You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1243 lines
48KB

  1. /**
  2. * Copyright (c) 2014-2015 Michael Niedermayer <michaelni@gmx.at>
  3. * Copyright (c) 2016 Davinder Singh (DSM_) <ds.mudhar<@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "motion_estimation.h"
  22. #include "libavcodec/mathops.h"
  23. #include "libavutil/avassert.h"
  24. #include "libavutil/common.h"
  25. #include "libavutil/motion_vector.h"
  26. #include "libavutil/opt.h"
  27. #include "libavutil/pixdesc.h"
  28. #include "libavutil/pixelutils.h"
  29. #include "avfilter.h"
  30. #include "formats.h"
  31. #include "internal.h"
  32. #include "video.h"
  33. #define ME_MODE_BIDIR 0
  34. #define ME_MODE_BILAT 1
  35. #define MC_MODE_OBMC 0
  36. #define MC_MODE_AOBMC 1
  37. #define SCD_METHOD_NONE 0
  38. #define SCD_METHOD_FDIFF 1
  39. #define NB_FRAMES 4
  40. #define NB_PIXEL_MVS 32
  41. #define NB_CLUSTERS 128
  42. #define ALPHA_MAX 1024
  43. #define CLUSTER_THRESHOLD 4
  44. #define PX_WEIGHT_MAX 255
  45. #define COST_PRED_SCALE 64
  46. static const uint8_t obmc_linear32[1024] = {
  47. 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
  48. 0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
  49. 0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
  50. 0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
  51. 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
  52. 4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
  53. 4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
  54. 4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
  55. 4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
  56. 4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
  57. 4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
  58. 4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
  59. 8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
  60. 8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
  61. 8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
  62. 8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
  63. 8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8,
  64. 8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8,
  65. 8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8,
  66. 8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8,
  67. 4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4,
  68. 4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4,
  69. 4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4,
  70. 4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4,
  71. 4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4,
  72. 4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4,
  73. 4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4,
  74. 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4,
  75. 0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0,
  76. 0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0,
  77. 0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0,
  78. 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0,
  79. };
  80. static const uint8_t obmc_linear16[256] = {
  81. 0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
  82. 4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
  83. 4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
  84. 8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
  85. 8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
  86. 12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
  87. 12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
  88. 16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
  89. 16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16,
  90. 12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12,
  91. 12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12,
  92. 8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8,
  93. 8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8,
  94. 4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4,
  95. 4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4,
  96. 0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0,
  97. };
  98. static const uint8_t obmc_linear8[64] = {
  99. 4, 12, 20, 28, 28, 20, 12, 4,
  100. 12, 36, 60, 84, 84, 60, 36, 12,
  101. 20, 60,100,140,140,100, 60, 20,
  102. 28, 84,140,196,196,140, 84, 28,
  103. 28, 84,140,196,196,140, 84, 28,
  104. 20, 60,100,140,140,100, 60, 20,
  105. 12, 36, 60, 84, 84, 60, 36, 12,
  106. 4, 12, 20, 28, 28, 20, 12, 4,
  107. };
  108. static const uint8_t obmc_linear4[16] = {
  109. 16, 48, 48, 16,
  110. 48,144,144, 48,
  111. 48,144,144, 48,
  112. 16, 48, 48, 16,
  113. };
  114. static const uint8_t * const obmc_tab_linear[4]= {
  115. obmc_linear32, obmc_linear16, obmc_linear8, obmc_linear4
  116. };
  117. enum MIMode {
  118. MI_MODE_DUP = 0,
  119. MI_MODE_BLEND = 1,
  120. MI_MODE_MCI = 2,
  121. };
  122. typedef struct Cluster {
  123. int64_t sum[2];
  124. int nb;
  125. } Cluster;
  126. typedef struct Block {
  127. int16_t mvs[2][2];
  128. int cid;
  129. uint64_t sbad;
  130. int sb;
  131. struct Block *subs;
  132. } Block;
  133. typedef struct Pixel {
  134. int16_t mvs[NB_PIXEL_MVS][2];
  135. uint32_t weights[NB_PIXEL_MVS];
  136. int8_t refs[NB_PIXEL_MVS];
  137. int nb;
  138. } Pixel;
  139. typedef struct Frame {
  140. AVFrame *avf;
