You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1108 lines
35KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/intreadwrite.h"
  29. #include "cabac.h"
  30. #include "dsputil.h"
  31. #include "error_resilience.h"
  32. #include "get_bits.h"
  33. #include "h264chroma.h"
  34. #include "h264dsp.h"
  35. #include "h264pred.h"
  36. #include "h264qpel.h"
  37. #include "mpegutils.h"
  38. #include "parser.h"
  39. #include "rectangle.h"
  40. #include "videodsp.h"
  41. #define H264_MAX_PICTURE_COUNT 36
  42. #define H264_MAX_THREADS 32
  43. #define MAX_SPS_COUNT 32
  44. #define MAX_PPS_COUNT 256
  45. #define MAX_MMCO_COUNT 66
  46. #define MAX_DELAYED_PIC_COUNT 16
  47. #define MAX_MBPAIR_SIZE (256*1024) // a tighter bound could be calculated if someone cares about a few bytes
  48. /* Compiling in interlaced support reduces the speed
  49. * of progressive decoding by about 2%. */
  50. #define ALLOW_INTERLACE
  51. #define FMO 0
  52. /**
  53. * The maximum number of slices supported by the decoder.
  54. * must be a power of 2
  55. */
  56. #define MAX_SLICES 16
  57. #ifdef ALLOW_INTERLACE
  58. #define MB_MBAFF(h) h->mb_mbaff
  59. #define MB_FIELD(h) h->mb_field_decoding_flag
  60. #define FRAME_MBAFF(h) h->mb_aff_frame
  61. #define FIELD_PICTURE(h) (h->picture_structure != PICT_FRAME)
  62. #define LEFT_MBS 2
  63. #define LTOP 0
  64. #define LBOT 1
  65. #define LEFT(i) (i)
  66. #else
  67. #define MB_MBAFF(h) 0
  68. #define MB_FIELD(h) 0
  69. #define FRAME_MBAFF(h) 0
  70. #define FIELD_PICTURE(h) 0
  71. #undef IS_INTERLACED
  72. #define IS_INTERLACED(mb_type) 0
  73. #define LEFT_MBS 1
  74. #define LTOP 0
  75. #define LBOT 0
  76. #define LEFT(i) 0
  77. #endif
  78. #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
  79. #ifndef CABAC
  80. #define CABAC(h) h->pps.cabac
  81. #endif
  82. #define CHROMA(h) (h->sps.chroma_format_idc)
  83. #define CHROMA422(h) (h->sps.chroma_format_idc == 2)
  84. #define CHROMA444(h) (h->sps.chroma_format_idc == 3)
  85. #define EXTENDED_SAR 255
  86. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  87. #define MB_TYPE_8x8DCT 0x01000000
  88. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  89. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  90. #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
  91. /* NAL unit types */
  92. enum {
  93. NAL_SLICE = 1,
  94. NAL_DPA = 2,
  95. NAL_DPB = 3,
  96. NAL_DPC = 4,
  97. NAL_IDR_SLICE = 5,
  98. NAL_SEI = 6,
  99. NAL_SPS = 7,
  100. NAL_PPS = 8,
  101. NAL_AUD = 9,
  102. NAL_END_SEQUENCE = 10,
  103. NAL_END_STREAM = 11,
  104. NAL_FILLER_DATA = 12,
  105. NAL_SPS_EXT = 13,
  106. NAL_AUXILIARY_SLICE = 19,
  107. NAL_FF_IGNORE = 0xff0f001,
  108. };
  109. /**
  110. * SEI message types
  111. */
  112. typedef enum {
  113. SEI_TYPE_BUFFERING_PERIOD = 0, ///< buffering period (H.264, D.1.1)
  114. SEI_TYPE_PIC_TIMING = 1, ///< picture timing
  115. SEI_TYPE_USER_DATA_ITU_T_T35 = 4, ///< user data registered by ITU-T Recommendation T.35
  116. SEI_TYPE_USER_DATA_UNREGISTERED = 5, ///< unregistered user data
  117. SEI_TYPE_RECOVERY_POINT = 6, ///< recovery point (frame # to decoder sync)
  118. SEI_TYPE_FRAME_PACKING = 45, ///< frame packing arrangement
  119. } SEI_Type;
  120. /**
  121. * pic_struct in picture timing SEI message
  122. */
  123. typedef enum {
  124. SEI_PIC_STRUCT_FRAME = 0, ///< 0: %frame
  125. SEI_PIC_STRUCT_TOP_FIELD = 1, ///< 1: top field
  126. SEI_PIC_STRUCT_BOTTOM_FIELD = 2, ///< 2: bottom field
  127. SEI_PIC_STRUCT_TOP_BOTTOM = 3, ///< 3: top field, bottom field, in that order
  128. SEI_PIC_STRUCT_BOTTOM_TOP = 4, ///< 4: bottom field, top field, in that order
  129. SEI_PIC_STRUCT_TOP_BOTTOM_TOP = 5, ///< 5: top field, bottom field, top field repeated, in that order
  130. SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///< 6: bottom field, top field, bottom field repeated, in that order
  131. SEI_PIC_STRUCT_FRAME_DOUBLING = 7, ///< 7: %frame doubling
  132. SEI_PIC_STRUCT_FRAME_TRIPLING = 8 ///< 8: %frame tripling
  133. } SEI_PicStructType;
  134. /**
  135. * frame_packing_arrangement types
  136. */
  137. typedef enum {
  138. SEI_FPA_TYPE_CHECKERBOARD = 0,
  139. SEI_FPA_TYPE_INTERLEAVE_COLUMN = 1,
  140. SEI_FPA_TYPE_INTERLEAVE_ROW = 2,
  141. SEI_FPA_TYPE_SIDE_BY_SIDE = 3,
