You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

601 lines
18KB

  1. /*
  2. * Sierra VMD Audio & Video Decoders
  3. * Copyright (C) 2004 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/vmdav.c
  23. * Sierra VMD audio & video decoders
  24. * by Vladimir "VAG" Gneushev (vagsoft at mail.ru)
  25. * for more information on the Sierra VMD format, visit:
  26. * http://www.pcisys.net/~melanson/codecs/
  27. *
  28. * The video decoder outputs PAL8 colorspace data. The decoder expects
  29. * a 0x330-byte VMD file header to be transmitted via extradata during
  30. * codec initialization. Each encoded frame that is sent to this decoder
  31. * is expected to be prepended with the appropriate 16-byte frame
  32. * information record from the VMD file.
  33. *
  34. * The audio decoder, like the video decoder, expects each encoded data
  35. * chunk to be prepended with the appropriate 16-byte frame information
  36. * record from the VMD file. It does not require the 0x330-byte VMD file
  37. * header, but it does need the audio setup parameters passed in through
  38. * normal libavcodec API means.
  39. */
  40. #include <stdio.h>
  41. #include <stdlib.h>
  42. #include <string.h>
  43. #include <unistd.h>
  44. #include "libavutil/intreadwrite.h"
  45. #include "avcodec.h"
  46. #define VMD_HEADER_SIZE 0x330
  47. #define PALETTE_COUNT 256
  48. /*
  49. * Video Decoder
  50. */
  51. typedef struct VmdVideoContext {
  52. AVCodecContext *avctx;
  53. AVFrame frame;
  54. AVFrame prev_frame;
  55. const unsigned char *buf;
  56. int size;
  57. unsigned char palette[PALETTE_COUNT * 4];
  58. unsigned char *unpack_buffer;
  59. int unpack_buffer_size;
  60. int x_off, y_off;
  61. } VmdVideoContext;
  62. #define QUEUE_SIZE 0x1000
  63. #define QUEUE_MASK 0x0FFF
  64. static void lz_unpack(const unsigned char *src, unsigned char *dest, int dest_len)
  65. {
  66. const unsigned char *s;
  67. unsigned char *d;
  68. unsigned char *d_end;
  69. unsigned char queue[QUEUE_SIZE];
  70. unsigned int qpos;
  71. unsigned int dataleft;
  72. unsigned int chainofs;
  73. unsigned int chainlen;
  74. unsigned int speclen;
  75. unsigned char tag;
  76. unsigned int i, j;
  77. s = src;
  78. d = dest;
  79. d_end = d + dest_len;
  80. dataleft = AV_RL32(s);
  81. s += 4;
  82. memset(queue, 0x20, QUEUE_SIZE);
  83. if (AV_RL32(s) == 0x56781234) {
  84. s += 4;
  85. qpos = 0x111;
  86. speclen = 0xF + 3;
  87. } else {
  88. qpos = 0xFEE;
  89. speclen = 100; /* no speclen */
  90. }
  91. while (dataleft > 0) {
  92. tag = *s++;
  93. if ((tag == 0xFF) && (dataleft > 8)) {
  94. if (d + 8 > d_end)
  95. return;
  96. for (i = 0; i < 8; i++) {
  97. queue[qpos++] = *d++ = *s++;
  98. qpos &= QUEUE_MASK;
  99. }
  100. dataleft -= 8;
  101. } else {
  102. for (i = 0; i < 8; i++) {
  103. if (dataleft == 0)
  104. break;
  105. if (tag & 0x01) {
  106. if (d + 1 > d_end)
  107. return;
  108. queue[qpos++] = *d++ = *s++;
  109. qpos &= QUEUE_MASK;
  110. dataleft--;
  111. } else {
  112. chainofs = *s++;
  113. chainofs |= ((*s & 0xF0) << 4);
  114. chainlen = (*s++ & 0x0F) + 3;
  115. if (chainlen == speclen)
  116. chainlen = *s++ + 0xF + 3;
  117. if (d + chainlen > d_end)
  118. return;
  119. for (j = 0; j < chainlen; j++) {
  120. *d = queue[chainofs++ & QUEUE_MASK];
