You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1767 lines
66KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include <stdint.h>
  33. #include <float.h>
  34. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  35. #define NOISE_FLOOR_OFFSET 6.0f
  36. /**
  37. * SBR VLC tables
  38. */
  39. enum {
  40. T_HUFFMAN_ENV_1_5DB,
  41. F_HUFFMAN_ENV_1_5DB,
  42. T_HUFFMAN_ENV_BAL_1_5DB,
  43. F_HUFFMAN_ENV_BAL_1_5DB,
  44. T_HUFFMAN_ENV_3_0DB,
  45. F_HUFFMAN_ENV_3_0DB,
  46. T_HUFFMAN_ENV_BAL_3_0DB,
  47. F_HUFFMAN_ENV_BAL_3_0DB,
  48. T_HUFFMAN_NOISE_3_0DB,
  49. T_HUFFMAN_NOISE_BAL_3_0DB,
  50. };
  51. /**
  52. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  53. */
  54. enum {
  55. FIXFIX,
  56. FIXVAR,
  57. VARFIX,
  58. VARVAR,
  59. };
  60. enum {
  61. EXTENSION_ID_PS = 2,
  62. };
  63. static VLC vlc_sbr[10];
  64. static const int8_t vlc_sbr_lav[10] =
  65. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  66. static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
  67. static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
  68. static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
  69. static const DECLARE_ALIGNED(16, float, zero64)[64];
  70. #define SBR_INIT_VLC_STATIC(num, size) \
  71. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  72. sbr_tmp[num].sbr_bits , 1, 1, \
  73. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  74. size)
  75. #define SBR_VLC_ROW(name) \
  76. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  77. av_cold void ff_aac_sbr_init(void)
  78. {
  79. int n, k;
  80. static const struct {
  81. const void *sbr_codes, *sbr_bits;
  82. const unsigned int table_size, elem_size;
  83. } sbr_tmp[] = {
  84. SBR_VLC_ROW(t_huffman_env_1_5dB),
  85. SBR_VLC_ROW(f_huffman_env_1_5dB),
  86. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_3_0dB),
  89. SBR_VLC_ROW(f_huffman_env_3_0dB),
  90. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  94. };
  95. // SBR VLC table initialization
  96. SBR_INIT_VLC_STATIC(0, 1098);
  97. SBR_INIT_VLC_STATIC(1, 1092);
  98. SBR_INIT_VLC_STATIC(2, 768);
  99. SBR_INIT_VLC_STATIC(3, 1026);
  100. SBR_INIT_VLC_STATIC(4, 1058);
  101. SBR_INIT_VLC_STATIC(5, 1052);
  102. SBR_INIT_VLC_STATIC(6, 544);
  103. SBR_INIT_VLC_STATIC(7, 544);
  104. SBR_INIT_VLC_STATIC(8, 592);
  105. SBR_INIT_VLC_STATIC(9, 512);
  106. for (n = 0; n < 64; n++) {
  107. float pre = M_PI * n / 64;
  108. analysis_cos_pre[n] = cosf(pre);
  109. analysis_sin_pre[n] = sinf(pre);
  110. }
  111. for (k = 0; k < 32; k++) {
  112. float post = M_PI * (k + 0.5) / 128;
  113. analysis_cossin_post[k][0] = 4.0 * cosf(post);
  114. analysis_cossin_post[k][1] = -4.0 * sinf(post);
  115. }
  116. for (n = 1; n < 320; n++)
  117. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  118. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  119. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  120. for (n = 0; n < 320; n++)
  121. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  122. }
  123. av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
  124. {
  125. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  126. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  127. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  128. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  129. ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
  130. ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
  131. }
  132. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  133. {
  134. ff_mdct_end(&sbr->mdct);
  135. ff_rdft_end(&sbr->rdft);
  136. }
  137. static int qsort_comparison_function_int16(const void *a, const void *b)
  138. {
  139. return *(const int16_t *)a - *(const int16_t *)b;
  140. }
  141. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  142. {
  143. int i;
  144. for (i = 0; i <= last_el; i++)
  145. if (table[i] == needle)
  146. return 1;
  147. return 0;
  148. }
  149. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  150. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  151. {
  152. int k;
  153. if (sbr->bs_limiter_bands > 0) {
  154. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  155. 1.18509277094158210129f, //2^(0.49/2)
  156. 1.11987160404675912501f }; //2^(0.49/3)
  157. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  158. int16_t patch_borders[7];
  159. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  160. patch_borders[0] = sbr->kx[1];
  161. for (k = 1; k <= sbr->num_patches; k++)
  162. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  163. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  164. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  165. if (sbr->num_patches > 1)
  166. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  167. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  168. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  169. sizeof(sbr->f_tablelim[0]),
  170. qsort_comparison_function_int16);
  171. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  172. while (out < sbr->f_tablelim + sbr->n_lim) {
  173. if (*in >= *out * lim_bands_per_octave_warped) {
  174. *++out = *in++;
  175. } else if (*in == *out ||
  176. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  177. in++;
  178. sbr->n_lim--;
  179. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  180. *out = *in++;
  181. sbr->n_lim--;
  182. } else {
  183. *++out = *in++;
  184. }
  185. }
  186. } else {
  187. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  188. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  189. sbr->n_lim = 1;
  190. }
  191. }
