You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1500 lines
49KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  7. * the algorithm used
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. /**
  26. * @file
  27. * huffyuv codec for libavcodec.
  28. */
  29. #include "avcodec.h"
  30. #include "get_bits.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "thread.h"
  34. #define VLC_BITS 11
  35. #if HAVE_BIGENDIAN
  36. #define B 3
  37. #define G 2
  38. #define R 1
  39. #define A 0
  40. #else
  41. #define B 0
  42. #define G 1
  43. #define R 2
  44. #define A 3
  45. #endif
  46. typedef enum Predictor{
  47. LEFT= 0,
  48. PLANE,
  49. MEDIAN,
  50. } Predictor;
  51. typedef struct HYuvContext{
  52. AVCodecContext *avctx;
  53. Predictor predictor;
  54. GetBitContext gb;
  55. PutBitContext pb;
  56. int interlaced;
  57. int decorrelate;
  58. int bitstream_bpp;
  59. int version;
  60. int yuy2; //use yuy2 instead of 422P
  61. int bgr32; //use bgr32 instead of bgr24
  62. int width, height;
  63. int flags;
  64. int context;
  65. int picture_number;
  66. int last_slice_end;
  67. uint8_t *temp[3];
  68. uint64_t stats[3][256];
  69. uint8_t len[3][256];
  70. uint32_t bits[3][256];
  71. uint32_t pix_bgr_map[1<<VLC_BITS];
  72. VLC vlc[6]; //Y,U,V,YY,YU,YV
  73. AVFrame picture;
  74. uint8_t *bitstream_buffer;
  75. unsigned int bitstream_buffer_size;
  76. DSPContext dsp;
  77. }HYuvContext;
  78. #define classic_shift_luma_table_size 42
  79. static const unsigned char classic_shift_luma[classic_shift_luma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  80. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  81. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  82. 69,68, 0
  83. };
  84. #define classic_shift_chroma_table_size 59
  85. static const unsigned char classic_shift_chroma[classic_shift_chroma_table_size + FF_INPUT_BUFFER_PADDING_SIZE] = {
  86. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  87. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  88. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  89. };
  90. static const unsigned char classic_add_luma[256] = {
  91. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  92. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  93. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  94. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  95. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  96. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  97. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  98. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  99. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  100. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  101. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  102. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  103. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  104. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  105. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  106. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  107. };
  108. static const unsigned char classic_add_chroma[256] = {
  109. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  110. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  111. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  112. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  113. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  114. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  115. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  116. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  117. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  118. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  119. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  120. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  121. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  122. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  123. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  124. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  125. };
  126. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  127. int i;
  128. if(w<32){
  129. for(i=0; i<w; i++){
  130. const int temp= src[i];
  131. dst[i]= temp - left;
  132. left= temp;
  133. }
  134. return left;
  135. }else{
  136. for(i=0; i<16; i++){
  137. const int temp= src[i];
  138. dst[i]= temp - left;
  139. left= temp;
  140. }
  141. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  142. return src[w-1];
  143. }
  144. }
  145. static inline void sub_left_prediction_bgr32(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  146. int i;
  147. int r,g,b;
  148. r= *red;
  149. g= *green;
  150. b= *blue;
  151. for(i=0; i<FFMIN(w,4); i++){
  152. const int rt= src[i*4+R];
  153. const int gt= src[i*4+G];
  154. const int bt= src[i*4+B];
  155. dst[i*4+R]= rt - r;
  156. dst[i*4+G]= gt - g;
  157. dst[i*4+B]= bt - b;
  158. r = rt;
  159. g = gt;
  160. b = bt;
  161. }
  162. s->dsp.diff_bytes(dst+16, src+16, src+12, w*4-16);
  163. *red= src[(w-1)*4+R];
  164. *green= src[(w-1)*4+G];
  165. *blue= src[(w-1)*4+B];
  166. }
  167. static int read_len_table(uint8_t *dst, GetBitContext *gb){
  168. int i, val, repeat;
  169. for(i=0; i<256;){
  170. repeat= get_bits(gb, 3);
  171. val = get_bits(gb, 5);
  172. if(repeat==0)
  173. repeat= get_bits(gb, 8);
  174. //printf("%d %d\n", val, repeat);
  175. if(i+repeat > 256 || get_bits_left(gb) < 0) {
  176. av_log(NULL, AV_LOG_ERROR, "Error reading huffman table\n");
  177. return -1;
  178. }
  179. while (repeat--)
  180. dst[i++] = val;
  181. }
  182. return 0;
  183. }
  184. static int generate_bits_table(uint32_t *dst, const uint8_t *len_table){
  185. int len, index;
  186. uint32_t bits=0;
  187. for(len=32; len>0; len--){
  188. for(index=0; index<256; index++){
  189. if(len_table[index]==len)
  190. dst[index]= bits++;
  191. }
  192. if(bits & 1){
  193. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  194. return -1;
  195. }
  196. bits >>= 1;
  197. }
  198. return 0;
  199. }
  200. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  201. typedef struct {
  202. uint64_t val;
  203. int name;
  204. } HeapElem;
  205. static void heap_sift(HeapElem *h, int root, int size)
