You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1771 lines
66KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "libavutil/libm.h"
  34. #include "libavutil/avassert.h"
  35. #include <stdint.h>
  36. #include <float.h>
  37. #include <math.h>
  38. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  39. #define NOISE_FLOOR_OFFSET 6.0f
  40. /**
  41. * SBR VLC tables
  42. */
  43. enum {
  44. T_HUFFMAN_ENV_1_5DB,
  45. F_HUFFMAN_ENV_1_5DB,
  46. T_HUFFMAN_ENV_BAL_1_5DB,
  47. F_HUFFMAN_ENV_BAL_1_5DB,
  48. T_HUFFMAN_ENV_3_0DB,
  49. F_HUFFMAN_ENV_3_0DB,
  50. T_HUFFMAN_ENV_BAL_3_0DB,
  51. F_HUFFMAN_ENV_BAL_3_0DB,
  52. T_HUFFMAN_NOISE_3_0DB,
  53. T_HUFFMAN_NOISE_BAL_3_0DB,
  54. };
  55. /**
  56. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  57. */
  58. enum {
  59. FIXFIX,
  60. FIXVAR,
  61. VARFIX,
  62. VARVAR,
  63. };
  64. enum {
  65. EXTENSION_ID_PS = 2,
  66. };
  67. static VLC vlc_sbr[10];
  68. static const int8_t vlc_sbr_lav[10] =
  69. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  70. static const DECLARE_ALIGNED(16, float, zero64)[64];
  71. #define SBR_INIT_VLC_STATIC(num, size) \
  72. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  73. sbr_tmp[num].sbr_bits , 1, 1, \
  74. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  75. size)
  76. #define SBR_VLC_ROW(name) \
  77. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  78. av_cold void ff_aac_sbr_init(void)
  79. {
  80. int n;
  81. static const struct {
  82. const void *sbr_codes, *sbr_bits;
  83. const unsigned int table_size, elem_size;
  84. } sbr_tmp[] = {
  85. SBR_VLC_ROW(t_huffman_env_1_5dB),
  86. SBR_VLC_ROW(f_huffman_env_1_5dB),
  87. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  89. SBR_VLC_ROW(t_huffman_env_3_0dB),
  90. SBR_VLC_ROW(f_huffman_env_3_0dB),
  91. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  94. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  95. };
  96. // SBR VLC table initialization
  97. SBR_INIT_VLC_STATIC(0, 1098);
  98. SBR_INIT_VLC_STATIC(1, 1092);
  99. SBR_INIT_VLC_STATIC(2, 768);
  100. SBR_INIT_VLC_STATIC(3, 1026);
  101. SBR_INIT_VLC_STATIC(4, 1058);
  102. SBR_INIT_VLC_STATIC(5, 1052);
  103. SBR_INIT_VLC_STATIC(6, 544);
  104. SBR_INIT_VLC_STATIC(7, 544);
  105. SBR_INIT_VLC_STATIC(8, 592);
  106. SBR_INIT_VLC_STATIC(9, 512);
  107. for (n = 1; n < 320; n++)
  108. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  109. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  110. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  111. for (n = 0; n < 320; n++)
  112. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  113. ff_ps_init();
  114. }
  115. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  116. {
  117. float mdct_scale;
  118. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  119. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  120. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  121. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  122. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  123. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  124. * and scale back down at synthesis. */
  125. mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
  126. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
  127. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
  128. ff_ps_ctx_init(&sbr->ps);
  129. }
  130. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  131. {
  132. ff_mdct_end(&sbr->mdct);
  133. ff_mdct_end(&sbr->mdct_ana);
  134. }
  135. static int qsort_comparison_function_int16(const void *a, const void *b)
  136. {
  137. return *(const int16_t *)a - *(const int16_t *)b;
  138. }
  139. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  140. {
  141. int i;
  142. for (i = 0; i <= last_el; i++)
  143. if (table[i] == needle)
  144. return 1;
  145. return 0;
  146. }
  147. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  148. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  149. {
  150. int k;
  151. if (sbr->bs_limiter_bands > 0) {
  152. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  153. 1.18509277094158210129f, //2^(0.49/2)
  154. 1.11987160404675912501f }; //2^(0.49/3)
  155. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  156. int16_t patch_borders[7];
  157. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  158. patch_borders[0] = sbr->kx[1];
  159. for (k = 1; k <= sbr->num_patches; k++)
  160. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  161. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  162. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  163. if (sbr->num_patches > 1)
  164. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  165. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  166. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  167. sizeof(sbr->f_tablelim[0]),
  168. qsort_comparison_function_int16);
  169. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  170. while (out < sbr->f_tablelim + sbr->n_lim) {
  171. if (*in >= *out * lim_bands_per_octave_warped) {
  172. *++out = *in++;
  173. } else if (*in == *out ||
  174. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  175. in++;
  176. sbr->n_lim--;
  177. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  178. *out = *in++;
  179. sbr->n_lim--;
  180. } else {
  181. *++out = *in++;
  182. }
  183. }
  184. } else {
  185. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  186. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  187. sbr->n_lim = 1;
  188. }
  189. }
  190. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  191. {
  192. unsigned int cnt = get_bits_count(gb);
  193. uint8_t bs_header_extra_1;
  194. uint8_t bs_header_extra_2;
  195. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  196. SpectrumParameters old_spectrum_params;
  197. sbr->start = 1;
  198. // Save last spectrum parameters variables to compare to new ones
  199. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  200. sbr->bs_amp_res_header = get_bits1(gb);
  201. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  202. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  203. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  204. skip_bits(gb, 2); // bs_reserved
  205. bs_header_extra_1 = get_bits1(gb);
  206. bs_header_extra_2 = get_bits1(gb);
  207. if (bs_header_extra_1) {
  208. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  209. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  210. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  211. } else {
  212. sbr->spectrum_params.bs_freq_scale = 2;
  213. sbr->spectrum_params.bs_alter_scale = 1;
  214. sbr->spectrum_params.bs_noise_bands = 2;
  215. }
  216. // Check if spectrum parameters changed
  217. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  218. sbr->reset = 1;
  219. if (bs_header_extra_2) {
  220. sbr->bs_limiter_bands = get_bits(gb, 2);
  221. sbr->bs_limiter_gains = get_bits(gb, 2);
  222. sbr->bs_interpol_freq = get_bits1(gb);
  223. sbr->bs_smoothing_mode = get_bits1(gb);
  224. } else {
  225. sbr->bs_limiter_bands = 2;