  141. Block *blocks;
  142. } Frame;
  143. typedef struct MIContext {
  144. const AVClass *class;
  145. AVMotionEstContext me_ctx;
  146. AVRational frame_rate;
  147. enum MIMode mi_mode;
  148. int mc_mode;
  149. int me_mode;
  150. int me_method;
  151. int mb_size;
  152. int search_param;
  153. int vsbmc;
  154. Frame frames[NB_FRAMES];
  155. Cluster clusters[NB_CLUSTERS];
  156. Block *int_blocks;
  157. Pixel *pixels;
  158. int (*mv_table[3])[2][2];
  159. int64_t out_pts;
  160. int b_width, b_height, b_count;
  161. int log2_mb_size;
  162. int scd_method;
  163. int scene_changed;
  164. av_pixelutils_sad_fn sad;
  165. double prev_mafd;
  166. double scd_threshold;
  167. int log2_chroma_w;
  168. int log2_chroma_h;
  169. int nb_planes;
  170. } MIContext;
  171. #define OFFSET(x) offsetof(MIContext, x)
  172. #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  173. #define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit }
  174. static const AVOption minterpolate_options[] = {
  175. { "fps", "output's frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "60"}, 0, INT_MAX, FLAGS },
  176. { "mi_mode", "motion interpolation mode", OFFSET(mi_mode), AV_OPT_TYPE_INT, {.i64 = MI_MODE_MCI}, MI_MODE_DUP, MI_MODE_MCI, FLAGS, "mi_mode" },
  177. CONST("dup", "duplicate frames", MI_MODE_DUP, "mi_mode"),
  178. CONST("blend", "blend frames", MI_MODE_BLEND, "mi_mode"),
  179. CONST("mci", "motion compensated interpolation", MI_MODE_MCI, "mi_mode"),
  180. { "mc_mode", "motion compensation mode", OFFSET(mc_mode), AV_OPT_TYPE_INT, {.i64 = MC_MODE_OBMC}, MC_MODE_OBMC, MC_MODE_AOBMC, FLAGS, "mc_mode" },
  181. CONST("obmc", "overlapped block motion compensation", MC_MODE_OBMC, "mc_mode"),
  182. CONST("aobmc", "adaptive overlapped block motion compensation", MC_MODE_AOBMC, "mc_mode"),
  183. { "me_mode", "motion estimation mode", OFFSET(me_mode), AV_OPT_TYPE_INT, {.i64 = ME_MODE_BILAT}, ME_MODE_BIDIR, ME_MODE_BILAT, FLAGS, "me_mode" },
  184. CONST("bidir", "bidirectional motion estimation", ME_MODE_BIDIR, "me_mode"),
  185. CONST("bilat", "bilateral motion estimation", ME_MODE_BILAT, "me_mode"),
  186. { "me", "motion estimation method", OFFSET(me_method), AV_OPT_TYPE_INT, {.i64 = AV_ME_METHOD_EPZS}, AV_ME_METHOD_ESA, AV_ME_METHOD_UMH, FLAGS, "me" },
  187. CONST("esa", "exhaustive search", AV_ME_METHOD_ESA, "me"),
  188. CONST("tss", "three step search", AV_ME_METHOD_TSS, "me"),
  189. CONST("tdls", "two dimensional logarithmic search", AV_ME_METHOD_TDLS, "me"),
  190. CONST("ntss", "new three step search", AV_ME_METHOD_NTSS, "me"),
  191. CONST("fss", "four step search", AV_ME_METHOD_FSS, "me"),
  192. CONST("ds", "diamond search", AV_ME_METHOD_DS, "me"),
  193. CONST("hexbs", "hexagon-based search", AV_ME_METHOD_HEXBS, "me"),
  194. CONST("epzs", "enhanced predictive zonal search", AV_ME_METHOD_EPZS, "me"),
  195. CONST("umh", "uneven multi-hexagon search", AV_ME_METHOD_UMH, "me"),
  196. { "mb_size", "macroblock size", OFFSET(mb_size), AV_OPT_TYPE_INT, {.i64 = 16}, 4, 16, FLAGS },
  197. { "search_param", "search parameter", OFFSET(search_param), AV_OPT_TYPE_INT, {.i64 = 32}, 4, INT_MAX, FLAGS },
  198. { "vsbmc", "variable-size block motion compensation", OFFSET(vsbmc), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, FLAGS },
  199. { "scd", "scene change detection method", OFFSET(scd_method), AV_OPT_TYPE_INT, {.i64 = SCD_METHOD_FDIFF}, SCD_METHOD_NONE, SCD_METHOD_FDIFF, FLAGS, "scene" },
  200. CONST("none", "disable detection", SCD_METHOD_NONE, "scene"),
  201. CONST("fdiff", "frame difference", SCD_METHOD_FDIFF, "scene"),
  202. { "scd_threshold", "scene change threshold", OFFSET(scd_threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0}, 0, 100.0, FLAGS },
  203. { NULL }
  204. };
  205. AVFILTER_DEFINE_CLASS(minterpolate);
  206. static int query_formats(AVFilterContext *ctx)
  207. {
  208. static const enum AVPixelFormat pix_fmts[] = {
  209. AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P,
  210. AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P,
  211. AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P,
  212. AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P,
  213. AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P,
  214. AV_PIX_FMT_YUVJ411P,
  215. AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P,
  216. AV_PIX_FMT_GRAY8,
  217. AV_PIX_FMT_NONE
  218. };
  219. AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts);
  220. if (!fmts_list)
  221. return AVERROR(ENOMEM);
  222. return ff_set_common_formats(ctx, fmts_list);
  223. }
  224. static uint64_t get_sbad(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
  225. {
  226. uint8_t *data_cur = me_ctx->data_cur;
  227. uint8_t *data_next = me_ctx->data_ref;
  228. int linesize = me_ctx->linesize;
  229. int mv_x1 = x_mv - x;
  230. int mv_y1 = y_mv - y;
  231. int mv_x, mv_y, i, j;
  232. uint64_t sbad = 0;
  233. x = av_clip(x, me_ctx->x_min, me_ctx->x_max);
  234. y = av_clip(y, me_ctx->y_min, me_ctx->y_max);
  235. mv_x = av_clip(x_mv - x, -FFMIN(x - me_ctx->x_min, me_ctx->x_max - x), FFMIN(x - me_ctx->x_min, me_ctx->x_max - x));
  236. mv_y = av_clip(y_mv - y, -FFMIN(y - me_ctx->y_min, me_ctx->y_max - y), FFMIN(y - me_ctx->y_min, me_ctx->y_max - y));
  237. data_cur += (y + mv_y) * linesize;
