You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

606 lines
18KB

  1. /*
  2. * Wing Commander/Xan Video Decoder
  3. * Copyright (C) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Xan video decoder for Wing Commander III computer game
  24. * by Mario Brito (mbrito@student.dei.uc.pt)
  25. * and Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The xan_wc3 decoder outputs PAL8 data.
  28. */
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include "libavutil/intreadwrite.h"
  33. #include "avcodec.h"
  34. #include "bytestream.h"
  35. #define ALT_BITSTREAM_READER_LE
  36. #include "get_bits.h"
  37. // for av_memcpy_backptr
  38. #include "libavutil/lzo.h"
  39. #define RUNTIME_GAMMA 0
  40. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  41. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  42. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  43. #define PALETTE_COUNT 256
  44. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  45. #define PALETTES_MAX 256
  46. typedef struct XanContext {
  47. AVCodecContext *avctx;
  48. AVFrame last_frame;
  49. AVFrame current_frame;
  50. const unsigned char *buf;
  51. int size;
  52. /* scratch space */
  53. unsigned char *buffer1;
  54. int buffer1_size;
  55. unsigned char *buffer2;
  56. int buffer2_size;
  57. unsigned *palettes;
  58. int palettes_count;
  59. int cur_palette;
  60. int frame_size;
  61. } XanContext;
  62. static av_cold int xan_decode_init(AVCodecContext *avctx)
  63. {
  64. XanContext *s = avctx->priv_data;
  65. s->avctx = avctx;
  66. s->frame_size = 0;
  67. avctx->pix_fmt = PIX_FMT_PAL8;
  68. s->buffer1_size = avctx->width * avctx->height;
  69. s->buffer1 = av_malloc(s->buffer1_size);
  70. if (!s->buffer1)
  71. return AVERROR(ENOMEM);
  72. s->buffer2_size = avctx->width * avctx->height;
  73. s->buffer2 = av_malloc(s->buffer2_size + 130);
  74. if (!s->buffer2) {
  75. av_freep(&s->buffer1);
  76. return AVERROR(ENOMEM);
  77. }
  78. avcodec_get_frame_defaults(&s->last_frame);
  79. avcodec_get_frame_defaults(&s->current_frame);
  80. return 0;
  81. }
  82. static int xan_huffman_decode(unsigned char *dest, int dest_len,
  83. const unsigned char *src, int src_len)
  84. {
  85. unsigned char byte = *src++;
  86. unsigned char ival = byte + 0x16;
  87. const unsigned char * ptr = src + byte*2;
  88. int ptr_len = src_len - 1 - byte*2;
  89. unsigned char val = ival;
  90. unsigned char *dest_end = dest + dest_len;
  91. GetBitContext gb;
  92. if (ptr_len < 0)
  93. return AVERROR_INVALIDDATA;
  94. init_get_bits(&gb, ptr, ptr_len * 8);
  95. while ( val != 0x16 ) {
  96. val = src[val - 0x17 + get_bits1(&gb) * byte];
  97. if ( val < 0x16 ) {
  98. if (dest >= dest_end)
  99. return 0;
  100. *dest++ = val;
  101. val = ival;
  102. }
  103. }
  104. return 0;
  105. }
  106. /**
  107. * unpack simple compression
  108. *
  109. * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  110. */
  111. static void xan_unpack(unsigned char *dest, const unsigned char *src, int dest_len)
  112. {
  113. unsigned char opcode;
  114. int size;
  115. unsigned char *dest_end = dest + dest_len;
  116. while (dest < dest_end) {
  117. opcode = *src++;
  118. if (opcode < 0xe0) {
  119. int size2, back;
  120. if ( (opcode & 0x80) == 0 ) {
  121. size = opcode & 3;
  122. back = ((opcode & 0x60) << 3) + *src++ + 1;
  123. size2 = ((opcode & 0x1c) >> 2) + 3;
  124. } else if ( (opcode & 0x40) == 0 ) {
  125. size = *src >> 6;
  126. back = (bytestream_get_be16(&src) & 0x3fff) + 1;
  127. size2 = (opcode & 0x3f) + 4;
  128. } else {
  129. size = opcode & 3;
  130. back = ((opcode & 0x10) << 12) + bytestream_get_be16(&src) + 1;
  131. size2 = ((opcode & 0x0c) << 6) + *src++ + 5;
  132. if (size + size2 > dest_end - dest)
  133. return;
  134. }
  135. memcpy(dest, src, size); dest += size; src += size;
  136. av_memcpy_backptr(dest, back, size2);
  137. dest += size2;
  138. } else {