  142. SEI_FPA_TYPE_TOP_BOTTOM = 4,
  143. SEI_FPA_TYPE_INTERLEAVE_TEMPORAL = 5,
  144. SEI_FPA_TYPE_2D = 6,
  145. } SEI_FpaType;
  146. /**
  147. * Sequence parameter set
  148. */
  149. typedef struct SPS {
  150. unsigned int sps_id;
  151. int profile_idc;
  152. int level_idc;
  153. int chroma_format_idc;
  154. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  155. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  156. int poc_type; ///< pic_order_cnt_type
  157. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  158. int delta_pic_order_always_zero_flag;
  159. int offset_for_non_ref_pic;
  160. int offset_for_top_to_bottom_field;
  161. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  162. int ref_frame_count; ///< num_ref_frames
  163. int gaps_in_frame_num_allowed_flag;
  164. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  165. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  166. int frame_mbs_only_flag;
  167. int mb_aff; ///< mb_adaptive_frame_field_flag
  168. int direct_8x8_inference_flag;
  169. int crop; ///< frame_cropping_flag
  170. /* those 4 are already in luma samples */
  171. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  172. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  173. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  174. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  175. int vui_parameters_present_flag;
  176. AVRational sar;
  177. int video_signal_type_present_flag;
  178. int full_range;
  179. int colour_description_present_flag;
  180. enum AVColorPrimaries color_primaries;
  181. enum AVColorTransferCharacteristic color_trc;
  182. enum AVColorSpace colorspace;
  183. int timing_info_present_flag;
  184. uint32_t num_units_in_tick;
  185. uint32_t time_scale;
  186. int fixed_frame_rate_flag;
  187. short offset_for_ref_frame[256]; // FIXME dyn aloc?
  188. int bitstream_restriction_flag;
  189. int num_reorder_frames;
  190. int scaling_matrix_present;
  191. uint8_t scaling_matrix4[6][16];
  192. uint8_t scaling_matrix8[6][64];
  193. int nal_hrd_parameters_present_flag;
  194. int vcl_hrd_parameters_present_flag;
  195. int pic_struct_present_flag;
  196. int time_offset_length;
  197. int cpb_cnt; ///< See H.264 E.1.2
  198. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
  199. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  200. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  201. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  202. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  203. int residual_color_transform_flag; ///< residual_colour_transform_flag
  204. int constraint_set_flags; ///< constraint_set[0-3]_flag
  205. int new; ///< flag to keep track if the decoder context needs re-init due to changed SPS
  206. } SPS;
  207. /**
  208. * Picture parameter set
  209. */
  210. typedef struct PPS {
  211. unsigned int sps_id;
  212. int cabac; ///< entropy_coding_mode_flag
  213. int pic_order_present; ///< pic_order_present_flag
  214. int slice_group_count; ///< num_slice_groups_minus1 + 1
  215. int mb_slice_group_map_type;
  216. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  217. int weighted_pred; ///< weighted_pred_flag
  218. int weighted_bipred_idc;
  219. int init_qp; ///< pic_init_qp_minus26 + 26
  220. int init_qs; ///< pic_init_qs_minus26 + 26
  221. int chroma_qp_index_offset[2];
  222. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  223. int constrained_intra_pred; ///< constrained_intra_pred_flag
  224. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  225. int transform_8x8_mode; ///< transform_8x8_mode_flag
  226. uint8_t scaling_matrix4[6][16];
  227. uint8_t scaling_matrix8[6][64];
  228. uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  229. int chroma_qp_diff;
  230. } PPS;
  231. /**
  232. * Frame Packing Arrangement Type
  233. */
  234. typedef struct FPA {
  235. int frame_packing_arrangement_id;
  236. int frame_packing_arrangement_cancel_flag; ///< is previous arrangement canceled, -1 if never received
  237. SEI_FpaType frame_packing_arrangement_type;
  238. int frame_packing_arrangement_repetition_period;
  239. int content_interpretation_type;
  240. int quincunx_sampling_flag;
  241. } FPA;
  242. /**
  243. * Memory management control operation opcode.