  206. {
  207. while(root*2+1 < size) {
  208. int child = root*2+1;
  209. if(child < size-1 && h[child].val > h[child+1].val)
  210. child++;
  211. if(h[root].val > h[child].val) {
  212. FFSWAP(HeapElem, h[root], h[child]);
  213. root = child;
  214. } else
  215. break;
  216. }
  217. }
  218. static void generate_len_table(uint8_t *dst, const uint64_t *stats){
  219. HeapElem h[256];
  220. int up[2*256];
  221. int len[2*256];
  222. int offset, i, next;
  223. int size = 256;
  224. for(offset=1; ; offset<<=1){
  225. for(i=0; i<size; i++){
  226. h[i].name = i;
  227. h[i].val = (stats[i] << 8) + offset;
  228. }
  229. for(i=size/2-1; i>=0; i--)
  230. heap_sift(h, i, size);
  231. for(next=size; next<size*2-1; next++){
  232. // merge the two smallest entries, and put it back in the heap
  233. uint64_t min1v = h[0].val;
  234. up[h[0].name] = next;
  235. h[0].val = INT64_MAX;
  236. heap_sift(h, 0, size);
  237. up[h[0].name] = next;
  238. h[0].name = next;
  239. h[0].val += min1v;
  240. heap_sift(h, 0, size);
  241. }
  242. len[2*size-2] = 0;
  243. for(i=2*size-3; i>=size; i--)
  244. len[i] = len[up[i]] + 1;
  245. for(i=0; i<size; i++) {
  246. dst[i] = len[up[i]] + 1;
  247. if(dst[i] >= 32) break;
  248. }
  249. if(i==size) break;
  250. }
  251. }
  252. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  253. static void generate_joint_tables(HYuvContext *s){
  254. uint16_t symbols[1<<VLC_BITS];
  255. uint16_t bits[1<<VLC_BITS];
  256. uint8_t len[1<<VLC_BITS];
  257. if(s->bitstream_bpp < 24){
  258. int p, i, y, u;
  259. for(p=0; p<3; p++){
  260. for(i=y=0; y<256; y++){
  261. int len0 = s->len[0][y];
  262. int limit = VLC_BITS - len0;
  263. if(limit <= 0)
  264. continue;
  265. for(u=0; u<256; u++){
  266. int len1 = s->len[p][u];
  267. if(len1 > limit)
  268. continue;
  269. len[i] = len0 + len1;
  270. bits[i] = (s->bits[0][y] << len1) + s->bits[p][u];
  271. symbols[i] = (y<<8) + u;
  272. if(symbols[i] != 0xffff) // reserved to mean "invalid"
  273. i++;
  274. }
  275. }
  276. free_vlc(&s->vlc[3+p]);
  277. init_vlc_sparse(&s->vlc[3+p], VLC_BITS, i, len, 1, 1, bits, 2, 2, symbols, 2, 2, 0);
  278. }
  279. }else{
  280. uint8_t (*map)[4] = (uint8_t(*)[4])s->pix_bgr_map;
  281. int i, b, g, r, code;
  282. int p0 = s->decorrelate;
  283. int p1 = !s->decorrelate;
  284. // restrict the range to +/-16 becaues that's pretty much guaranteed to
  285. // cover all the combinations that fit in 11 bits total, and it doesn't
  286. // matter if we miss a few rare codes.
  287. for(i=0, g=-16; g<16; g++){
  288. int len0 = s->len[p0][g&255];
  289. int limit0 = VLC_BITS - len0;
  290. if(limit0 < 2)
  291. continue;
  292. for(b=-16; b<16; b++){
  293. int len1 = s->len[p1][b&255];
  294. int limit1 = limit0 - len1;
  295. if(limit1 < 1)
  296. continue;
  297. code = (s->bits[p0][g&255] << len1) + s->bits[p1][b&255];
  298. for(r=-16; r<16; r++){
  299. int len2 = s->len[2][r&255];
  300. if(len2 > limit1)
  301. continue;
  302. len[i] = len0 + len1 + len2;
  303. bits[i] = (code << len2) + s->bits[2][r&255];
  304. if(s->decorrelate){
  305. map[i][G] = g;
  306. map[i][B] = g+b;
  307. map[i][R] = g+r;
  308. }else{
  309. map[i][B] = g;
  310. map[i][G] = b;
  311. map[i][R] = r;
  312. }
  313. i++;
  314. }
  315. }
  316. }
  317. free_vlc(&s->vlc[3]);
  318. init_vlc(&s->vlc[3], VLC_BITS, i, len, 1, 1, bits, 2, 2, 0);
  319. }
  320. }
  321. static int read_huffman_tables(HYuvContext *s, const uint8_t *src, int length){
  322. GetBitContext gb;
  323. int i;
  324. init_get_bits(&gb, src, length*8);
  325. for(i=0; i<3; i++){
  326. if(read_len_table(s->len[i], &gb)<0)
  327. return -1;
  328. if(generate_bits_table(s->bits[i], s->len[i])<0){
  329. return -1;
  330. }
  331. free_vlc(&s->vlc[i]);
  332. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  333. }
  334. generate_joint_tables(s);
  335. return (get_bits_count(&gb)+7)/8;
  336. }
  337. static int read_old_huffman_tables(HYuvContext *s){
  338. #if 1
  339. GetBitContext gb;
  340. int i;
  341. init_get_bits(&gb, classic_shift_luma, classic_shift_luma_table_size*8);
  342. if(read_len_table(s->len[0], &gb)<0)
  343. return -1;
  344. init_get_bits(&gb, classic_shift_chroma, classic_shift_chroma_table_size*8);
  345. if(read_len_table(s->len[1], &gb)<0)
  346. return -1;
  347. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  348. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  349. if(s->bitstream_bpp >= 24){
  350. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  351. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  352. }
  353. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  354. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  355. for(i=0; i<3; i++){
  356. free_vlc(&s->vlc[i]);
  357. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  358. }
  359. generate_joint_tables(s);
  360. return 0;
  361. #else
  362. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  363. return -1;
  364. #endif
  365. }
  366. static av_cold void alloc_temp(HYuvContext *s){
  367. int i;
  368. if(s->bitstream_bpp<24){
  369. for(i=0; i<3; i++){
  370. s->temp[i]= av_malloc(s->width + 16);
  371. }
  372. }else{
  373. s->temp[0]= av_mallocz(4*s->width + 16);
  374. }
  375. }
  376. static av_cold int common_init(AVCodecContext *avctx){
  377. HYuvContext *s = avctx->priv_data;
  378. s->avctx= avctx;
  379. s->flags= avctx->flags;
  380. dsputil_init(&s->dsp, avctx);
  381. s->width= avctx->width;
  382. s->height= avctx->height;
  383. assert(s->width>0 && s->height>0);
  384. return 0;
  385. }
  386. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  387. static av_cold int decode_init(AVCodecContext *avctx)
  388. {
  389. HYuvContext *s = avctx->priv_data;
  390. common_init(avctx);
  391. memset(s->vlc, 0, 3*sizeof(VLC));
  392. avctx->coded_frame= &s->picture;
  393. avcodec_get_frame_defaults(&s->picture);
  394. s->interlaced= s->height > 288;
  395. s->bgr32=1;
  396. //if(avctx->extradata)
  397. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  398. if(avctx->extradata_size){
  399. if((avctx->bits_per_coded_sample&7) && avctx->bits_per_coded_sample != 12)
  400. s->version=1; // do such files exist at all?