  238. data_next += (y - mv_y) * linesize;
  239. for (j = 0; j < me_ctx->mb_size; j++)
  240. for (i = 0; i < me_ctx->mb_size; i++)
  241. sbad += FFABS(data_cur[x + mv_x + i + j * linesize] - data_next[x - mv_x + i + j * linesize]);
  242. return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE;
  243. }
  244. static uint64_t get_sbad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
  245. {
  246. uint8_t *data_cur = me_ctx->data_cur;
  247. uint8_t *data_next = me_ctx->data_ref;
  248. int linesize = me_ctx->linesize;
  249. int x_min = me_ctx->x_min + me_ctx->mb_size / 2;
  250. int x_max = me_ctx->x_max - me_ctx->mb_size / 2;
  251. int y_min = me_ctx->y_min + me_ctx->mb_size / 2;
  252. int y_max = me_ctx->y_max - me_ctx->mb_size / 2;
  253. int mv_x1 = x_mv - x;
  254. int mv_y1 = y_mv - y;
  255. int mv_x, mv_y, i, j;
  256. uint64_t sbad = 0;
  257. x = av_clip(x, x_min, x_max);
  258. y = av_clip(y, y_min, y_max);
  259. mv_x = av_clip(x_mv - x, -FFMIN(x - x_min, x_max - x), FFMIN(x - x_min, x_max - x));
  260. mv_y = av_clip(y_mv - y, -FFMIN(y - y_min, y_max - y), FFMIN(y - y_min, y_max - y));
  261. for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++)
  262. for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++)
  263. sbad += FFABS(data_cur[x + mv_x + i + (y + mv_y + j) * linesize] - data_next[x - mv_x + i + (y - mv_y + j) * linesize]);
  264. return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE;
  265. }
  266. static uint64_t get_sad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv)
  267. {
  268. uint8_t *data_ref = me_ctx->data_ref;
  269. uint8_t *data_cur = me_ctx->data_cur;
  270. int linesize = me_ctx->linesize;
  271. int x_min = me_ctx->x_min + me_ctx->mb_size / 2;
  272. int x_max = me_ctx->x_max - me_ctx->mb_size / 2;
  273. int y_min = me_ctx->y_min + me_ctx->mb_size / 2;
  274. int y_max = me_ctx->y_max - me_ctx->mb_size / 2;
  275. int mv_x = x_mv - x;
  276. int mv_y = y_mv - y;
  277. int i, j;
  278. uint64_t sad = 0;
  279. x = av_clip(x, x_min, x_max);
  280. y = av_clip(y, y_min, y_max);
  281. x_mv = av_clip(x_mv, x_min, x_max);
  282. y_mv = av_clip(y_mv, y_min, y_max);
  283. for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++)
  284. for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++)
  285. sad += FFABS(data_ref[x_mv + i + (y_mv + j) * linesize] - data_cur[x + i + (y + j) * linesize]);
  286. return sad + (FFABS(mv_x - me_ctx->pred_x) + FFABS(mv_y - me_ctx->pred_y)) * COST_PRED_SCALE;
  287. }
  288. static int config_input(AVFilterLink *inlink)
  289. {
  290. MIContext *mi_ctx = inlink->dst->priv;
  291. AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
  292. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
  293. const int height = inlink->h;
  294. const int width = inlink->w;
  295. int i;
  296. mi_ctx->log2_chroma_h = desc->log2_chroma_h;
  297. mi_ctx->log2_chroma_w = desc->log2_chroma_w;
  298. mi_ctx->nb_planes = av_pix_fmt_count_planes(inlink->format);
  299. mi_ctx->log2_mb_size = av_ceil_log2_c(mi_ctx->mb_size);
  300. mi_ctx->mb_size = 1 << mi_ctx->log2_mb_size;
  301. mi_ctx->b_width = width >> mi_ctx->log2_mb_size;
  302. mi_ctx->b_height = height >> mi_ctx->log2_mb_size;
  303. mi_ctx->b_count = mi_ctx->b_width * mi_ctx->b_height;
  304. for (i = 0; i < NB_FRAMES; i++) {
  305. Frame *frame = &mi_ctx->frames[i];
  306. frame->blocks = av_mallocz_array(mi_ctx->b_count, sizeof(Block));
  307. if (!frame->blocks)
  308. return AVERROR(ENOMEM);
  309. }
  310. if (mi_ctx->mi_mode == MI_MODE_MCI) {
  311. if (!(mi_ctx->pixels = av_mallocz_array(width * height, sizeof(Pixel))))
  312. return AVERROR(ENOMEM);
  313. if (mi_ctx->me_mode == ME_MODE_BILAT)
  314. if (!(mi_ctx->int_blocks = av_mallocz_array(mi_ctx->b_count, sizeof(Block))))
  315. return AVERROR(ENOMEM);
  316. if (mi_ctx->me_method == AV_ME_METHOD_EPZS) {
  317. for (i = 0; i < 3; i++) {
  318. mi_ctx->mv_table[i] = av_mallocz_array(mi_ctx->b_count, sizeof(*mi_ctx->mv_table[0]));
  319. if (!mi_ctx->mv_table[i])
  320. return AVERROR(ENOMEM);
  321. }
  322. }
  323. }
  324. if (mi_ctx->scd_method == SCD_METHOD_FDIFF) {
  325. mi_ctx->sad = av_pixelutils_get_sad_fn(3, 3, 2, mi_ctx);
  326. if (!mi_ctx->sad)
  327. return AVERROR(EINVAL);
  328. }
  329. ff_me_init_context(me_ctx, mi_ctx->mb_size, mi_ctx->search_param, width, height, 0, (mi_ctx->b_width - 1) << mi_ctx->log2_mb_size, 0, (mi_ctx->b_height - 1) << mi_ctx->log2_mb_size);
  330. if (mi_ctx->me_mode == ME_MODE_BIDIR)
  331. me_ctx->get_cost = &get_sad_ob;
  332. else if (mi_ctx->me_mode == ME_MODE_BILAT)
  333. me_ctx->get_cost = &get_sbad_ob;
  334. return 0;
  335. }
  336. static int config_output(AVFilterLink *outlink)
  337. {
  338. MIContext *mi_ctx = outlink->src->priv;
  339. outlink->frame_rate = mi_ctx->frame_rate;
  340. outlink->time_base = av_inv_q(mi_ctx->frame_rate);
  341. return 0;
  342. }
  343. #define ADD_PRED(preds, px, py)\
  344. do {\
  345. preds.mvs[preds.nb][0] = px;\
  346. preds.mvs[preds.nb][1] = py;\
  347. preds.nb++;\
  348. } while(0)
  349. static void search_mv(MIContext *mi_ctx, Block *blocks, int mb_x, int mb_y, int dir)
  350. {
  351. AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
  352. AVMotionEstPredictor *preds = me_ctx->preds;
  353. Block *block = &blocks[mb_x + mb_y * mi_ctx->b_width];
