You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1356 lines
44KB

  1. /*
  2. * Bink video decoder
  3. * Copyright (c) 2009 Konstantin Shishkov
  4. * Copyright (C) 2011 Peter Ross <pross@xvid.org>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/imgutils.h"
  23. #include "avcodec.h"
  24. #include "dsputil.h"
  25. #include "binkdata.h"
  26. #include "mathops.h"
  27. #define ALT_BITSTREAM_READER_LE
  28. #include "get_bits.h"
  29. #define BINK_FLAG_ALPHA 0x00100000
  30. #define BINK_FLAG_GRAY 0x00020000
  31. static VLC bink_trees[16];
  32. /**
  33. * IDs for different data types used in old version of Bink video codec
  34. */
  35. enum OldSources {
  36. BINKB_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  37. BINKB_SRC_COLORS, ///< pixel values used for different block types
  38. BINKB_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  39. BINKB_SRC_X_OFF, ///< X components of motion value
  40. BINKB_SRC_Y_OFF, ///< Y components of motion value
  41. BINKB_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  42. BINKB_SRC_INTER_DC, ///< DC values for interblocks with DCT
  43. BINKB_SRC_INTRA_Q, ///< quantizer values for intrablocks with DCT
  44. BINKB_SRC_INTER_Q, ///< quantizer values for interblocks with DCT
  45. BINKB_SRC_INTER_COEFS, ///< number of coefficients for residue blocks
  46. BINKB_NB_SRC
  47. };
  48. static const int binkb_bundle_sizes[BINKB_NB_SRC] = {
  49. 4, 8, 8, 5, 5, 11, 11, 4, 4, 7
  50. };
  51. static const int binkb_bundle_signed[BINKB_NB_SRC] = {
  52. 0, 0, 0, 1, 1, 0, 1, 0, 0, 0
  53. };
  54. static uint32_t binkb_intra_quant[16][64];
  55. static uint32_t binkb_inter_quant[16][64];
  56. /**
  57. * IDs for different data types used in Bink video codec
  58. */
  59. enum Sources {
  60. BINK_SRC_BLOCK_TYPES = 0, ///< 8x8 block types
  61. BINK_SRC_SUB_BLOCK_TYPES, ///< 16x16 block types (a subset of 8x8 block types)
  62. BINK_SRC_COLORS, ///< pixel values used for different block types
  63. BINK_SRC_PATTERN, ///< 8-bit values for 2-colour pattern fill
  64. BINK_SRC_X_OFF, ///< X components of motion value
  65. BINK_SRC_Y_OFF, ///< Y components of motion value
  66. BINK_SRC_INTRA_DC, ///< DC values for intrablocks with DCT
  67. BINK_SRC_INTER_DC, ///< DC values for interblocks with DCT
  68. BINK_SRC_RUN, ///< run lengths for special fill block
  69. BINK_NB_SRC
  70. };
  71. /**
  72. * data needed to decode 4-bit Huffman-coded value
  73. */
  74. typedef struct Tree {
  75. int vlc_num; ///< tree number (in bink_trees[])
  76. uint8_t syms[16]; ///< leaf value to symbol mapping
  77. } Tree;
  78. #define GET_HUFF(gb, tree) (tree).syms[get_vlc2(gb, bink_trees[(tree).vlc_num].table,\
  79. bink_trees[(tree).vlc_num].bits, 1)]
  80. /**
  81. * data structure used for decoding single Bink data type
  82. */
  83. typedef struct Bundle {
  84. int len; ///< length of number of entries to decode (in bits)
  85. Tree tree; ///< Huffman tree-related data
  86. uint8_t *data; ///< buffer for decoded symbols
  87. uint8_t *data_end; ///< buffer end
  88. uint8_t *cur_dec; ///< pointer to the not yet decoded part of the buffer
  89. uint8_t *cur_ptr; ///< pointer to the data that is not read from buffer yet
  90. } Bundle;
  91. /*
  92. * Decoder context
  93. */
  94. typedef struct BinkContext {
  95. AVCodecContext *avctx;
  96. DSPContext dsp;
  97. AVFrame pic, last;
  98. int version; ///< internal Bink file version
  99. int has_alpha;
  100. int swap_planes;
  101. ScanTable scantable; ///< permutated scantable for DCT coeffs decoding
  102. Bundle bundle[BINKB_NB_SRC]; ///< bundles for decoding all data types
  103. Tree col_high[16]; ///< trees for decoding high nibble in "colours" data type
  104. int col_lastval; ///< value of last decoded high nibble in "colours" data type
  105. } BinkContext;
  106. /**
  107. * Bink video block types
  108. */
  109. enum BlockTypes {
  110. SKIP_BLOCK = 0, ///< skipped block
  111. SCALED_BLOCK, ///< block has size 16x16
  112. MOTION_BLOCK, ///< block is copied from previous frame with some offset
  113. RUN_BLOCK, ///< block is composed from runs of colours with custom scan order
  114. RESIDUE_BLOCK, ///< motion block with some difference added
  115. INTRA_BLOCK, ///< intra DCT block
  116. FILL_BLOCK, ///< block is filled with single colour
  117. INTER_BLOCK, ///< motion block with DCT applied to the difference
  118. PATTERN_BLOCK, ///< block is filled with two colours following custom pattern
  119. RAW_BLOCK, ///< uncoded 8x8 block
  120. };
  121. /**
  122. * Initialize length length in all bundles.
  123. *
  124. * @param c decoder context
  125. * @param width plane width
  126. * @param bw plane width in 8x8 blocks
  127. */
  128. static void init_lengths(BinkContext *c, int width, int bw)
  129. {
  130. c->bundle[BINK_SRC_BLOCK_TYPES].len = av_log2((width >> 3) + 511) + 1;
  131. c->bundle[BINK_SRC_SUB_BLOCK_TYPES].len = av_log2((width >> 4) + 511) + 1;
  132. c->bundle[BINK_SRC_COLORS].len = av_log2(bw*64 + 511) + 1;
  133. c->bundle[BINK_SRC_INTRA_DC].len =
  134. c->bundle[BINK_SRC_INTER_DC].len =
  135. c->bundle[BINK_SRC_X_OFF].len =
  136. c->bundle[BINK_SRC_Y_OFF].len = av_log2((width >> 3) + 511) + 1;
  137. c->bundle[BINK_SRC_PATTERN].len = av_log2((bw << 3) + 511) + 1;
  138. c->bundle[BINK_SRC_RUN].len = av_log2(bw*48 + 511) + 1;
  139. }
  140. /**
  141. * Allocate memory for bundles.
