You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2027 lines
67KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file libavcodec/qdm2.c
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. * The decoder is not perfect yet, there are still some distortions
  29. * especially on files encoded with 16 or 8 subbands.
  30. */
  31. #include <math.h>
  32. #include <stddef.h>
  33. #include <stdio.h>
  34. #define ALT_BITSTREAM_READER_LE
  35. #include "avcodec.h"
  36. #include "bitstream.h"
  37. #include "dsputil.h"
  38. #include "mpegaudio.h"
  39. #include "qdm2data.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define SOFTCLIP_THRESHOLD 27600
  43. #define HARDCLIP_THRESHOLD 35716
  44. #define QDM2_LIST_ADD(list, size, packet) \
  45. do { \
  46. if (size > 0) { \
  47. list[size - 1].next = &list[size]; \
  48. } \
  49. list[size].packet = packet; \
  50. list[size].next = NULL; \
  51. size++; \
  52. } while(0)
  53. // Result is 8, 16 or 30
  54. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  55. #define FIX_NOISE_IDX(noise_idx) \
  56. if ((noise_idx) >= 3840) \
  57. (noise_idx) -= 3840; \
  58. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  59. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  60. #define SAMPLES_NEEDED \
  61. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  62. #define SAMPLES_NEEDED_2(why) \
  63. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  64. #define QDM2_MAX_FRAME_SIZE 512
  65. typedef int8_t sb_int8_array[2][30][64];
  66. /**
  67. * Subpacket
  68. */
  69. typedef struct {
  70. int type; ///< subpacket type
  71. unsigned int size; ///< subpacket size
  72. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  73. } QDM2SubPacket;
  74. /**
  75. * A node in the subpacket list
  76. */
  77. typedef struct QDM2SubPNode {
  78. QDM2SubPacket *packet; ///< packet
  79. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  80. } QDM2SubPNode;
  81. typedef struct {
  82. float re;
  83. float im;
  84. } QDM2Complex;
  85. typedef struct {
  86. float level;
  87. QDM2Complex *complex;
  88. const float *table;
  89. int phase;
  90. int phase_shift;
  91. int duration;
  92. short time_index;
  93. short cutoff;
  94. } FFTTone;
  95. typedef struct {
  96. int16_t sub_packet;
  97. uint8_t channel;
  98. int16_t offset;
  99. int16_t exp;
  100. uint8_t phase;
  101. } FFTCoefficient;
  102. typedef struct {
  103. DECLARE_ALIGNED_16(QDM2Complex, complex[MPA_MAX_CHANNELS][256]);
  104. } QDM2FFT;
  105. /**
  106. * QDM2 decoder context
  107. */
  108. typedef struct {
  109. /// Parameters from codec header, do not change during playback
  110. int nb_channels; ///< number of channels
  111. int channels; ///< number of channels
  112. int group_size; ///< size of frame group (16 frames per group)
  113. int fft_size; ///< size of FFT, in complex numbers
  114. int checksum_size; ///< size of data block, used also for checksum
  115. /// Parameters built from header parameters, do not change during playback
  116. int group_order; ///< order of frame group
  117. int fft_order; ///< order of FFT (actually fftorder+1)
  118. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  119. int frame_size; ///< size of data frame
  120. int frequency_range;
  121. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  122. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  123. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  124. /// Packets and packet lists
  125. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  126. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  127. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  128. int sub_packets_B; ///< number of packets on 'B' list
  129. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  130. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  131. /// FFT and tones
  132. FFTTone fft_tones[1000];
  133. int fft_tone_start;
  134. int fft_tone_end;
  135. FFTCoefficient fft_coefs[1000];
  136. int fft_coefs_index;
  137. int fft_coefs_min_index[5];
  138. int fft_coefs_max_index[5];
  139. int fft_level_exp[6];
  140. RDFTContext rdft_ctx;
  141. QDM2FFT fft;
  142. /// I/O data
  143. const uint8_t *compressed_data;
  144. int compressed_size;
  145. float output_buffer[QDM2_MAX_FRAME_SIZE * MPA_MAX_CHANNELS * 2];
  146. /// Synthesis filter
  147. DECLARE_ALIGNED_16(MPA_INT, synth_buf[MPA_MAX_CHANNELS][512*2]);
  148. int synth_buf_offset[MPA_MAX_CHANNELS];
  149. DECLARE_ALIGNED_16(int32_t, sb_samples[MPA_MAX_CHANNELS][128][SBLIMIT]);
  150. /// Mixed temporary data used in decoding
  151. float tone_level[MPA_MAX_CHANNELS][30][64];
  152. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  153. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  154. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  155. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  156. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  157. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  158. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  159. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  160. // Flags
  161. int has_errors; ///< packet has errors
  162. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  163. int do_synth_filter; ///< used to perform or skip synthesis filter
  164. int sub_packet;
  165. int noise_idx; ///< index for dithering noise table
  166. } QDM2Context;
  167. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  168. static VLC vlc_tab_level;
  169. static VLC vlc_tab_diff;
  170. static VLC vlc_tab_run;
  171. static VLC fft_level_exp_alt_vlc;
  172. static VLC fft_level_exp_vlc;
  173. static VLC fft_stereo_exp_vlc;
  174. static VLC fft_stereo_phase_vlc;
  175. static VLC vlc_tab_tone_level_idx_hi1;
  176. static VLC vlc_tab_tone_level_idx_mid;
  177. static VLC vlc_tab_tone_level_idx_hi2;
  178. static VLC vlc_tab_type30;
  179. static VLC vlc_tab_type34;
  180. static VLC vlc_tab_fft_tone_offset[5];
  181. static uint16_t softclip_table[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
  182. static float noise_table[4096];
  183. static uint8_t random_dequant_index[256][5];
  184. static uint8_t random_dequant_type24[128][3];
  185. static float noise_samples[128];
  186. static DECLARE_ALIGNED_16(MPA_INT, mpa_window[512]);
  187. static av_cold void softclip_table_init(void) {
  188. int i;
  189. double dfl = SOFTCLIP_THRESHOLD - 32767;
  190. float delta = 1.0 / -dfl;
  191. for (i = 0; i < HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1; i++)
  192. softclip_table[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
  193. }
  194. // random generated table
  195. static av_cold void rnd_table_init(void) {
  196. int i,j;
  197. uint32_t ldw,hdw;
  198. uint64_t tmp64_1;
  199. uint64_t random_seed = 0;
  200. float delta = 1.0 / 16384.0;
  201. for(i = 0; i < 4096 ;i++) {
  202. random_seed = random_seed * 214013 + 2531011;
  203. noise_table[i] = (delta * (float)(((int32_t)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
  204. }
  205. for (i = 0; i < 256 ;i++) {
  206. random_seed = 81;
  207. ldw = i;
  208. for (j = 0; j < 5 ;j++) {
  209. random_dequant_index[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  210. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  211. tmp64_1 = (random_seed * 0x55555556);
  212. hdw = (uint32_t)(tmp64_1 >> 32);
  213. random_seed = (uint64_t)(hdw + (ldw >> 31));
  214. }
  215. }
  216. for (i = 0; i < 128 ;i++) {
  217. random_seed = 25;