  226. sbr->bs_limiter_gains = 2;
  227. sbr->bs_interpol_freq = 1;
  228. sbr->bs_smoothing_mode = 1;
  229. }
  230. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  231. sbr_make_f_tablelim(sbr);
  232. return get_bits_count(gb) - cnt;
  233. }
  234. static int array_min_int16(const int16_t *array, int nel)
  235. {
  236. int i, min = array[0];
  237. for (i = 1; i < nel; i++)
  238. min = FFMIN(array[i], min);
  239. return min;
  240. }
  241. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  242. {
  243. int k, previous, present;
  244. float base, prod;
  245. base = powf((float)stop / start, 1.0f / num_bands);
  246. prod = start;
  247. previous = start;
  248. for (k = 0; k < num_bands-1; k++) {
  249. prod *= base;
  250. present = lrintf(prod);
  251. bands[k] = present - previous;
  252. previous = present;
  253. }
  254. bands[num_bands-1] = stop - previous;
  255. }
  256. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  257. {
  258. // Requirements (14496-3 sp04 p205)
  259. if (n_master <= 0) {
  260. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  261. return -1;
  262. }
  263. if (bs_xover_band >= n_master) {
  264. av_log(avctx, AV_LOG_ERROR,
  265. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  266. bs_xover_band);
  267. return -1;
  268. }
  269. return 0;
  270. }
  271. /// Master Frequency Band Table (14496-3 sp04 p194)
  272. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  273. SpectrumParameters *spectrum)
  274. {
  275. unsigned int temp, max_qmf_subbands;
  276. unsigned int start_min, stop_min;
  277. int k;
  278. const int8_t *sbr_offset_ptr;
  279. int16_t stop_dk[13];
  280. if (sbr->sample_rate < 32000) {
  281. temp = 3000;
  282. } else if (sbr->sample_rate < 64000) {
  283. temp = 4000;
  284. } else
  285. temp = 5000;
  286. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  287. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  288. switch (sbr->sample_rate) {
  289. case 16000:
  290. sbr_offset_ptr = sbr_offset[0];
  291. break;
  292. case 22050:
  293. sbr_offset_ptr = sbr_offset[1];
  294. break;
  295. case 24000:
  296. sbr_offset_ptr = sbr_offset[2];
  297. break;
  298. case 32000:
  299. sbr_offset_ptr = sbr_offset[3];
  300. break;
  301. case 44100: case 48000: case 64000:
  302. sbr_offset_ptr = sbr_offset[4];
  303. break;
  304. case 88200: case 96000: case 128000: case 176400: case 192000:
  305. sbr_offset_ptr = sbr_offset[5];
  306. break;
  307. default:
  308. av_log(ac->avctx, AV_LOG_ERROR,
  309. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  310. return -1;
  311. }
  312. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  313. if (spectrum->bs_stop_freq < 14) {
  314. sbr->k[2] = stop_min;
  315. make_bands(stop_dk, stop_min, 64, 13);
  316. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  317. for (k = 0; k < spectrum->bs_stop_freq; k++)
  318. sbr->k[2] += stop_dk[k];
  319. } else if (spectrum->bs_stop_freq == 14) {
  320. sbr->k[2] = 2*sbr->k[0];
  321. } else if (spectrum->bs_stop_freq == 15) {
  322. sbr->k[2] = 3*sbr->k[0];
  323. } else {
  324. av_log(ac->avctx, AV_LOG_ERROR,
  325. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  326. return -1;
  327. }
  328. sbr->k[2] = FFMIN(64, sbr->k[2]);
  329. // Requirements (14496-3 sp04 p205)
  330. if (sbr->sample_rate <= 32000) {
  331. max_qmf_subbands = 48;
  332. } else if (sbr->sample_rate == 44100) {
  333. max_qmf_subbands = 35;
  334. } else if (sbr->sample_rate >= 48000)
  335. max_qmf_subbands = 32;
  336. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  337. av_log(ac->avctx, AV_LOG_ERROR,
  338. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  339. return -1;
  340. }
  341. if (!spectrum->bs_freq_scale) {
  342. int dk, k2diff;
  343. dk = spectrum->bs_alter_scale + 1;
  344. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  345. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  346. return -1;
  347. for (k = 1; k <= sbr->n_master; k++)
  348. sbr->f_master[k] = dk;
  349. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  350. if (k2diff < 0) {
  351. sbr->f_master[1]--;
  352. sbr->f_master[2]-= (k2diff < -1);
  353. } else if (k2diff) {
  354. sbr->f_master[sbr->n_master]++;
  355. }
  356. sbr->f_master[0] = sbr->k[0];
  357. for (k = 1; k <= sbr->n_master; k++)
  358. sbr->f_master[k] += sbr->f_master[k - 1];
  359. } else {
  360. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  361. int two_regions, num_bands_0;
  362. int vdk0_max, vdk1_min;
  363. int16_t vk0[49];
  364. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  365. two_regions = 1;
  366. sbr->k[1] = 2 * sbr->k[0];
  367. } else {
  368. two_regions = 0;
  369. sbr->k[1] = sbr->k[2];
  370. }
  371. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  372. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  373. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  374. return -1;
  375. }
  376. vk0[0] = 0;
  377. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  378. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  379. vdk0_max = vk0[num_bands_0];
  380. vk0[0] = sbr->k[0];
  381. for (k = 1; k <= num_bands_0; k++) {
  382. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  383. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  384. return -1;
  385. }
  386. vk0[k] += vk0[k-1];
  387. }
  388. if (two_regions) {
  389. int16_t vk1[49];
  390. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  391. : 1.0f; // bs_alter_scale = {0,1}
  392. int num_bands_1 = lrintf(half_bands * invwarp *
  393. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  394. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  395. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  396. if (vdk1_min < vdk0_max) {
  397. int change;
  398. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  399. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  400. vk1[1] += change;
  401. vk1[num_bands_1] -= change;
  402. }
  403. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  404. vk1[0] = sbr->k[1];
  405. for (k = 1; k <= num_bands_1; k++) {
  406. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  407. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  408. return -1;
  409. }
  410. vk1[k] += vk1[k-1];
  411. }
  412. sbr->n_master = num_bands_0 + num_bands_1;
  413. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  414. return -1;
  415. memcpy(&sbr->f_master[0], vk0,
  416. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  417. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  418. num_bands_1 * sizeof(sbr->f_master[0]));
  419. } else {
  420. sbr->n_master = num_bands_0;
  421. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  422. return -1;
  423. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  424. }
  425. }
  426. return 0;
  427. }
  428. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  429. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  430. {
  431. int i, k, sb = 0;
  432. int msb = sbr->k[0];
  433. int usb = sbr->kx[1];