  354. const int x_mb = mb_x << mi_ctx->log2_mb_size;
  355. const int y_mb = mb_y << mi_ctx->log2_mb_size;
  356. const int mb_i = mb_x + mb_y * mi_ctx->b_width;
  357. int mv[2] = {x_mb, y_mb};
  358. switch (mi_ctx->me_method) {
  359. case AV_ME_METHOD_ESA:
  360. ff_me_search_esa(me_ctx, x_mb, y_mb, mv);
  361. break;
  362. case AV_ME_METHOD_TSS:
  363. ff_me_search_tss(me_ctx, x_mb, y_mb, mv);
  364. break;
  365. case AV_ME_METHOD_TDLS:
  366. ff_me_search_tdls(me_ctx, x_mb, y_mb, mv);
  367. break;
  368. case AV_ME_METHOD_NTSS:
  369. ff_me_search_ntss(me_ctx, x_mb, y_mb, mv);
  370. break;
  371. case AV_ME_METHOD_FSS:
  372. ff_me_search_fss(me_ctx, x_mb, y_mb, mv);
  373. break;
  374. case AV_ME_METHOD_DS:
  375. ff_me_search_ds(me_ctx, x_mb, y_mb, mv);
  376. break;
  377. case AV_ME_METHOD_HEXBS:
  378. ff_me_search_hexbs(me_ctx, x_mb, y_mb, mv);
  379. break;
  380. case AV_ME_METHOD_EPZS:
  381. preds[0].nb = 0;
  382. preds[1].nb = 0;
  383. ADD_PRED(preds[0], 0, 0);
  384. //left mb in current frame
  385. if (mb_x > 0)
  386. ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - 1][dir][0], mi_ctx->mv_table[0][mb_i - 1][dir][1]);
  387. //top mb in current frame
  388. if (mb_y > 0)
  389. ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][1]);
  390. //top-right mb in current frame
  391. if (mb_y > 0 && mb_x + 1 < mi_ctx->b_width)
  392. ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][1]);
  393. //median predictor
  394. if (preds[0].nb == 4) {
  395. me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
  396. me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
  397. } else if (preds[0].nb == 3) {
  398. me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
  399. me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
  400. } else if (preds[0].nb == 2) {
  401. me_ctx->pred_x = preds[0].mvs[1][0];
  402. me_ctx->pred_y = preds[0].mvs[1][1];
  403. } else {
  404. me_ctx->pred_x = 0;
  405. me_ctx->pred_y = 0;
  406. }
  407. //collocated mb in prev frame
  408. ADD_PRED(preds[0], mi_ctx->mv_table[1][mb_i][dir][0], mi_ctx->mv_table[1][mb_i][dir][1]);
  409. //accelerator motion vector of collocated block in prev frame
  410. ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i][dir][0] + (mi_ctx->mv_table[1][mb_i][dir][0] - mi_ctx->mv_table[2][mb_i][dir][0]),
  411. mi_ctx->mv_table[1][mb_i][dir][1] + (mi_ctx->mv_table[1][mb_i][dir][1] - mi_ctx->mv_table[2][mb_i][dir][1]));
  412. //left mb in prev frame
  413. if (mb_x > 0)
  414. ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - 1][dir][0], mi_ctx->mv_table[1][mb_i - 1][dir][1]);
  415. //top mb in prev frame
  416. if (mb_y > 0)
  417. ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][1]);
  418. //right mb in prev frame
  419. if (mb_x + 1 < mi_ctx->b_width)
  420. ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + 1][dir][0], mi_ctx->mv_table[1][mb_i + 1][dir][1]);
  421. //bottom mb in prev frame
  422. if (mb_y + 1 < mi_ctx->b_height)
  423. ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][1]);
  424. ff_me_search_epzs(me_ctx, x_mb, y_mb, mv);
  425. mi_ctx->mv_table[0][mb_i][dir][0] = mv[0] - x_mb;
  426. mi_ctx->mv_table[0][mb_i][dir][1] = mv[1] - y_mb;
  427. break;
  428. case AV_ME_METHOD_UMH:
  429. preds[0].nb = 0;
  430. ADD_PRED(preds[0], 0, 0);
  431. //left mb in current frame
  432. if (mb_x > 0)
  433. ADD_PRED(preds[0], blocks[mb_i - 1].mvs[dir][0], blocks[mb_i - 1].mvs[dir][1]);
  434. if (mb_y > 0) {
  435. //top mb in current frame
  436. ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width].mvs[dir][0], blocks[mb_i - mi_ctx->b_width].mvs[dir][1]);
  437. //top-right mb in current frame
  438. if (mb_x + 1 < mi_ctx->b_width)
  439. ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][1]);
  440. //top-left mb in current frame
  441. else if (mb_x > 0)
  442. ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][1]);
  443. }
  444. //median predictor
  445. if (preds[0].nb == 4) {
  446. me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]);
  447. me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]);
  448. } else if (preds[0].nb == 3) {
  449. me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]);
  450. me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]);
  451. } else if (preds[0].nb == 2) {
  452. me_ctx->pred_x = preds[0].mvs[1][0];
  453. me_ctx->pred_y = preds[0].mvs[1][1];
  454. } else {
  455. me_ctx->pred_x = 0;
  456. me_ctx->pred_y = 0;
  457. }
  458. ff_me_search_umh(me_ctx, x_mb, y_mb, mv);
  459. break;
  460. }
  461. block->mvs[dir][0] = mv[0] - x_mb;
  462. block->mvs[dir][1] = mv[1] - y_mb;
  463. }
  464. static void bilateral_me(MIContext *mi_ctx)
  465. {
  466. Block *block;
  467. int mb_x, mb_y;
  468. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  469. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
  470. block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
  471. block->cid = 0;
  472. block->sb = 0;
  473. block->mvs[0][0] = 0;
  474. block->mvs[0][1] = 0;
  475. }
  476. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  477. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++)
  478. search_mv(mi_ctx, mi_ctx->int_blocks, mb_x, mb_y, 0);
  479. }
  480. static int var_size_bme(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n)
  481. {