  139. int finish = opcode >= 0xfc;
  140. size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  141. memcpy(dest, src, size); dest += size; src += size;
  142. if (finish)
  143. return;
  144. }
  145. }
  146. }
  147. static inline void xan_wc3_output_pixel_run(XanContext *s,
  148. const unsigned char *pixel_buffer, int x, int y, int pixel_count)
  149. {
  150. int stride;
  151. int line_inc;
  152. int index;
  153. int current_x;
  154. int width = s->avctx->width;
  155. unsigned char *palette_plane;
  156. palette_plane = s->current_frame.data[0];
  157. stride = s->current_frame.linesize[0];
  158. line_inc = stride - width;
  159. index = y * stride + x;
  160. current_x = x;
  161. while(pixel_count && (index < s->frame_size)) {
  162. int count = FFMIN(pixel_count, width - current_x);
  163. memcpy(palette_plane + index, pixel_buffer, count);
  164. pixel_count -= count;
  165. index += count;
  166. pixel_buffer += count;
  167. current_x += count;
  168. if (current_x >= width) {
  169. index += line_inc;
  170. current_x = 0;
  171. }
  172. }
  173. }
  174. static inline void xan_wc3_copy_pixel_run(XanContext *s,
  175. int x, int y, int pixel_count, int motion_x, int motion_y)
  176. {
  177. int stride;
  178. int line_inc;
  179. int curframe_index, prevframe_index;
  180. int curframe_x, prevframe_x;
  181. int width = s->avctx->width;
  182. unsigned char *palette_plane, *prev_palette_plane;
  183. if ( y + motion_y < 0 || y + motion_y >= s->avctx->height ||
  184. x + motion_x < 0 || x + motion_x >= s->avctx->width)
  185. return;
  186. palette_plane = s->current_frame.data[0];
  187. prev_palette_plane = s->last_frame.data[0];
  188. if (!prev_palette_plane)
  189. prev_palette_plane = palette_plane;
  190. stride = s->current_frame.linesize[0];
  191. line_inc = stride - width;
  192. curframe_index = y * stride + x;
  193. curframe_x = x;
  194. prevframe_index = (y + motion_y) * stride + x + motion_x;
  195. prevframe_x = x + motion_x;
  196. while(pixel_count &&
  197. curframe_index < s->frame_size &&
  198. prevframe_index < s->frame_size) {
  199. int count = FFMIN3(pixel_count, width - curframe_x, width - prevframe_x);
  200. memcpy(palette_plane + curframe_index, prev_palette_plane + prevframe_index, count);
  201. pixel_count -= count;
  202. curframe_index += count;
  203. prevframe_index += count;
  204. curframe_x += count;
  205. prevframe_x += count;
  206. if (curframe_x >= width) {
  207. curframe_index += line_inc;
  208. curframe_x = 0;
  209. }
  210. if (prevframe_x >= width) {
  211. prevframe_index += line_inc;
  212. prevframe_x = 0;
  213. }
  214. }
  215. }
  216. static int xan_wc3_decode_frame(XanContext *s) {
  217. int width = s->avctx->width;
  218. int height = s->avctx->height;
  219. int total_pixels = width * height;
  220. unsigned char opcode;
  221. unsigned char flag = 0;
  222. int size = 0;
  223. int motion_x, motion_y;
  224. int x, y;
  225. unsigned char *opcode_buffer = s->buffer1;
  226. unsigned char *opcode_buffer_end = s->buffer1 + s->buffer1_size;
  227. int opcode_buffer_size = s->buffer1_size;
  228. const unsigned char *imagedata_buffer = s->buffer2;
  229. /* pointers to segments inside the compressed chunk */
  230. const unsigned char *huffman_segment;
  231. const unsigned char *size_segment;
  232. const unsigned char *vector_segment;
  233. const unsigned char *imagedata_segment;
  234. int huffman_offset, size_offset, vector_offset, imagedata_offset, imagedata_size;
  235. if (s->size < 8)
  236. return AVERROR_INVALIDDATA;
  237. huffman_offset = AV_RL16(&s->buf[0]);
  238. size_offset = AV_RL16(&s->buf[2]);
  239. vector_offset = AV_RL16(&s->buf[4]);
  240. imagedata_offset = AV_RL16(&s->buf[6]);
  241. if (huffman_offset >= s->size ||
  242. size_offset >= s->size ||
  243. vector_offset >= s->size ||
  244. imagedata_offset >= s->size)
  245. return AVERROR_INVALIDDATA;
  246. huffman_segment = s->buf + huffman_offset;