  244. */
  245. typedef enum MMCOOpcode {
  246. MMCO_END = 0,
  247. MMCO_SHORT2UNUSED,
  248. MMCO_LONG2UNUSED,
  249. MMCO_SHORT2LONG,
  250. MMCO_SET_MAX_LONG,
  251. MMCO_RESET,
  252. MMCO_LONG,
  253. } MMCOOpcode;
  254. /**
  255. * Memory management control operation.
  256. */
  257. typedef struct MMCO {
  258. MMCOOpcode opcode;
  259. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  260. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  261. } MMCO;
  262. typedef struct H264Picture {
  263. struct AVFrame f;
  264. uint8_t avframe_padding[1024]; // hack to allow linking to a avutil with larger AVFrame
  265. ThreadFrame tf;
  266. AVBufferRef *qscale_table_buf;
  267. int8_t *qscale_table;
  268. AVBufferRef *motion_val_buf[2];
  269. int16_t (*motion_val[2])[2];
  270. AVBufferRef *mb_type_buf;
  271. uint32_t *mb_type;
  272. AVBufferRef *hwaccel_priv_buf;
  273. void *hwaccel_picture_private; ///< hardware accelerator private data
  274. AVBufferRef *ref_index_buf[2];
  275. int8_t *ref_index[2];
  276. int field_poc[2]; ///< top/bottom POC
  277. int poc; ///< frame POC
  278. int frame_num; ///< frame_num (raw frame_num from slice header)
  279. int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
  280. not mix pictures before and after MMCO_RESET. */
  281. int pic_id; /**< pic_num (short -> no wrap version of pic_num,
  282. pic_num & max_pic_num; long -> long_pic_num) */
  283. int long_ref; ///< 1->long term reference 0->short term reference
  284. int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
  285. int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
  286. int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
  287. int field_picture; ///< whether or not picture was encoded in separate fields
  288. int needs_realloc; ///< picture needs to be reallocated (eg due to a frame size change)
  289. int reference;
  290. int recovered; ///< picture at IDR or recovery point + recovery count
  291. int invalid_gap;
  292. int crop;
  293. int crop_left;
  294. int crop_top;
  295. } H264Picture;
  296. /**
  297. * H264Context
  298. */
  299. typedef struct H264Context {
  300. AVCodecContext *avctx;
  301. VideoDSPContext vdsp;
  302. H264DSPContext h264dsp;
  303. H264ChromaContext h264chroma;
  304. H264QpelContext h264qpel;
  305. ParseContext parse_context;
  306. GetBitContext gb;
  307. DSPContext dsp;
  308. ERContext er;
  309. H264Picture *DPB;
  310. H264Picture *cur_pic_ptr;
  311. H264Picture cur_pic;
  312. int pixel_shift; ///< 0 for 8-bit H264, 1 for high-bit-depth H264
  313. int chroma_qp[2]; // QPc
  314. int qp_thresh; ///< QP threshold to skip loopfilter
  315. /* coded dimensions -- 16 * mb w/h */
  316. int width, height;
  317. ptrdiff_t linesize, uvlinesize;
  318. int chroma_x_shift, chroma_y_shift;
  319. int qscale;
  320. int droppable;
  321. int data_partitioning;
  322. int coded_picture_number;
  323. int low_delay;
  324. int context_initialized;
  325. int flags;
  326. int workaround_bugs;
  327. int prev_mb_skipped;
  328. int next_mb_skipped;
  329. // prediction stuff
  330. int chroma_pred_mode;
  331. int intra16x16_pred_mode;
  332. int topleft_mb_xy;
  333. int top_mb_xy;
  334. int topright_mb_xy;
  335. int left_mb_xy[LEFT_MBS];
  336. int topleft_type;
  337. int top_type;
  338. int topright_type;
  339. int left_type[LEFT_MBS];
  340. const uint8_t *left_block;
  341. int topleft_partition;
  342. int8_t intra4x4_pred_mode_cache[5 * 8];
  343. int8_t(*intra4x4_pred_mode);
  344. H264PredContext hpc;
  345. unsigned int topleft_samples_available;
  346. unsigned int top_samples_available;
  347. unsigned int topright_samples_available;
  348. unsigned int left_samples_available;
  349. uint8_t (*top_borders[2])[(16 * 3) * 2];
  350. /**
  351. * non zero coeff count cache.