  482. AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
  483. uint64_t cost_sb, cost_old;
  484. int mb_size = me_ctx->mb_size;
  485. int search_param = me_ctx->search_param;
  486. int mv_x, mv_y;
  487. int x, y;
  488. int ret;
  489. me_ctx->mb_size = 1 << n;
  490. cost_old = me_ctx->get_cost(me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]);
  491. me_ctx->mb_size = mb_size;
  492. if (!cost_old) {
  493. block->sb = 0;
  494. return 0;
  495. }
  496. if (!block->subs) {
  497. block->subs = av_mallocz_array(4, sizeof(Block));
  498. if (!block->subs)
  499. return AVERROR(ENOMEM);
  500. }
  501. block->sb = 1;
  502. for (y = 0; y < 2; y++)
  503. for (x = 0; x < 2; x++) {
  504. Block *sb = &block->subs[x + y * 2];
  505. int mv[2] = {x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]};
  506. me_ctx->mb_size = 1 << (n - 1);
  507. me_ctx->search_param = 2;
  508. me_ctx->pred_x = block->mvs[0][0];
  509. me_ctx->pred_y = block->mvs[0][1];
  510. cost_sb = ff_me_search_ds(&mi_ctx->me_ctx, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1], mv);
  511. mv_x = mv[0] - x_mb;
  512. mv_y = mv[1] - y_mb;
  513. me_ctx->mb_size = mb_size;
  514. me_ctx->search_param = search_param;
  515. if (cost_sb < cost_old / 4) {
  516. sb->mvs[0][0] = mv_x;
  517. sb->mvs[0][1] = mv_y;
  518. if (n > 1) {
  519. if (ret = var_size_bme(mi_ctx, sb, x_mb + (x << (n - 1)), y_mb + (y << (n - 1)), n - 1))
  520. return ret;
  521. } else
  522. sb->sb = 0;
  523. } else {
  524. block->sb = 0;
  525. return 0;
  526. }
  527. }
  528. return 0;
  529. }
  530. static int cluster_mvs(MIContext *mi_ctx)
  531. {
  532. int changed, c, c_max = 0;
  533. int mb_x, mb_y, x, y;
  534. int mv_x, mv_y, avg_x, avg_y, dx, dy;
  535. int d, ret;
  536. Block *block;
  537. Cluster *cluster, *cluster_new;
  538. do {
  539. changed = 0;
  540. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  541. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
  542. block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
  543. c = block->cid;
  544. cluster = &mi_ctx->clusters[c];
  545. mv_x = block->mvs[0][0];
  546. mv_y = block->mvs[0][1];
  547. if (cluster->nb < 2)
  548. continue;
  549. avg_x = cluster->sum[0] / cluster->nb;
  550. avg_y = cluster->sum[1] / cluster->nb;
  551. dx = avg_x - mv_x;
  552. dy = avg_y - mv_y;
  553. if (FFABS(dx) > CLUSTER_THRESHOLD || FFABS(dy) > CLUSTER_THRESHOLD) {
  554. for (d = 1; d < 5; d++)
  555. for (y = FFMAX(mb_y - d, 0); y < FFMIN(mb_y + d + 1, mi_ctx->b_height); y++)
  556. for (x = FFMAX(mb_x - d, 0); x < FFMIN(mb_x + d + 1, mi_ctx->b_width); x++) {
  557. Block *nb = &mi_ctx->int_blocks[x + y * mi_ctx->b_width];
  558. if (nb->cid > block->cid) {
  559. if (nb->cid < c || c == block->cid)
  560. c = nb->cid;
  561. }
  562. }
  563. if (c == block->cid)
  564. c = c_max + 1;
  565. if (c >= NB_CLUSTERS) {
  566. continue;
  567. }
  568. cluster_new = &mi_ctx->clusters[c];
  569. cluster_new->sum[0] += mv_x;
  570. cluster_new->sum[1] += mv_y;
  571. cluster->sum[0] -= mv_x;
  572. cluster->sum[1] -= mv_y;
  573. cluster_new->nb++;
  574. cluster->nb--;
  575. c_max = FFMAX(c_max, c);
  576. block->cid = c;
  577. changed = 1;
  578. }
  579. }
  580. } while (changed);
  581. /* find boundaries */
  582. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  583. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
  584. block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
  585. for (y = FFMAX(mb_y - 1, 0); y < FFMIN(mb_y + 2, mi_ctx->b_height); y++)
  586. for (x = FFMAX(mb_x - 1, 0); x < FFMIN(mb_x + 2, mi_ctx->b_width); x++) {
  587. dx = x - mb_x;
  588. dy = y - mb_y;
  589. if ((x - mb_x) && (y - mb_y) || !dx && !dy)
  590. continue;
  591. if (!mb_x || !mb_y || mb_x == mi_ctx->b_width - 1 || mb_y == mi_ctx->b_height - 1)
  592. continue;
  593. if (block->cid != mi_ctx->int_blocks[x + y * mi_ctx->b_width].cid) {
  594. if (!dx && block->cid == mi_ctx->int_blocks[x + (mb_y - dy) * mi_ctx->b_width].cid ||
  595. !dy && block->cid == mi_ctx->int_blocks[(mb_x - dx) + y * mi_ctx->b_width].cid) {
  596. if (ret = var_size_bme(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size))
  597. return ret;
  598. }
  599. }
  600. }
  601. }
  602. return 0;
  603. }
  604. static int inject_frame(AVFilterLink *inlink, AVFrame *avf_in)
  605. {
  606. AVFilterContext *ctx = inlink->dst;
  607. MIContext *mi_ctx = ctx->priv;
  608. Frame frame_tmp;
  609. int mb_x, mb_y, dir;
  610. av_frame_free(&mi_ctx->frames[0].avf);
  611. frame_tmp = mi_ctx->frames[0];
  612. memmove(&mi_ctx->frames[0], &mi_ctx->frames[1], sizeof(mi_ctx->frames[0]) * (NB_FRAMES - 1));
  613. mi_ctx->frames[NB_FRAMES - 1] = frame_tmp;
  614. mi_ctx->frames[NB_FRAMES - 1].avf = avf_in;
  615. if (mi_ctx->mi_mode == MI_MODE_MCI) {
  616. if (mi_ctx->me_method == AV_ME_METHOD_EPZS) {
  617. mi_ctx->mv_table[2] = memcpy(mi_ctx->mv_table[2], mi_ctx->mv_table[1], sizeof(*mi_ctx->mv_table[1]) * mi_ctx->b_count);
  618. mi_ctx->mv_table[1] = memcpy(mi_ctx->mv_table[1], mi_ctx->mv_table[0], sizeof(*mi_ctx->mv_table[0]) * mi_ctx->b_count);
  619. }
  620. if (mi_ctx->me_mode == ME_MODE_BIDIR) {
  621. if (mi_ctx->frames[1].avf) {
  622. for (dir = 0; dir < 2; dir++) {
  623. mi_ctx->me_ctx.linesize = mi_ctx->frames[2].avf->linesize[0];