  401. else
  402. s->version=2;
  403. }else
  404. s->version=0;
  405. if(s->version==2){
  406. int method, interlace;
  407. if (avctx->extradata_size < 4)
  408. return -1;
  409. method= ((uint8_t*)avctx->extradata)[0];
  410. s->decorrelate= method&64 ? 1 : 0;
  411. s->predictor= method&63;
  412. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  413. if(s->bitstream_bpp==0)
  414. s->bitstream_bpp= avctx->bits_per_coded_sample&~7;
  415. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  416. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  417. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  418. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size-4) < 0)
  419. return -1;
  420. }else{
  421. switch(avctx->bits_per_coded_sample&7){
  422. case 1:
  423. s->predictor= LEFT;
  424. s->decorrelate= 0;
  425. break;
  426. case 2:
  427. s->predictor= LEFT;
  428. s->decorrelate= 1;
  429. break;
  430. case 3:
  431. s->predictor= PLANE;
  432. s->decorrelate= avctx->bits_per_coded_sample >= 24;
  433. break;
  434. case 4:
  435. s->predictor= MEDIAN;
  436. s->decorrelate= 0;
  437. break;
  438. default:
  439. s->predictor= LEFT; //OLD
  440. s->decorrelate= 0;
  441. break;
  442. }
  443. s->bitstream_bpp= avctx->bits_per_coded_sample & ~7;
  444. s->context= 0;
  445. if(read_old_huffman_tables(s) < 0)
  446. return -1;
  447. }
  448. switch(s->bitstream_bpp){
  449. case 12:
  450. avctx->pix_fmt = PIX_FMT_YUV420P;
  451. break;
  452. case 16:
  453. if(s->yuy2){
  454. avctx->pix_fmt = PIX_FMT_YUYV422;
  455. }else{
  456. avctx->pix_fmt = PIX_FMT_YUV422P;
  457. }
  458. break;
  459. case 24:
  460. case 32:
  461. if(s->bgr32){
  462. avctx->pix_fmt = PIX_FMT_RGB32;
  463. }else{
  464. avctx->pix_fmt = PIX_FMT_BGR24;
  465. }
  466. break;
  467. default:
  468. return AVERROR_INVALIDDATA;
  469. }
  470. alloc_temp(s);
  471. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  472. return 0;
  473. }
  474. static av_cold int decode_init_thread_copy(AVCodecContext *avctx)
  475. {
  476. HYuvContext *s = avctx->priv_data;
  477. int i;
  478. avctx->coded_frame= &s->picture;
  479. alloc_temp(s);
  480. for (i = 0; i < 6; i++)
  481. s->vlc[i].table = NULL;
  482. if(s->version==2){
  483. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  484. return -1;
  485. }else{
  486. if(read_old_huffman_tables(s) < 0)
  487. return -1;
  488. }
  489. return 0;
  490. }
  491. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  492. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  493. static int store_table(HYuvContext *s, const uint8_t *len, uint8_t *buf){
  494. int i;
  495. int index= 0;
  496. for(i=0; i<256;){
  497. int val= len[i];
  498. int repeat=0;
  499. for(; i<256 && len[i]==val && repeat<255; i++)
  500. repeat++;
  501. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  502. if(repeat>7){
  503. buf[index++]= val;
  504. buf[index++]= repeat;
  505. }else{
  506. buf[index++]= val | (repeat<<5);
  507. }
  508. }
  509. return index;
  510. }
  511. static av_cold int encode_init(AVCodecContext *avctx)
  512. {
  513. HYuvContext *s = avctx->priv_data;
  514. int i, j;
  515. common_init(avctx);
  516. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  517. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  518. s->version=2;
  519. avctx->coded_frame= &s->picture;
  520. switch(avctx->pix_fmt){
  521. case PIX_FMT_YUV420P:
  522. s->bitstream_bpp= 12;
  523. break;
  524. case PIX_FMT_YUV422P:
  525. s->bitstream_bpp= 16;
  526. break;
  527. case PIX_FMT_RGB32:
  528. s->bitstream_bpp= 24;
  529. break;
  530. default:
  531. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  532. return -1;
  533. }
  534. avctx->bits_per_coded_sample= s->bitstream_bpp;
  535. s->decorrelate= s->bitstream_bpp >= 24;
  536. s->predictor= avctx->prediction_method;
  537. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  538. if(avctx->context_model==1){
  539. s->context= avctx->context_model;
  540. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  541. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  542. return -1;
  543. }
  544. }else s->context= 0;
  545. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  546. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  547. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  548. return -1;
  549. }
  550. if(avctx->context_model){
  551. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  552. return -1;
  553. }
  554. if(s->interlaced != ( s->height > 288 ))
  555. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  556. }
  557. if(s->bitstream_bpp>=24 && s->predictor==MEDIAN){
  558. av_log(avctx, AV_LOG_ERROR, "Error: RGB is incompatible with median predictor\n");
  559. return -1;
  560. }
  561. ((uint8_t*)avctx->extradata)[0]= s->predictor | (s->decorrelate << 6);
  562. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  563. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  564. if(s->context)
  565. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  566. ((uint8_t*)avctx->extradata)[3]= 0;
  567. s->avctx->extradata_size= 4;
  568. if(avctx->stats_in){