  218. ldw = i;
  219. for (j = 0; j < 3 ;j++) {
  220. random_dequant_type24[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  221. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  222. tmp64_1 = (random_seed * 0x66666667);
  223. hdw = (uint32_t)(tmp64_1 >> 33);
  224. random_seed = hdw + (ldw >> 31);
  225. }
  226. }
  227. }
  228. static av_cold void init_noise_samples(void) {
  229. int i;
  230. int random_seed = 0;
  231. float delta = 1.0 / 16384.0;
  232. for (i = 0; i < 128;i++) {
  233. random_seed = random_seed * 214013 + 2531011;
  234. noise_samples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
  235. }
  236. }
  237. static av_cold void qdm2_init_vlc(void)
  238. {
  239. init_vlc (&vlc_tab_level, 8, 24,
  240. vlc_tab_level_huffbits, 1, 1,
  241. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  242. init_vlc (&vlc_tab_diff, 8, 37,
  243. vlc_tab_diff_huffbits, 1, 1,
  244. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  245. init_vlc (&vlc_tab_run, 5, 6,
  246. vlc_tab_run_huffbits, 1, 1,
  247. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  248. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  249. fft_level_exp_alt_huffbits, 1, 1,
  250. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  251. init_vlc (&fft_level_exp_vlc, 8, 20,
  252. fft_level_exp_huffbits, 1, 1,
  253. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  254. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  255. fft_stereo_exp_huffbits, 1, 1,
  256. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  257. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  258. fft_stereo_phase_huffbits, 1, 1,
  259. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  260. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  261. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  262. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  263. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  264. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  265. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  266. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  267. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  268. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  269. init_vlc (&vlc_tab_type30, 6, 9,
  270. vlc_tab_type30_huffbits, 1, 1,
  271. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  272. init_vlc (&vlc_tab_type34, 5, 10,
  273. vlc_tab_type34_huffbits, 1, 1,
  274. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  275. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  276. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  277. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  278. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  279. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  280. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  281. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  282. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  283. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  284. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  285. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  286. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  287. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  288. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  289. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  290. }
  291. /* for floating point to fixed point conversion */
  292. static const float f2i_scale = (float) (1 << (FRAC_BITS - 15));
  293. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  294. {
  295. int value;
  296. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  297. /* stage-2, 3 bits exponent escape sequence */
  298. if (value-- == 0)
  299. value = get_bits (gb, get_bits (gb, 3) + 1);
  300. /* stage-3, optional */
  301. if (flag) {
  302. int tmp = vlc_stage3_values[value];
  303. if ((value & ~3) > 0)
  304. tmp += get_bits (gb, (value >> 2));
  305. value = tmp;
  306. }
  307. return value;
  308. }
  309. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  310. {
  311. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  312. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  313. }
  314. /**
  315. * QDM2 checksum
  316. *
  317. * @param data pointer to data to be checksum'ed
  318. * @param length data length
  319. * @param value checksum value
  320. *
  321. * @return 0 if checksum is OK
  322. */
  323. static uint16_t qdm2_packet_checksum (const uint8_t *data, int length, int value) {
  324. int i;
  325. for (i=0; i < length; i++)
  326. value -= data[i];
  327. return (uint16_t)(value & 0xffff);
  328. }
  329. /**
  330. * Fills a QDM2SubPacket structure with packet type, size, and data pointer.
  331. *
  332. * @param gb bitreader context
  333. * @param sub_packet packet under analysis
  334. */
  335. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  336. {
  337. sub_packet->type = get_bits (gb, 8);
  338. if (sub_packet->type == 0) {
  339. sub_packet->size = 0;
  340. sub_packet->data = NULL;
  341. } else {
  342. sub_packet->size = get_bits (gb, 8);
  343. if (sub_packet->type & 0x80) {
  344. sub_packet->size <<= 8;
  345. sub_packet->size |= get_bits (gb, 8);
  346. sub_packet->type &= 0x7f;
  347. }
  348. if (sub_packet->type == 0x7f)
  349. sub_packet->type |= (get_bits (gb, 8) << 8);
  350. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  351. }
  352. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  353. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  354. }
  355. /**
  356. * Return node pointer to first packet of requested type in list.
  357. *
  358. * @param list list of subpackets to be scanned
  359. * @param type type of searched subpacket
  360. * @return node pointer for subpacket if found, else NULL
  361. */
  362. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  363. {
  364. while (list != NULL && list->packet != NULL) {
  365. if (list->packet->type == type)
  366. return list;
  367. list = list->next;
  368. }
  369. return NULL;
  370. }
  371. /**
  372. * Replaces 8 elements with their average value.
  373. * Called by qdm2_decode_superblock before starting subblock decoding.
  374. *
  375. * @param q context
  376. */
  377. static void average_quantized_coeffs (QDM2Context *q)
  378. {
  379. int i, j, n, ch, sum;
  380. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  381. for (ch = 0; ch < q->nb_channels; ch++)
  382. for (i = 0; i < n; i++) {
  383. sum = 0;
  384. for (j = 0; j < 8; j++)
  385. sum += q->quantized_coeffs[ch][i][j];
  386. sum /= 8;
  387. if (sum > 0)
  388. sum--;
  389. for (j=0; j < 8; j++)
  390. q->quantized_coeffs[ch][i][j] = sum;
  391. }
  392. }
  393. /**
  394. * Build subband samples with noise weighted by q->tone_level.
  395. * Called by synthfilt_build_sb_samples.
  396. *
  397. * @param q context
  398. * @param sb subband index
  399. */
  400. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  401. {
  402. int ch, j;
  403. FIX_NOISE_IDX(q->noise_idx);
  404. if (!q->nb_channels)
  405. return;
  406. for (ch = 0; ch < q->nb_channels; ch++)
  407. for (j = 0; j < 64; j++) {
  408. q->sb_samples[ch][j * 2][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  409. q->sb_samples[ch][j * 2 + 1][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  410. }
  411. }
  412. /**
  413. * Called while processing data from subpackets 11 and 12.
  414. * Used after making changes to coding_method array.