  121. queue[qpos++] = *d++;
  122. qpos &= QUEUE_MASK;
  123. }
  124. dataleft -= chainlen;
  125. }
  126. tag >>= 1;
  127. }
  128. }
  129. }
  130. }
  131. static int rle_unpack(const unsigned char *src, unsigned char *dest,
  132. int src_len, int dest_len)
  133. {
  134. const unsigned char *ps;
  135. unsigned char *pd;
  136. int i, l;
  137. unsigned char *dest_end = dest + dest_len;
  138. ps = src;
  139. pd = dest;
  140. if (src_len & 1)
  141. *pd++ = *ps++;
  142. src_len >>= 1;
  143. i = 0;
  144. do {
  145. l = *ps++;
  146. if (l & 0x80) {
  147. l = (l & 0x7F) * 2;
  148. if (pd + l > dest_end)
  149. return ps - src;
  150. memcpy(pd, ps, l);
  151. ps += l;
  152. pd += l;
  153. } else {
  154. if (pd + i > dest_end)
  155. return ps - src;
  156. for (i = 0; i < l; i++) {
  157. *pd++ = ps[0];
  158. *pd++ = ps[1];
  159. }
  160. ps += 2;
  161. }
  162. i += l;
  163. } while (i < src_len);
  164. return ps - src;
  165. }
  166. static void vmd_decode(VmdVideoContext *s)
  167. {
  168. int i;
  169. unsigned int *palette32;
  170. unsigned char r, g, b;
  171. /* point to the start of the encoded data */
  172. const unsigned char *p = s->buf + 16;
  173. const unsigned char *pb;
  174. unsigned char meth;
  175. unsigned char *dp; /* pointer to current frame */
  176. unsigned char *pp; /* pointer to previous frame */
  177. unsigned char len;
  178. int ofs;
  179. int frame_x, frame_y;
  180. int frame_width, frame_height;
  181. int dp_size;
  182. frame_x = AV_RL16(&s->buf[6]);
  183. frame_y = AV_RL16(&s->buf[8]);
  184. frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
  185. frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;
  186. if (frame_x < 0 || frame_width < 0 ||
  187. frame_x >= s->avctx->width ||
  188. frame_width > s->avctx->width ||
  189. frame_x + frame_width > s->avctx->width)
  190. return;
  191. if (frame_y < 0 || frame_height < 0 ||
  192. frame_y >= s->avctx->height ||
  193. frame_height > s->avctx->height ||
  194. frame_y + frame_height > s->avctx->height)
  195. return;
  196. if ((frame_width == s->avctx->width && frame_height == s->avctx->height) &&
  197. (frame_x || frame_y)) {
  198. s->x_off = frame_x;
  199. s->y_off = frame_y;
  200. }
  201. frame_x -= s->x_off;
  202. frame_y -= s->y_off;
  203. /* if only a certain region will be updated, copy the entire previous
  204. * frame before the decode */
  205. if (frame_x || frame_y || (frame_width != s->avctx->width) ||
  206. (frame_height != s->avctx->height)) {
  207. memcpy(s->frame.data[0], s->prev_frame.data[0],
  208. s->avctx->height * s->frame.linesize[0]);
  209. }
  210. /* check if there is a new palette */
  211. if (s->buf[15] & 0x02) {
  212. p += 2;
  213. palette32 = (unsigned int *)s->palette;
  214. for (i = 0; i < PALETTE_COUNT; i++) {
  215. r = *p++ * 4;
  216. g = *p++ * 4;
  217. b = *p++ * 4;
  218. palette32[i] = (r << 16) | (g << 8) | (b);
  219. }
  220. s->size -= (256 * 3 + 2);
  221. }
  222. if (s->size >= 0) {
  223. /* originally UnpackFrame in VAG's code */
  224. pb = p;
  225. meth = *pb++;
  226. if (meth & 0x80) {
  227. lz_unpack(pb, s->unpack_buffer, s->unpack_buffer_size);
  228. meth &= 0x7F;
  229. pb = s->unpack_buffer;
  230. }
  231. dp = &s->frame.data[0][frame_y * s->frame.linesize[0] + frame_x];