  142. *
  143. * @param c decoder context
  144. */
  145. static av_cold void init_bundles(BinkContext *c)
  146. {
  147. int bw, bh, blocks;
  148. int i;
  149. bw = (c->avctx->width + 7) >> 3;
  150. bh = (c->avctx->height + 7) >> 3;
  151. blocks = bw * bh;
  152. for (i = 0; i < BINKB_NB_SRC; i++) {
  153. c->bundle[i].data = av_malloc(blocks * 64);
  154. c->bundle[i].data_end = c->bundle[i].data + blocks * 64;
  155. }
  156. }
  157. /**
  158. * Free memory used by bundles.
  159. *
  160. * @param c decoder context
  161. */
  162. static av_cold void free_bundles(BinkContext *c)
  163. {
  164. int i;
  165. for (i = 0; i < BINKB_NB_SRC; i++)
  166. av_freep(&c->bundle[i].data);
  167. }
  168. /**
  169. * Merge two consequent lists of equal size depending on bits read.
  170. *
  171. * @param gb context for reading bits
  172. * @param dst buffer where merged list will be written to
  173. * @param src pointer to the head of the first list (the second lists starts at src+size)
  174. * @param size input lists size
  175. */
  176. static void merge(GetBitContext *gb, uint8_t *dst, uint8_t *src, int size)
  177. {
  178. uint8_t *src2 = src + size;
  179. int size2 = size;
  180. do {
  181. if (!get_bits1(gb)) {
  182. *dst++ = *src++;
  183. size--;
  184. } else {
  185. *dst++ = *src2++;
  186. size2--;
  187. }
  188. } while (size && size2);
  189. while (size--)
  190. *dst++ = *src++;
  191. while (size2--)
  192. *dst++ = *src2++;
  193. }
  194. /**
  195. * Read information about Huffman tree used to decode data.
  196. *
  197. * @param gb context for reading bits
  198. * @param tree pointer for storing tree data
  199. */
  200. static void read_tree(GetBitContext *gb, Tree *tree)
  201. {
  202. uint8_t tmp1[16], tmp2[16], *in = tmp1, *out = tmp2;
  203. int i, t, len;
  204. tree->vlc_num = get_bits(gb, 4);
  205. if (!tree->vlc_num) {
  206. for (i = 0; i < 16; i++)
  207. tree->syms[i] = i;
  208. return;
  209. }
  210. if (get_bits1(gb)) {
  211. len = get_bits(gb, 3);
  212. memset(tmp1, 0, sizeof(tmp1));
  213. for (i = 0; i <= len; i++) {
  214. tree->syms[i] = get_bits(gb, 4);
  215. tmp1[tree->syms[i]] = 1;
  216. }
  217. for (i = 0; i < 16 && len < 16 - 1; i++)
  218. if (!tmp1[i])
  219. tree->syms[++len] = i;
  220. } else {
  221. len = get_bits(gb, 2);
  222. for (i = 0; i < 16; i++)
  223. in[i] = i;
  224. for (i = 0; i <= len; i++) {
  225. int size = 1 << i;
  226. for (t = 0; t < 16; t += size << 1)
  227. merge(gb, out + t, in + t, size);
  228. FFSWAP(uint8_t*, in, out);
  229. }
  230. memcpy(tree->syms, in, 16);
  231. }
  232. }
  233. /**
  234. * Prepare bundle for decoding data.
  235. *
  236. * @param gb context for reading bits
  237. * @param c decoder context
  238. * @param bundle_num number of the bundle to initialize
  239. */
  240. static void read_bundle(GetBitContext *gb, BinkContext *c, int bundle_num)
  241. {
  242. int i;
  243. if (bundle_num == BINK_SRC_COLORS) {
  244. for (i = 0; i < 16; i++)
  245. read_tree(gb, &c->col_high[i]);
  246. c->col_lastval = 0;
  247. }
  248. if (bundle_num != BINK_SRC_INTRA_DC && bundle_num != BINK_SRC_INTER_DC)
  249. read_tree(gb, &c->bundle[bundle_num].tree);
  250. c->bundle[bundle_num].cur_dec =
  251. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  252. }
  253. /**
  254. * common check before starting decoding bundle data
  255. *
  256. * @param gb context for reading bits
  257. * @param b bundle
  258. * @param t variable where number of elements to decode will be stored
  259. */
  260. #define CHECK_READ_VAL(gb, b, t) \
  261. if (!b->cur_dec || (b->cur_dec > b->cur_ptr)) \
  262. return 0; \
  263. t = get_bits(gb, b->len); \
  264. if (!t) { \
  265. b->cur_dec = NULL; \
  266. return 0; \
  267. } \
  268. static int read_runs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  269. {
  270. int t, v;
  271. const uint8_t *dec_end;
  272. CHECK_READ_VAL(gb, b, t);
  273. dec_end = b->cur_dec + t;
  274. if (dec_end > b->data_end) {
  275. av_log(avctx, AV_LOG_ERROR, "Run value went out of bounds\n");
  276. return -1;
  277. }
  278. if (get_bits1(gb)) {
  279. v = get_bits(gb, 4);
  280. memset(b->cur_dec, v, t);
  281. b->cur_dec += t;
  282. } else {
  283. while (b->cur_dec < dec_end)
  284. *b->cur_dec++ = GET_HUFF(gb, b->tree);
  285. }
  286. return 0;
  287. }
  288. static int read_motion_values(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  289. {
  290. int t, sign, v;