  569. char *p= avctx->stats_in;
  570. for(i=0; i<3; i++)
  571. for(j=0; j<256; j++)
  572. s->stats[i][j]= 1;
  573. for(;;){
  574. for(i=0; i<3; i++){
  575. char *next;
  576. for(j=0; j<256; j++){
  577. s->stats[i][j]+= strtol(p, &next, 0);
  578. if(next==p) return -1;
  579. p=next;
  580. }
  581. }
  582. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  583. }
  584. }else{
  585. for(i=0; i<3; i++)
  586. for(j=0; j<256; j++){
  587. int d= FFMIN(j, 256-j);
  588. s->stats[i][j]= 100000000/(d+1);
  589. }
  590. }
  591. for(i=0; i<3; i++){
  592. generate_len_table(s->len[i], s->stats[i]);
  593. if(generate_bits_table(s->bits[i], s->len[i])<0){
  594. return -1;
  595. }
  596. s->avctx->extradata_size+=
  597. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  598. }
  599. if(s->context){
  600. for(i=0; i<3; i++){
  601. int pels = s->width*s->height / (i?40:10);
  602. for(j=0; j<256; j++){
  603. int d= FFMIN(j, 256-j);
  604. s->stats[i][j]= pels/(d+1);
  605. }
  606. }
  607. }else{
  608. for(i=0; i<3; i++)
  609. for(j=0; j<256; j++)
  610. s->stats[i][j]= 0;
  611. }
  612. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_coded_sample, s->interlaced);
  613. alloc_temp(s);
  614. s->picture_number=0;
  615. return 0;
  616. }
  617. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  618. /* TODO instead of restarting the read when the code isn't in the first level
  619. * of the joint table, jump into the 2nd level of the individual table. */
  620. #define READ_2PIX(dst0, dst1, plane1){\
  621. uint16_t code = get_vlc2(&s->gb, s->vlc[3+plane1].table, VLC_BITS, 1);\
  622. if(code != 0xffff){\
  623. dst0 = code>>8;\
  624. dst1 = code;\
  625. }else{\
  626. dst0 = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);\
  627. dst1 = get_vlc2(&s->gb, s->vlc[plane1].table, VLC_BITS, 3);\
  628. }\
  629. }
  630. static void decode_422_bitstream(HYuvContext *s, int count){
  631. int i;
  632. count/=2;
  633. if(count >= (get_bits_left(&s->gb))/(31*4)){
  634. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  635. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  636. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  637. }
  638. }else{
  639. for(i=0; i<count; i++){
  640. READ_2PIX(s->temp[0][2*i ], s->temp[1][i], 1);
  641. READ_2PIX(s->temp[0][2*i+1], s->temp[2][i], 2);
  642. }
  643. }
  644. }
  645. static void decode_gray_bitstream(HYuvContext *s, int count){
  646. int i;
  647. count/=2;
  648. if(count >= (get_bits_left(&s->gb))/(31*2)){
  649. for(i=0; i<count && get_bits_count(&s->gb) < s->gb.size_in_bits; i++){
  650. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  651. }
  652. }else{
  653. for(i=0; i<count; i++){
  654. READ_2PIX(s->temp[0][2*i ], s->temp[0][2*i+1], 0);
  655. }
  656. }
  657. }
  658. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  659. static int encode_422_bitstream(HYuvContext *s, int offset, int count){
  660. int i;
  661. const uint8_t *y = s->temp[0] + offset;
  662. const uint8_t *u = s->temp[1] + offset/2;
  663. const uint8_t *v = s->temp[2] + offset/2;
  664. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  665. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  666. return -1;
  667. }
  668. #define LOAD4\
  669. int y0 = y[2*i];\
  670. int y1 = y[2*i+1];\
  671. int u0 = u[i];\
  672. int v0 = v[i];
  673. count/=2;
  674. if(s->flags&CODEC_FLAG_PASS1){
  675. for(i=0; i<count; i++){
  676. LOAD4;
  677. s->stats[0][y0]++;
  678. s->stats[1][u0]++;
  679. s->stats[0][y1]++;
  680. s->stats[2][v0]++;
  681. }
  682. }
  683. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  684. return 0;
  685. if(s->context){
  686. for(i=0; i<count; i++){
  687. LOAD4;
  688. s->stats[0][y0]++;
  689. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  690. s->stats[1][u0]++;
  691. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  692. s->stats[0][y1]++;
  693. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  694. s->stats[2][v0]++;
  695. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  696. }
  697. }else{
  698. for(i=0; i<count; i++){
  699. LOAD4;
  700. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);
  701. put_bits(&s->pb, s->len[1][u0], s->bits[1][u0]);
  702. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  703. put_bits(&s->pb, s->len[2][v0], s->bits[2][v0]);
  704. }
  705. }
  706. return 0;
  707. }
  708. static int encode_gray_bitstream(HYuvContext *s, int count){
  709. int i;
  710. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  711. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  712. return -1;
  713. }
  714. #define LOAD2\
  715. int y0 = s->temp[0][2*i];\
  716. int y1 = s->temp[0][2*i+1];
  717. #define STAT2\
  718. s->stats[0][y0]++;\
  719. s->stats[0][y1]++;
  720. #define WRITE2\
  721. put_bits(&s->pb, s->len[0][y0], s->bits[0][y0]);\
  722. put_bits(&s->pb, s->len[0][y1], s->bits[0][y1]);
  723. count/=2;
  724. if(s->flags&CODEC_FLAG_PASS1){
  725. for(i=0; i<count; i++){
  726. LOAD2;
  727. STAT2;
  728. }
  729. }
  730. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  731. return 0;
  732. if(s->context){