  232. dp_size = s->frame.linesize[0] * s->avctx->height;
  233. pp = &s->prev_frame.data[0][frame_y * s->prev_frame.linesize[0] + frame_x];
  234. switch (meth) {
  235. case 1:
  236. for (i = 0; i < frame_height; i++) {
  237. ofs = 0;
  238. do {
  239. len = *pb++;
  240. if (len & 0x80) {
  241. len = (len & 0x7F) + 1;
  242. if (ofs + len > frame_width)
  243. return;
  244. memcpy(&dp[ofs], pb, len);
  245. pb += len;
  246. ofs += len;
  247. } else {
  248. /* interframe pixel copy */
  249. if (ofs + len + 1 > frame_width)
  250. return;
  251. memcpy(&dp[ofs], &pp[ofs], len + 1);
  252. ofs += len + 1;
  253. }
  254. } while (ofs < frame_width);
  255. if (ofs > frame_width) {
  256. av_log(s->avctx, AV_LOG_ERROR, "VMD video: offset > width (%d > %d)\n",
  257. ofs, frame_width);
  258. break;
  259. }
  260. dp += s->frame.linesize[0];
  261. pp += s->prev_frame.linesize[0];
  262. }
  263. break;
  264. case 2:
  265. for (i = 0; i < frame_height; i++) {
  266. memcpy(dp, pb, frame_width);
  267. pb += frame_width;
  268. dp += s->frame.linesize[0];
  269. pp += s->prev_frame.linesize[0];
  270. }
  271. break;
  272. case 3:
  273. for (i = 0; i < frame_height; i++) {
  274. ofs = 0;
  275. do {
  276. len = *pb++;
  277. if (len & 0x80) {
  278. len = (len & 0x7F) + 1;
  279. if (*pb++ == 0xFF)
  280. len = rle_unpack(pb, &dp[ofs], len, frame_width - ofs);
  281. else
  282. memcpy(&dp[ofs], pb, len);
  283. pb += len;
  284. ofs += len;
  285. } else {
  286. /* interframe pixel copy */
  287. if (ofs + len + 1 > frame_width)
  288. return;
  289. memcpy(&dp[ofs], &pp[ofs], len + 1);
  290. ofs += len + 1;
  291. }
  292. } while (ofs < frame_width);
  293. if (ofs > frame_width) {
  294. av_log(s->avctx, AV_LOG_ERROR, "VMD video: offset > width (%d > %d)\n",
  295. ofs, frame_width);
  296. }
  297. dp += s->frame.linesize[0];
  298. pp += s->prev_frame.linesize[0];
  299. }
  300. break;
  301. }
  302. }
  303. }
  304. static av_cold int vmdvideo_decode_init(AVCodecContext *avctx)
  305. {
  306. VmdVideoContext *s = avctx->priv_data;
  307. int i;
  308. unsigned int *palette32;
  309. int palette_index = 0;
  310. unsigned char r, g, b;
  311. unsigned char *vmd_header;
  312. unsigned char *raw_palette;
  313. s->avctx = avctx;
  314. avctx->pix_fmt = PIX_FMT_PAL8;
  315. /* make sure the VMD header made it */
  316. if (s->avctx->extradata_size != VMD_HEADER_SIZE) {
  317. av_log(s->avctx, AV_LOG_ERROR, "VMD video: expected extradata size of %d\n",
  318. VMD_HEADER_SIZE);
  319. return -1;
  320. }
  321. vmd_header = (unsigned char *)avctx->extradata;
  322. s->unpack_buffer_size = AV_RL32(&vmd_header[800]);
  323. s->unpack_buffer = av_malloc(s->unpack_buffer_size);
  324. if (!s->unpack_buffer)
  325. return -1;
  326. /* load up the initial palette */
  327. raw_palette = &vmd_header[28];
  328. palette32 = (unsigned int *)s->palette;
  329. for (i = 0; i < PALETTE_COUNT; i++) {
  330. r = raw_palette[palette_index++] * 4;
  331. g = raw_palette[palette_index++] * 4;
  332. b = raw_palette[palette_index++] * 4;
  333. palette32[i] = (r << 16) | (g << 8) | (b);
  334. }
  335. s->frame.data[0] = s->prev_frame.data[0] = NULL;
  336. return 0;
  337. }
  338. static int vmdvideo_decode_frame(AVCodecContext *avctx,
  339. void *data, int *data_size,
  340. const uint8_t *buf, int buf_size)