  291. const uint8_t *dec_end;
  292. CHECK_READ_VAL(gb, b, t);
  293. dec_end = b->cur_dec + t;
  294. if (dec_end > b->data_end) {
  295. av_log(avctx, AV_LOG_ERROR, "Too many motion values\n");
  296. return -1;
  297. }
  298. if (get_bits1(gb)) {
  299. v = get_bits(gb, 4);
  300. if (v) {
  301. sign = -get_bits1(gb);
  302. v = (v ^ sign) - sign;
  303. }
  304. memset(b->cur_dec, v, t);
  305. b->cur_dec += t;
  306. } else {
  307. while (b->cur_dec < dec_end) {
  308. v = GET_HUFF(gb, b->tree);
  309. if (v) {
  310. sign = -get_bits1(gb);
  311. v = (v ^ sign) - sign;
  312. }
  313. *b->cur_dec++ = v;
  314. }
  315. }
  316. return 0;
  317. }
  318. static const uint8_t bink_rlelens[4] = { 4, 8, 12, 32 };
  319. static int read_block_types(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  320. {
  321. int t, v;
  322. int last = 0;
  323. const uint8_t *dec_end;
  324. CHECK_READ_VAL(gb, b, t);
  325. dec_end = b->cur_dec + t;
  326. if (dec_end > b->data_end) {
  327. av_log(avctx, AV_LOG_ERROR, "Too many block type values\n");
  328. return -1;
  329. }
  330. if (get_bits1(gb)) {
  331. v = get_bits(gb, 4);
  332. memset(b->cur_dec, v, t);
  333. b->cur_dec += t;
  334. } else {
  335. while (b->cur_dec < dec_end) {
  336. v = GET_HUFF(gb, b->tree);
  337. if (v < 12) {
  338. last = v;
  339. *b->cur_dec++ = v;
  340. } else {
  341. int run = bink_rlelens[v - 12];
  342. if (dec_end - b->cur_dec < run)
  343. return -1;
  344. memset(b->cur_dec, last, run);
  345. b->cur_dec += run;
  346. }
  347. }
  348. }
  349. return 0;
  350. }
  351. static int read_patterns(AVCodecContext *avctx, GetBitContext *gb, Bundle *b)
  352. {
  353. int t, v;
  354. const uint8_t *dec_end;
  355. CHECK_READ_VAL(gb, b, t);
  356. dec_end = b->cur_dec + t;
  357. if (dec_end > b->data_end) {
  358. av_log(avctx, AV_LOG_ERROR, "Too many pattern values\n");
  359. return -1;
  360. }
  361. while (b->cur_dec < dec_end) {
  362. v = GET_HUFF(gb, b->tree);
  363. v |= GET_HUFF(gb, b->tree) << 4;
  364. *b->cur_dec++ = v;
  365. }
  366. return 0;
  367. }
  368. static int read_colors(GetBitContext *gb, Bundle *b, BinkContext *c)
  369. {
  370. int t, sign, v;
  371. const uint8_t *dec_end;
  372. CHECK_READ_VAL(gb, b, t);
  373. dec_end = b->cur_dec + t;
  374. if (dec_end > b->data_end) {
  375. av_log(c->avctx, AV_LOG_ERROR, "Too many color values\n");
  376. return -1;
  377. }
  378. if (get_bits1(gb)) {
  379. c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
  380. v = GET_HUFF(gb, b->tree);
  381. v = (c->col_lastval << 4) | v;
  382. if (c->version < 'i') {
  383. sign = ((int8_t) v) >> 7;
  384. v = ((v & 0x7F) ^ sign) - sign;
  385. v += 0x80;
  386. }
  387. memset(b->cur_dec, v, t);
  388. b->cur_dec += t;
  389. } else {
  390. while (b->cur_dec < dec_end) {
  391. c->col_lastval = GET_HUFF(gb, c->col_high[c->col_lastval]);
  392. v = GET_HUFF(gb, b->tree);
  393. v = (c->col_lastval << 4) | v;
  394. if (c->version < 'i') {
  395. sign = ((int8_t) v) >> 7;
  396. v = ((v & 0x7F) ^ sign) - sign;
  397. v += 0x80;
  398. }
  399. *b->cur_dec++ = v;
  400. }
  401. }
  402. return 0;
  403. }
  404. /** number of bits used to store first DC value in bundle */
  405. #define DC_START_BITS 11
  406. static int read_dcs(AVCodecContext *avctx, GetBitContext *gb, Bundle *b,
  407. int start_bits, int has_sign)
  408. {
  409. int i, j, len, len2, bsize, sign, v, v2;
  410. int16_t *dst = (int16_t*)b->cur_dec;
  411. int16_t *dst_end =( int16_t*)b->data_end;
  412. CHECK_READ_VAL(gb, b, len);
  413. v = get_bits(gb, start_bits - has_sign);
  414. if (v && has_sign) {
  415. sign = -get_bits1(gb);
  416. v = (v ^ sign) - sign;
  417. }
  418. if (dst_end - dst < 1)
  419. return -1;
  420. *dst++ = v;
  421. len--;
  422. for (i = 0; i < len; i += 8) {
  423. len2 = FFMIN(len - i, 8);
  424. if (dst_end - dst < len2)
  425. return -1;
  426. bsize = get_bits(gb, 4);
  427. if (bsize) {
  428. for (j = 0; j < len2; j++) {
  429. v2 = get_bits(gb, bsize);
  430. if (v2) {
  431. sign = -get_bits1(gb);
  432. v2 = (v2 ^ sign) - sign;
  433. }
  434. v += v2;
  435. *dst++ = v;
  436. if (v < -32768 || v > 32767) {
  437. av_log(avctx, AV_LOG_ERROR, "DC value went out of bounds: %d\n", v);
  438. return -1;
  439. }
  440. }
  441. } else {
  442. for (j = 0; j < len2; j++)
  443. *dst++ = v;
  444. }
  445. }
  446. b->cur_dec = (uint8_t*)dst;
  447. return 0;
  448. }
  449. /**
  450. * Retrieve next value from bundle.