  352. * is 64 if not available.
  353. */
  354. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  355. uint8_t (*non_zero_count)[48];
  356. /**
  357. * Motion vector cache.
  358. */
  359. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  360. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  361. #define LIST_NOT_USED -1 // FIXME rename?
  362. #define PART_NOT_AVAILABLE -2
  363. /**
  364. * number of neighbors (top and/or left) that used 8x8 dct
  365. */
  366. int neighbor_transform_size;
  367. /**
  368. * block_offset[ 0..23] for frame macroblocks
  369. * block_offset[24..47] for field macroblocks
  370. */
  371. int block_offset[2 * (16 * 3)];
  372. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  373. uint32_t *mb2br_xy;
  374. int b_stride; // FIXME use s->b4_stride
  375. ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  376. ptrdiff_t mb_uvlinesize;
  377. unsigned current_sps_id; ///< id of the current SPS
  378. SPS sps; ///< current sps
  379. PPS pps; ///< current pps
  380. int au_pps_id; ///< pps_id of current access unit
  381. uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16]; // FIXME should these be moved down?
  382. uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
  383. uint32_t(*dequant4_coeff[6])[16];
  384. uint32_t(*dequant8_coeff[6])[64];
  385. int slice_num;
  386. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  387. int slice_type;
  388. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  389. int slice_type_fixed;
  390. // interlacing specific flags
  391. int mb_aff_frame;
  392. int mb_field_decoding_flag;
  393. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  394. int picture_structure;
  395. int first_field;
  396. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  397. // Weighted pred stuff
  398. int use_weight;
  399. int use_weight_chroma;
  400. int luma_log2_weight_denom;
  401. int chroma_log2_weight_denom;
  402. // The following 2 can be changed to int8_t but that causes 10cpu cycles speedloss
  403. int luma_weight[48][2][2];
  404. int chroma_weight[48][2][2][2];
  405. int implicit_weight[48][48][2];
  406. int direct_spatial_mv_pred;
  407. int col_parity;
  408. int col_fieldoff;
  409. int dist_scale_factor[32];
  410. int dist_scale_factor_field[2][32];
  411. int map_col_to_list0[2][16 + 32];
  412. int map_col_to_list0_field[2][2][16 + 32];
  413. /**
  414. * num_ref_idx_l0/1_active_minus1 + 1
  415. */
  416. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  417. unsigned int list_count;
  418. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  419. H264Picture ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  420. * Reordered version of default_ref_list
  421. * according to picture reordering in slice header */
  422. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  423. // data partitioning
  424. GetBitContext intra_gb;
  425. GetBitContext inter_gb;
  426. GetBitContext *intra_gb_ptr;
  427. GetBitContext *inter_gb_ptr;
  428. const uint8_t *intra_pcm_ptr;
  429. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2]; ///< as a dct coeffecient is int32_t in high depth, we need to reserve twice the space.