  733. for(i=0; i<count; i++){
  734. LOAD2;
  735. STAT2;
  736. WRITE2;
  737. }
  738. }else{
  739. for(i=0; i<count; i++){
  740. LOAD2;
  741. WRITE2;
  742. }
  743. }
  744. return 0;
  745. }
  746. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  747. static av_always_inline void decode_bgr_1(HYuvContext *s, int count, int decorrelate, int alpha){
  748. int i;
  749. for(i=0; i<count; i++){
  750. int code = get_vlc2(&s->gb, s->vlc[3].table, VLC_BITS, 1);
  751. if(code != -1){
  752. *(uint32_t*)&s->temp[0][4*i] = s->pix_bgr_map[code];
  753. }else if(decorrelate){
  754. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  755. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  756. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  757. }else{
  758. s->temp[0][4*i+B] = get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  759. s->temp[0][4*i+G] = get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  760. s->temp[0][4*i+R] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  761. }
  762. if(alpha)
  763. s->temp[0][4*i+A] = get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  764. }
  765. }
  766. static void decode_bgr_bitstream(HYuvContext *s, int count){
  767. if(s->decorrelate){
  768. if(s->bitstream_bpp==24)
  769. decode_bgr_1(s, count, 1, 0);
  770. else
  771. decode_bgr_1(s, count, 1, 1);
  772. }else{
  773. if(s->bitstream_bpp==24)
  774. decode_bgr_1(s, count, 0, 0);
  775. else
  776. decode_bgr_1(s, count, 0, 1);
  777. }
  778. }
  779. static int encode_bgr_bitstream(HYuvContext *s, int count){
  780. int i;
  781. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3*4*count){
  782. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  783. return -1;
  784. }
  785. #define LOAD3\
  786. int g= s->temp[0][4*i+G];\
  787. int b= (s->temp[0][4*i+B] - g) & 0xff;\
  788. int r= (s->temp[0][4*i+R] - g) & 0xff;
  789. #define STAT3\
  790. s->stats[0][b]++;\
  791. s->stats[1][g]++;\
  792. s->stats[2][r]++;
  793. #define WRITE3\
  794. put_bits(&s->pb, s->len[1][g], s->bits[1][g]);\
  795. put_bits(&s->pb, s->len[0][b], s->bits[0][b]);\
  796. put_bits(&s->pb, s->len[2][r], s->bits[2][r]);
  797. if((s->flags&CODEC_FLAG_PASS1) && (s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)){
  798. for(i=0; i<count; i++){
  799. LOAD3;
  800. STAT3;
  801. }
  802. }else if(s->context || (s->flags&CODEC_FLAG_PASS1)){
  803. for(i=0; i<count; i++){
  804. LOAD3;
  805. STAT3;
  806. WRITE3;
  807. }
  808. }else{
  809. for(i=0; i<count; i++){
  810. LOAD3;
  811. WRITE3;
  812. }
  813. }
  814. return 0;
  815. }
  816. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  817. static void draw_slice(HYuvContext *s, int y){
  818. int h, cy;
  819. int offset[4];
  820. if(s->avctx->draw_horiz_band==NULL)
  821. return;
  822. h= y - s->last_slice_end;
  823. y -= h;
  824. if(s->bitstream_bpp==12){
  825. cy= y>>1;
  826. }else{
  827. cy= y;
  828. }
  829. offset[0] = s->picture.linesize[0]*y;
  830. offset[1] = s->picture.linesize[1]*cy;
  831. offset[2] = s->picture.linesize[2]*cy;
  832. offset[3] = 0;
  833. emms_c();
  834. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  835. s->last_slice_end= y + h;
  836. }
  837. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  838. const uint8_t *buf = avpkt->data;
  839. int buf_size = avpkt->size;
  840. HYuvContext *s = avctx->priv_data;
  841. const int width= s->width;
  842. const int width2= s->width>>1;
  843. const int height= s->height;
  844. int fake_ystride, fake_ustride, fake_vstride;
  845. AVFrame * const p= &s->picture;
  846. int table_size= 0;
  847. AVFrame *picture = data;
  848. av_fast_malloc(&s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  849. if (!s->bitstream_buffer)
  850. return AVERROR(ENOMEM);
  851. memset(s->bitstream_buffer + buf_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  852. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (const uint32_t*)buf, buf_size/4);
  853. if(p->data[0])
  854. ff_thread_release_buffer(avctx, p);
  855. p->reference= 0;
  856. if(ff_thread_get_buffer(avctx, p) < 0){
  857. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  858. return -1;
  859. }
  860. if(s->context){
  861. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  862. if(table_size < 0)
  863. return -1;
  864. }
  865. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  866. return -1;
  867. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  868. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  869. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  870. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  871. s->last_slice_end= 0;
  872. if(s->bitstream_bpp<24){
  873. int y, cy;
  874. int lefty, leftu, leftv;
  875. int lefttopy, lefttopu, lefttopv;
  876. if(s->yuy2){
  877. p->data[0][3]= get_bits(&s->gb, 8);
  878. p->data[0][2]= get_bits(&s->gb, 8);
  879. p->data[0][1]= get_bits(&s->gb, 8);
  880. p->data[0][0]= get_bits(&s->gb, 8);
  881. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  882. return -1;
  883. }else{