  434. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  435. sbr->num_patches = 0;
  436. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  437. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  438. } else
  439. k = sbr->n_master;
  440. do {
  441. int odd = 0;
  442. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  443. sb = sbr->f_master[i];
  444. odd = (sb + sbr->k[0]) & 1;
  445. }
  446. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  447. // After this check the final number of patches can still be six which is
  448. // illegal however the Coding Technologies decoder check stream has a final
  449. // count of 6 patches
  450. if (sbr->num_patches > 5) {
  451. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  452. return -1;
  453. }
  454. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  455. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  456. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  457. usb = sb;
  458. msb = sb;
  459. sbr->num_patches++;
  460. } else
  461. msb = sbr->kx[1];
  462. if (sbr->f_master[k] - sb < 3)
  463. k = sbr->n_master;
  464. } while (sb != sbr->kx[1] + sbr->m[1]);
  465. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  466. sbr->num_patches--;
  467. return 0;
  468. }
  469. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  470. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  471. {
  472. int k, temp;
  473. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  474. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  475. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  476. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  477. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  478. sbr->kx[1] = sbr->f_tablehigh[0];
  479. // Requirements (14496-3 sp04 p205)
  480. if (sbr->kx[1] + sbr->m[1] > 64) {
  481. av_log(ac->avctx, AV_LOG_ERROR,
  482. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  483. return -1;
  484. }
  485. if (sbr->kx[1] > 32) {
  486. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  487. return -1;
  488. }
  489. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  490. temp = sbr->n[1] & 1;
  491. for (k = 1; k <= sbr->n[0]; k++)
  492. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  493. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  494. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  495. if (sbr->n_q > 5) {
  496. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  497. return -1;
  498. }
  499. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  500. temp = 0;
  501. for (k = 1; k <= sbr->n_q; k++) {
  502. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  503. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  504. }
  505. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  506. return -1;
  507. sbr_make_f_tablelim(sbr);
  508. sbr->data[0].f_indexnoise = 0;
  509. sbr->data[1].f_indexnoise = 0;
  510. return 0;
  511. }
  512. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  513. int elements)
  514. {
  515. int i;
  516. for (i = 0; i < elements; i++) {
  517. vec[i] = get_bits1(gb);
  518. }
  519. }
  520. /** ceil(log2(index+1)) */
  521. static const int8_t ceil_log2[] = {
  522. 0, 1, 2, 2, 3, 3,
  523. };
  524. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  525. GetBitContext *gb, SBRData *ch_data)
  526. {
  527. int i;
  528. unsigned bs_pointer = 0;
  529. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  530. int abs_bord_trail = 16;
  531. int num_rel_lead, num_rel_trail;
  532. unsigned bs_num_env_old = ch_data->bs_num_env;
  533. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  534. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  535. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  536. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  537. case FIXFIX:
  538. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  539. num_rel_lead = ch_data->bs_num_env - 1;
  540. if (ch_data->bs_num_env == 1)
  541. ch_data->bs_amp_res = 0;
  542. if (ch_data->bs_num_env > 4) {
  543. av_log(ac->avctx, AV_LOG_ERROR,
  544. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  545. ch_data->bs_num_env);
  546. return -1;
  547. }
  548. ch_data->t_env[0] = 0;
  549. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  550. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  551. ch_data->bs_num_env;
  552. for (i = 0; i < num_rel_lead; i++)
  553. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  554. ch_data->bs_freq_res[1] = get_bits1(gb);
  555. for (i = 1; i < ch_data->bs_num_env; i++)
  556. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  557. break;
  558. case FIXVAR:
  559. abs_bord_trail += get_bits(gb, 2);
  560. num_rel_trail = get_bits(gb, 2);
  561. ch_data->bs_num_env = num_rel_trail + 1;
  562. ch_data->t_env[0] = 0;
  563. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  564. for (i = 0; i < num_rel_trail; i++)
  565. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  566. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  567. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  568. for (i = 0; i < ch_data->bs_num_env; i++)
  569. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  570. break;
  571. case VARFIX:
  572. ch_data->t_env[0] = get_bits(gb, 2);
  573. num_rel_lead = get_bits(gb, 2);
  574. ch_data->bs_num_env = num_rel_lead + 1;
  575. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  576. for (i = 0; i < num_rel_lead; i++)
  577. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  578. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  579. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  580. break;
  581. case VARVAR:
  582. ch_data->t_env[0] = get_bits(gb, 2);
  583. abs_bord_trail += get_bits(gb, 2);
  584. num_rel_lead = get_bits(gb, 2);
  585. num_rel_trail = get_bits(gb, 2);
  586. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  587. if (ch_data->bs_num_env > 5) {
  588. av_log(ac->avctx, AV_LOG_ERROR,
  589. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  590. ch_data->bs_num_env);
  591. return -1;
  592. }
  593. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  594. for (i = 0; i < num_rel_lead; i++)
  595. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  596. for (i = 0; i < num_rel_trail; i++)
  597. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  598. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  599. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  600. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  601. break;
  602. }
  603. if (bs_pointer > ch_data->bs_num_env + 1) {
  604. av_log(ac->avctx, AV_LOG_ERROR,
  605. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  606. bs_pointer);
  607. return -1;
  608. }
  609. for (i = 1; i <= ch_data->bs_num_env; i++) {
  610. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  611. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  612. return -1;
  613. }
  614. }
  615. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  616. ch_data->t_q[0] = ch_data->t_env[0];
  617. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  618. if (ch_data->bs_num_noise > 1) {