  430. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  431. int16_t mb_padding[256 * 2]; ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
  432. /**
  433. * Cabac
  434. */
  435. CABACContext cabac;
  436. uint8_t cabac_state[1024];
  437. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  438. uint16_t *cbp_table;
  439. int cbp;
  440. int top_cbp;
  441. int left_cbp;
  442. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  443. uint8_t *chroma_pred_mode_table;
  444. int last_qscale_diff;
  445. uint8_t (*mvd_table[2])[2];
  446. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  447. uint8_t *direct_table;
  448. uint8_t direct_cache[5 * 8];
  449. uint8_t zigzag_scan[16];
  450. uint8_t zigzag_scan8x8[64];
  451. uint8_t zigzag_scan8x8_cavlc[64];
  452. uint8_t field_scan[16];
  453. uint8_t field_scan8x8[64];
  454. uint8_t field_scan8x8_cavlc[64];
  455. uint8_t zigzag_scan_q0[16];
  456. uint8_t zigzag_scan8x8_q0[64];
  457. uint8_t zigzag_scan8x8_cavlc_q0[64];
  458. uint8_t field_scan_q0[16];
  459. uint8_t field_scan8x8_q0[64];
  460. uint8_t field_scan8x8_cavlc_q0[64];
  461. int x264_build;
  462. int mb_x, mb_y;
  463. int resync_mb_x;
  464. int resync_mb_y;
  465. int mb_skip_run;
  466. int mb_height, mb_width;
  467. int mb_stride;
  468. int mb_num;
  469. int mb_xy;
  470. int is_complex;
  471. // deblock
  472. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  473. int slice_alpha_c0_offset;
  474. int slice_beta_offset;
  475. // =============================================================
  476. // Things below are not used in the MB or more inner code
  477. int nal_ref_idc;
  478. int nal_unit_type;
  479. uint8_t *rbsp_buffer[2];
  480. unsigned int rbsp_buffer_size[2];
  481. /**
  482. * Used to parse AVC variant of h264
  483. */
  484. int is_avc; ///< this flag is != 0 if codec is avc1
  485. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  486. int got_first; ///< this flag is != 0 if we've parsed a frame
  487. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  488. int chroma_format_idc; ///< chroma format from sps to detect changes
  489. SPS *sps_buffers[MAX_SPS_COUNT];
  490. PPS *pps_buffers[MAX_PPS_COUNT];
  491. int dequant_coeff_pps; ///< reinit tables when pps changes
  492. uint16_t *slice_table_base;
  493. // POC stuff
  494. int poc_lsb;
  495. int poc_msb;
  496. int delta_poc_bottom;
  497. int delta_poc[2];
  498. int frame_num;
  499. int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
  500. int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
  501. int frame_num_offset; ///< for POC type 2
  502. int prev_frame_num_offset; ///< for POC type 2
  503. int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
  504. /**
  505. * frame_num for frames or 2 * frame_num + 1 for field pics.
  506. */
  507. int curr_pic_num;
  508. /**
  509. * max_frame_num or 2 * max_frame_num for field pics.
  510. */
  511. int max_pic_num;
  512. int redundant_pic_count;
  513. H264Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
  514. H264Picture *short_ref[32];
  515. H264Picture *long_ref[32];
  516. H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  517. int last_pocs[MAX_DELAYED_PIC_COUNT];
  518. H264Picture *next_output_pic;
  519. int outputed_poc;
  520. int next_outputed_poc;
  521. /**
  522. * memory management control operations buffer.
  523. */
  524. MMCO mmco[MAX_MMCO_COUNT];
  525. int mmco_index;
  526. int mmco_reset;
  527. int long_ref_count; ///< number of actual long term references
  528. int short_ref_count; ///< number of actual short term references
  529. int cabac_init_idc;
  530. /**
  531. * @name Members for slice based multithreading
  532. * @{
  533. */
  534. struct H264Context *thread_context[H264_MAX_THREADS];
  535. /**
  536. * current slice number, used to initialize slice_num of each thread/context
  537. */
  538. int current_slice;
  539. /**
  540. * Max number of threads / contexts.
  541. * This is equal to AVCodecContext.thread_count unless
  542. * multithreaded decoding is impossible, in which case it is
  543. * reduced to 1.
  544. */
  545. int max_contexts;
  546. int slice_context_count;
  547. /**
  548. * 1 if the single thread fallback warning has already been
  549. * displayed, 0 otherwise.
  550. */
  551. int single_decode_warning;
  552. enum AVPictureType pict_type;
  553. int last_slice_type;
  554. unsigned int last_ref_count[2];
  555. /** @} */
  556. /**
  557. * pic_struct in picture timing SEI message
  558. */
  559. SEI_PicStructType sei_pic_struct;
  560. /**
  561. * Complement sei_pic_struct
  562. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  563. * However, soft telecined frames may have these values.
  564. * This is used in an attempt to flag soft telecine progressive.
  565. */
  566. int prev_interlaced_frame;
  567. /**
  568. * frame_packing_arrangment SEI message
  569. */
  570. int sei_frame_packing_present;
  571. int frame_packing_arrangement_type;
  572. int content_interpretation_type;
  573. int quincunx_subsampling;
  574. /**
  575. * Bit set of clock types for fields/frames in picture timing SEI message.