  451. *
  452. * @param c decoder context
  453. * @param bundle bundle number
  454. */
  455. static inline int get_value(BinkContext *c, int bundle)
  456. {
  457. int ret;
  458. if (bundle < BINK_SRC_X_OFF || bundle == BINK_SRC_RUN)
  459. return *c->bundle[bundle].cur_ptr++;
  460. if (bundle == BINK_SRC_X_OFF || bundle == BINK_SRC_Y_OFF)
  461. return (int8_t)*c->bundle[bundle].cur_ptr++;
  462. ret = *(int16_t*)c->bundle[bundle].cur_ptr;
  463. c->bundle[bundle].cur_ptr += 2;
  464. return ret;
  465. }
  466. static void binkb_init_bundle(BinkContext *c, int bundle_num)
  467. {
  468. c->bundle[bundle_num].cur_dec =
  469. c->bundle[bundle_num].cur_ptr = c->bundle[bundle_num].data;
  470. c->bundle[bundle_num].len = 13;
  471. }
  472. static void binkb_init_bundles(BinkContext *c)
  473. {
  474. int i;
  475. for (i = 0; i < BINKB_NB_SRC; i++)
  476. binkb_init_bundle(c, i);
  477. }
  478. static int binkb_read_bundle(BinkContext *c, GetBitContext *gb, int bundle_num)
  479. {
  480. const int bits = binkb_bundle_sizes[bundle_num];
  481. const int mask = 1 << (bits - 1);
  482. const int issigned = binkb_bundle_signed[bundle_num];
  483. Bundle *b = &c->bundle[bundle_num];
  484. int i, len;
  485. CHECK_READ_VAL(gb, b, len);
  486. if (b->data_end - b->cur_dec < len * (1 + (bits > 8)))
  487. return -1;
  488. if (bits <= 8) {
  489. if (!issigned) {
  490. for (i = 0; i < len; i++)
  491. *b->cur_dec++ = get_bits(gb, bits);
  492. } else {
  493. for (i = 0; i < len; i++)
  494. *b->cur_dec++ = get_bits(gb, bits) - mask;
  495. }
  496. } else {
  497. int16_t *dst = (int16_t*)b->cur_dec;
  498. if (!issigned) {
  499. for (i = 0; i < len; i++)
  500. *dst++ = get_bits(gb, bits);
  501. } else {
  502. for (i = 0; i < len; i++)
  503. *dst++ = get_bits(gb, bits) - mask;
  504. }
  505. b->cur_dec = (uint8_t*)dst;
  506. }
  507. return 0;
  508. }
  509. static inline int binkb_get_value(BinkContext *c, int bundle_num)
  510. {
  511. int16_t ret;
  512. const int bits = binkb_bundle_sizes[bundle_num];
  513. if (bits <= 8) {
  514. int val = *c->bundle[bundle_num].cur_ptr++;
  515. return binkb_bundle_signed[bundle_num] ? (int8_t)val : val;
  516. }
  517. ret = *(int16_t*)c->bundle[bundle_num].cur_ptr;
  518. c->bundle[bundle_num].cur_ptr += 2;
  519. return ret;
  520. }
  521. static inline DCTELEM dequant(DCTELEM in, uint32_t quant, int dc)
  522. {
  523. /* Note: multiplication is unsigned but we want signed shift
  524. * otherwise clipping breaks.
  525. * TODO: The official decoder does not use clipping at all
  526. * but instead uses the full 32-bit result.
  527. * However clipping at least gets rid of the case that a
  528. * half-black half-white intra block gets black and white swapped
  529. * and should cause at most minor differences (except for DC). */
  530. int32_t res = in * quant;
  531. res >>= 11;
  532. if (!dc)
  533. res = av_clip_int16(res);
  534. return res;
  535. }
  536. /**
  537. * Read 8x8 block of DCT coefficients.
  538. *
  539. * @param gb context for reading bits
  540. * @param block place for storing coefficients
  541. * @param scan scan order table
  542. * @param quant_matrices quantization matrices
  543. * @return 0 for success, negative value in other cases
  544. */
  545. static int read_dct_coeffs(GetBitContext *gb, DCTELEM block[64], const uint8_t *scan,
  546. const uint32_t quant_matrices[16][64], int q)
  547. {
  548. int coef_list[128];
  549. int mode_list[128];
  550. int i, t, mask, bits, ccoef, mode, sign;
  551. int list_start = 64, list_end = 64, list_pos;
  552. int coef_count = 0;
  553. int coef_idx[64];
  554. int quant_idx;
  555. const uint32_t *quant;
  556. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  557. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  558. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  559. coef_list[list_end] = 1; mode_list[list_end++] = 3;
  560. coef_list[list_end] = 2; mode_list[list_end++] = 3;
  561. coef_list[list_end] = 3; mode_list[list_end++] = 3;
  562. bits = get_bits(gb, 4) - 1;
  563. for (mask = 1 << bits; bits >= 0; mask >>= 1, bits--) {
  564. list_pos = list_start;
  565. while (list_pos < list_end) {
  566. if (!(mode_list[list_pos] | coef_list[list_pos]) || !get_bits1(gb)) {
  567. list_pos++;
  568. continue;
  569. }
  570. ccoef = coef_list[list_pos];
  571. mode = mode_list[list_pos];
  572. switch (mode) {
  573. case 0:
  574. coef_list[list_pos] = ccoef + 4;
  575. mode_list[list_pos] = 1;
  576. case 2:
  577. if (mode == 2) {
  578. coef_list[list_pos] = 0;
  579. mode_list[list_pos++] = 0;
  580. }
  581. for (i = 0; i < 4; i++, ccoef++) {
  582. if (get_bits1(gb)) {
  583. coef_list[--list_start] = ccoef;
  584. mode_list[ list_start] = 3;
  585. } else {
  586. int t;
  587. if (!bits) {
  588. t = 1 - (get_bits1(gb) << 1);
  589. } else {
  590. t = get_bits(gb, bits) | mask;
  591. sign = -get_bits1(gb);
  592. t = (t ^ sign) - sign;
  593. }
  594. block[scan[ccoef]] = t;
  595. coef_idx[coef_count++] = ccoef;
  596. }
  597. }
  598. break;
  599. case 1:
  600. mode_list[list_pos] = 2;
  601. for (i = 0; i < 3; i++) {
  602. ccoef += 4;
  603. coef_list[list_end] = ccoef;
  604. mode_list[list_end++] = 2;
  605. }
  606. break;
  607. case 3:
  608. if (!bits) {
  609. t = 1 - (get_bits1(gb) << 1);
  610. } else {
  611. t = get_bits(gb, bits) | mask;
  612. sign = -get_bits1(gb);
  613. t = (t ^ sign) - sign;
  614. }
  615. block[scan[ccoef]] = t;
  616. coef_idx[coef_count++] = ccoef;
  617. coef_list[list_pos] = 0;
  618. mode_list[list_pos++] = 0;
  619. break;
  620. }
  621. }
  622. }
  623. if (q == -1) {
  624. quant_idx = get_bits(gb, 4);
  625. } else {
  626. quant_idx = q;
  627. }
  628. quant = quant_matrices[quant_idx];
  629. block[0] = dequant(block[0], quant[0], 1);
  630. for (i = 0; i < coef_count; i++) {
  631. int idx = coef_idx[i];
  632. block[scan[idx]] = dequant(block[scan[idx]], quant[idx], 0);
  633. }
  634. return 0;
  635. }
  636. /**
  637. * Read 8x8 block with residue after motion compensation.