  884. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  885. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  886. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  887. p->data[0][0]= get_bits(&s->gb, 8);
  888. switch(s->predictor){
  889. case LEFT:
  890. case PLANE:
  891. decode_422_bitstream(s, width-2);
  892. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  893. if(!(s->flags&CODEC_FLAG_GRAY)){
  894. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  895. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  896. }
  897. for(cy=y=1; y<s->height; y++,cy++){
  898. uint8_t *ydst, *udst, *vdst;
  899. if(s->bitstream_bpp==12){
  900. decode_gray_bitstream(s, width);
  901. ydst= p->data[0] + p->linesize[0]*y;
  902. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  903. if(s->predictor == PLANE){
  904. if(y>s->interlaced)
  905. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  906. }
  907. y++;
  908. if(y>=s->height) break;
  909. }
  910. draw_slice(s, y);
  911. ydst= p->data[0] + p->linesize[0]*y;
  912. udst= p->data[1] + p->linesize[1]*cy;
  913. vdst= p->data[2] + p->linesize[2]*cy;
  914. decode_422_bitstream(s, width);
  915. lefty= s->dsp.add_hfyu_left_prediction(ydst, s->temp[0], width, lefty);
  916. if(!(s->flags&CODEC_FLAG_GRAY)){
  917. leftu= s->dsp.add_hfyu_left_prediction(udst, s->temp[1], width2, leftu);
  918. leftv= s->dsp.add_hfyu_left_prediction(vdst, s->temp[2], width2, leftv);
  919. }
  920. if(s->predictor == PLANE){
  921. if(cy>s->interlaced){
  922. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  923. if(!(s->flags&CODEC_FLAG_GRAY)){
  924. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  925. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  926. }
  927. }
  928. }
  929. }
  930. draw_slice(s, height);
  931. break;
  932. case MEDIAN:
  933. /* first line except first 2 pixels is left predicted */
  934. decode_422_bitstream(s, width-2);
  935. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  936. if(!(s->flags&CODEC_FLAG_GRAY)){
  937. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  938. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  939. }
  940. cy=y=1;
  941. /* second line is left predicted for interlaced case */
  942. if(s->interlaced){
  943. decode_422_bitstream(s, width);
  944. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  945. if(!(s->flags&CODEC_FLAG_GRAY)){
  946. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  947. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  948. }
  949. y++; cy++;
  950. }
  951. /* next 4 pixels are left predicted too */
  952. decode_422_bitstream(s, 4);
  953. lefty= s->dsp.add_hfyu_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  954. if(!(s->flags&CODEC_FLAG_GRAY)){
  955. leftu= s->dsp.add_hfyu_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  956. leftv= s->dsp.add_hfyu_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  957. }
  958. /* next line except the first 4 pixels is median predicted */
  959. lefttopy= p->data[0][3];
  960. decode_422_bitstream(s, width-4);
  961. s->dsp.add_hfyu_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  962. if(!(s->flags&CODEC_FLAG_GRAY)){
  963. lefttopu= p->data[1][1];
  964. lefttopv= p->data[2][1];
  965. s->dsp.add_hfyu_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  966. s->dsp.add_hfyu_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  967. }
  968. y++; cy++;
  969. for(; y<height; y++,cy++){
  970. uint8_t *ydst, *udst, *vdst;
  971. if(s->bitstream_bpp==12){
  972. while(2*cy > y){
  973. decode_gray_bitstream(s, width);
  974. ydst= p->data[0] + p->linesize[0]*y;
  975. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  976. y++;
  977. }
  978. if(y>=height) break;
  979. }
  980. draw_slice(s, y);
  981. decode_422_bitstream(s, width);
  982. ydst= p->data[0] + p->linesize[0]*y;
  983. udst= p->data[1] + p->linesize[1]*cy;
  984. vdst= p->data[2] + p->linesize[2]*cy;
  985. s->dsp.add_hfyu_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  986. if(!(s->flags&CODEC_FLAG_GRAY)){
  987. s->dsp.add_hfyu_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  988. s->dsp.add_hfyu_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  989. }
  990. }
  991. draw_slice(s, height);
  992. break;
  993. }
  994. }
  995. }else{
  996. int y;
  997. int leftr, leftg, leftb, lefta;
  998. const int last_line= (height-1)*p->linesize[0];
  999. if(s->bitstream_bpp==32){
  1000. lefta= p->data[0][last_line+A]= get_bits(&s->gb, 8);
  1001. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1002. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1003. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1004. }else{
  1005. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  1006. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  1007. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  1008. lefta= p->data[0][last_line+A]= 255;
  1009. skip_bits(&s->gb, 8);
  1010. }
  1011. if(s->bgr32){
  1012. switch(s->predictor){
  1013. case LEFT:
  1014. case PLANE:
  1015. decode_bgr_bitstream(s, width-1);
  1016. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb, &lefta);
  1017. for(y=s->height-2; y>=0; y--){ //Yes it is stored upside down.