  415. *
  416. * @param sb subband index
  417. * @param channels number of channels
  418. * @param coding_method q->coding_method[0][0][0]
  419. */
  420. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  421. {
  422. int j,k;
  423. int ch;
  424. int run, case_val;
  425. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  426. for (ch = 0; ch < channels; ch++) {
  427. for (j = 0; j < 64; ) {
  428. if((coding_method[ch][sb][j] - 8) > 22) {
  429. run = 1;
  430. case_val = 8;
  431. } else {
  432. switch (switchtable[coding_method[ch][sb][j]-8]) {
  433. case 0: run = 10; case_val = 10; break;
  434. case 1: run = 1; case_val = 16; break;
  435. case 2: run = 5; case_val = 24; break;
  436. case 3: run = 3; case_val = 30; break;
  437. case 4: run = 1; case_val = 30; break;
  438. case 5: run = 1; case_val = 8; break;
  439. default: run = 1; case_val = 8; break;
  440. }
  441. }
  442. for (k = 0; k < run; k++)
  443. if (j + k < 128)
  444. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  445. if (k > 0) {
  446. SAMPLES_NEEDED
  447. //not debugged, almost never used
  448. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  449. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  450. }
  451. j += run;
  452. }
  453. }
  454. }
  455. /**
  456. * Related to synthesis filter
  457. * Called by process_subpacket_10
  458. *
  459. * @param q context
  460. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  461. */
  462. static void fill_tone_level_array (QDM2Context *q, int flag)
  463. {
  464. int i, sb, ch, sb_used;
  465. int tmp, tab;
  466. // This should never happen
  467. if (q->nb_channels <= 0)
  468. return;
  469. for (ch = 0; ch < q->nb_channels; ch++)
  470. for (sb = 0; sb < 30; sb++)
  471. for (i = 0; i < 8; i++) {
  472. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  473. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  474. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  475. else
  476. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  477. if(tmp < 0)
  478. tmp += 0xff;
  479. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  480. }
  481. sb_used = QDM2_SB_USED(q->sub_sampling);
  482. if ((q->superblocktype_2_3 != 0) && !flag) {
  483. for (sb = 0; sb < sb_used; sb++)
  484. for (ch = 0; ch < q->nb_channels; ch++)
  485. for (i = 0; i < 64; i++) {
  486. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  487. if (q->tone_level_idx[ch][sb][i] < 0)
  488. q->tone_level[ch][sb][i] = 0;
  489. else
  490. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  491. }
  492. } else {
  493. tab = q->superblocktype_2_3 ? 0 : 1;
  494. for (sb = 0; sb < sb_used; sb++) {
  495. if ((sb >= 4) && (sb <= 23)) {
  496. for (ch = 0; ch < q->nb_channels; ch++)
  497. for (i = 0; i < 64; i++) {
  498. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  499. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  500. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  501. q->tone_level_idx_hi2[ch][sb - 4];
  502. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  503. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  504. q->tone_level[ch][sb][i] = 0;
  505. else
  506. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  507. }
  508. } else {
  509. if (sb > 4) {
  510. for (ch = 0; ch < q->nb_channels; ch++)
  511. for (i = 0; i < 64; i++) {
  512. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  513. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  514. q->tone_level_idx_hi2[ch][sb - 4];
  515. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  516. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  517. q->tone_level[ch][sb][i] = 0;
  518. else
  519. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  520. }
  521. } else {
  522. for (ch = 0; ch < q->nb_channels; ch++)
  523. for (i = 0; i < 64; i++) {
  524. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  525. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  526. q->tone_level[ch][sb][i] = 0;
  527. else
  528. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  529. }
  530. }
  531. }
  532. }
  533. }
  534. return;
  535. }
  536. /**
  537. * Related to synthesis filter
  538. * Called by process_subpacket_11
  539. * c is built with data from subpacket 11
  540. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  541. *
  542. * @param tone_level_idx
  543. * @param tone_level_idx_temp
  544. * @param coding_method q->coding_method[0][0][0]
  545. * @param nb_channels number of channels
  546. * @param c coming from subpacket 11, passed as 8*c
  547. * @param superblocktype_2_3 flag based on superblock packet type
  548. * @param cm_table_select q->cm_table_select
  549. */
  550. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  551. sb_int8_array coding_method, int nb_channels,
  552. int c, int superblocktype_2_3, int cm_table_select)
  553. {
  554. int ch, sb, j;
  555. int tmp, acc, esp_40, comp;
  556. int add1, add2, add3, add4;
  557. int64_t multres;
  558. // This should never happen
  559. if (nb_channels <= 0)
  560. return;
  561. if (!superblocktype_2_3) {
  562. /* This case is untested, no samples available */
  563. SAMPLES_NEEDED
  564. for (ch = 0; ch < nb_channels; ch++)
  565. for (sb = 0; sb < 30; sb++) {
  566. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  567. add1 = tone_level_idx[ch][sb][j] - 10;
  568. if (add1 < 0)
  569. add1 = 0;
  570. add2 = add3 = add4 = 0;
  571. if (sb > 1) {
  572. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  573. if (add2 < 0)
  574. add2 = 0;
  575. }
  576. if (sb > 0) {
  577. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  578. if (add3 < 0)
  579. add3 = 0;
  580. }
  581. if (sb < 29) {
  582. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  583. if (add4 < 0)
  584. add4 = 0;
  585. }
  586. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  587. if (tmp < 0)
  588. tmp = 0;
  589. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  590. }
  591. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  592. }
  593. acc = 0;
  594. for (ch = 0; ch < nb_channels; ch++)
  595. for (sb = 0; sb < 30; sb++)
  596. for (j = 0; j < 64; j++)
  597. acc += tone_level_idx_temp[ch][sb][j];
  598. if (acc)
  599. tmp = c * 256 / (acc & 0xffff);
  600. multres = 0x66666667 * (acc * 10);
  601. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  602. for (ch = 0; ch < nb_channels; ch++)
  603. for (sb = 0; sb < 30; sb++)
  604. for (j = 0; j < 64; j++) {
  605. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  606. if (comp < 0)
  607. comp += 0xff;
  608. comp /= 256; // signed shift