  341. {
  342. VmdVideoContext *s = avctx->priv_data;
  343. s->buf = buf;
  344. s->size = buf_size;
  345. if (buf_size < 16)
  346. return buf_size;
  347. s->frame.reference = 1;
  348. if (avctx->get_buffer(avctx, &s->frame)) {
  349. av_log(s->avctx, AV_LOG_ERROR, "VMD Video: get_buffer() failed\n");
  350. return -1;
  351. }
  352. vmd_decode(s);
  353. /* make the palette available on the way out */
  354. memcpy(s->frame.data[1], s->palette, PALETTE_COUNT * 4);
  355. /* shuffle frames */
  356. FFSWAP(AVFrame, s->frame, s->prev_frame);
  357. if (s->frame.data[0])
  358. avctx->release_buffer(avctx, &s->frame);
  359. *data_size = sizeof(AVFrame);
  360. *(AVFrame*)data = s->prev_frame;
  361. /* report that the buffer was completely consumed */
  362. return buf_size;
  363. }
  364. static av_cold int vmdvideo_decode_end(AVCodecContext *avctx)
  365. {
  366. VmdVideoContext *s = avctx->priv_data;
  367. if (s->prev_frame.data[0])
  368. avctx->release_buffer(avctx, &s->prev_frame);
  369. av_free(s->unpack_buffer);
  370. return 0;
  371. }
  372. /*
  373. * Audio Decoder
  374. */
  375. typedef struct VmdAudioContext {
  376. AVCodecContext *avctx;
  377. int channels;
  378. int bits;
  379. int block_align;
  380. int predictors[2];
  381. } VmdAudioContext;
  382. static const uint16_t vmdaudio_table[128] = {
  383. 0x000, 0x008, 0x010, 0x020, 0x030, 0x040, 0x050, 0x060, 0x070, 0x080,
  384. 0x090, 0x0A0, 0x0B0, 0x0C0, 0x0D0, 0x0E0, 0x0F0, 0x100, 0x110, 0x120,
  385. 0x130, 0x140, 0x150, 0x160, 0x170, 0x180, 0x190, 0x1A0, 0x1B0, 0x1C0,
  386. 0x1D0, 0x1E0, 0x1F0, 0x200, 0x208, 0x210, 0x218, 0x220, 0x228, 0x230,
  387. 0x238, 0x240, 0x248, 0x250, 0x258, 0x260, 0x268, 0x270, 0x278, 0x280,
  388. 0x288, 0x290, 0x298, 0x2A0, 0x2A8, 0x2B0, 0x2B8, 0x2C0, 0x2C8, 0x2D0,
  389. 0x2D8, 0x2E0, 0x2E8, 0x2F0, 0x2F8, 0x300, 0x308, 0x310, 0x318, 0x320,
  390. 0x328, 0x330, 0x338, 0x340, 0x348, 0x350, 0x358, 0x360, 0x368, 0x370,
  391. 0x378, 0x380, 0x388, 0x390, 0x398, 0x3A0, 0x3A8, 0x3B0, 0x3B8, 0x3C0,
  392. 0x3C8, 0x3D0, 0x3D8, 0x3E0, 0x3E8, 0x3F0, 0x3F8, 0x400, 0x440, 0x480,
  393. 0x4C0, 0x500, 0x540, 0x580, 0x5C0, 0x600, 0x640, 0x680, 0x6C0, 0x700,
  394. 0x740, 0x780, 0x7C0, 0x800, 0x900, 0xA00, 0xB00, 0xC00, 0xD00, 0xE00,
  395. 0xF00, 0x1000, 0x1400, 0x1800, 0x1C00, 0x2000, 0x3000, 0x4000
  396. };
  397. static av_cold int vmdaudio_decode_init(AVCodecContext *avctx)
  398. {
  399. VmdAudioContext *s = avctx->priv_data;
  400. s->avctx = avctx;
  401. s->channels = avctx->channels;
  402. s->bits = avctx->bits_per_coded_sample;
  403. s->block_align = avctx->block_align;
  404. avctx->sample_fmt = SAMPLE_FMT_S16;
  405. av_log(s->avctx, AV_LOG_DEBUG, "%d channels, %d bits/sample, block align = %d, sample rate = %d\n",
  406. s->channels, s->bits, s->block_align, avctx->sample_rate);
  407. return 0;
  408. }
  409. static void vmdaudio_decode_audio(VmdAudioContext *s, unsigned char *data,
  410. const uint8_t *buf, int buf_size, int stereo)
  411. {
  412. int i;
  413. int chan = 0;
  414. int16_t *out = (int16_t*)data;
  415. for(i = 0; i < buf_size; i++) {
  416. if(buf[i] & 0x80)
  417. s->predictors[chan] -= vmdaudio_table[buf[i] & 0x7F];
  418. else
  419. s->predictors[chan] += vmdaudio_table[buf[i]];
  420. s->predictors[chan] = av_clip_int16(s->predictors[chan]);