  576. * For each found ct_type, appropriate bit is set (e.g., bit 1 for
  577. * interlaced).
  578. */
  579. int sei_ct_type;
  580. /**
  581. * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
  582. */
  583. int sei_dpb_output_delay;
  584. /**
  585. * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
  586. */
  587. int sei_cpb_removal_delay;
  588. /**
  589. * recovery_frame_cnt from SEI message
  590. *
  591. * Set to -1 if no recovery point SEI message found or to number of frames
  592. * before playback synchronizes. Frames having recovery point are key
  593. * frames.
  594. */
  595. int sei_recovery_frame_cnt;
  596. /**
  597. * Are the SEI recovery points looking valid.
  598. */
  599. int valid_recovery_point;
  600. FPA sei_fpa;
  601. /**
  602. * recovery_frame is the frame_num at which the next frame should
  603. * be fully constructed.
  604. *
  605. * Set to -1 when not expecting a recovery point.
  606. */
  607. int recovery_frame;
  608. /**
  609. * We have seen an IDR, so all the following frames in coded order are correctly
  610. * decodable.
  611. */
  612. #define FRAME_RECOVERED_IDR (1 << 0)
  613. /**
  614. * Sufficient number of frames have been decoded since a SEI recovery point,
  615. * so all the following frames in presentation order are correct.
  616. */
  617. #define FRAME_RECOVERED_SEI (1 << 1)
  618. int frame_recovered; ///< Initial frame has been completely recovered
  619. int luma_weight_flag[2]; ///< 7.4.3.2 luma_weight_lX_flag
  620. int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
  621. // Timestamp stuff
  622. int sei_buffering_period_present; ///< Buffering period SEI flag
  623. int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
  624. int cur_chroma_format_idc;
  625. uint8_t *bipred_scratchpad;
  626. int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
  627. uint8_t parse_history[4];
  628. int parse_history_count;
  629. int parse_last_mb;
  630. uint8_t *edge_emu_buffer;
  631. int16_t *dc_val_base;
  632. AVBufferPool *qscale_table_pool;
  633. AVBufferPool *mb_type_pool;
  634. AVBufferPool *motion_val_pool;
  635. AVBufferPool *ref_index_pool;
  636. /* Motion Estimation */
  637. qpel_mc_func (*qpel_put)[16];
  638. qpel_mc_func (*qpel_avg)[16];
  639. } H264Context;
  640. extern const uint8_t ff_h264_chroma_qp[7][QP_MAX_NUM + 1]; ///< One chroma qp table for each possible bit depth (8-14).
  641. extern const uint16_t ff_h264_mb_sizes[4];
  642. /**
  643. * Decode SEI
  644. */
  645. int ff_h264_decode_sei(H264Context *h);
  646. /**
  647. * Decode SPS
  648. */
  649. int ff_h264_decode_seq_parameter_set(H264Context *h);
  650. /**
  651. * compute profile from sps
  652. */
  653. int ff_h264_get_profile(SPS *sps);
  654. /**
  655. * Decode PPS
  656. */
  657. int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
  658. /**
  659. * Decode a network abstraction layer unit.
  660. * @param consumed is the number of bytes used as input
  661. * @param length is the length of the array
  662. * @param dst_length is the number of decoded bytes FIXME here
  663. * or a decode rbsp tailing?
  664. * @return decoded bytes, might be src+1 if no escapes
  665. */
  666. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src,
  667. int *dst_length, int *consumed, int length);
  668. /**
  669. * Free any data that may have been allocated in the H264 context
  670. * like SPS, PPS etc.
  671. */
  672. void ff_h264_free_context(H264Context *h);
  673. /**
  674. * Reconstruct bitstream slice_type.
  675. */
  676. int ff_h264_get_slice_type(const H264Context *h);
  677. /**
  678. * Allocate tables.
  679. * needs width/height
  680. */
  681. int ff_h264_alloc_tables(H264Context *h);
  682. /**
  683. * Fill the default_ref_list.
  684. */
  685. int ff_h264_fill_default_ref_list(H264Context *h);
  686. int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
  687. void ff_h264_fill_mbaff_ref_list(H264Context *h);
  688. void ff_h264_remove_all_refs(H264Context *h);
  689. /**
  690. * Execute the reference picture marking (memory management control operations).
  691. */
  692. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  693. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
  694. int first_slice);
  695. int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
  696. /**
  697. * Check if the top & left blocks are available if needed & change the
  698. * dc mode so it only uses the available blocks.