  609. switch(sb) {
  610. case 0:
  611. if (comp < 30)
  612. comp = 30;
  613. comp += 15;
  614. break;
  615. case 1:
  616. if (comp < 24)
  617. comp = 24;
  618. comp += 10;
  619. break;
  620. case 2:
  621. case 3:
  622. case 4:
  623. if (comp < 16)
  624. comp = 16;
  625. }
  626. if (comp <= 5)
  627. tmp = 0;
  628. else if (comp <= 10)
  629. tmp = 10;
  630. else if (comp <= 16)
  631. tmp = 16;
  632. else if (comp <= 24)
  633. tmp = -1;
  634. else
  635. tmp = 0;
  636. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  637. }
  638. for (sb = 0; sb < 30; sb++)
  639. fix_coding_method_array(sb, nb_channels, coding_method);
  640. for (ch = 0; ch < nb_channels; ch++)
  641. for (sb = 0; sb < 30; sb++)
  642. for (j = 0; j < 64; j++)
  643. if (sb >= 10) {
  644. if (coding_method[ch][sb][j] < 10)
  645. coding_method[ch][sb][j] = 10;
  646. } else {
  647. if (sb >= 2) {
  648. if (coding_method[ch][sb][j] < 16)
  649. coding_method[ch][sb][j] = 16;
  650. } else {
  651. if (coding_method[ch][sb][j] < 30)
  652. coding_method[ch][sb][j] = 30;
  653. }
  654. }
  655. } else { // superblocktype_2_3 != 0
  656. for (ch = 0; ch < nb_channels; ch++)
  657. for (sb = 0; sb < 30; sb++)
  658. for (j = 0; j < 64; j++)
  659. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  660. }
  661. return;
  662. }
  663. /**
  664. *
  665. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  666. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  667. *
  668. * @param q context
  669. * @param gb bitreader context
  670. * @param length packet length in bits
  671. * @param sb_min lower subband processed (sb_min included)
  672. * @param sb_max higher subband processed (sb_max excluded)
  673. */
  674. static void synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  675. {
  676. int sb, j, k, n, ch, run, channels;
  677. int joined_stereo, zero_encoding, chs;
  678. int type34_first;
  679. float type34_div = 0;
  680. float type34_predictor;
  681. float samples[10], sign_bits[16];
  682. if (length == 0) {
  683. // If no data use noise
  684. for (sb=sb_min; sb < sb_max; sb++)
  685. build_sb_samples_from_noise (q, sb);
  686. return;
  687. }
  688. for (sb = sb_min; sb < sb_max; sb++) {
  689. FIX_NOISE_IDX(q->noise_idx);
  690. channels = q->nb_channels;
  691. if (q->nb_channels <= 1 || sb < 12)
  692. joined_stereo = 0;
  693. else if (sb >= 24)
  694. joined_stereo = 1;
  695. else
  696. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  697. if (joined_stereo) {
  698. if (BITS_LEFT(length,gb) >= 16)
  699. for (j = 0; j < 16; j++)
  700. sign_bits[j] = get_bits1 (gb);
  701. for (j = 0; j < 64; j++)
  702. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  703. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  704. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  705. channels = 1;
  706. }
  707. for (ch = 0; ch < channels; ch++) {
  708. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  709. type34_predictor = 0.0;
  710. type34_first = 1;
  711. for (j = 0; j < 128; ) {
  712. switch (q->coding_method[ch][sb][j / 2]) {
  713. case 8:
  714. if (BITS_LEFT(length,gb) >= 10) {
  715. if (zero_encoding) {
  716. for (k = 0; k < 5; k++) {
  717. if ((j + 2 * k) >= 128)
  718. break;
  719. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  720. }
  721. } else {
  722. n = get_bits(gb, 8);
  723. for (k = 0; k < 5; k++)
  724. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  725. }
  726. for (k = 0; k < 5; k++)
  727. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  728. } else {
  729. for (k = 0; k < 10; k++)
  730. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  731. }
  732. run = 10;
  733. break;
  734. case 10:
  735. if (BITS_LEFT(length,gb) >= 1) {
  736. float f = 0.81;
  737. if (get_bits1(gb))
  738. f = -f;
  739. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  740. samples[0] = f;
  741. } else {
  742. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  743. }
  744. run = 1;
  745. break;
  746. case 16:
  747. if (BITS_LEFT(length,gb) >= 10) {
  748. if (zero_encoding) {
  749. for (k = 0; k < 5; k++) {
  750. if ((j + k) >= 128)
  751. break;
  752. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  753. }
  754. } else {
  755. n = get_bits (gb, 8);
  756. for (k = 0; k < 5; k++)
  757. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  758. }
  759. } else {
  760. for (k = 0; k < 5; k++)
  761. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  762. }
  763. run = 5;
  764. break;
  765. case 24:
  766. if (BITS_LEFT(length,gb) >= 7) {
  767. n = get_bits(gb, 7);
  768. for (k = 0; k < 3; k++)
  769. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  770. } else {
  771. for (k = 0; k < 3; k++)
  772. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  773. }
  774. run = 3;
  775. break;
  776. case 30:
  777. if (BITS_LEFT(length,gb) >= 4)
  778. samples[0] = type30_dequant[qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1)];
  779. else
  780. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  781. run = 1;
  782. break;
  783. case 34:
  784. if (BITS_LEFT(length,gb) >= 7) {
  785. if (type34_first) {
  786. type34_div = (float)(1 << get_bits(gb, 2));
  787. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  788. type34_predictor = samples[0];
  789. type34_first = 0;
  790. } else {
  791. samples[0] = type34_delta[qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1)] / type34_div + type34_predictor;
  792. type34_predictor = samples[0];
  793. }
  794. } else {
  795. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  796. }
  797. run = 1;
  798. break;
  799. default:
  800. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  801. run = 1;
  802. break;
  803. }
  804. if (joined_stereo) {
  805. float tmp[10][MPA_MAX_CHANNELS];
  806. for (k = 0; k < run; k++) {
  807. tmp[k][0] = samples[k];
  808. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  809. }
  810. for (chs = 0; chs < q->nb_channels; chs++)
  811. for (k = 0; k < run; k++)
  812. if ((j + k) < 128)
  813. q->sb_samples[chs][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
  814. } else {
  815. for (k = 0; k < run; k++)
  816. if ((j + k) < 128)
  817. q->sb_samples[ch][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[ch][sb][(j + k)/2] * samples[k] + .5);
  818. }
  819. j += run;
  820. } // j loop
  821. } // channel loop
  822. } // subband loop
  823. }
  824. /**
  825. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  826. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  827. * same VLC tables as process_subpacket_9 are used.
