/** @file simple_client.c * * @brief This simple client demonstrates the most basic features of JACK * as they would be used by many applications. */ #include #include #include #include #include #include jack_port_t *input_port; jack_port_t *output_port; jack_client_t *client; /** * The process callback for this JACK application is called in a * special realtime thread once for each audio cycle. * * This client does nothing more than copy data from its input * port to its output port. It will exit when stopped by * the user (e.g. using Ctrl-C on a unix-ish operating system) */ int process (jack_nframes_t nframes, void *arg) { jack_default_audio_sample_t *in, *out; in = jack_port_get_buffer (input_port, nframes); out = jack_port_get_buffer (output_port, nframes); memcpy (out, in, sizeof (jack_default_audio_sample_t) * nframes); return 0; } /** * JACK calls this shutdown_callback if the server ever shuts down or * decides to disconnect the client. */ void jack_shutdown (void *arg) { exit (1); } int main (int argc, char *argv[]) { const char **ports; const char *client_name = "simple"; const char *server_name = NULL; jack_options_t options = JackNullOption; jack_status_t status; /* open a client connection to the JACK server */ client = jack_client_open (client_name, options, &status, server_name); if (client == NULL) { fprintf (stderr, "jack_client_open() failed, " "status = 0x%2.0x\n", status); if (status & JackServerFailed) { fprintf (stderr, "Unable to connect to JACK server\n"); } exit (1); } if (status & JackServerStarted) { fprintf (stderr, "JACK server started\n"); } if (status & JackNameNotUnique) { client_name = jack_get_client_name(client); fprintf (stderr, "unique name `%s' assigned\n", client_name); } /* tell the JACK server to call `process()' whenever there is work to be done. */ jack_set_process_callback (client, process, 0); /* tell the JACK server to call `jack_shutdown()' if it ever shuts down, either entirely, or if it just decides to stop calling us. */ jack_on_shutdown (client, jack_shutdown, 0); /* display the current sample rate. */ printf ("engine sample rate: %" PRIu32 "\n", jack_get_sample_rate (client)); /* create two ports */ input_port = jack_port_register (client, "input", JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0); output_port = jack_port_register (client, "output", JACK_DEFAULT_AUDIO_TYPE, JackPortIsOutput, 0); if ((input_port == NULL) || (output_port == NULL)) { fprintf(stderr, "no more JACK ports available\n"); exit (1); } /* Tell the JACK server that we are ready to roll. Our * process() callback will start running now. */ if (jack_activate (client)) { fprintf (stderr, "cannot activate client"); exit (1); } /* Connect the ports. You can't do this before the client is * activated, because we can't make connections to clients * that aren't running. Note the confusing (but necessary) * orientation of the driver backend ports: playback ports are * "input" to the backend, and capture ports are "output" from * it. */ ports = jack_get_ports (client, NULL, NULL, JackPortIsPhysical|JackPortIsOutput); if (ports == NULL) { fprintf(stderr, "no physical capture ports\n"); exit (1); } if (jack_connect (client, ports[0], jack_port_name (input_port))) { fprintf (stderr, "cannot connect input ports\n"); exit (1); } free (ports); ports = jack_get_ports (client, NULL, NULL, JackPortIsPhysical|JackPortIsInput); if (ports == NULL) { fprintf(stderr, "no physical playback ports\n"); exit (1); } if (jack_connect (client, jack_port_name (output_port), ports[0])) { fprintf (stderr, "cannot connect output ports\n"); } free (ports); /* keep running until stopped by the user */ sleep (-1); /* this is never reached but if the program had some other way to exit besides being killed, they would be important to call. */ jack_client_close (client); return 0; }