  699. */
  700. int ff_h264_check_intra4x4_pred_mode(H264Context *h);
  701. /**
  702. * Check if the top & left blocks are available if needed & change the
  703. * dc mode so it only uses the available blocks.
  704. */
  705. int ff_h264_check_intra_pred_mode(H264Context *h, int mode, int is_chroma);
  706. void ff_h264_hl_decode_mb(H264Context *h);
  707. int ff_h264_decode_extradata(H264Context *h, const uint8_t *buf, int size);
  708. int ff_h264_decode_init(AVCodecContext *avctx);
  709. void ff_h264_decode_init_vlc(void);
  710. /**
  711. * Decode a macroblock
  712. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  713. */
  714. int ff_h264_decode_mb_cavlc(H264Context *h);
  715. /**
  716. * Decode a CABAC coded macroblock
  717. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  718. */
  719. int ff_h264_decode_mb_cabac(H264Context *h);
  720. void ff_h264_init_cabac_states(H264Context *h);
  721. void h264_init_dequant_tables(H264Context *h);
  722. void ff_h264_direct_dist_scale_factor(H264Context *const h);
  723. void ff_h264_direct_ref_list_init(H264Context *const h);
  724. void ff_h264_pred_direct_motion(H264Context *const h, int *mb_type);
  725. void ff_h264_filter_mb_fast(H264Context *h, int mb_x, int mb_y,
  726. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  727. unsigned int linesize, unsigned int uvlinesize);
  728. void ff_h264_filter_mb(H264Context *h, int mb_x, int mb_y,
  729. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  730. unsigned int linesize, unsigned int uvlinesize);
  731. /**
  732. * Reset SEI values at the beginning of the frame.
  733. *
  734. * @param h H.264 context.
  735. */
  736. void ff_h264_reset_sei(H264Context *h);
  737. /**
  738. * Get stereo_mode string from the h264 frame_packing_arrangement
  739. * @param h H.264 context.
  740. */
  741. const char* ff_h264_sei_stereo_mode(H264Context *h);
  742. /*
  743. * o-o o-o
  744. * / / /
  745. * o-o o-o
  746. * ,---'
  747. * o-o o-o
  748. * / / /
  749. * o-o o-o
  750. */
  751. /* Scan8 organization:
  752. * 0 1 2 3 4 5 6 7
  753. * 0 DY y y y y y
  754. * 1 y Y Y Y Y
  755. * 2 y Y Y Y Y
  756. * 3 y Y Y Y Y
  757. * 4 y Y Y Y Y
  758. * 5 DU u u u u u
  759. * 6 u U U U U
  760. * 7 u U U U U
  761. * 8 u U U U U
  762. * 9 u U U U U
  763. * 10 DV v v v v v
  764. * 11 v V V V V
  765. * 12 v V V V V
  766. * 13 v V V V V
  767. * 14 v V V V V
  768. * DY/DU/DV are for luma/chroma DC.
  769. */
  770. #define LUMA_DC_BLOCK_INDEX 48
  771. #define CHROMA_DC_BLOCK_INDEX 49
  772. // This table must be here because scan8[constant] must be known at compiletime
  773. static const uint8_t scan8[16 * 3 + 3] = {
  774. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  775. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  776. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  777. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  778. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  779. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  780. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  781. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  782. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  783. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  784. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  785. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  786. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  787. };
  788. static av_always_inline uint32_t pack16to32(int a, int b)
  789. {
  790. #if HAVE_BIGENDIAN
  791. return (b & 0xFFFF) + (a << 16);
  792. #else
  793. return (a & 0xFFFF) + (b << 16);
  794. #endif
  795. }
  796. static av_always_inline uint16_t pack8to16(int a, int b)
  797. {
  798. #if HAVE_BIGENDIAN
  799. return (b & 0xFF) + (a << 8);
  800. #else
  801. return (a & 0xFF) + (b << 8);
  802. #endif
  803. }
  804. /**
  805. * Get the chroma qp.
  806. */
  807. static av_always_inline int get_chroma_qp(H264Context *h, int t, int qscale)
  808. {
  809. return h->pps.chroma_qp_table[t][qscale];
  810. }
  811. /**
  812. * Get the predicted intra4x4 prediction mode.