  247. size_segment = s->buf + size_offset;
  248. vector_segment = s->buf + vector_offset;
  249. imagedata_segment = s->buf + imagedata_offset;
  250. if (xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  251. huffman_segment, s->size - huffman_offset) < 0)
  252. return AVERROR_INVALIDDATA;
  253. if (imagedata_segment[0] == 2) {
  254. xan_unpack(s->buffer2, &imagedata_segment[1], s->buffer2_size);
  255. imagedata_size = s->buffer2_size;
  256. } else {
  257. imagedata_size = s->size - imagedata_offset - 1;
  258. imagedata_buffer = &imagedata_segment[1];
  259. }
  260. /* use the decoded data segments to build the frame */
  261. x = y = 0;
  262. while (total_pixels && opcode_buffer < opcode_buffer_end) {
  263. opcode = *opcode_buffer++;
  264. size = 0;
  265. switch (opcode) {
  266. case 0:
  267. flag ^= 1;
  268. continue;
  269. case 1:
  270. case 2:
  271. case 3:
  272. case 4:
  273. case 5:
  274. case 6:
  275. case 7:
  276. case 8:
  277. size = opcode;
  278. break;
  279. case 12:
  280. case 13:
  281. case 14:
  282. case 15:
  283. case 16:
  284. case 17:
  285. case 18:
  286. size += (opcode - 10);
  287. break;
  288. case 9:
  289. case 19:
  290. size = *size_segment++;
  291. break;
  292. case 10:
  293. case 20:
  294. size = AV_RB16(&size_segment[0]);
  295. size_segment += 2;
  296. break;
  297. case 11:
  298. case 21:
  299. size = AV_RB24(size_segment);
  300. size_segment += 3;
  301. break;
  302. }
  303. if (size > total_pixels)
  304. break;
  305. if (opcode < 12) {
  306. flag ^= 1;
  307. if (flag) {
  308. /* run of (size) pixels is unchanged from last frame */
  309. xan_wc3_copy_pixel_run(s, x, y, size, 0, 0);
  310. } else {
  311. /* output a run of pixels from imagedata_buffer */
  312. if (imagedata_size < size)
  313. break;
  314. xan_wc3_output_pixel_run(s, imagedata_buffer, x, y, size);
  315. imagedata_buffer += size;
  316. imagedata_size -= size;
  317. }
  318. } else {
  319. /* run-based motion compensation from last frame */
  320. motion_x = sign_extend(*vector_segment >> 4, 4);
  321. motion_y = sign_extend(*vector_segment & 0xF, 4);
  322. vector_segment++;
  323. /* copy a run of pixels from the previous frame */
  324. xan_wc3_copy_pixel_run(s, x, y, size, motion_x, motion_y);
  325. flag = 0;
  326. }
  327. /* coordinate accounting */
  328. total_pixels -= size;
  329. y += (x + size) / width;
  330. x = (x + size) % width;
  331. }
  332. return 0;
  333. }
  334. #if RUNTIME_GAMMA
  335. static inline unsigned mul(unsigned a, unsigned b)
  336. {
  337. return (a * b) >> 16;
  338. }
  339. static inline unsigned pow4(unsigned a)
  340. {
  341. unsigned square = mul(a, a);
  342. return mul(square, square);
  343. }
  344. static inline unsigned pow5(unsigned a)
  345. {
  346. return mul(pow4(a), a);
  347. }
  348. static uint8_t gamma_corr(uint8_t in) {
  349. unsigned lo, hi = 0xff40, target;
  350. int i = 15;
  351. in = (in << 2) | (in >> 6);
  352. /* equivalent float code:
  353. if (in >= 252)
  354. return 253;
  355. return round(pow(in / 256.0, 0.8) * 256);
  356. */
  357. lo = target = in << 8;
  358. do {
  359. unsigned mid = (lo + hi) >> 1;
  360. unsigned pow = pow5(mid);
  361. if (pow > target) hi = mid;
  362. else lo = mid;
  363. } while (--i);
  364. return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  365. }
  366. #else
  367. /**
  368. * This is a gamma correction that xan3 applies to all palette entries.
  369. *
  370. * There is a peculiarity, namely that the values are clamped to 253 -
  371. * it seems likely that this table was calculated by a buggy fixed-point
  372. * implementation, the one above under RUNTIME_GAMMA behaves like this for
  373. * example.
  374. * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  375. * and thus pow(x, 0.8) is still easy to calculate.
  376. * Also, the input values are first rotated to the left by 2.