  619. unsigned int idx;
  620. if (ch_data->bs_frame_class == FIXFIX) {
  621. idx = ch_data->bs_num_env >> 1;
  622. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  623. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  624. } else { // VARFIX
  625. if (!bs_pointer)
  626. idx = 1;
  627. else if (bs_pointer == 1)
  628. idx = ch_data->bs_num_env - 1;
  629. else // bs_pointer > 1
  630. idx = bs_pointer - 1;
  631. }
  632. ch_data->t_q[1] = ch_data->t_env[idx];
  633. }
  634. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  635. ch_data->e_a[1] = -1;
  636. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  637. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  638. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  639. ch_data->e_a[1] = bs_pointer - 1;
  640. return 0;
  641. }
  642. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  643. //These variables are saved from the previous frame rather than copied
  644. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  645. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  646. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  647. //These variables are read from the bitstream and therefore copied
  648. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  649. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  650. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  651. dst->bs_num_env = src->bs_num_env;
  652. dst->bs_amp_res = src->bs_amp_res;
  653. dst->bs_num_noise = src->bs_num_noise;
  654. dst->bs_frame_class = src->bs_frame_class;
  655. dst->e_a[1] = src->e_a[1];
  656. }
  657. /// Read how the envelope and noise floor data is delta coded
  658. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  659. SBRData *ch_data)
  660. {
  661. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  662. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  663. }
  664. /// Read inverse filtering data
  665. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  666. SBRData *ch_data)
  667. {
  668. int i;
  669. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  670. for (i = 0; i < sbr->n_q; i++)
  671. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  672. }
  673. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  674. SBRData *ch_data, int ch)
  675. {
  676. int bits;
  677. int i, j, k;
  678. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  679. int t_lav, f_lav;
  680. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  681. const int odd = sbr->n[1] & 1;
  682. if (sbr->bs_coupling && ch) {
  683. if (ch_data->bs_amp_res) {
  684. bits = 5;
  685. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  686. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  687. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  688. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  689. } else {
  690. bits = 6;
  691. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  692. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  693. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  694. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  695. }
  696. } else {
  697. if (ch_data->bs_amp_res) {
  698. bits = 6;
  699. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  700. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  701. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  702. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  703. } else {
  704. bits = 7;
  705. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  706. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  707. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  708. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  709. }
  710. }
  711. for (i = 0; i < ch_data->bs_num_env; i++) {
  712. if (ch_data->bs_df_env[i]) {
  713. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  714. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  715. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  716. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  717. } else if (ch_data->bs_freq_res[i + 1]) {
  718. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  719. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  720. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  721. }
  722. } else {
  723. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  724. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  725. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  726. }
  727. }
  728. } else {
  729. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  730. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  731. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  732. }
  733. }
  734. //assign 0th elements of env_facs from last elements
  735. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  736. sizeof(ch_data->env_facs[0]));
  737. }
  738. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  739. SBRData *ch_data, int ch)
  740. {
  741. int i, j;
  742. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  743. int t_lav, f_lav;
  744. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  745. if (sbr->bs_coupling && ch) {
  746. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  747. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  748. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  749. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  750. } else {
  751. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  752. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  753. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  754. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  755. }
  756. for (i = 0; i < ch_data->bs_num_noise; i++) {
  757. if (ch_data->bs_df_noise[i]) {
  758. for (j = 0; j < sbr->n_q; j++)
  759. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  760. } else {
  761. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  762. for (j = 1; j < sbr->n_q; j++)
  763. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  764. }
  765. }
  766. //assign 0th elements of noise_facs from last elements
  767. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  768. sizeof(ch_data->noise_facs[0]));
  769. }
  770. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  771. GetBitContext *gb,
  772. int bs_extension_id, int *num_bits_left)
  773. {
  774. switch (bs_extension_id) {
  775. case EXTENSION_ID_PS:
  776. if (!ac->m4ac.ps) {
  777. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  778. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  779. *num_bits_left = 0;
  780. } else {
  781. #if 1
  782. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  783. #else
  784. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  785. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  786. *num_bits_left = 0;
  787. #endif
  788. }
  789. break;
  790. default:
  791. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  792. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  793. *num_bits_left = 0;
  794. break;
  795. }
  796. }
  797. static int read_sbr_single_channel_element(AACContext *ac,