  192. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  193. {
  194. unsigned int cnt = get_bits_count(gb);
  195. uint8_t bs_header_extra_1;
  196. uint8_t bs_header_extra_2;
  197. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  198. SpectrumParameters old_spectrum_params;
  199. sbr->start = 1;
  200. // Save last spectrum parameters variables to compare to new ones
  201. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  202. sbr->bs_amp_res_header = get_bits1(gb);
  203. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  204. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  205. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  206. skip_bits(gb, 2); // bs_reserved
  207. bs_header_extra_1 = get_bits1(gb);
  208. bs_header_extra_2 = get_bits1(gb);
  209. if (bs_header_extra_1) {
  210. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  211. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  212. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  213. } else {
  214. sbr->spectrum_params.bs_freq_scale = 2;
  215. sbr->spectrum_params.bs_alter_scale = 1;
  216. sbr->spectrum_params.bs_noise_bands = 2;
  217. }
  218. // Check if spectrum parameters changed
  219. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  220. sbr->reset = 1;
  221. if (bs_header_extra_2) {
  222. sbr->bs_limiter_bands = get_bits(gb, 2);
  223. sbr->bs_limiter_gains = get_bits(gb, 2);
  224. sbr->bs_interpol_freq = get_bits1(gb);
  225. sbr->bs_smoothing_mode = get_bits1(gb);
  226. } else {
  227. sbr->bs_limiter_bands = 2;
  228. sbr->bs_limiter_gains = 2;
  229. sbr->bs_interpol_freq = 1;
  230. sbr->bs_smoothing_mode = 1;
  231. }
  232. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  233. sbr_make_f_tablelim(sbr);
  234. return get_bits_count(gb) - cnt;
  235. }
  236. static int array_min_int16(const int16_t *array, int nel)
  237. {
  238. int i, min = array[0];
  239. for (i = 1; i < nel; i++)
  240. min = FFMIN(array[i], min);
  241. return min;
  242. }
  243. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  244. {
  245. int k, previous, present;
  246. float base, prod;
  247. base = powf((float)stop / start, 1.0f / num_bands);
  248. prod = start;
  249. previous = start;
  250. for (k = 0; k < num_bands-1; k++) {
  251. prod *= base;
  252. present = lrintf(prod);
  253. bands[k] = present - previous;
  254. previous = present;
  255. }
  256. bands[num_bands-1] = stop - previous;
  257. }
  258. static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
  259. {
  260. // Requirements (14496-3 sp04 p205)
  261. if (n_master <= 0) {
  262. av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  263. return -1;
  264. }
  265. if (bs_xover_band >= n_master) {
  266. av_log(avccontext, AV_LOG_ERROR,
  267. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  268. bs_xover_band);
  269. return -1;
  270. }
  271. return 0;
  272. }
  273. /// Master Frequency Band Table (14496-3 sp04 p194)
  274. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  275. SpectrumParameters *spectrum)
  276. {
  277. unsigned int temp, max_qmf_subbands;
  278. unsigned int start_min, stop_min;
  279. int k;
  280. const int8_t *sbr_offset_ptr;
  281. int16_t stop_dk[13];
  282. if (sbr->sample_rate < 32000) {
  283. temp = 3000;
  284. } else if (sbr->sample_rate < 64000) {
  285. temp = 4000;
  286. } else
  287. temp = 5000;
  288. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  289. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  290. switch (sbr->sample_rate) {
  291. case 16000:
  292. sbr_offset_ptr = sbr_offset[0];
  293. break;
  294. case 22050:
  295. sbr_offset_ptr = sbr_offset[1];
  296. break;
  297. case 24000:
  298. sbr_offset_ptr = sbr_offset[2];
  299. break;
  300. case 32000:
  301. sbr_offset_ptr = sbr_offset[3];
  302. break;
  303. case 44100: case 48000: case 64000:
  304. sbr_offset_ptr = sbr_offset[4];
  305. break;
  306. case 88200: case 96000: case 128000: case 176400: case 192000:
  307. sbr_offset_ptr = sbr_offset[5];
  308. break;
  309. default:
  310. av_log(ac->avccontext, AV_LOG_ERROR,
  311. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  312. return -1;
  313. }
  314. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  315. if (spectrum->bs_stop_freq < 14) {
  316. sbr->k[2] = stop_min;
  317. make_bands(stop_dk, stop_min, 64, 13);
  318. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  319. for (k = 0; k < spectrum->bs_stop_freq; k++)
  320. sbr->k[2] += stop_dk[k];
  321. } else if (spectrum->bs_stop_freq == 14) {
  322. sbr->k[2] = 2*sbr->k[0];
  323. } else if (spectrum->bs_stop_freq == 15) {
  324. sbr->k[2] = 3*sbr->k[0];
  325. } else {
  326. av_log(ac->avccontext, AV_LOG_ERROR,
  327. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  328. return -1;
  329. }
  330. sbr->k[2] = FFMIN(64, sbr->k[2]);
  331. // Requirements (14496-3 sp04 p205)
  332. if (sbr->sample_rate <= 32000) {
  333. max_qmf_subbands = 48;
  334. } else if (sbr->sample_rate == 44100) {
  335. max_qmf_subbands = 35;
  336. } else if (sbr->sample_rate >= 48000)
  337. max_qmf_subbands = 32;
  338. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  339. av_log(ac->avccontext, AV_LOG_ERROR,
  340. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  341. return -1;
  342. }
  343. if (!spectrum->bs_freq_scale) {
  344. unsigned int dk;
  345. int k2diff;
  346. dk = spectrum->bs_alter_scale + 1;
  347. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  348. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  349. return -1;
  350. for (k = 1; k <= sbr->n_master; k++)
  351. sbr->f_master[k] = dk;