  638. *
  639. * @param gb context for reading bits
  640. * @param block place to store read data
  641. * @param masks_count number of masks to decode
  642. * @return 0 on success, negative value in other cases
  643. */
  644. static int read_residue(GetBitContext *gb, DCTELEM block[64], int masks_count)
  645. {
  646. int coef_list[128];
  647. int mode_list[128];
  648. int i, sign, mask, ccoef, mode;
  649. int list_start = 64, list_end = 64, list_pos;
  650. int nz_coeff[64];
  651. int nz_coeff_count = 0;
  652. coef_list[list_end] = 4; mode_list[list_end++] = 0;
  653. coef_list[list_end] = 24; mode_list[list_end++] = 0;
  654. coef_list[list_end] = 44; mode_list[list_end++] = 0;
  655. coef_list[list_end] = 0; mode_list[list_end++] = 2;
  656. for (mask = 1 << get_bits(gb, 3); mask; mask >>= 1) {
  657. for (i = 0; i < nz_coeff_count; i++) {
  658. if (!get_bits1(gb))
  659. continue;
  660. if (block[nz_coeff[i]] < 0)
  661. block[nz_coeff[i]] -= mask;
  662. else
  663. block[nz_coeff[i]] += mask;
  664. masks_count--;
  665. if (masks_count < 0)
  666. return 0;
  667. }
  668. list_pos = list_start;
  669. while (list_pos < list_end) {
  670. if (!(coef_list[list_pos] | mode_list[list_pos]) || !get_bits1(gb)) {
  671. list_pos++;
  672. continue;
  673. }
  674. ccoef = coef_list[list_pos];
  675. mode = mode_list[list_pos];
  676. switch (mode) {
  677. case 0:
  678. coef_list[list_pos] = ccoef + 4;
  679. mode_list[list_pos] = 1;
  680. case 2:
  681. if (mode == 2) {
  682. coef_list[list_pos] = 0;
  683. mode_list[list_pos++] = 0;
  684. }
  685. for (i = 0; i < 4; i++, ccoef++) {
  686. if (get_bits1(gb)) {
  687. coef_list[--list_start] = ccoef;
  688. mode_list[ list_start] = 3;
  689. } else {
  690. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  691. sign = -get_bits1(gb);
  692. block[bink_scan[ccoef]] = (mask ^ sign) - sign;
  693. masks_count--;
  694. if (masks_count < 0)
  695. return 0;
  696. }
  697. }
  698. break;
  699. case 1:
  700. mode_list[list_pos] = 2;
  701. for (i = 0; i < 3; i++) {
  702. ccoef += 4;
  703. coef_list[list_end] = ccoef;
  704. mode_list[list_end++] = 2;
  705. }
  706. break;
  707. case 3:
  708. nz_coeff[nz_coeff_count++] = bink_scan[ccoef];
  709. sign = -get_bits1(gb);
  710. block[bink_scan[ccoef]] = (mask ^ sign) - sign;
  711. coef_list[list_pos] = 0;
  712. mode_list[list_pos++] = 0;
  713. masks_count--;
  714. if (masks_count < 0)
  715. return 0;
  716. break;
  717. }
  718. }
  719. }
  720. return 0;
  721. }
  722. /**
  723. * Copy 8x8 block from source to destination, where src and dst may be overlapped
  724. */
  725. static inline void put_pixels8x8_overlapped(uint8_t *dst, uint8_t *src, int stride)
  726. {
  727. uint8_t tmp[64];
  728. int i;
  729. for (i = 0; i < 8; i++)
  730. memcpy(tmp + i*8, src + i*stride, 8);
  731. for (i = 0; i < 8; i++)
  732. memcpy(dst + i*stride, tmp + i*8, 8);
  733. }
  734. static int binkb_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
  735. int is_key, int is_chroma)
  736. {
  737. int blk;
  738. int i, j, bx, by;
  739. uint8_t *dst, *ref, *ref_start, *ref_end;
  740. int v, col[2];
  741. const uint8_t *scan;
  742. int xoff, yoff;
  743. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  744. int coordmap[64];
  745. int ybias = is_key ? -15 : 0;
  746. int qp;
  747. const int stride = c->pic.linesize[plane_idx];
  748. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  749. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  750. binkb_init_bundles(c);
  751. ref_start = c->pic.data[plane_idx];
  752. ref_end = c->pic.data[plane_idx] + (bh * c->pic.linesize[plane_idx] + bw) * 8;
  753. for (i = 0; i < 64; i++)
  754. coordmap[i] = (i & 7) + (i >> 3) * stride;
  755. for (by = 0; by < bh; by++) {
  756. for (i = 0; i < BINKB_NB_SRC; i++) {
  757. if (binkb_read_bundle(c, gb, i) < 0)
  758. return -1;
  759. }
  760. dst = c->pic.data[plane_idx] + 8*by*stride;
  761. for (bx = 0; bx < bw; bx++, dst += 8) {
  762. blk = binkb_get_value(c, BINKB_SRC_BLOCK_TYPES);
  763. switch (blk) {
  764. case 0:
  765. break;
  766. case 1:
  767. scan = bink_patterns[get_bits(gb, 4)];
  768. i = 0;
  769. do {
  770. int mode, run;
  771. mode = get_bits1(gb);
  772. run = get_bits(gb, binkb_runbits[i]) + 1;
  773. i += run;
  774. if (i > 64) {
  775. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  776. return -1;
  777. }
  778. if (mode) {
  779. v = binkb_get_value(c, BINKB_SRC_COLORS);
  780. for (j = 0; j < run; j++)
  781. dst[coordmap[*scan++]] = v;
  782. } else {
  783. for (j = 0; j < run; j++)
  784. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  785. }
  786. } while (i < 63);
  787. if (i == 63)
  788. dst[coordmap[*scan++]] = binkb_get_value(c, BINKB_SRC_COLORS);
  789. break;
  790. case 2:
  791. c->dsp.clear_block(block);
  792. block[0] = binkb_get_value(c, BINKB_SRC_INTRA_DC);
  793. qp = binkb_get_value(c, BINKB_SRC_INTRA_Q);
  794. read_dct_coeffs(gb, block, c->scantable.permutated, binkb_intra_quant, qp);
  795. c->dsp.idct_put(dst, stride, block);
  796. break;
  797. case 3:
  798. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  799. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  800. ref = dst + xoff + yoff * stride;
  801. if (ref < ref_start || ref + 8*stride > ref_end) {
  802. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  803. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  804. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  805. } else {
  806. put_pixels8x8_overlapped(dst, ref, stride);
  807. }
  808. c->dsp.clear_block(block);
  809. v = binkb_get_value(c, BINKB_SRC_INTER_COEFS);
  810. read_residue(gb, block, v);
  811. c->dsp.add_pixels8(dst, block, stride);
  812. break;
  813. case 4:
  814. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  815. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  816. ref = dst + xoff + yoff * stride;
  817. if (ref < ref_start || ref + 8 * stride > ref_end) {
  818. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  819. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  820. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  821. } else {
  822. put_pixels8x8_overlapped(dst, ref, stride);
  823. }
  824. c->dsp.clear_block(block);
  825. block[0] = binkb_get_value(c, BINKB_SRC_INTER_DC);
  826. qp = binkb_get_value(c, BINKB_SRC_INTER_Q);
  827. read_dct_coeffs(gb, block, c->scantable.permutated, binkb_inter_quant, qp);
  828. c->dsp.idct_add(dst, stride, block);
  829. break;
  830. case 5:
  831. v = binkb_get_value(c, BINKB_SRC_COLORS);
  832. c->dsp.fill_block_tab[1](dst, v, stride, 8);
  833. break;
  834. case 6:
  835. for (i = 0; i < 2; i++)
  836. col[i] = binkb_get_value(c, BINKB_SRC_COLORS);
  837. for (i = 0; i < 8; i++) {
  838. v = binkb_get_value(c, BINKB_SRC_PATTERN);
  839. for (j = 0; j < 8; j++, v >>= 1)
  840. dst[i*stride + j] = col[v & 1];
  841. }
  842. break;
  843. case 7:
  844. xoff = binkb_get_value(c, BINKB_SRC_X_OFF);
  845. yoff = binkb_get_value(c, BINKB_SRC_Y_OFF) + ybias;
  846. ref = dst + xoff + yoff * stride;
  847. if (ref < ref_start || ref + 8 * stride > ref_end) {
  848. av_log(c->avctx, AV_LOG_WARNING, "Reference block is out of bounds\n");
  849. } else if (ref + 8*stride < dst || ref >= dst + 8*stride) {
  850. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  851. } else {
  852. put_pixels8x8_overlapped(dst, ref, stride);
  853. }
  854. break;
  855. case 8:
  856. for (i = 0; i < 8; i++)
  857. memcpy(dst + i*stride, c->bundle[BINKB_SRC_COLORS].cur_ptr + i*8, 8);
  858. c->bundle[BINKB_SRC_COLORS].cur_ptr += 64;
  859. break;
  860. default:
  861. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  862. return -1;
  863. }
  864. }
  865. }
  866. if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
  867. skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
  868. return 0;
  869. }
  870. static int bink_decode_plane(BinkContext *c, GetBitContext *gb, int plane_idx,
  871. int is_chroma)
  872. {
  873. int blk;
  874. int i, j, bx, by;
  875. uint8_t *dst, *prev, *ref, *ref_start, *ref_end;
  876. int v, col[2];
  877. const uint8_t *scan;
  878. int xoff, yoff;
  879. LOCAL_ALIGNED_16(DCTELEM, block, [64]);
  880. LOCAL_ALIGNED_16(uint8_t, ublock, [64]);
  881. int coordmap[64];
  882. const int stride = c->pic.linesize[plane_idx];
  883. int bw = is_chroma ? (c->avctx->width + 15) >> 4 : (c->avctx->width + 7) >> 3;
  884. int bh = is_chroma ? (c->avctx->height + 15) >> 4 : (c->avctx->height + 7) >> 3;
  885. int width = c->avctx->width >> is_chroma;
  886. init_lengths(c, FFMAX(width, 8), bw);
  887. for (i = 0; i < BINK_NB_SRC; i++)
  888. read_bundle(gb, c, i);
  889. ref_start = c->last.data[plane_idx] ? c->last.data[plane_idx]
  890. : c->pic.data[plane_idx];
  891. ref_end = ref_start
  892. + (bw - 1 + c->last.linesize[plane_idx] * (bh - 1)) * 8;
  893. for (i = 0; i < 64; i++)
  894. coordmap[i] = (i & 7) + (i >> 3) * stride;
  895. for (by = 0; by < bh; by++) {
  896. if (read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_BLOCK_TYPES]) < 0)
  897. return -1;
  898. if (read_block_types(c->avctx, gb, &c->bundle[BINK_SRC_SUB_BLOCK_TYPES]) < 0)
  899. return -1;
  900. if (read_colors(gb, &c->bundle[BINK_SRC_COLORS], c) < 0)
  901. return -1;
  902. if (read_patterns(c->avctx, gb, &c->bundle[BINK_SRC_PATTERN]) < 0)
  903. return -1;
  904. if (read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_X_OFF]) < 0)
  905. return -1;
  906. if (read_motion_values(c->avctx, gb, &c->bundle[BINK_SRC_Y_OFF]) < 0)
  907. return -1;
  908. if (read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTRA_DC], DC_START_BITS, 0) < 0)
  909. return -1;
  910. if (read_dcs(c->avctx, gb, &c->bundle[BINK_SRC_INTER_DC], DC_START_BITS, 1) < 0)
  911. return -1;
  912. if (read_runs(c->avctx, gb, &c->bundle[BINK_SRC_RUN]) < 0)
  913. return -1;
  914. if (by == bh)
  915. break;
  916. dst = c->pic.data[plane_idx] + 8*by*stride;
  917. prev = (c->last.data[plane_idx] ? c->last.data[plane_idx]
  918. : c->pic.data[plane_idx]) + 8*by*stride;
  919. for (bx = 0; bx < bw; bx++, dst += 8, prev += 8) {
  920. blk = get_value(c, BINK_SRC_BLOCK_TYPES);
  921. // 16x16 block type on odd line means part of the already decoded block, so skip it
  922. if ((by & 1) && blk == SCALED_BLOCK) {
  923. bx++;