  813. */
  814. static av_always_inline int pred_intra_mode(H264Context *h, int n)
  815. {
  816. const int index8 = scan8[n];
  817. const int left = h->intra4x4_pred_mode_cache[index8 - 1];
  818. const int top = h->intra4x4_pred_mode_cache[index8 - 8];
  819. const int min = FFMIN(left, top);
  820. tprintf(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  821. if (min < 0)
  822. return DC_PRED;
  823. else
  824. return min;
  825. }
  826. static av_always_inline void write_back_intra_pred_mode(H264Context *h)
  827. {
  828. int8_t *i4x4 = h->intra4x4_pred_mode + h->mb2br_xy[h->mb_xy];
  829. int8_t *i4x4_cache = h->intra4x4_pred_mode_cache;
  830. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  831. i4x4[4] = i4x4_cache[7 + 8 * 3];
  832. i4x4[5] = i4x4_cache[7 + 8 * 2];
  833. i4x4[6] = i4x4_cache[7 + 8 * 1];
  834. }
  835. static av_always_inline void write_back_non_zero_count(H264Context *h)
  836. {
  837. const int mb_xy = h->mb_xy;
  838. uint8_t *nnz = h->non_zero_count[mb_xy];
  839. uint8_t *nnz_cache = h->non_zero_count_cache;
  840. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  841. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  842. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  843. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  844. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  845. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  846. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  847. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  848. if (!h->chroma_y_shift) {
  849. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  850. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  851. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  852. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  853. }
  854. }
  855. static av_always_inline void write_back_motion_list(H264Context *h,
  856. int b_stride,
  857. int b_xy, int b8_xy,
  858. int mb_type, int list)
  859. {
  860. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  861. int16_t(*mv_src)[2] = &h->mv_cache[list][scan8[0]];
  862. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  863. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  864. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  865. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  866. if (CABAC(h)) {
  867. uint8_t (*mvd_dst)[2] = &h->mvd_table[list][FMO ? 8 * h->mb_xy
  868. : h->mb2br_xy[h->mb_xy]];
  869. uint8_t(*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
  870. if (IS_SKIP(mb_type)) {
  871. AV_ZERO128(mvd_dst);
  872. } else {
  873. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  874. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  875. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  876. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  877. }
  878. }
  879. {
  880. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  881. int8_t *ref_cache = h->ref_cache[list];
  882. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  883. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  884. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  885. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  886. }
  887. }
  888. static av_always_inline void write_back_motion(H264Context *h, int mb_type)
  889. {
  890. const int b_stride = h->b_stride;
  891. const int b_xy = 4 * h->mb_x + 4 * h->mb_y * h->b_stride; // try mb2b(8)_xy
  892. const int b8_xy = 4 * h->mb_xy;
  893. if (USES_LIST(mb_type, 0)) {
  894. write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 0);
  895. } else {
  896. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  897. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  898. }
  899. if (USES_LIST(mb_type, 1))
  900. write_back_motion_list(h, b_stride, b_xy, b8_xy, mb_type, 1);
  901. if (h->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
  902. if (IS_8X8(mb_type)) {
  903. uint8_t *direct_table = &h->direct_table[4 * h->mb_xy];
  904. direct_table[1] = h->sub_mb_type[1] >> 1;
  905. direct_table[2] = h->sub_mb_type[2] >> 1;
  906. direct_table[3] = h->sub_mb_type[3] >> 1;
  907. }
  908. }
  909. }
  910. static av_always_inline int get_dct8x8_allowed(H264Context *h)
  911. {
  912. if (h->sps.direct_8x8_inference_flag)
  913. return !(AV_RN64A(h->sub_mb_type) &
  914. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  915. 0x0001000100010001ULL));
  916. else
  917. return !(AV_RN64A(h->sub_mb_type) &
  918. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  919. 0x0001000100010001ULL));
  920. }
  921. int ff_h264_field_end(H264Context *h, int in_setup);
  922. int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
  923. void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
  924. int ff_h264_context_init(H264Context *h);
  925. int ff_h264_set_parameter_from_sps(H264Context *h);
  926. void ff_h264_draw_horiz_band(H264Context *h, int y, int height);
  927. int ff_init_poc(H264Context *h, int pic_field_poc[2], int *pic_poc);
  928. int ff_pred_weight_table(H264Context *h);
  929. int ff_set_ref_count(H264Context *h);
  930. int ff_h264_decode_slice_header(H264Context *h, H264Context *h0);
  931. int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
  932. int ff_h264_update_thread_context(AVCodecContext *dst,
  933. const AVCodecContext *src);
  934. void ff_h264_flush_change(H264Context *h);
  935. void ff_h264_free_tables(H264Context *h, int free_rbsp);
  936. void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
  937. #endif /* AVCODEC_H264_H */