  624. mi_ctx->me_ctx.data_cur = mi_ctx->frames[2].avf->data[0];
  625. mi_ctx->me_ctx.data_ref = mi_ctx->frames[dir ? 3 : 1].avf->data[0];
  626. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  627. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++)
  628. search_mv(mi_ctx, mi_ctx->frames[2].blocks, mb_x, mb_y, dir);
  629. }
  630. }
  631. } else if (mi_ctx->me_mode == ME_MODE_BILAT) {
  632. Block *block;
  633. int i, ret;
  634. if (!mi_ctx->frames[0].avf)
  635. return 0;
  636. mi_ctx->me_ctx.linesize = mi_ctx->frames[0].avf->linesize[0];
  637. mi_ctx->me_ctx.data_cur = mi_ctx->frames[1].avf->data[0];
  638. mi_ctx->me_ctx.data_ref = mi_ctx->frames[2].avf->data[0];
  639. bilateral_me(mi_ctx);
  640. if (mi_ctx->mc_mode == MC_MODE_AOBMC) {
  641. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  642. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
  643. int x_mb = mb_x << mi_ctx->log2_mb_size;
  644. int y_mb = mb_y << mi_ctx->log2_mb_size;
  645. block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
  646. block->sbad = get_sbad(&mi_ctx->me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]);
  647. }
  648. }
  649. if (mi_ctx->vsbmc) {
  650. for (i = 0; i < NB_CLUSTERS; i++) {
  651. mi_ctx->clusters[i].sum[0] = 0;
  652. mi_ctx->clusters[i].sum[1] = 0;
  653. mi_ctx->clusters[i].nb = 0;
  654. }
  655. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  656. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
  657. block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
  658. mi_ctx->clusters[0].sum[0] += block->mvs[0][0];
  659. mi_ctx->clusters[0].sum[1] += block->mvs[0][1];
  660. }
  661. mi_ctx->clusters[0].nb = mi_ctx->b_count;
  662. if (ret = cluster_mvs(mi_ctx))
  663. return ret;
  664. }
  665. }
  666. }
  667. return 0;
  668. }
  669. static int detect_scene_change(MIContext *mi_ctx)
  670. {
  671. AVMotionEstContext *me_ctx = &mi_ctx->me_ctx;
  672. int x, y;
  673. int linesize = me_ctx->linesize;
  674. uint8_t *p1 = mi_ctx->frames[1].avf->data[0];
  675. uint8_t *p2 = mi_ctx->frames[2].avf->data[0];
  676. if (mi_ctx->scd_method == SCD_METHOD_FDIFF) {
  677. double ret = 0, mafd, diff;
  678. int64_t sad;
  679. for (sad = y = 0; y < me_ctx->height; y += 8)
  680. for (x = 0; x < linesize; x += 8)
  681. sad += mi_ctx->sad(p1 + x + y * linesize, linesize, p2 + x + y * linesize, linesize);
  682. emms_c();
  683. mafd = (double) sad / (me_ctx->height * me_ctx->width * 3);
  684. diff = fabs(mafd - mi_ctx->prev_mafd);
  685. ret = av_clipf(FFMIN(mafd, diff), 0, 100.0);
  686. mi_ctx->prev_mafd = mafd;
  687. return ret >= mi_ctx->scd_threshold;
  688. }
  689. return 0;
  690. }
  691. #define ADD_PIXELS(b_weight, mv_x, mv_y)\
  692. do {\
  693. if (!b_weight || pixel->nb + 1 >= NB_PIXEL_MVS)\
  694. continue;\
  695. pixel->refs[pixel->nb] = 1;\
  696. pixel->weights[pixel->nb] = b_weight * (ALPHA_MAX - alpha);\
  697. pixel->mvs[pixel->nb][0] = av_clip((mv_x * alpha) / ALPHA_MAX, x_min, x_max);\
  698. pixel->mvs[pixel->nb][1] = av_clip((mv_y * alpha) / ALPHA_MAX, y_min, y_max);\
  699. pixel->nb++;\
  700. pixel->refs[pixel->nb] = 2;\
  701. pixel->weights[pixel->nb] = b_weight * alpha;\
  702. pixel->mvs[pixel->nb][0] = av_clip(-mv_x * (ALPHA_MAX - alpha) / ALPHA_MAX, x_min, x_max);\
  703. pixel->mvs[pixel->nb][1] = av_clip(-mv_y * (ALPHA_MAX - alpha) / ALPHA_MAX, y_min, y_max);\
  704. pixel->nb++;\
  705. } while(0)
  706. static void bidirectional_obmc(MIContext *mi_ctx, int alpha)
  707. {
  708. int x, y;
  709. int width = mi_ctx->frames[0].avf->width;
  710. int height = mi_ctx->frames[0].avf->height;
  711. int mb_y, mb_x, dir;
  712. for (y = 0; y < height; y++)
  713. for (x = 0; x < width; x++)
  714. mi_ctx->pixels[x + y * width].nb = 0;
  715. for (dir = 0; dir < 2; dir++)
  716. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  717. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
  718. int a = dir ? alpha : (ALPHA_MAX - alpha);
  719. int mv_x = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][0];
  720. int mv_y = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][1];
  721. int start_x, start_y;
  722. int startc_x, startc_y, endc_x, endc_y;
  723. start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_x * a / ALPHA_MAX;
  724. start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_y * a / ALPHA_MAX;
  725. startc_x = av_clip(start_x, 0, width - 1);
  726. startc_y = av_clip(start_y, 0, height - 1);
  727. endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1);
  728. endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1);
  729. if (dir) {
  730. mv_x = -mv_x;
  731. mv_y = -mv_y;
  732. }
  733. for (y = startc_y; y < endc_y; y++) {
  734. int y_min = -y;
  735. int y_max = height - y - 1;
  736. for (x = startc_x; x < endc_x; x++) {
  737. int x_min = -x;
  738. int x_max = width - x - 1;
  739. int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))];
  740. Pixel *pixel = &mi_ctx->pixels[x + y * width];
  741. ADD_PIXELS(obmc_weight, mv_x, mv_y);
  742. }
  743. }
  744. }
  745. }
  746. static void set_frame_data(MIContext *mi_ctx, int alpha, AVFrame *avf_out)
  747. {
  748. int x, y, plane;
  749. for (plane = 0; plane < mi_ctx->nb_planes; plane++) {
  750. int width = avf_out->width;
  751. int height = avf_out->height;
  752. int chroma = plane == 1 || plane == 2;