  828. *
  829. * @param q context
  830. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  831. * @param gb bitreader context
  832. * @param length packet length in bits
  833. */
  834. static void init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  835. {
  836. int i, k, run, level, diff;
  837. if (BITS_LEFT(length,gb) < 16)
  838. return;
  839. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  840. quantized_coeffs[0] = level;
  841. for (i = 0; i < 7; ) {
  842. if (BITS_LEFT(length,gb) < 16)
  843. break;
  844. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  845. if (BITS_LEFT(length,gb) < 16)
  846. break;
  847. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  848. for (k = 1; k <= run; k++)
  849. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  850. level += diff;
  851. i += run;
  852. }
  853. }
  854. /**
  855. * Related to synthesis filter, process data from packet 10
  856. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  857. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  858. *
  859. * @param q context
  860. * @param gb bitreader context
  861. * @param length packet length in bits
  862. */
  863. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  864. {
  865. int sb, j, k, n, ch;
  866. for (ch = 0; ch < q->nb_channels; ch++) {
  867. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  868. if (BITS_LEFT(length,gb) < 16) {
  869. memset(q->quantized_coeffs[ch][0], 0, 8);
  870. break;
  871. }
  872. }
  873. n = q->sub_sampling + 1;
  874. for (sb = 0; sb < n; sb++)
  875. for (ch = 0; ch < q->nb_channels; ch++)
  876. for (j = 0; j < 8; j++) {
  877. if (BITS_LEFT(length,gb) < 1)
  878. break;
  879. if (get_bits1(gb)) {
  880. for (k=0; k < 8; k++) {
  881. if (BITS_LEFT(length,gb) < 16)
  882. break;
  883. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  884. }
  885. } else {
  886. for (k=0; k < 8; k++)
  887. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  888. }
  889. }
  890. n = QDM2_SB_USED(q->sub_sampling) - 4;
  891. for (sb = 0; sb < n; sb++)
  892. for (ch = 0; ch < q->nb_channels; ch++) {
  893. if (BITS_LEFT(length,gb) < 16)
  894. break;
  895. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  896. if (sb > 19)
  897. q->tone_level_idx_hi2[ch][sb] -= 16;
  898. else
  899. for (j = 0; j < 8; j++)
  900. q->tone_level_idx_mid[ch][sb][j] = -16;
  901. }
  902. n = QDM2_SB_USED(q->sub_sampling) - 5;
  903. for (sb = 0; sb < n; sb++)
  904. for (ch = 0; ch < q->nb_channels; ch++)
  905. for (j = 0; j < 8; j++) {
  906. if (BITS_LEFT(length,gb) < 16)
  907. break;
  908. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  909. }
  910. }
  911. /**
  912. * Process subpacket 9, init quantized_coeffs with data from it
  913. *
  914. * @param q context
  915. * @param node pointer to node with packet
  916. */
  917. static void process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  918. {
  919. GetBitContext gb;
  920. int i, j, k, n, ch, run, level, diff;
  921. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  922. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  923. for (i = 1; i < n; i++)
  924. for (ch=0; ch < q->nb_channels; ch++) {
  925. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  926. q->quantized_coeffs[ch][i][0] = level;
  927. for (j = 0; j < (8 - 1); ) {
  928. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  929. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  930. for (k = 1; k <= run; k++)
  931. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  932. level += diff;
  933. j += run;
  934. }
  935. }
  936. for (ch = 0; ch < q->nb_channels; ch++)
  937. for (i = 0; i < 8; i++)
  938. q->quantized_coeffs[ch][0][i] = 0;
  939. }
  940. /**
  941. * Process subpacket 10 if not null, else
  942. *
  943. * @param q context
  944. * @param node pointer to node with packet
  945. * @param length packet length in bits
  946. */
  947. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  948. {
  949. GetBitContext gb;
  950. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  951. if (length != 0) {
  952. init_tone_level_dequantization(q, &gb, length);
  953. fill_tone_level_array(q, 1);
  954. } else {
  955. fill_tone_level_array(q, 0);
  956. }
  957. }
  958. /**
  959. * Process subpacket 11
  960. *
  961. * @param q context
  962. * @param node pointer to node with packet
  963. * @param length packet length in bit
  964. */
  965. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  966. {
  967. GetBitContext gb;
  968. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  969. if (length >= 32) {
  970. int c = get_bits (&gb, 13);
  971. if (c > 3)
  972. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  973. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  974. }
  975. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  976. }
  977. /**
  978. * Process subpacket 12
  979. *
  980. * @param q context
  981. * @param node pointer to node with packet
  982. * @param length packet length in bits
  983. */
  984. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  985. {
  986. GetBitContext gb;
  987. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  988. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  989. }
  990. /*
  991. * Process new subpackets for synthesis filter
  992. *
  993. * @param q context
  994. * @param list list with synthesis filter packets (list D)
  995. */
  996. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  997. {
  998. QDM2SubPNode *nodes[4];
  999. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1000. if (nodes[0] != NULL)
  1001. process_subpacket_9(q, nodes[0]);
  1002. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1003. if (nodes[1] != NULL)
  1004. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1005. else
  1006. process_subpacket_10(q, NULL, 0);
  1007. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1008. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1009. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1010. else
  1011. process_subpacket_11(q, NULL, 0);
  1012. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1013. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1014. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1015. else
  1016. process_subpacket_12(q, NULL, 0);
  1017. }
  1018. /*
  1019. * Decode superblock, fill packet lists.
  1020. *
  1021. * @param q context
  1022. */
  1023. static void qdm2_decode_super_block (QDM2Context *q)
  1024. {
  1025. GetBitContext gb;
  1026. QDM2SubPacket header, *packet;
  1027. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1028. unsigned int next_index = 0;
  1029. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1030. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1031. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1032. q->sub_packets_B = 0;
  1033. sub_packets_D = 0;
  1034. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1035. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1036. qdm2_decode_sub_packet_header(&gb, &header);
  1037. if (header.type < 2 || header.type >= 8) {
  1038. q->has_errors = 1;
  1039. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1040. return;
  1041. }
  1042. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1043. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1044. init_get_bits(&gb, header.data, header.size*8);
  1045. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1046. int csum = 257 * get_bits(&gb, 8) + 2 * get_bits(&gb, 8);
  1047. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1048. if (csum != 0) {
  1049. q->has_errors = 1;
  1050. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1051. return;
  1052. }
  1053. }
  1054. q->sub_packet_list_B[0].packet = NULL;
  1055. q->sub_packet_list_D[0].packet = NULL;
  1056. for (i = 0; i < 6; i++)
  1057. if (--q->fft_level_exp[i] < 0)
  1058. q->fft_level_exp[i] = 0;
  1059. for (i = 0; packet_bytes > 0; i++) {
  1060. int j;
  1061. q->sub_packet_list_A[i].next = NULL;