  798. SpectralBandReplication *sbr,
  799. GetBitContext *gb)
  800. {
  801. if (get_bits1(gb)) // bs_data_extra
  802. skip_bits(gb, 4); // bs_reserved
  803. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  804. return -1;
  805. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  806. read_sbr_invf(sbr, gb, &sbr->data[0]);
  807. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  808. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  809. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  810. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  811. return 0;
  812. }
  813. static int read_sbr_channel_pair_element(AACContext *ac,
  814. SpectralBandReplication *sbr,
  815. GetBitContext *gb)
  816. {
  817. if (get_bits1(gb)) // bs_data_extra
  818. skip_bits(gb, 8); // bs_reserved
  819. if ((sbr->bs_coupling = get_bits1(gb))) {
  820. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  821. return -1;
  822. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  823. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  824. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  825. read_sbr_invf(sbr, gb, &sbr->data[0]);
  826. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  827. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  828. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  829. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  830. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  831. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  832. } else {
  833. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  834. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  835. return -1;
  836. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  837. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  838. read_sbr_invf(sbr, gb, &sbr->data[0]);
  839. read_sbr_invf(sbr, gb, &sbr->data[1]);
  840. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  841. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  842. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  843. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  844. }
  845. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  846. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  847. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  848. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  849. return 0;
  850. }
  851. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  852. GetBitContext *gb, int id_aac)
  853. {
  854. unsigned int cnt = get_bits_count(gb);
  855. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  856. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  857. sbr->start = 0;
  858. return get_bits_count(gb) - cnt;
  859. }
  860. } else if (id_aac == TYPE_CPE) {
  861. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  862. sbr->start = 0;
  863. return get_bits_count(gb) - cnt;
  864. }
  865. } else {
  866. av_log(ac->avctx, AV_LOG_ERROR,
  867. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  868. sbr->start = 0;
  869. return get_bits_count(gb) - cnt;
  870. }
  871. if (get_bits1(gb)) { // bs_extended_data
  872. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  873. if (num_bits_left == 15)
  874. num_bits_left += get_bits(gb, 8); // bs_esc_count
  875. num_bits_left <<= 3;
  876. while (num_bits_left > 7) {
  877. num_bits_left -= 2;
  878. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  879. }
  880. if (num_bits_left < 0) {
  881. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  882. }
  883. if (num_bits_left > 0)
  884. skip_bits(gb, num_bits_left);
  885. }
  886. return get_bits_count(gb) - cnt;
  887. }
  888. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  889. {
  890. int err;
  891. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  892. if (err >= 0)
  893. err = sbr_make_f_derived(ac, sbr);
  894. if (err < 0) {
  895. av_log(ac->avctx, AV_LOG_ERROR,
  896. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  897. sbr->start = 0;
  898. }
  899. }
  900. /**
  901. * Decode Spectral Band Replication extension data; reference: table 4.55.
  902. *
  903. * @param crc flag indicating the presence of CRC checksum
  904. * @param cnt length of TYPE_FIL syntactic element in bytes
  905. *
  906. * @return Returns number of bytes consumed from the TYPE_FIL element.
  907. */
  908. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  909. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  910. {
  911. unsigned int num_sbr_bits = 0, num_align_bits;
  912. unsigned bytes_read;
  913. GetBitContext gbc = *gb_host, *gb = &gbc;
  914. skip_bits_long(gb_host, cnt*8 - 4);
  915. sbr->reset = 0;
  916. if (!sbr->sample_rate)
  917. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  918. if (!ac->m4ac.ext_sample_rate)
  919. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  920. if (crc) {
  921. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  922. num_sbr_bits += 10;
  923. }
  924. //Save some state from the previous frame.
  925. sbr->kx[0] = sbr->kx[1];
  926. sbr->m[0] = sbr->m[1];
  927. num_sbr_bits++;
  928. if (get_bits1(gb)) // bs_header_flag
  929. num_sbr_bits += read_sbr_header(sbr, gb);
  930. if (sbr->reset)
  931. sbr_reset(ac, sbr);
  932. if (sbr->start)
  933. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  934. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  935. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  936. if (bytes_read > cnt) {
  937. av_log(ac->avctx, AV_LOG_ERROR,
  938. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  939. }
  940. return cnt;
  941. }
  942. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  943. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  944. {
  945. int k, e;
  946. int ch;
  947. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  948. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  949. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  950. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  951. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  952. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  953. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  954. float fac = temp1 / (1.0f + temp2);
  955. sbr->data[0].env_facs[e][k] = fac;
  956. sbr->data[1].env_facs[e][k] = fac * temp2;
  957. }
  958. }
  959. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  960. for (k = 0; k < sbr->n_q; k++) {
  961. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  962. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  963. float fac = temp1 / (1.0f + temp2);
  964. sbr->data[0].noise_facs[e][k] = fac;
  965. sbr->data[1].noise_facs[e][k] = fac * temp2;
  966. }
  967. }
  968. } else { // SCE or one non-coupled CPE
  969. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  970. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  971. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  972. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  973. sbr->data[ch].env_facs[e][k] =