  1018. decode_bgr_bitstream(s, width);
  1019. s->dsp.add_hfyu_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb, &lefta);
  1020. if(s->predictor == PLANE){
  1021. if(s->bitstream_bpp!=32) lefta=0;
  1022. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  1023. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  1024. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  1025. }
  1026. }
  1027. }
  1028. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  1029. break;
  1030. default:
  1031. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  1032. }
  1033. }else{
  1034. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  1035. return -1;
  1036. }
  1037. }
  1038. emms_c();
  1039. *picture= *p;
  1040. *data_size = sizeof(AVFrame);
  1041. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  1042. }
  1043. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1044. static int common_end(HYuvContext *s){
  1045. int i;
  1046. for(i=0; i<3; i++){
  1047. av_freep(&s->temp[i]);
  1048. }
  1049. return 0;
  1050. }
  1051. #if CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER
  1052. static av_cold int decode_end(AVCodecContext *avctx)
  1053. {
  1054. HYuvContext *s = avctx->priv_data;
  1055. int i;
  1056. if (s->picture.data[0])
  1057. avctx->release_buffer(avctx, &s->picture);
  1058. common_end(s);
  1059. av_freep(&s->bitstream_buffer);
  1060. for(i=0; i<6; i++){
  1061. free_vlc(&s->vlc[i]);
  1062. }
  1063. return 0;
  1064. }
  1065. #endif /* CONFIG_HUFFYUV_DECODER || CONFIG_FFVHUFF_DECODER */
  1066. #if CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER
  1067. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  1068. HYuvContext *s = avctx->priv_data;
  1069. AVFrame *pict = data;
  1070. const int width= s->width;
  1071. const int width2= s->width>>1;
  1072. const int height= s->height;
  1073. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  1074. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  1075. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  1076. AVFrame * const p= &s->picture;
  1077. int i, j, size=0;
  1078. *p = *pict;
  1079. p->pict_type= AV_PICTURE_TYPE_I;
  1080. p->key_frame= 1;
  1081. if(s->context){
  1082. for(i=0; i<3; i++){
  1083. generate_len_table(s->len[i], s->stats[i]);
  1084. if(generate_bits_table(s->bits[i], s->len[i])<0)
  1085. return -1;
  1086. size+= store_table(s, s->len[i], &buf[size]);
  1087. }
  1088. for(i=0; i<3; i++)
  1089. for(j=0; j<256; j++)
  1090. s->stats[i][j] >>= 1;
  1091. }
  1092. init_put_bits(&s->pb, buf+size, buf_size-size);
  1093. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  1094. int lefty, leftu, leftv, y, cy;
  1095. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  1096. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  1097. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  1098. put_bits(&s->pb, 8, p->data[0][0]);
  1099. lefty= sub_left_prediction(s, s->temp[0], p->data[0], width , 0);
  1100. leftu= sub_left_prediction(s, s->temp[1], p->data[1], width2, 0);
  1101. leftv= sub_left_prediction(s, s->temp[2], p->data[2], width2, 0);
  1102. encode_422_bitstream(s, 2, width-2);
  1103. if(s->predictor==MEDIAN){
  1104. int lefttopy, lefttopu, lefttopv;
  1105. cy=y=1;
  1106. if(s->interlaced){
  1107. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  1108. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  1109. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  1110. encode_422_bitstream(s, 0, width);
  1111. y++; cy++;
  1112. }
  1113. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  1114. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  1115. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  1116. encode_422_bitstream(s, 0, 4);
  1117. lefttopy= p->data[0][3];
  1118. lefttopu= p->data[1][1];
  1119. lefttopv= p->data[2][1];
  1120. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  1121. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  1122. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  1123. encode_422_bitstream(s, 0, width-4);
  1124. y++; cy++;
  1125. for(; y<height; y++,cy++){
  1126. uint8_t *ydst, *udst, *vdst;
  1127. if(s->bitstream_bpp==12){
  1128. while(2*cy > y){
  1129. ydst= p->data[0] + p->linesize[0]*y;
  1130. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1131. encode_gray_bitstream(s, width);
  1132. y++;
  1133. }
  1134. if(y>=height) break;
  1135. }
  1136. ydst= p->data[0] + p->linesize[0]*y;
  1137. udst= p->data[1] + p->linesize[1]*cy;
  1138. vdst= p->data[2] + p->linesize[2]*cy;
  1139. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  1140. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  1141. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  1142. encode_422_bitstream(s, 0, width);
  1143. }
  1144. }else{
  1145. for(cy=y=1; y<height; y++,cy++){
  1146. uint8_t *ydst, *udst, *vdst;
  1147. /* encode a luma only line & y++ */
  1148. if(s->bitstream_bpp==12){
  1149. ydst= p->data[0] + p->linesize[0]*y;
  1150. if(s->predictor == PLANE && s->interlaced < y){