  421. out[i] = s->predictors[chan];
  422. chan ^= stereo;
  423. }
  424. }
  425. static int vmdaudio_loadsound(VmdAudioContext *s, unsigned char *data,
  426. const uint8_t *buf, int silence, int data_size)
  427. {
  428. int bytes_decoded = 0;
  429. int i;
  430. // if (silence)
  431. // av_log(s->avctx, AV_LOG_INFO, "silent block!\n");
  432. if (s->channels == 2) {
  433. /* stereo handling */
  434. if (silence) {
  435. memset(data, 0, data_size * 2);
  436. } else {
  437. if (s->bits == 16)
  438. vmdaudio_decode_audio(s, data, buf, data_size, 1);
  439. else {
  440. /* copy the data but convert it to signed */
  441. for (i = 0; i < data_size; i++){
  442. *data++ = buf[i] + 0x80;
  443. *data++ = buf[i] + 0x80;
  444. }
  445. }
  446. }
  447. } else {
  448. bytes_decoded = data_size * 2;
  449. /* mono handling */
  450. if (silence) {
  451. memset(data, 0, data_size * 2);
  452. } else {
  453. if (s->bits == 16) {
  454. vmdaudio_decode_audio(s, data, buf, data_size, 0);
  455. } else {
  456. /* copy the data but convert it to signed */
  457. for (i = 0; i < data_size; i++){
  458. *data++ = buf[i] + 0x80;
  459. *data++ = buf[i] + 0x80;
  460. }
  461. }
  462. }
  463. }
  464. return data_size * 2;
  465. }
  466. static int vmdaudio_decode_frame(AVCodecContext *avctx,
  467. void *data, int *data_size,
  468. const uint8_t *buf, int buf_size)
  469. {
  470. VmdAudioContext *s = avctx->priv_data;
  471. unsigned char *output_samples = (unsigned char *)data;
  472. /* point to the start of the encoded data */
  473. const unsigned char *p = buf + 16;
  474. if (buf_size < 16)
  475. return buf_size;
  476. if (buf[6] == 1) {
  477. /* the chunk contains audio */
  478. *data_size = vmdaudio_loadsound(s, output_samples, p, 0, buf_size - 16);
  479. } else if (buf[6] == 2) {
  480. /* initial chunk, may contain audio and silence */
  481. uint32_t flags = AV_RB32(p);
  482. int raw_block_size = s->block_align * s->bits / 8;
  483. int silent_chunks;
  484. if(flags == 0xFFFFFFFF)
  485. silent_chunks = 32;
  486. else
  487. silent_chunks = av_log2(flags + 1);
  488. if(*data_size < (s->block_align*silent_chunks + buf_size - 20) * 2)
  489. return -1;
  490. *data_size = 0;
  491. memset(output_samples, 0, raw_block_size * silent_chunks);
  492. output_samples += raw_block_size * silent_chunks;
  493. *data_size = raw_block_size * silent_chunks;
  494. *data_size += vmdaudio_loadsound(s, output_samples, p + 4, 0, buf_size - 20);
  495. } else if (buf[6] == 3) {
  496. /* silent chunk */
  497. *data_size = vmdaudio_loadsound(s, output_samples, p, 1, 0);
  498. }
  499. return buf_size;
  500. }
  501. /*
  502. * Public Data Structures
  503. */
  504. AVCodec vmdvideo_decoder = {
  505. "vmdvideo",
  506. CODEC_TYPE_VIDEO,
  507. CODEC_ID_VMDVIDEO,
  508. sizeof(VmdVideoContext),
  509. vmdvideo_decode_init,
  510. NULL,
  511. vmdvideo_decode_end,
  512. vmdvideo_decode_frame,
  513. CODEC_CAP_DR1,
  514. .long_name = NULL_IF_CONFIG_SMALL("Sierra VMD video"),
  515. };
  516. AVCodec vmdaudio_decoder = {
  517. "vmdaudio",
  518. CODEC_TYPE_AUDIO,
  519. CODEC_ID_VMDAUDIO,
  520. sizeof(VmdAudioContext),
  521. vmdaudio_decode_init,
  522. NULL,
  523. NULL,
  524. vmdaudio_decode_frame,
  525. .long_name = NULL_IF_CONFIG_SMALL("Sierra VMD audio"),
  526. };