  974. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  975. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  976. for (k = 0; k < sbr->n_q; k++)
  977. sbr->data[ch].noise_facs[e][k] =
  978. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  979. }
  980. }
  981. }
  982. /**
  983. * Analysis QMF Bank (14496-3 sp04 p206)
  984. *
  985. * @param x pointer to the beginning of the first sample window
  986. * @param W array of complex-valued samples split into subbands
  987. */
  988. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
  989. float z[320], float W[2][32][32][2])
  990. {
  991. int i, k;
  992. memcpy(W[0], W[1], sizeof(W[0]));
  993. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  994. memcpy(x+288, in, 1024*sizeof(x[0]));
  995. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  996. // are not supported
  997. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  998. for (k = 0; k < 64; k++) {
  999. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  1000. z[k] = f;
  1001. }
  1002. //Shuffle to IMDCT
  1003. z[64] = z[0];
  1004. for (k = 1; k < 32; k++) {
  1005. z[64+2*k-1] = z[ k];
  1006. z[64+2*k ] = -z[64-k];
  1007. }
  1008. z[64+63] = z[32];
  1009. mdct->imdct_half(mdct, z, z+64);
  1010. for (k = 0; k < 32; k++) {
  1011. W[1][i][k][0] = -z[63-k];
  1012. W[1][i][k][1] = z[k];
  1013. }
  1014. x += 32;
  1015. }
  1016. }
  1017. /**
  1018. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1019. * (14496-3 sp04 p206)
  1020. */
  1021. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1022. float *out, float X[2][38][64],
  1023. float mdct_buf[2][64],
  1024. float *v0, int *v_off, const unsigned int div)
  1025. {
  1026. int i, n;
  1027. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1028. const int step = 128 >> div;
  1029. float *v;
  1030. for (i = 0; i < 32; i++) {
  1031. if (*v_off < step) {
  1032. int saved_samples = (1280 - 128) >> div;
  1033. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1034. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
  1035. } else {
  1036. *v_off -= step;
  1037. }
  1038. v = v0 + *v_off;
  1039. if (div) {
  1040. for (n = 0; n < 32; n++) {
  1041. X[0][i][ n] = -X[0][i][n];
  1042. X[0][i][32+n] = X[1][i][31-n];
  1043. }
  1044. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1045. for (n = 0; n < 32; n++) {
  1046. v[ n] = mdct_buf[0][63 - 2*n];
  1047. v[63 - n] = -mdct_buf[0][62 - 2*n];
  1048. }
  1049. } else {
  1050. for (n = 1; n < 64; n+=2) {
  1051. X[1][i][n] = -X[1][i][n];
  1052. }
  1053. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1054. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1055. for (n = 0; n < 64; n++) {
  1056. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1057. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1058. }
  1059. }
  1060. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1061. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1063. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1064. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1065. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1066. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1067. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1068. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1069. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1070. out += 64 >> div;
  1071. }
  1072. }
  1073. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1074. {
  1075. int i;
  1076. float real_sum = 0.0f;
  1077. float imag_sum = 0.0f;
  1078. if (lag) {
  1079. for (i = 1; i < 38; i++) {
  1080. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1081. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1082. }
  1083. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1084. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1085. if (lag == 1) {
  1086. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1087. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1088. }
  1089. } else {
  1090. for (i = 1; i < 38; i++) {
  1091. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1092. }
  1093. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1094. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1095. }
  1096. }
  1097. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1098. * (14496-3 sp04 p214)
  1099. * Warning: This routine does not seem numerically stable.
  1100. */
  1101. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1102. const float X_low[32][40][2], int k0)
  1103. {
  1104. int k;
  1105. for (k = 0; k < k0; k++) {
  1106. float phi[3][2][2], dk;
  1107. autocorrelate(X_low[k], phi, 0);
  1108. autocorrelate(X_low[k], phi, 1);
  1109. autocorrelate(X_low[k], phi, 2);
  1110. dk = phi[2][1][0] * phi[1][0][0] -
  1111. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1112. if (!dk) {
  1113. alpha1[k][0] = 0;
  1114. alpha1[k][1] = 0;
  1115. } else {
  1116. float temp_real, temp_im;
  1117. temp_real = phi[0][0][0] * phi[1][1][0] -
  1118. phi[0][0][1] * phi[1][1][1] -
  1119. phi[0][1][0] * phi[1][0][0];
  1120. temp_im = phi[0][0][0] * phi[1][1][1] +
  1121. phi[0][0][1] * phi[1][1][0] -
  1122. phi[0][1][1] * phi[1][0][0];
  1123. alpha1[k][0] = temp_real / dk;
  1124. alpha1[k][1] = temp_im / dk;
  1125. }
  1126. if (!phi[1][0][0]) {
  1127. alpha0[k][0] = 0;
  1128. alpha0[k][1] = 0;
  1129. } else {
  1130. float temp_real, temp_im;
  1131. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1132. alpha1[k][1] * phi[1][1][1];
  1133. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1134. alpha1[k][0] * phi[1][1][1];
  1135. alpha0[k][0] = -temp_real / phi[1][0][0];
  1136. alpha0[k][1] = -temp_im / phi[1][0][0];
  1137. }
  1138. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1139. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1140. alpha1[k][0] = 0;
  1141. alpha1[k][1] = 0;
  1142. alpha0[k][0] = 0;
  1143. alpha0[k][1] = 0;
  1144. }
  1145. }
  1146. }
  1147. /// Chirp Factors (14496-3 sp04 p214)
  1148. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1149. {
  1150. int i;
  1151. float new_bw;
  1152. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1153. for (i = 0; i < sbr->n_q; i++) {
  1154. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1155. new_bw = 0.6f;
  1156. } else
  1157. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1158. if (new_bw < ch_data->bw_array[i]) {
  1159. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1160. } else
  1161. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1162. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1163. }
  1164. }
  1165. /// Generate the subband filtered lowband
  1166. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1167. float X_low[32][40][2], const float W[2][32][32][2])
  1168. {
  1169. int i, k;
  1170. const int t_HFGen = 8;
  1171. const int i_f = 32;
  1172. memset(X_low, 0, 32*sizeof(*X_low));
  1173. for (k = 0; k < sbr->kx[1]; k++) {
  1174. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1175. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1176. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1177. }
  1178. }