  753. for (y = 0; y < height; y++)
  754. for (x = 0; x < width; x++) {
  755. int x_mv, y_mv;
  756. int weight_sum = 0;
  757. int i, val = 0;
  758. Pixel *pixel = &mi_ctx->pixels[x + y * avf_out->width];
  759. for (i = 0; i < pixel->nb; i++)
  760. weight_sum += pixel->weights[i];
  761. if (!weight_sum || !pixel->nb) {
  762. pixel->weights[0] = ALPHA_MAX - alpha;
  763. pixel->refs[0] = 1;
  764. pixel->mvs[0][0] = 0;
  765. pixel->mvs[0][1] = 0;
  766. pixel->weights[1] = alpha;
  767. pixel->refs[1] = 2;
  768. pixel->mvs[1][0] = 0;
  769. pixel->mvs[1][1] = 0;
  770. pixel->nb = 2;
  771. weight_sum = ALPHA_MAX;
  772. }
  773. for (i = 0; i < pixel->nb; i++) {
  774. Frame *frame = &mi_ctx->frames[pixel->refs[i]];
  775. if (chroma) {
  776. x_mv = (x >> mi_ctx->log2_chroma_w) + pixel->mvs[i][0] / (1 << mi_ctx->log2_chroma_w);
  777. y_mv = (y >> mi_ctx->log2_chroma_h) + pixel->mvs[i][1] / (1 << mi_ctx->log2_chroma_h);
  778. } else {
  779. x_mv = x + pixel->mvs[i][0];
  780. y_mv = y + pixel->mvs[i][1];
  781. }
  782. val += pixel->weights[i] * frame->avf->data[plane][x_mv + y_mv * frame->avf->linesize[plane]];
  783. }
  784. val = ROUNDED_DIV(val, weight_sum);
  785. if (chroma)
  786. avf_out->data[plane][(x >> mi_ctx->log2_chroma_w) + (y >> mi_ctx->log2_chroma_h) * avf_out->linesize[plane]] = val;
  787. else
  788. avf_out->data[plane][x + y * avf_out->linesize[plane]] = val;
  789. }
  790. }
  791. }
  792. static void var_size_bmc(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n, int alpha)
  793. {
  794. int sb_x, sb_y;
  795. int width = mi_ctx->frames[0].avf->width;
  796. int height = mi_ctx->frames[0].avf->height;
  797. for (sb_y = 0; sb_y < 2; sb_y++)
  798. for (sb_x = 0; sb_x < 2; sb_x++) {
  799. Block *sb = &block->subs[sb_x + sb_y * 2];
  800. if (sb->sb)
  801. var_size_bmc(mi_ctx, sb, x_mb + (sb_x << (n - 1)), y_mb + (sb_y << (n - 1)), n - 1, alpha);
  802. else {
  803. int x, y;
  804. int mv_x = sb->mvs[0][0] * 2;
  805. int mv_y = sb->mvs[0][1] * 2;
  806. int start_x = x_mb + (sb_x << (n - 1));
  807. int start_y = y_mb + (sb_y << (n - 1));
  808. int end_x = start_x + (1 << (n - 1));
  809. int end_y = start_y + (1 << (n - 1));
  810. for (y = start_y; y < end_y; y++) {
  811. int y_min = -y;
  812. int y_max = height - y - 1;
  813. for (x = start_x; x < end_x; x++) {
  814. int x_min = -x;
  815. int x_max = width - x - 1;
  816. Pixel *pixel = &mi_ctx->pixels[x + y * width];
  817. ADD_PIXELS(PX_WEIGHT_MAX, mv_x, mv_y);
  818. }
  819. }
  820. }
  821. }
  822. }
  823. static void bilateral_obmc(MIContext *mi_ctx, Block *block, int mb_x, int mb_y, int alpha)
  824. {
  825. int x, y;
  826. int width = mi_ctx->frames[0].avf->width;
  827. int height = mi_ctx->frames[0].avf->height;
  828. Block *nb;
  829. int nb_x, nb_y;
  830. uint64_t sbads[9];
  831. int mv_x = block->mvs[0][0] * 2;
  832. int mv_y = block->mvs[0][1] * 2;
  833. int start_x, start_y;
  834. int startc_x, startc_y, endc_x, endc_y;
  835. if (mi_ctx->mc_mode == MC_MODE_AOBMC)
  836. for (nb_y = FFMAX(0, mb_y - 1); nb_y < FFMIN(mb_y + 2, mi_ctx->b_height); nb_y++)
  837. for (nb_x = FFMAX(0, mb_x - 1); nb_x < FFMIN(mb_x + 2, mi_ctx->b_width); nb_x++) {
  838. int x_nb = nb_x << mi_ctx->log2_mb_size;
  839. int y_nb = nb_y << mi_ctx->log2_mb_size;
  840. if (nb_x - mb_x || nb_y - mb_y)
  841. sbads[nb_x - mb_x + 1 + (nb_y - mb_y + 1) * 3] = get_sbad(&mi_ctx->me_ctx, x_nb, y_nb, x_nb + block->mvs[0][0], y_nb + block->mvs[0][1]);
  842. }
  843. start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2;
  844. start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2;
  845. startc_x = av_clip(start_x, 0, width - 1);
  846. startc_y = av_clip(start_y, 0, height - 1);
  847. endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1);
  848. endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1);
  849. for (y = startc_y; y < endc_y; y++) {
  850. int y_min = -y;
  851. int y_max = height - y - 1;
  852. for (x = startc_x; x < endc_x; x++) {
  853. int x_min = -x;
  854. int x_max = width - x - 1;
  855. int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))];
  856. Pixel *pixel = &mi_ctx->pixels[x + y * width];
  857. if (mi_ctx->mc_mode == MC_MODE_AOBMC) {
  858. nb_x = (((x - start_x) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2;
  859. nb_y = (((y - start_y) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2;
  860. if (nb_x || nb_y) {
  861. uint64_t sbad = sbads[nb_x + 1 + (nb_y + 1) * 3];
  862. nb = &mi_ctx->int_blocks[mb_x + nb_x + (mb_y + nb_y) * mi_ctx->b_width];
  863. if (sbad && sbad != UINT64_MAX && nb->sbad != UINT64_MAX) {
  864. int phi = av_clip(ALPHA_MAX * nb->sbad / sbad, 0, ALPHA_MAX);
  865. obmc_weight = obmc_weight * phi / ALPHA_MAX;
  866. }
  867. }
  868. }
  869. ADD_PIXELS(obmc_weight, mv_x, mv_y);
  870. }
  871. }
  872. }
  873. static void interpolate(AVFilterLink *inlink, AVFrame *avf_out)
  874. {
  875. AVFilterContext *ctx = inlink->dst;
  876. AVFilterLink *outlink = ctx->outputs[0];
  877. MIContext *mi_ctx = ctx->priv;
  878. int x, y;
  879. int plane, alpha;
  880. int64_t pts;
  881. pts = av_rescale(avf_out->pts, (int64_t) ALPHA_MAX * outlink->time_base.num * inlink->time_base.den,
  882. (int64_t) outlink->time_base.den * inlink->time_base.num);