  924. dst += 8;
  925. prev += 8;
  926. continue;
  927. }
  928. switch (blk) {
  929. case SKIP_BLOCK:
  930. c->dsp.put_pixels_tab[1][0](dst, prev, stride, 8);
  931. break;
  932. case SCALED_BLOCK:
  933. blk = get_value(c, BINK_SRC_SUB_BLOCK_TYPES);
  934. switch (blk) {
  935. case RUN_BLOCK:
  936. scan = bink_patterns[get_bits(gb, 4)];
  937. i = 0;
  938. do {
  939. int run = get_value(c, BINK_SRC_RUN) + 1;
  940. i += run;
  941. if (i > 64) {
  942. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  943. return -1;
  944. }
  945. if (get_bits1(gb)) {
  946. v = get_value(c, BINK_SRC_COLORS);
  947. for (j = 0; j < run; j++)
  948. ublock[*scan++] = v;
  949. } else {
  950. for (j = 0; j < run; j++)
  951. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  952. }
  953. } while (i < 63);
  954. if (i == 63)
  955. ublock[*scan++] = get_value(c, BINK_SRC_COLORS);
  956. break;
  957. case INTRA_BLOCK:
  958. c->dsp.clear_block(block);
  959. block[0] = get_value(c, BINK_SRC_INTRA_DC);
  960. read_dct_coeffs(gb, block, c->scantable.permutated, bink_intra_quant, -1);
  961. c->dsp.idct(block);
  962. c->dsp.put_pixels_nonclamped(block, ublock, 8);
  963. break;
  964. case FILL_BLOCK:
  965. v = get_value(c, BINK_SRC_COLORS);
  966. c->dsp.fill_block_tab[0](dst, v, stride, 16);
  967. break;
  968. case PATTERN_BLOCK:
  969. for (i = 0; i < 2; i++)
  970. col[i] = get_value(c, BINK_SRC_COLORS);
  971. for (j = 0; j < 8; j++) {
  972. v = get_value(c, BINK_SRC_PATTERN);
  973. for (i = 0; i < 8; i++, v >>= 1)
  974. ublock[i + j*8] = col[v & 1];
  975. }
  976. break;
  977. case RAW_BLOCK:
  978. for (j = 0; j < 8; j++)
  979. for (i = 0; i < 8; i++)
  980. ublock[i + j*8] = get_value(c, BINK_SRC_COLORS);
  981. break;
  982. default:
  983. av_log(c->avctx, AV_LOG_ERROR, "Incorrect 16x16 block type %d\n", blk);
  984. return -1;
  985. }
  986. if (blk != FILL_BLOCK)
  987. c->dsp.scale_block(ublock, dst, stride);
  988. bx++;
  989. dst += 8;
  990. prev += 8;
  991. break;
  992. case MOTION_BLOCK:
  993. xoff = get_value(c, BINK_SRC_X_OFF);
  994. yoff = get_value(c, BINK_SRC_Y_OFF);
  995. ref = prev + xoff + yoff * stride;
  996. if (ref < ref_start || ref > ref_end) {
  997. av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
  998. bx*8 + xoff, by*8 + yoff);
  999. return -1;
  1000. }
  1001. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  1002. break;
  1003. case RUN_BLOCK:
  1004. scan = bink_patterns[get_bits(gb, 4)];
  1005. i = 0;
  1006. do {
  1007. int run = get_value(c, BINK_SRC_RUN) + 1;
  1008. i += run;
  1009. if (i > 64) {
  1010. av_log(c->avctx, AV_LOG_ERROR, "Run went out of bounds\n");
  1011. return -1;
  1012. }
  1013. if (get_bits1(gb)) {
  1014. v = get_value(c, BINK_SRC_COLORS);
  1015. for (j = 0; j < run; j++)
  1016. dst[coordmap[*scan++]] = v;
  1017. } else {
  1018. for (j = 0; j < run; j++)
  1019. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1020. }
  1021. } while (i < 63);
  1022. if (i == 63)
  1023. dst[coordmap[*scan++]] = get_value(c, BINK_SRC_COLORS);
  1024. break;
  1025. case RESIDUE_BLOCK:
  1026. xoff = get_value(c, BINK_SRC_X_OFF);
  1027. yoff = get_value(c, BINK_SRC_Y_OFF);
  1028. ref = prev + xoff + yoff * stride;
  1029. if (ref < ref_start || ref > ref_end) {
  1030. av_log(c->avctx, AV_LOG_ERROR, "Copy out of bounds @%d, %d\n",
  1031. bx*8 + xoff, by*8 + yoff);
  1032. return -1;
  1033. }
  1034. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  1035. c->dsp.clear_block(block);
  1036. v = get_bits(gb, 7);
  1037. read_residue(gb, block, v);
  1038. c->dsp.add_pixels8(dst, block, stride);
  1039. break;
  1040. case INTRA_BLOCK:
  1041. c->dsp.clear_block(block);
  1042. block[0] = get_value(c, BINK_SRC_INTRA_DC);
  1043. read_dct_coeffs(gb, block, c->scantable.permutated, bink_intra_quant, -1);
  1044. c->dsp.idct_put(dst, stride, block);
  1045. break;
  1046. case FILL_BLOCK:
  1047. v = get_value(c, BINK_SRC_COLORS);
  1048. c->dsp.fill_block_tab[1](dst, v, stride, 8);
  1049. break;
  1050. case INTER_BLOCK:
  1051. xoff = get_value(c, BINK_SRC_X_OFF);
  1052. yoff = get_value(c, BINK_SRC_Y_OFF);
  1053. ref = prev + xoff + yoff * stride;
  1054. c->dsp.put_pixels_tab[1][0](dst, ref, stride, 8);
  1055. c->dsp.clear_block(block);
  1056. block[0] = get_value(c, BINK_SRC_INTER_DC);
  1057. read_dct_coeffs(gb, block, c->scantable.permutated, bink_inter_quant, -1);
  1058. c->dsp.idct_add(dst, stride, block);
  1059. break;
  1060. case PATTERN_BLOCK:
  1061. for (i = 0; i < 2; i++)
  1062. col[i] = get_value(c, BINK_SRC_COLORS);
  1063. for (i = 0; i < 8; i++) {
  1064. v = get_value(c, BINK_SRC_PATTERN);
  1065. for (j = 0; j < 8; j++, v >>= 1)
  1066. dst[i*stride + j] = col[v & 1];
  1067. }
  1068. break;
  1069. case RAW_BLOCK:
  1070. for (i = 0; i < 8; i++)
  1071. memcpy(dst + i*stride, c->bundle[BINK_SRC_COLORS].cur_ptr + i*8, 8);
  1072. c->bundle[BINK_SRC_COLORS].cur_ptr += 64;
  1073. break;
  1074. default:
  1075. av_log(c->avctx, AV_LOG_ERROR, "Unknown block type %d\n", blk);
  1076. return -1;
  1077. }
  1078. }
  1079. }
  1080. if (get_bits_count(gb) & 0x1F) //next plane data starts at 32-bit boundary