  1179. for (k = 0; k < sbr->kx[0]; k++) {
  1180. for (i = 0; i < t_HFGen; i++) {
  1181. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1182. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1183. }
  1184. }
  1185. return 0;
  1186. }
  1187. /// High Frequency Generator (14496-3 sp04 p215)
  1188. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1189. float X_high[64][40][2], const float X_low[32][40][2],
  1190. const float (*alpha0)[2], const float (*alpha1)[2],
  1191. const float bw_array[5], const uint8_t *t_env,
  1192. int bs_num_env)
  1193. {
  1194. int i, j, x;
  1195. int g = 0;
  1196. int k = sbr->kx[1];
  1197. for (j = 0; j < sbr->num_patches; j++) {
  1198. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1199. float alpha[4];
  1200. const int p = sbr->patch_start_subband[j] + x;
  1201. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1202. g++;
  1203. g--;
  1204. if (g < 0) {
  1205. av_log(ac->avctx, AV_LOG_ERROR,
  1206. "ERROR : no subband found for frequency %d\n", k);
  1207. return -1;
  1208. }
  1209. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1210. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1211. alpha[2] = alpha0[p][0] * bw_array[g];
  1212. alpha[3] = alpha0[p][1] * bw_array[g];
  1213. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1214. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1215. X_high[k][idx][0] =
  1216. X_low[p][idx - 2][0] * alpha[0] -
  1217. X_low[p][idx - 2][1] * alpha[1] +
  1218. X_low[p][idx - 1][0] * alpha[2] -
  1219. X_low[p][idx - 1][1] * alpha[3] +
  1220. X_low[p][idx][0];
  1221. X_high[k][idx][1] =
  1222. X_low[p][idx - 2][1] * alpha[0] +
  1223. X_low[p][idx - 2][0] * alpha[1] +
  1224. X_low[p][idx - 1][1] * alpha[2] +
  1225. X_low[p][idx - 1][0] * alpha[3] +
  1226. X_low[p][idx][1];
  1227. }
  1228. }
  1229. }
  1230. if (k < sbr->m[1] + sbr->kx[1])
  1231. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1232. return 0;
  1233. }
  1234. /// Generate the subband filtered lowband
  1235. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1236. const float X_low[32][40][2], const float Y[2][38][64][2],
  1237. int ch)
  1238. {
  1239. int k, i;
  1240. const int i_f = 32;
  1241. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1242. memset(X, 0, 2*sizeof(*X));
  1243. for (k = 0; k < sbr->kx[0]; k++) {
  1244. for (i = 0; i < i_Temp; i++) {
  1245. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1246. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1247. }
  1248. }
  1249. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1250. for (i = 0; i < i_Temp; i++) {
  1251. X[0][i][k] = Y[0][i + i_f][k][0];
  1252. X[1][i][k] = Y[0][i + i_f][k][1];
  1253. }
  1254. }
  1255. for (k = 0; k < sbr->kx[1]; k++) {
  1256. for (i = i_Temp; i < 38; i++) {
  1257. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1258. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1259. }
  1260. }
  1261. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1262. for (i = i_Temp; i < i_f; i++) {
  1263. X[0][i][k] = Y[1][i][k][0];
  1264. X[1][i][k] = Y[1][i][k][1];
  1265. }
  1266. }
  1267. return 0;
  1268. }
  1269. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1270. * (14496-3 sp04 p217)
  1271. */
  1272. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1273. SBRData *ch_data, int e_a[2])
  1274. {
  1275. int e, i, m;
  1276. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1277. for (e = 0; e < ch_data->bs_num_env; e++) {
  1278. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1279. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1280. int k;
  1281. av_assert0(sbr->kx[1] <= table[0]);
  1282. for (i = 0; i < ilim; i++)
  1283. for (m = table[i]; m < table[i + 1]; m++)
  1284. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1285. // ch_data->bs_num_noise > 1 => 2 noise floors
  1286. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1287. for (i = 0; i < sbr->n_q; i++)
  1288. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1289. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1290. for (i = 0; i < sbr->n[1]; i++) {
  1291. if (ch_data->bs_add_harmonic_flag) {
  1292. const unsigned int m_midpoint =
  1293. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1294. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1295. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1296. }
  1297. }
  1298. for (i = 0; i < ilim; i++) {
  1299. int additional_sinusoid_present = 0;
  1300. for (m = table[i]; m < table[i + 1]; m++) {
  1301. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1302. additional_sinusoid_present = 1;
  1303. break;
  1304. }
  1305. }
  1306. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1307. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1308. }
  1309. }
  1310. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1311. }
  1312. /// Estimation of current envelope (14496-3 sp04 p218)
  1313. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1314. SpectralBandReplication *sbr, SBRData *ch_data)
  1315. {
  1316. int e, i, m;
  1317. if (sbr->bs_interpol_freq) {
  1318. for (e = 0; e < ch_data->bs_num_env; e++) {
  1319. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1320. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1321. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1322. for (m = 0; m < sbr->m[1]; m++) {
  1323. float sum = 0.0f;
  1324. for (i = ilb; i < iub; i++) {
  1325. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1326. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1327. }
  1328. e_curr[e][m] = sum * recip_env_size;
  1329. }
  1330. }
  1331. } else {
  1332. int k, p;
  1333. for (e = 0; e < ch_data->bs_num_env; e++) {
  1334. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1335. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1336. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1337. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1338. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1339. float sum = 0.0f;
  1340. const int den = env_size * (table[p + 1] - table[p]);
  1341. for (k = table[p]; k < table[p + 1]; k++) {
  1342. for (i = ilb; i < iub; i++) {
  1343. sum += X_high[k][i][0] * X_high[k][i][0] +
  1344. X_high[k][i][1] * X_high[k][i][1];
  1345. }
  1346. }
  1347. sum /= den;
  1348. for (k = table[p]; k < table[p + 1]; k++) {
  1349. e_curr[e][k - sbr->kx[1]] = sum;
  1350. }
  1351. }
  1352. }
  1353. }
  1354. }
  1355. /**
  1356. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1357. * and Calculation of gain (14496-3 sp04 p219)
  1358. */
  1359. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1360. SBRData *ch_data, const int e_a[2])
  1361. {
  1362. int e, k, m;
  1363. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1364. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1365. for (e = 0; e < ch_data->bs_num_env; e++) {
  1366. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1367. for (k = 0; k < sbr->n_lim; k++) {
  1368. float gain_boost, gain_max;
  1369. float sum[2] = { 0.0f, 0.0f };