  1062. if (i > 0) {
  1063. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1064. /* seek to next block */
  1065. init_get_bits(&gb, header.data, header.size*8);
  1066. skip_bits(&gb, next_index*8);
  1067. if (next_index >= header.size)
  1068. break;
  1069. }
  1070. /* decode subpacket */
  1071. packet = &q->sub_packets[i];
  1072. qdm2_decode_sub_packet_header(&gb, packet);
  1073. next_index = packet->size + get_bits_count(&gb) / 8;
  1074. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1075. if (packet->type == 0)
  1076. break;
  1077. if (sub_packet_size > packet_bytes) {
  1078. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1079. break;
  1080. packet->size += packet_bytes - sub_packet_size;
  1081. }
  1082. packet_bytes -= sub_packet_size;
  1083. /* add subpacket to 'all subpackets' list */
  1084. q->sub_packet_list_A[i].packet = packet;
  1085. /* add subpacket to related list */
  1086. if (packet->type == 8) {
  1087. SAMPLES_NEEDED_2("packet type 8");
  1088. return;
  1089. } else if (packet->type >= 9 && packet->type <= 12) {
  1090. /* packets for MPEG Audio like Synthesis Filter */
  1091. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1092. } else if (packet->type == 13) {
  1093. for (j = 0; j < 6; j++)
  1094. q->fft_level_exp[j] = get_bits(&gb, 6);
  1095. } else if (packet->type == 14) {
  1096. for (j = 0; j < 6; j++)
  1097. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1098. } else if (packet->type == 15) {
  1099. SAMPLES_NEEDED_2("packet type 15")
  1100. return;
  1101. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1102. /* packets for FFT */
  1103. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1104. }
  1105. } // Packet bytes loop
  1106. /* **************************************************************** */
  1107. if (q->sub_packet_list_D[0].packet != NULL) {
  1108. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1109. q->do_synth_filter = 1;
  1110. } else if (q->do_synth_filter) {
  1111. process_subpacket_10(q, NULL, 0);
  1112. process_subpacket_11(q, NULL, 0);
  1113. process_subpacket_12(q, NULL, 0);
  1114. }
  1115. /* **************************************************************** */
  1116. }
  1117. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1118. int offset, int duration, int channel,
  1119. int exp, int phase)
  1120. {
  1121. if (q->fft_coefs_min_index[duration] < 0)
  1122. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1123. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1124. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1125. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1126. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1127. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1128. q->fft_coefs_index++;
  1129. }
  1130. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1131. {
  1132. int channel, stereo, phase, exp;
  1133. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1134. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1135. int n, offset;
  1136. local_int_4 = 0;
  1137. local_int_28 = 0;
  1138. local_int_20 = 2;
  1139. local_int_8 = (4 - duration);
  1140. local_int_10 = 1 << (q->group_order - duration - 1);
  1141. offset = 1;
  1142. while (get_bits_left(gb)>0) {
  1143. if (q->superblocktype_2_3) {
  1144. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1145. offset = 1;
  1146. if (n == 0) {
  1147. local_int_4 += local_int_10;
  1148. local_int_28 += (1 << local_int_8);
  1149. } else {
  1150. local_int_4 += 8*local_int_10;
  1151. local_int_28 += (8 << local_int_8);
  1152. }
  1153. }
  1154. offset += (n - 2);
  1155. } else {
  1156. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1157. while (offset >= (local_int_10 - 1)) {
  1158. offset += (1 - (local_int_10 - 1));
  1159. local_int_4 += local_int_10;
  1160. local_int_28 += (1 << local_int_8);
  1161. }
  1162. }
  1163. if (local_int_4 >= q->group_size)
  1164. return;
  1165. local_int_14 = (offset >> local_int_8);
  1166. if (local_int_14 >= FF_ARRAY_ELEMS(fft_level_index_table))
  1167. return;
  1168. if (q->nb_channels > 1) {
  1169. channel = get_bits1(gb);
  1170. stereo = get_bits1(gb);
  1171. } else {
  1172. channel = 0;
  1173. stereo = 0;
  1174. }
  1175. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1176. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1177. exp = (exp < 0) ? 0 : exp;
  1178. phase = get_bits(gb, 3);
  1179. stereo_exp = 0;
  1180. stereo_phase = 0;
  1181. if (stereo) {
  1182. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1183. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1184. if (stereo_phase < 0)
  1185. stereo_phase += 8;
  1186. }
  1187. if (q->frequency_range > (local_int_14 + 1)) {
  1188. int sub_packet = (local_int_20 + local_int_28);
  1189. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1190. if (stereo)
  1191. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1192. }
  1193. offset++;
  1194. }
  1195. }
  1196. static void qdm2_decode_fft_packets (QDM2Context *q)
  1197. {
  1198. int i, j, min, max, value, type, unknown_flag;
  1199. GetBitContext gb;
  1200. if (q->sub_packet_list_B[0].packet == NULL)
  1201. return;
  1202. /* reset minimum indexes for FFT coefficients */
  1203. q->fft_coefs_index = 0;
  1204. for (i=0; i < 5; i++)
  1205. q->fft_coefs_min_index[i] = -1;
  1206. /* process subpackets ordered by type, largest type first */
  1207. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1208. QDM2SubPacket *packet= NULL;
  1209. /* find subpacket with largest type less than max */
  1210. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1211. value = q->sub_packet_list_B[j].packet->type;
  1212. if (value > min && value < max) {
  1213. min = value;
  1214. packet = q->sub_packet_list_B[j].packet;
  1215. }
  1216. }
  1217. max = min;
  1218. /* check for errors (?) */
  1219. if (!packet)
  1220. return;
  1221. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1222. return;
  1223. /* decode FFT tones */
  1224. init_get_bits (&gb, packet->data, packet->size*8);
  1225. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1226. unknown_flag = 1;
  1227. else
  1228. unknown_flag = 0;
  1229. type = packet->type;
  1230. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1231. int duration = q->sub_sampling + 5 - (type & 15);
  1232. if (duration >= 0 && duration < 4)
  1233. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1234. } else if (type == 31) {
  1235. for (j=0; j < 4; j++)
  1236. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1237. } else if (type == 46) {
  1238. for (j=0; j < 6; j++)
  1239. q->fft_level_exp[j] = get_bits(&gb, 6);
  1240. for (j=0; j < 4; j++)
  1241. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1242. }
  1243. } // Loop on B packets
  1244. /* calculate maximum indexes for FFT coefficients */
  1245. for (i = 0, j = -1; i < 5; i++)
  1246. if (q->fft_coefs_min_index[i] >= 0) {
  1247. if (j >= 0)
  1248. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1249. j = i;
  1250. }
  1251. if (j >= 0)
  1252. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1253. }
  1254. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1255. {
  1256. float level, f[6];
  1257. int i;
  1258. QDM2Complex c;
  1259. const double iscale = 2.0*M_PI / 512.0;
  1260. tone->phase += tone->phase_shift;
  1261. /* calculate current level (maximum amplitude) of tone */
  1262. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1263. c.im = level * sin(tone->phase*iscale);
  1264. c.re = level * cos(tone->phase*iscale);
  1265. /* generate FFT coefficients for tone */
  1266. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1267. tone->complex[0].im += c.im;
  1268. tone->complex[0].re += c.re;
  1269. tone->complex[1].im -= c.im;
  1270. tone->complex[1].re -= c.re;
  1271. } else {
  1272. f[1] = -tone->table[4];
  1273. f[0] = tone->table[3] - tone->table[0];
  1274. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1275. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1276. f[4] = tone->table[0] - tone->table[1];