  883. alpha = (pts - mi_ctx->frames[1].avf->pts * ALPHA_MAX) / (mi_ctx->frames[2].avf->pts - mi_ctx->frames[1].avf->pts);
  884. alpha = av_clip(alpha, 0, ALPHA_MAX);
  885. if (alpha == 0 || alpha == ALPHA_MAX) {
  886. av_frame_copy(avf_out, alpha ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
  887. return;
  888. }
  889. if (mi_ctx->scene_changed) {
  890. /* duplicate frame */
  891. av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
  892. return;
  893. }
  894. switch(mi_ctx->mi_mode) {
  895. case MI_MODE_DUP:
  896. av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf);
  897. break;
  898. case MI_MODE_BLEND:
  899. for (plane = 0; plane < mi_ctx->nb_planes; plane++) {
  900. int width = avf_out->width;
  901. int height = avf_out->height;
  902. if (plane == 1 || plane == 2) {
  903. width = AV_CEIL_RSHIFT(width, mi_ctx->log2_chroma_w);
  904. height = AV_CEIL_RSHIFT(height, mi_ctx->log2_chroma_h);
  905. }
  906. for (y = 0; y < height; y++) {
  907. for (x = 0; x < width; x++) {
  908. avf_out->data[plane][x + y * avf_out->linesize[plane]] =
  909. alpha * mi_ctx->frames[2].avf->data[plane][x + y * mi_ctx->frames[2].avf->linesize[plane]] +
  910. ((ALPHA_MAX - alpha) * mi_ctx->frames[1].avf->data[plane][x + y * mi_ctx->frames[1].avf->linesize[plane]] + 512) >> 10;
  911. }
  912. }
  913. }
  914. break;
  915. case MI_MODE_MCI:
  916. if (mi_ctx->me_mode == ME_MODE_BIDIR) {
  917. bidirectional_obmc(mi_ctx, alpha);
  918. set_frame_data(mi_ctx, alpha, avf_out);
  919. } else if (mi_ctx->me_mode == ME_MODE_BILAT) {
  920. int mb_x, mb_y;
  921. Block *block;
  922. for (y = 0; y < mi_ctx->frames[0].avf->height; y++)
  923. for (x = 0; x < mi_ctx->frames[0].avf->width; x++)
  924. mi_ctx->pixels[x + y * mi_ctx->frames[0].avf->width].nb = 0;
  925. for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++)
  926. for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) {
  927. block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width];
  928. if (block->sb)
  929. var_size_bmc(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size, alpha);
  930. bilateral_obmc(mi_ctx, block, mb_x, mb_y, alpha);
  931. }
  932. set_frame_data(mi_ctx, alpha, avf_out);
  933. }
  934. break;
  935. }
  936. }
  937. static int filter_frame(AVFilterLink *inlink, AVFrame *avf_in)
  938. {
  939. AVFilterContext *ctx = inlink->dst;
  940. AVFilterLink *outlink = ctx->outputs[0];
  941. MIContext *mi_ctx = ctx->priv;
  942. int ret;
  943. if (avf_in->pts == AV_NOPTS_VALUE) {
  944. ret = ff_filter_frame(ctx->outputs[0], avf_in);
  945. return ret;
  946. }
  947. if (!mi_ctx->frames[NB_FRAMES - 1].avf || avf_in->pts < mi_ctx->frames[NB_FRAMES - 1].avf->pts) {
  948. av_log(ctx, AV_LOG_VERBOSE, "Initializing out pts from input pts %"PRId64"\n", avf_in->pts);
  949. mi_ctx->out_pts = av_rescale_q(avf_in->pts, inlink->time_base, outlink->time_base);
  950. }
  951. if (!mi_ctx->frames[NB_FRAMES - 1].avf)
  952. if (ret = inject_frame(inlink, av_frame_clone(avf_in)))
  953. return ret;
  954. if (ret = inject_frame(inlink, avf_in))
  955. return ret;
  956. if (!mi_ctx->frames[0].avf)
  957. return 0;
  958. mi_ctx->scene_changed = detect_scene_change(mi_ctx);
  959. for (;;) {
  960. AVFrame *avf_out;
  961. if (av_compare_ts(mi_ctx->out_pts, outlink->time_base, mi_ctx->frames[2].avf->pts, inlink->time_base) > 0)
  962. break;
  963. if (!(avf_out = ff_get_video_buffer(ctx->outputs[0], inlink->w, inlink->h)))
  964. return AVERROR(ENOMEM);
  965. av_frame_copy_props(avf_out, mi_ctx->frames[NB_FRAMES - 1].avf);
  966. avf_out->pts = mi_ctx->out_pts++;
  967. interpolate(inlink, avf_out);
  968. if ((ret = ff_filter_frame(ctx->outputs[0], avf_out)) < 0)
  969. return ret;
  970. }
  971. return 0;
  972. }
  973. static av_cold void free_blocks(Block *block, int sb)
  974. {
  975. if (block->subs)
  976. free_blocks(block->subs, 1);
  977. if (sb)
  978. av_freep(&block);
  979. }
  980. static av_cold void uninit(AVFilterContext *ctx)
  981. {
  982. MIContext *mi_ctx = ctx->priv;
  983. int i, m;
  984. av_freep(&mi_ctx->pixels);
  985. if (mi_ctx->int_blocks)
  986. for (m = 0; m < mi_ctx->b_count; m++)
  987. free_blocks(&mi_ctx->int_blocks[m], 0);
  988. av_freep(&mi_ctx->int_blocks);
  989. for (i = 0; i < NB_FRAMES; i++) {
  990. Frame *frame = &mi_ctx->frames[i];
  991. av_freep(&frame->blocks);
  992. av_frame_free(&frame->avf);
  993. }
  994. for (i = 0; i < 3; i++)
  995. av_freep(&mi_ctx->mv_table[i]);
  996. }
  997. static const AVFilterPad minterpolate_inputs[] = {
  998. {
  999. .name = "default",
  1000. .type = AVMEDIA_TYPE_VIDEO,
  1001. .filter_frame = filter_frame,
  1002. .config_props = config_input,
  1003. },
  1004. { NULL }
  1005. };
  1006. static const AVFilterPad minterpolate_outputs[] = {
  1007. {
  1008. .name = "default",
  1009. .type = AVMEDIA_TYPE_VIDEO,
  1010. .config_props = config_output,
  1011. },
  1012. { NULL }
  1013. };
  1014. AVFilter ff_vf_minterpolate = {
  1015. .name = "minterpolate",
  1016. .description = NULL_IF_CONFIG_SMALL("Frame rate conversion using Motion Interpolation."),
  1017. .priv_size = sizeof(MIContext),
  1018. .priv_class = &minterpolate_class,
  1019. .uninit = uninit,
  1020. .query_formats = query_formats,
  1021. .inputs = minterpolate_inputs,
  1022. .outputs = minterpolate_outputs,
  1023. };