  1370. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1371. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1372. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1373. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1374. if (!sbr->s_mapped[e][m]) {
  1375. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1376. ((1.0f + sbr->e_curr[e][m]) *
  1377. (1.0f + sbr->q_mapped[e][m] * delta)));
  1378. } else {
  1379. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1380. ((1.0f + sbr->e_curr[e][m]) *
  1381. (1.0f + sbr->q_mapped[e][m])));
  1382. }
  1383. }
  1384. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1385. sum[0] += sbr->e_origmapped[e][m];
  1386. sum[1] += sbr->e_curr[e][m];
  1387. }
  1388. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1389. gain_max = FFMIN(100000.f, gain_max);
  1390. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1391. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1392. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1393. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1394. }
  1395. sum[0] = sum[1] = 0.0f;
  1396. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1397. sum[0] += sbr->e_origmapped[e][m];
  1398. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1399. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1400. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1401. }
  1402. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1403. gain_boost = FFMIN(1.584893192f, gain_boost);
  1404. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1405. sbr->gain[e][m] *= gain_boost;
  1406. sbr->q_m[e][m] *= gain_boost;
  1407. sbr->s_m[e][m] *= gain_boost;
  1408. }
  1409. }
  1410. }
  1411. }
  1412. /// Assembling HF Signals (14496-3 sp04 p220)
  1413. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1414. SpectralBandReplication *sbr, SBRData *ch_data,
  1415. const int e_a[2])
  1416. {
  1417. int e, i, j, m;
  1418. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1419. const int kx = sbr->kx[1];
  1420. const int m_max = sbr->m[1];
  1421. static const float h_smooth[5] = {
  1422. 0.33333333333333,
  1423. 0.30150283239582,
  1424. 0.21816949906249,
  1425. 0.11516383427084,
  1426. 0.03183050093751,
  1427. };
  1428. static const int8_t phi[2][4] = {
  1429. { 1, 0, -1, 0}, // real
  1430. { 0, 1, 0, -1}, // imaginary
  1431. };
  1432. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1433. int indexnoise = ch_data->f_indexnoise;
  1434. int indexsine = ch_data->f_indexsine;
  1435. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1436. if (sbr->reset) {
  1437. for (i = 0; i < h_SL; i++) {
  1438. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1439. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1440. }
  1441. } else if (h_SL) {
  1442. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1443. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1444. }
  1445. for (e = 0; e < ch_data->bs_num_env; e++) {
  1446. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1447. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1448. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1449. }
  1450. }
  1451. for (e = 0; e < ch_data->bs_num_env; e++) {
  1452. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1453. int phi_sign = (1 - 2*(kx & 1));
  1454. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1455. for (m = 0; m < m_max; m++) {
  1456. const int idx1 = i + h_SL;
  1457. float g_filt = 0.0f;
  1458. for (j = 0; j <= h_SL; j++)
  1459. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1460. Y[1][i][m + kx][0] =
  1461. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1462. Y[1][i][m + kx][1] =
  1463. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1464. }
  1465. } else {
  1466. for (m = 0; m < m_max; m++) {
  1467. const float g_filt = g_temp[i + h_SL][m];
  1468. Y[1][i][m + kx][0] =
  1469. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1470. Y[1][i][m + kx][1] =
  1471. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1472. }
  1473. }
  1474. if (e != e_a[0] && e != e_a[1]) {
  1475. for (m = 0; m < m_max; m++) {
  1476. indexnoise = (indexnoise + 1) & 0x1ff;
  1477. if (sbr->s_m[e][m]) {
  1478. Y[1][i][m + kx][0] +=
  1479. sbr->s_m[e][m] * phi[0][indexsine];
  1480. Y[1][i][m + kx][1] +=
  1481. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1482. } else {
  1483. float q_filt;
  1484. if (h_SL) {
  1485. const int idx1 = i + h_SL;
  1486. q_filt = 0.0f;
  1487. for (j = 0; j <= h_SL; j++)
  1488. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1489. } else {
  1490. q_filt = q_temp[i][m];
  1491. }
  1492. Y[1][i][m + kx][0] +=
  1493. q_filt * sbr_noise_table[indexnoise][0];
  1494. Y[1][i][m + kx][1] +=
  1495. q_filt * sbr_noise_table[indexnoise][1];
  1496. }
  1497. phi_sign = -phi_sign;
  1498. }
  1499. } else {
  1500. indexnoise = (indexnoise + m_max) & 0x1ff;
  1501. for (m = 0; m < m_max; m++) {
  1502. Y[1][i][m + kx][0] +=
  1503. sbr->s_m[e][m] * phi[0][indexsine];
  1504. Y[1][i][m + kx][1] +=
  1505. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1506. phi_sign = -phi_sign;
  1507. }
  1508. }
  1509. indexsine = (indexsine + 1) & 3;
  1510. }
  1511. }
  1512. ch_data->f_indexnoise = indexnoise;
  1513. ch_data->f_indexsine = indexsine;
  1514. }
  1515. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1516. float* L, float* R)
  1517. {
  1518. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1519. int ch;
  1520. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1521. if (sbr->start) {
  1522. sbr_dequant(sbr, id_aac);
  1523. }
  1524. for (ch = 0; ch < nch; ch++) {
  1525. /* decode channel */
  1526. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1527. (float*)sbr->qmf_filter_scratch,
  1528. sbr->data[ch].W);
  1529. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1530. if (sbr->start) {
  1531. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1532. sbr_chirp(sbr, &sbr->data[ch]);
  1533. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1534. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1535. sbr->data[ch].bs_num_env);
  1536. // hf_adj
  1537. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1538. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1539. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1540. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1541. sbr->data[ch].e_a);
  1542. }
  1543. /* synthesis */
  1544. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1545. }
  1546. if (ac->m4ac.ps == 1) {
  1547. if (sbr->ps.start) {
  1548. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1549. } else {
  1550. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1551. }
  1552. nch = 2;
  1553. }
  1554. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1555. sbr->data[0].synthesis_filterbank_samples,
  1556. &sbr->data[0].synthesis_filterbank_samples_offset,
  1557. downsampled);
  1558. if (nch == 2)
  1559. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1560. sbr->data[1].synthesis_filterbank_samples,
  1561. &sbr->data[1].synthesis_filterbank_samples_offset,
  1562. downsampled);
  1563. }