  1277. f[5] = tone->table[2];
  1278. for (i = 0; i < 2; i++) {
  1279. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].re += c.re * f[i];
  1280. tone->complex[fft_cutoff_index_table[tone->cutoff][i]].im += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1281. }
  1282. for (i = 0; i < 4; i++) {
  1283. tone->complex[i].re += c.re * f[i+2];
  1284. tone->complex[i].im += c.im * f[i+2];
  1285. }
  1286. }
  1287. /* copy the tone if it has not yet died out */
  1288. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1289. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1290. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1291. }
  1292. }
  1293. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1294. {
  1295. int i, j, ch;
  1296. const double iscale = 0.25 * M_PI;
  1297. for (ch = 0; ch < q->channels; ch++) {
  1298. memset(q->fft.complex[ch], 0, q->fft_size * sizeof(QDM2Complex));
  1299. }
  1300. /* apply FFT tones with duration 4 (1 FFT period) */
  1301. if (q->fft_coefs_min_index[4] >= 0)
  1302. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1303. float level;
  1304. QDM2Complex c;
  1305. if (q->fft_coefs[i].sub_packet != sub_packet)
  1306. break;
  1307. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1308. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1309. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1310. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1311. q->fft.complex[ch][q->fft_coefs[i].offset + 0].re += c.re;
  1312. q->fft.complex[ch][q->fft_coefs[i].offset + 0].im += c.im;
  1313. q->fft.complex[ch][q->fft_coefs[i].offset + 1].re -= c.re;
  1314. q->fft.complex[ch][q->fft_coefs[i].offset + 1].im -= c.im;
  1315. }
  1316. /* generate existing FFT tones */
  1317. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1318. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1319. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1320. }
  1321. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1322. for (i = 0; i < 4; i++)
  1323. if (q->fft_coefs_min_index[i] >= 0) {
  1324. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1325. int offset, four_i;
  1326. FFTTone tone;
  1327. if (q->fft_coefs[j].sub_packet != sub_packet)
  1328. break;
  1329. four_i = (4 - i);
  1330. offset = q->fft_coefs[j].offset >> four_i;
  1331. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1332. if (offset < q->frequency_range) {
  1333. if (offset < 2)
  1334. tone.cutoff = offset;
  1335. else
  1336. tone.cutoff = (offset >= 60) ? 3 : 2;
  1337. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1338. tone.complex = &q->fft.complex[ch][offset];
  1339. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1340. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1341. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1342. tone.duration = i;
  1343. tone.time_index = 0;
  1344. qdm2_fft_generate_tone(q, &tone);
  1345. }
  1346. }
  1347. q->fft_coefs_min_index[i] = j;
  1348. }
  1349. }
  1350. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1351. {
  1352. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.5f : 1.0f;
  1353. int i;
  1354. q->fft.complex[channel][0].re *= 2.0f;
  1355. q->fft.complex[channel][0].im = 0.0f;
  1356. ff_rdft_calc(&q->rdft_ctx, (FFTSample *)q->fft.complex[channel]);
  1357. /* add samples to output buffer */
  1358. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1359. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex[channel])[i] * gain;
  1360. }
  1361. /**
  1362. * @param q context
  1363. * @param index subpacket number
  1364. */
  1365. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1366. {
  1367. OUT_INT samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  1368. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1369. /* copy sb_samples */
  1370. sb_used = QDM2_SB_USED(q->sub_sampling);
  1371. for (ch = 0; ch < q->channels; ch++)
  1372. for (i = 0; i < 8; i++)
  1373. for (k=sb_used; k < SBLIMIT; k++)
  1374. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1375. for (ch = 0; ch < q->nb_channels; ch++) {
  1376. OUT_INT *samples_ptr = samples + ch;
  1377. for (i = 0; i < 8; i++) {
  1378. ff_mpa_synth_filter(q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1379. mpa_window, &dither_state,
  1380. samples_ptr, q->nb_channels,
  1381. q->sb_samples[ch][(8 * index) + i]);
  1382. samples_ptr += 32 * q->nb_channels;
  1383. }
  1384. }
  1385. /* add samples to output buffer */
  1386. sub_sampling = (4 >> q->sub_sampling);
  1387. for (ch = 0; ch < q->channels; ch++)
  1388. for (i = 0; i < q->frame_size; i++)
  1389. q->output_buffer[q->channels * i + ch] += (float)(samples[q->nb_channels * sub_sampling * i + ch] >> (sizeof(OUT_INT)*8-16));
  1390. }
  1391. /**
  1392. * Init static data (does not depend on specific file)
  1393. *
  1394. * @param q context
  1395. */
  1396. static av_cold void qdm2_init(QDM2Context *q) {
  1397. static int initialized = 0;
  1398. if (initialized != 0)
  1399. return;
  1400. initialized = 1;
  1401. qdm2_init_vlc();
  1402. ff_mpa_synth_init(mpa_window);
  1403. softclip_table_init();
  1404. rnd_table_init();
  1405. init_noise_samples();
  1406. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1407. }
  1408. #if 0
  1409. static void dump_context(QDM2Context *q)
  1410. {
  1411. int i;
  1412. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1413. PRINT("compressed_data",q->compressed_data);
  1414. PRINT("compressed_size",q->compressed_size);
  1415. PRINT("frame_size",q->frame_size);
  1416. PRINT("checksum_size",q->checksum_size);
  1417. PRINT("channels",q->channels);
  1418. PRINT("nb_channels",q->nb_channels);
  1419. PRINT("fft_frame_size",q->fft_frame_size);
  1420. PRINT("fft_size",q->fft_size);
  1421. PRINT("sub_sampling",q->sub_sampling);
  1422. PRINT("fft_order",q->fft_order);
  1423. PRINT("group_order",q->group_order);
  1424. PRINT("group_size",q->group_size);
  1425. PRINT("sub_packet",q->sub_packet);
  1426. PRINT("frequency_range",q->frequency_range);
  1427. PRINT("has_errors",q->has_errors);
  1428. PRINT("fft_tone_end",q->fft_tone_end);
  1429. PRINT("fft_tone_start",q->fft_tone_start);
  1430. PRINT("fft_coefs_index",q->fft_coefs_index);
  1431. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1432. PRINT("cm_table_select",q->cm_table_select);
  1433. PRINT("noise_idx",q->noise_idx);
  1434. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1435. {
  1436. FFTTone *t = &q->fft_tones[i];
  1437. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1438. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1439. // PRINT(" level", t->level);
  1440. PRINT(" phase", t->phase);
  1441. PRINT(" phase_shift", t->phase_shift);
  1442. PRINT(" duration", t->duration);
  1443. PRINT(" samples_im", t->samples_im);
  1444. PRINT(" samples_re", t->samples_re);
  1445. PRINT(" table", t->table);
  1446. }
  1447. }
  1448. #endif
  1449. /**
  1450. * Init parameters from codec extradata
  1451. */
  1452. static av_cold int qdm2_decode_init(AVCodecContext *avctx)
  1453. {
  1454. QDM2Context *s = avctx->priv_data;
  1455. uint8_t *extradata;
  1456. int extradata_size;
  1457. int tmp_val, tmp, size;
  1458. /* extradata parsing
  1459. Structure:
  1460. wave {
  1461. frma (QDM2)
  1462. QDCA
  1463. QDCP
  1464. }
  1465. 32 size (including this field)
  1466. 32 tag (=frma)
  1467. 32 type (=QDM2 or QDMC)
  1468. 32 size (including this field, in bytes)
  1469. 32 tag (=QDCA) // maybe mandatory parameters
  1470. 32 unknown (=1)
  1471. 32 channels (=2)
  1472. 32 samplerate (=44100)
  1473. 32 bitrate (=96000)
  1474. 32 block size (=4096)
  1475. 32 frame size (=256) (for one channel)
  1476. 32 packet size (=1300)
  1477. 32 size (including this field, in bytes)
  1478. 32 tag (=QDCP) // maybe some tuneable parameters
  1479. 32 float1 (=1.0)
  1480. 32 zero ?
  1481. 32 float2 (=1.0)
  1482. 32 float3 (=1.0)
  1483. 32 unknown (27)
  1484. 32 unknown (8)
  1485. 32 zero ?