  377. */
  378. static const uint8_t gamma_lookup[256] = {
  379. 0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  380. 0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  381. 0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  382. 0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  383. 0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  384. 0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  385. 0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  386. 0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  387. 0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  388. 0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  389. 0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  390. 0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  391. 0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  392. 0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  393. 0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  394. 0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  395. 0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  396. 0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  397. 0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  398. 0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  399. 0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  400. 0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  401. 0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  402. 0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  403. 0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  404. 0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  405. 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  406. 0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  407. 0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  408. 0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  409. 0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  410. 0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  411. };
  412. #endif
  413. static int xan_decode_frame(AVCodecContext *avctx,
  414. void *data, int *data_size,
  415. AVPacket *avpkt)
  416. {
  417. const uint8_t *buf = avpkt->data;
  418. int ret, buf_size = avpkt->size;
  419. XanContext *s = avctx->priv_data;
  420. if (avctx->codec->id == CODEC_ID_XAN_WC3) {
  421. const uint8_t *buf_end = buf + buf_size;
  422. int tag = 0;
  423. while (buf_end - buf > 8 && tag != VGA__TAG) {
  424. unsigned *tmpptr;
  425. uint32_t new_pal;
  426. int size;
  427. int i;
  428. tag = bytestream_get_le32(&buf);
  429. size = bytestream_get_be32(&buf);
  430. size = FFMIN(size, buf_end - buf);
  431. switch (tag) {
  432. case PALT_TAG:
  433. if (size < PALETTE_SIZE)
  434. return AVERROR_INVALIDDATA;
  435. if (s->palettes_count >= PALETTES_MAX)
  436. return AVERROR_INVALIDDATA;
  437. tmpptr = av_realloc(s->palettes, (s->palettes_count + 1) * AVPALETTE_SIZE);
  438. if (!tmpptr)
  439. return AVERROR(ENOMEM);
  440. s->palettes = tmpptr;
  441. tmpptr += s->palettes_count * AVPALETTE_COUNT;
  442. for (i = 0; i < PALETTE_COUNT; i++) {
  443. #if RUNTIME_GAMMA
  444. int r = gamma_corr(*buf++);
  445. int g = gamma_corr(*buf++);
  446. int b = gamma_corr(*buf++);
  447. #else
  448. int r = gamma_lookup[*buf++];
  449. int g = gamma_lookup[*buf++];
  450. int b = gamma_lookup[*buf++];
  451. #endif
  452. *tmpptr++ = (r << 16) | (g << 8) | b;
  453. }
  454. s->palettes_count++;
  455. break;
  456. case SHOT_TAG:
  457. if (size < 4)
  458. return AVERROR_INVALIDDATA;
  459. new_pal = bytestream_get_le32(&buf);
  460. if (new_pal < s->palettes_count) {
  461. s->cur_palette = new_pal;
  462. } else
  463. av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  464. break;
  465. case VGA__TAG:
  466. break;
  467. default:
  468. buf += size;
  469. break;
  470. }
  471. }
  472. buf_size = buf_end - buf;
  473. }
  474. if ((ret = avctx->get_buffer(avctx, &s->current_frame))) {
  475. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  476. return ret;
  477. }
  478. s->current_frame.reference = 3;
  479. if (!s->frame_size)
  480. s->frame_size = s->current_frame.linesize[0] * s->avctx->height;
  481. memcpy(s->current_frame.data[1], s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  482. s->buf = buf;
  483. s->size = buf_size;
  484. if (xan_wc3_decode_frame(s) < 0)
  485. return AVERROR_INVALIDDATA;
  486. /* release the last frame if it is allocated */
  487. if (s->last_frame.data[0])
  488. avctx->release_buffer(avctx, &s->last_frame);
  489. *data_size = sizeof(AVFrame);
  490. *(AVFrame*)data = s->current_frame;
  491. /* shuffle frames */
  492. FFSWAP(AVFrame, s->current_frame, s->last_frame);
  493. /* always report that the buffer was completely consumed */
  494. return buf_size;
  495. }
  496. static av_cold int xan_decode_end(AVCodecContext *avctx)
  497. {
  498. XanContext *s = avctx->priv_data;
  499. /* release the frames */
  500. if (s->last_frame.data[0])
  501. avctx->release_buffer(avctx, &s->last_frame);
  502. if (s->current_frame.data[0])
  503. avctx->release_buffer(avctx, &s->current_frame);
  504. av_freep(&s->buffer1);
  505. av_freep(&s->buffer2);
  506. av_freep(&s->palettes);
  507. return 0;
  508. }
  509. AVCodec ff_xan_wc3_decoder = {
  510. .name = "xan_wc3",
  511. .type = AVMEDIA_TYPE_VIDEO,
  512. .id = CODEC_ID_XAN_WC3,
  513. .priv_data_size = sizeof(XanContext),
  514. .init = xan_decode_init,
  515. .close = xan_decode_end,
  516. .decode = xan_decode_frame,
  517. .capabilities = CODEC_CAP_DR1,
  518. .long_name = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  519. };