unsigned int idx = state->idx; while (nsamples--) { x = *src * SAMPLE_16BIT_SCALING; r = ((float)fast_rand() + (float)fast_rand()) / (float)UINT_MAX - 1.0f; /* Filter the error with Lipshitz's minimally audible FIR: [2.033 -2.165 1.959 -1.590 0.6149] */ xe = x - state->e[idx] * 2.033f + state->e[(idx - 1) & DITHER_BUF_MASK] * 2.165f - state->e[(idx - 2) & DITHER_BUF_MASK] * 1.959f + state->e[(idx - 3) & DITHER_BUF_MASK] * 1.590f - state->e[(idx - 4) & DITHER_BUF_MASK] * 0.6149f; xp = xe + r - rm1; rm1 = r; float_16_scaled (xp, *((int16_t*) dst)); /* Intrinsic z^-1 delay */ idx = (idx + 1) & DITHER_BUF_MASK; state->e[idx] = *((int16_t*) dst) - xe; dst += dst_skip; src++; } state->rm1 = rm1; state->idx = idx; } void sample_move_dS_s16s (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { short z; const jack_default_audio_sample_t scaling = 1.0/SAMPLE_16BIT_SCALING; #if defined (__ARM_NEON__) || defined (__ARM_NEON) const float32x4_t vscaling = vdupq_n_f32(scaling); unsigned long unrolled = nsamples / 4; while (unrolled--) { int16x4_t source16x4; switch(src_skip) { case 2: source16x4 = vld1_s16((int16_t*)src); break; case 4: source16x4 = vld2_s16((int16_t*)src).val[0]; break; default: source16x4 = vld1_lane_s16((int16_t*)src, source16x4, 0); source16x4 = vld1_lane_s16((int16_t*)(src+src_skip), source16x4, 1); source16x4 = vld1_lane_s16((int16_t*)(src+2*src_skip), source16x4, 2); source16x4 = vld1_lane_s16((int16_t*)(src+3*src_skip), source16x4, 3); break; } source16x4 = vreinterpret_s16_u8(vrev16_u8(vreinterpret_u8_s16(source16x4))); int32x4_t source32x4 = vmovl_s16(source16x4); src += 4 * src_skip; float32x4_t converted = vcvtq_f32_s32(source32x4); float32x4_t scaled = vmulq_f32(converted, vscaling); vst1q_f32(dst, scaled); dst += 4; } nsamples = nsamples & 3; #endif /* ALERT: signed sign-extension portability !!! */ while (nsamples--) { #if __BYTE_ORDER == __LITTLE_ENDIAN z = (unsigned char)(src[0]); z <<= 8; z |= (unsigned char)(src[1]); #elif __BYTE_ORDER == __BIG_ENDIAN z = (unsigned char)(src[1]); z <<= 8; z |= (unsigned char)(src[0]); #endif *dst = z * scaling; dst++; src += src_skip; } } void sample_move_dS_s16 (jack_default_audio_sample_t *dst, char *src, unsigned long nsamples, unsigned long src_skip) { /* ALERT: signed sign-extension portability !!! */ const jack_default_audio_sample_t scaling = 1.0/SAMPLE_16BIT_SCALING; #if defined (__ARM_NEON__) || defined (__ARM_NEON) const float32x4_t vscaling = vdupq_n_f32(scaling); unsigned long unrolled = nsamples / 4; while (unrolled--) { int16x4_t source16x4; switch(src_skip) { case 2: source16x4 = vld1_s16((int16_t*)src); break; case 4: source16x4 = vld2_s16((int16_t*)src).val[0]; break; default: source16x4 = vld1_lane_s16((int16_t*)src, source16x4, 0); source16x4 = vld1_lane_s16((int16_t*)(src+src_skip), source16x4, 1); source16x4 = vld1_lane_s16((int16_t*)(src+2*src_skip), source16x4, 2); source16x4 = vld1_lane_s16((int16_t*)(src+3*src_skip), source16x4, 3); break; } int32x4_t source32x4 = vmovl_s16(source16x4); src += 4 * src_skip; float32x4_t converted = vcvtq_f32_s32(source32x4); float32x4_t scaled = vmulq_f32(converted, vscaling); vst1q_f32(dst, scaled); dst += 4; } nsamples = nsamples & 3; #endif while (nsamples--) { *dst = (*((short *) src)) * scaling; dst++; src += src_skip; } } void memset_interleave (char *dst, char val, unsigned long bytes, unsigned long unit_bytes, unsigned long skip_bytes) { switch (unit_bytes) { case 1: while (bytes--) { *dst = val; dst += skip_bytes; } break; case 2: while (bytes) { *((short *) dst) = (short) val; dst += skip_bytes; bytes -= 2; } break; case 4: while (bytes) { *((int *) dst) = (int) val; dst += skip_bytes; bytes -= 4; } break; default: while (bytes) { memset(dst, val, unit_bytes); dst += skip_bytes; bytes -= unit_bytes; } break; } } /* COPY FUNCTIONS: used to move data from an input channel to an output channel. Note that we assume that the skip distance is the same for both channels. This is completely fine unless the input and output were on different audio interfaces that were interleaved differently. We don't try to handle that. */ void memcpy_fake (char *dst, char *src, unsigned long src_bytes, unsigned long foo, unsigned long bar) { memcpy (dst, src, src_bytes); } void memcpy_interleave_d16_s16 (char *dst, char *src, unsigned long src_bytes, unsigned long dst_skip_bytes, unsigned long src_skip_bytes) { while (src_bytes) { *((short *) dst) = *((short *) src); dst += dst_skip_bytes; src += src_skip_bytes; src_bytes -= 2; } } void memcpy_interleave_d24_s24 (char *dst, char *src, unsigned long src_bytes, unsigned long dst_skip_bytes, unsigned long src_skip_bytes) { while (src_bytes) { memcpy(dst, src, 3); dst += dst_skip_bytes; src += src_skip_bytes; src_bytes -= 3; } } void memcpy_interleave_d32_s32 (char *dst, char *src, unsigned long src_bytes, unsigned long dst_skip_bytes, unsigned long src_skip_bytes) { while (src_bytes) { *((int *) dst) = *((int *) src); dst += dst_skip_bytes; src += src_skip_bytes; src_bytes -= 4; } }