  1486. */
  1487. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1488. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1489. return -1;
  1490. }
  1491. extradata = avctx->extradata;
  1492. extradata_size = avctx->extradata_size;
  1493. while (extradata_size > 7) {
  1494. if (!memcmp(extradata, "frmaQDM", 7))
  1495. break;
  1496. extradata++;
  1497. extradata_size--;
  1498. }
  1499. if (extradata_size < 12) {
  1500. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1501. extradata_size);
  1502. return -1;
  1503. }
  1504. if (memcmp(extradata, "frmaQDM", 7)) {
  1505. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1506. return -1;
  1507. }
  1508. if (extradata[7] == 'C') {
  1509. // s->is_qdmc = 1;
  1510. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1511. return -1;
  1512. }
  1513. extradata += 8;
  1514. extradata_size -= 8;
  1515. size = AV_RB32(extradata);
  1516. if(size > extradata_size){
  1517. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1518. extradata_size, size);
  1519. return -1;
  1520. }
  1521. extradata += 4;
  1522. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1523. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1524. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1525. return -1;
  1526. }
  1527. extradata += 8;
  1528. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1529. extradata += 4;
  1530. if (s->channels > MPA_MAX_CHANNELS)
  1531. return AVERROR_INVALIDDATA;
  1532. avctx->sample_rate = AV_RB32(extradata);
  1533. extradata += 4;
  1534. avctx->bit_rate = AV_RB32(extradata);
  1535. extradata += 4;
  1536. s->group_size = AV_RB32(extradata);
  1537. extradata += 4;
  1538. s->fft_size = AV_RB32(extradata);
  1539. extradata += 4;
  1540. s->checksum_size = AV_RB32(extradata);
  1541. extradata += 4;
  1542. s->fft_order = av_log2(s->fft_size) + 1;
  1543. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1544. // something like max decodable tones
  1545. s->group_order = av_log2(s->group_size) + 1;
  1546. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1547. if (s->frame_size > QDM2_MAX_FRAME_SIZE)
  1548. return AVERROR_INVALIDDATA;
  1549. s->sub_sampling = s->fft_order - 7;
  1550. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1551. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1552. case 0: tmp = 40; break;
  1553. case 1: tmp = 48; break;
  1554. case 2: tmp = 56; break;
  1555. case 3: tmp = 72; break;
  1556. case 4: tmp = 80; break;
  1557. case 5: tmp = 100;break;
  1558. default: tmp=s->sub_sampling; break;
  1559. }
  1560. tmp_val = 0;
  1561. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1562. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1563. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1564. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1565. s->cm_table_select = tmp_val;
  1566. if (s->sub_sampling == 0)
  1567. tmp = 7999;
  1568. else
  1569. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1570. /*
  1571. 0: 7999 -> 0
  1572. 1: 20000 -> 2
  1573. 2: 28000 -> 2
  1574. */
  1575. if (tmp < 8000)
  1576. s->coeff_per_sb_select = 0;
  1577. else if (tmp <= 16000)
  1578. s->coeff_per_sb_select = 1;
  1579. else
  1580. s->coeff_per_sb_select = 2;
  1581. // Fail on unknown fft order
  1582. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1583. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1584. return -1;
  1585. }
  1586. ff_rdft_init(&s->rdft_ctx, s->fft_order, IRDFT);
  1587. qdm2_init(s);
  1588. avctx->sample_fmt = SAMPLE_FMT_S16;
  1589. // dump_context(s);
  1590. return 0;
  1591. }
  1592. static av_cold int qdm2_decode_close(AVCodecContext *avctx)
  1593. {
  1594. QDM2Context *s = avctx->priv_data;
  1595. ff_rdft_end(&s->rdft_ctx);
  1596. return 0;
  1597. }
  1598. static int qdm2_decode (QDM2Context *q, const uint8_t *in, int16_t *out)
  1599. {
  1600. int ch, i;
  1601. const int frame_size = (q->frame_size * q->channels);
  1602. if((unsigned)frame_size > FF_ARRAY_ELEMS(q->output_buffer)/2)
  1603. return -1;
  1604. /* select input buffer */
  1605. q->compressed_data = in;
  1606. q->compressed_size = q->checksum_size;
  1607. // dump_context(q);
  1608. /* copy old block, clear new block of output samples */
  1609. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1610. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1611. /* decode block of QDM2 compressed data */
  1612. if (q->sub_packet == 0) {
  1613. q->has_errors = 0; // zero it for a new super block
  1614. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1615. qdm2_decode_super_block(q);
  1616. }
  1617. /* parse subpackets */
  1618. if (!q->has_errors) {
  1619. if (q->sub_packet == 2)
  1620. qdm2_decode_fft_packets(q);
  1621. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1622. }
  1623. /* sound synthesis stage 1 (FFT) */
  1624. for (ch = 0; ch < q->channels; ch++) {
  1625. qdm2_calculate_fft(q, ch, q->sub_packet);
  1626. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1627. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1628. return -1;
  1629. }
  1630. }
  1631. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1632. if (!q->has_errors && q->do_synth_filter)
  1633. qdm2_synthesis_filter(q, q->sub_packet);
  1634. q->sub_packet = (q->sub_packet + 1) % 16;
  1635. /* clip and convert output float[] to 16bit signed samples */
  1636. for (i = 0; i < frame_size; i++) {
  1637. int value = (int)q->output_buffer[i];
  1638. if (value > SOFTCLIP_THRESHOLD)
  1639. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1640. else if (value < -SOFTCLIP_THRESHOLD)
  1641. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1642. out[i] = value;
  1643. }
  1644. return 0;
  1645. }
  1646. static int qdm2_decode_frame(AVCodecContext *avctx,
  1647. void *data, int *data_size,
  1648. const uint8_t *buf, int buf_size)
  1649. {
  1650. QDM2Context *s = avctx->priv_data;
  1651. int16_t *out = data;
  1652. int i, out_size;
  1653. if(!buf)
  1654. return 0;
  1655. if(buf_size < s->checksum_size)
  1656. return -1;
  1657. out_size = 16 * s->channels * s->frame_size *
  1658. av_get_bits_per_sample_format(avctx->sample_fmt)/8;
  1659. if (*data_size < out_size) {
  1660. av_log(avctx, AV_LOG_ERROR, "Output buffer is too small\n");
  1661. return AVERROR(EINVAL);
  1662. }
  1663. av_log(avctx, AV_LOG_DEBUG, "decode(%d): %p[%d] -> %p[%d]\n",
  1664. buf_size, buf, s->checksum_size, data, *data_size);
  1665. for (i = 0; i < 16; i++) {
  1666. if (qdm2_decode(s, buf, out) < 0)
  1667. return -1;
  1668. out += s->channels * s->frame_size;
  1669. }
  1670. *data_size = out_size;
  1671. return buf_size;
  1672. }
  1673. AVCodec qdm2_decoder =
  1674. {
  1675. .name = "qdm2",
  1676. .type = CODEC_TYPE_AUDIO,
  1677. .id = CODEC_ID_QDM2,
  1678. .priv_data_size = sizeof(QDM2Context),
  1679. .init = qdm2_decode_init,
  1680. .close = qdm2_decode_close,
  1681. .decode = qdm2_decode_frame,
  1682. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1683. };