  1151. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1152. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1153. }else{
  1154. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1155. }
  1156. encode_gray_bitstream(s, width);
  1157. y++;
  1158. if(y>=height) break;
  1159. }
  1160. ydst= p->data[0] + p->linesize[0]*y;
  1161. udst= p->data[1] + p->linesize[1]*cy;
  1162. vdst= p->data[2] + p->linesize[2]*cy;
  1163. if(s->predictor == PLANE && s->interlaced < cy){
  1164. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  1165. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  1166. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  1167. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  1168. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  1169. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  1170. }else{
  1171. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  1172. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  1173. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  1174. }
  1175. encode_422_bitstream(s, 0, width);
  1176. }
  1177. }
  1178. }else if(avctx->pix_fmt == PIX_FMT_RGB32){
  1179. uint8_t *data = p->data[0] + (height-1)*p->linesize[0];
  1180. const int stride = -p->linesize[0];
  1181. const int fake_stride = -fake_ystride;
  1182. int y;
  1183. int leftr, leftg, leftb;
  1184. put_bits(&s->pb, 8, leftr= data[R]);
  1185. put_bits(&s->pb, 8, leftg= data[G]);
  1186. put_bits(&s->pb, 8, leftb= data[B]);
  1187. put_bits(&s->pb, 8, 0);
  1188. sub_left_prediction_bgr32(s, s->temp[0], data+4, width-1, &leftr, &leftg, &leftb);
  1189. encode_bgr_bitstream(s, width-1);
  1190. for(y=1; y<s->height; y++){
  1191. uint8_t *dst = data + y*stride;
  1192. if(s->predictor == PLANE && s->interlaced < y){
  1193. s->dsp.diff_bytes(s->temp[1], dst, dst - fake_stride, width*4);
  1194. sub_left_prediction_bgr32(s, s->temp[0], s->temp[1], width, &leftr, &leftg, &leftb);
  1195. }else{
  1196. sub_left_prediction_bgr32(s, s->temp[0], dst, width, &leftr, &leftg, &leftb);
  1197. }
  1198. encode_bgr_bitstream(s, width);
  1199. }
  1200. }else{
  1201. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  1202. }
  1203. emms_c();
  1204. size+= (put_bits_count(&s->pb)+31)/8;
  1205. put_bits(&s->pb, 16, 0);
  1206. put_bits(&s->pb, 15, 0);
  1207. size/= 4;
  1208. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  1209. int j;
  1210. char *p= avctx->stats_out;
  1211. char *end= p + 1024*30;
  1212. for(i=0; i<3; i++){
  1213. for(j=0; j<256; j++){
  1214. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1215. p+= strlen(p);
  1216. s->stats[i][j]= 0;
  1217. }
  1218. snprintf(p, end-p, "\n");
  1219. p++;
  1220. }
  1221. } else
  1222. avctx->stats_out[0] = '\0';
  1223. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1224. flush_put_bits(&s->pb);
  1225. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1226. }
  1227. s->picture_number++;
  1228. return size*4;
  1229. }
  1230. static av_cold int encode_end(AVCodecContext *avctx)
  1231. {
  1232. HYuvContext *s = avctx->priv_data;
  1233. common_end(s);
  1234. av_freep(&avctx->extradata);
  1235. av_freep(&avctx->stats_out);
  1236. return 0;
  1237. }
  1238. #endif /* CONFIG_HUFFYUV_ENCODER || CONFIG_FFVHUFF_ENCODER */
  1239. #if CONFIG_HUFFYUV_DECODER
  1240. AVCodec ff_huffyuv_decoder = {
  1241. "huffyuv",
  1242. AVMEDIA_TYPE_VIDEO,
  1243. CODEC_ID_HUFFYUV,
  1244. sizeof(HYuvContext),
  1245. decode_init,
  1246. NULL,
  1247. decode_end,
  1248. decode_frame,
  1249. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1250. NULL,
  1251. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1252. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1253. };
  1254. #endif
  1255. #if CONFIG_FFVHUFF_DECODER
  1256. AVCodec ff_ffvhuff_decoder = {
  1257. "ffvhuff",
  1258. AVMEDIA_TYPE_VIDEO,
  1259. CODEC_ID_FFVHUFF,
  1260. sizeof(HYuvContext),
  1261. decode_init,
  1262. NULL,
  1263. decode_end,
  1264. decode_frame,
  1265. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND | CODEC_CAP_FRAME_THREADS,
  1266. NULL,
  1267. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  1268. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1269. };
  1270. #endif
  1271. #if CONFIG_HUFFYUV_ENCODER
  1272. AVCodec ff_huffyuv_encoder = {
  1273. "huffyuv",
  1274. AVMEDIA_TYPE_VIDEO,
  1275. CODEC_ID_HUFFYUV,
  1276. sizeof(HYuvContext),
  1277. encode_init,
  1278. encode_frame,
  1279. encode_end,
  1280. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1281. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv / HuffYUV"),
  1282. };
  1283. #endif
  1284. #if CONFIG_FFVHUFF_ENCODER
  1285. AVCodec ff_ffvhuff_encoder = {
  1286. "ffvhuff",
  1287. AVMEDIA_TYPE_VIDEO,
  1288. CODEC_ID_FFVHUFF,
  1289. sizeof(HYuvContext),
  1290. encode_init,
  1291. encode_frame,
  1292. encode_end,
  1293. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, PIX_FMT_RGB32, PIX_FMT_NONE},
  1294. .long_name = NULL_IF_CONFIG_SMALL("Huffyuv FFmpeg variant"),
  1295. };
  1296. #endif