  1081. skip_bits_long(gb, 32 - (get_bits_count(gb) & 0x1F));
  1082. return 0;
  1083. }
  1084. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *pkt)
  1085. {
  1086. BinkContext * const c = avctx->priv_data;
  1087. GetBitContext gb;
  1088. int plane, plane_idx;
  1089. int bits_count = pkt->size << 3;
  1090. if (c->version > 'b') {
  1091. if(c->pic.data[0])
  1092. avctx->release_buffer(avctx, &c->pic);
  1093. if(avctx->get_buffer(avctx, &c->pic) < 0){
  1094. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1095. return -1;
  1096. }
  1097. } else {
  1098. if(avctx->reget_buffer(avctx, &c->pic) < 0){
  1099. av_log(avctx, AV_LOG_ERROR, "reget_buffer() failed\n");
  1100. return -1;
  1101. }
  1102. }
  1103. init_get_bits(&gb, pkt->data, bits_count);
  1104. if (c->has_alpha) {
  1105. if (c->version >= 'i')
  1106. skip_bits_long(&gb, 32);
  1107. if (bink_decode_plane(c, &gb, 3, 0) < 0)
  1108. return -1;
  1109. }
  1110. if (c->version >= 'i')
  1111. skip_bits_long(&gb, 32);
  1112. for (plane = 0; plane < 3; plane++) {
  1113. plane_idx = (!plane || !c->swap_planes) ? plane : (plane ^ 3);
  1114. if (c->version > 'b') {
  1115. if (bink_decode_plane(c, &gb, plane_idx, !!plane) < 0)
  1116. return -1;
  1117. } else {
  1118. if (binkb_decode_plane(c, &gb, plane_idx, !pkt->pts, !!plane) < 0)
  1119. return -1;
  1120. }
  1121. if (get_bits_count(&gb) >= bits_count)
  1122. break;
  1123. }
  1124. emms_c();
  1125. *data_size = sizeof(AVFrame);
  1126. *(AVFrame*)data = c->pic;
  1127. if (c->version > 'b')
  1128. FFSWAP(AVFrame, c->pic, c->last);
  1129. /* always report that the buffer was completely consumed */
  1130. return pkt->size;
  1131. }
  1132. /**
  1133. * Caclulate quantization tables for version b
  1134. */
  1135. static av_cold void binkb_calc_quant(void)
  1136. {
  1137. uint8_t inv_bink_scan[64];
  1138. double s[64];
  1139. int i, j;
  1140. for (j = 0; j < 8; j++) {
  1141. for (i = 0; i < 8; i++) {
  1142. if (j && j != 4)
  1143. if (i && i != 4)
  1144. s[j*8 + i] = cos(j * M_PI/16.0) * cos(i * M_PI/16.0) * 2.0;
  1145. else
  1146. s[j*8 + i] = cos(j * M_PI/16.0) * sqrt(2.0);
  1147. else
  1148. if (i && i != 4)
  1149. s[j*8 + i] = cos(i * M_PI/16.0) * sqrt(2.0);
  1150. else
  1151. s[j*8 + i] = 1.0;
  1152. }
  1153. }
  1154. for (i = 0; i < 64; i++)
  1155. inv_bink_scan[bink_scan[i]] = i;
  1156. for (j = 0; j < 16; j++) {
  1157. for (i = 0; i < 64; i++) {
  1158. int k = inv_bink_scan[i];
  1159. if (s[i] == 1.0) {
  1160. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] *
  1161. binkb_num[j]/binkb_den[j];
  1162. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] *
  1163. binkb_num[j]/binkb_den[j];
  1164. } else {
  1165. binkb_intra_quant[j][k] = (1L << 12) * binkb_intra_seed[i] * s[i] *
  1166. binkb_num[j]/(double)binkb_den[j];
  1167. binkb_inter_quant[j][k] = (1L << 12) * binkb_inter_seed[i] * s[i] *
  1168. binkb_num[j]/(double)binkb_den[j];
  1169. }
  1170. }
  1171. }
  1172. }
  1173. static av_cold int decode_init(AVCodecContext *avctx)
  1174. {
  1175. BinkContext * const c = avctx->priv_data;
  1176. static VLC_TYPE table[16 * 128][2];
  1177. static int binkb_initialised = 0;
  1178. int i;
  1179. int flags;
  1180. c->version = avctx->codec_tag >> 24;
  1181. if (avctx->extradata_size < 4) {
  1182. av_log(avctx, AV_LOG_ERROR, "Extradata missing or too short\n");
  1183. return -1;
  1184. }
  1185. flags = AV_RL32(avctx->extradata);
  1186. c->has_alpha = flags & BINK_FLAG_ALPHA;
  1187. c->swap_planes = c->version >= 'h';
  1188. if (!bink_trees[15].table) {
  1189. for (i = 0; i < 16; i++) {
  1190. const int maxbits = bink_tree_lens[i][15];
  1191. bink_trees[i].table = table + i*128;
  1192. bink_trees[i].table_allocated = 1 << maxbits;
  1193. init_vlc(&bink_trees[i], maxbits, 16,
  1194. bink_tree_lens[i], 1, 1,
  1195. bink_tree_bits[i], 1, 1, INIT_VLC_USE_NEW_STATIC | INIT_VLC_LE);
  1196. }
  1197. }
  1198. c->avctx = avctx;
  1199. c->pic.data[0] = NULL;
  1200. if (av_image_check_size(avctx->width, avctx->height, 0, avctx) < 0) {
  1201. return 1;
  1202. }
  1203. avctx->pix_fmt = c->has_alpha ? PIX_FMT_YUVA420P : PIX_FMT_YUV420P;
  1204. avctx->idct_algo = FF_IDCT_BINK;
  1205. dsputil_init(&c->dsp, avctx);
  1206. ff_init_scantable(c->dsp.idct_permutation, &c->scantable, bink_scan);
  1207. init_bundles(c);
  1208. if (c->version == 'b') {
  1209. if (!binkb_initialised) {
  1210. binkb_calc_quant();
  1211. binkb_initialised = 1;
  1212. }
  1213. }
  1214. return 0;
  1215. }
  1216. static av_cold int decode_end(AVCodecContext *avctx)
  1217. {
  1218. BinkContext * const c = avctx->priv_data;
  1219. if (c->pic.data[0])
  1220. avctx->release_buffer(avctx, &c->pic);
  1221. if (c->last.data[0])
  1222. avctx->release_buffer(avctx, &c->last);
  1223. free_bundles(c);
  1224. return 0;
  1225. }
  1226. AVCodec ff_bink_decoder = {
  1227. "binkvideo",
  1228. AVMEDIA_TYPE_VIDEO,
  1229. CODEC_ID_BINKVIDEO,
  1230. sizeof(BinkContext),
  1231. decode_init,
  1232. NULL,
  1233. decode_end,
  1234. decode_frame,
  1235. .long_name = NULL_IF_CONFIG_SMALL("Bink video"),
  1236. };