  352. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  353. if (k2diff < 0) {
  354. sbr->f_master[1]--;
  355. sbr->f_master[2]-= (k2diff < 1);
  356. } else if (k2diff) {
  357. sbr->f_master[sbr->n_master]++;
  358. }
  359. sbr->f_master[0] = sbr->k[0];
  360. for (k = 1; k <= sbr->n_master; k++)
  361. sbr->f_master[k] += sbr->f_master[k - 1];
  362. } else {
  363. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  364. int two_regions, num_bands_0;
  365. int vdk0_max, vdk1_min;
  366. int16_t vk0[49];
  367. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  368. two_regions = 1;
  369. sbr->k[1] = 2 * sbr->k[0];
  370. } else {
  371. two_regions = 0;
  372. sbr->k[1] = sbr->k[2];
  373. }
  374. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  375. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  376. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  377. return -1;
  378. }
  379. vk0[0] = 0;
  380. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  381. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  382. vdk0_max = vk0[num_bands_0];
  383. vk0[0] = sbr->k[0];
  384. for (k = 1; k <= num_bands_0; k++) {
  385. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  386. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  387. return -1;
  388. }
  389. vk0[k] += vk0[k-1];
  390. }
  391. if (two_regions) {
  392. int16_t vk1[49];
  393. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  394. : 1.0f; // bs_alter_scale = {0,1}
  395. int num_bands_1 = lrintf(half_bands * invwarp *
  396. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  397. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  398. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  399. if (vdk1_min < vdk0_max) {
  400. int change;
  401. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  402. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  403. vk1[1] += change;
  404. vk1[num_bands_1] -= change;
  405. }
  406. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  407. vk1[0] = sbr->k[1];
  408. for (k = 1; k <= num_bands_1; k++) {
  409. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  410. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  411. return -1;
  412. }
  413. vk1[k] += vk1[k-1];
  414. }
  415. sbr->n_master = num_bands_0 + num_bands_1;
  416. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  417. return -1;
  418. memcpy(&sbr->f_master[0], vk0,
  419. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  420. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  421. num_bands_1 * sizeof(sbr->f_master[0]));
  422. } else {
  423. sbr->n_master = num_bands_0;
  424. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  425. return -1;
  426. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  427. }
  428. }
  429. return 0;
  430. }
  431. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  432. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  433. {
  434. int i, k, sb = 0;
  435. int msb = sbr->k[0];
  436. int usb = sbr->kx[1];
  437. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  438. sbr->num_patches = 0;
  439. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  440. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  441. } else
  442. k = sbr->n_master;
  443. do {
  444. int odd = 0;
  445. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  446. sb = sbr->f_master[i];
  447. odd = (sb + sbr->k[0]) & 1;
  448. }
  449. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  450. // After this check the final number of patches can still be six which is
  451. // illegal however the Coding Technologies decoder check stream has a final
  452. // count of 6 patches
  453. if (sbr->num_patches > 5) {
  454. av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  455. return -1;
  456. }
  457. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  458. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  459. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  460. usb = sb;
  461. msb = sb;
  462. sbr->num_patches++;
  463. } else
  464. msb = sbr->kx[1];
  465. if (sbr->f_master[k] - sb < 3)
  466. k = sbr->n_master;
  467. } while (sb != sbr->kx[1] + sbr->m[1]);
  468. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  469. sbr->num_patches--;
  470. return 0;
  471. }
  472. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  473. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  474. {
  475. int k, temp;
  476. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  477. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  478. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  479. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  480. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  481. sbr->kx[1] = sbr->f_tablehigh[0];
  482. // Requirements (14496-3 sp04 p205)
  483. if (sbr->kx[1] + sbr->m[1] > 64) {
  484. av_log(ac->avccontext, AV_LOG_ERROR,
  485. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  486. return -1;
  487. }
  488. if (sbr->kx[1] > 32) {
  489. av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  490. return -1;
  491. }
  492. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  493. temp = sbr->n[1] & 1;
  494. for (k = 1; k <= sbr->n[0]; k++)
  495. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  496. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  497. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  498. if (sbr->n_q > 5) {
  499. av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  500. return -1;
  501. }
  502. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  503. temp = 0;
  504. for (k = 1; k <= sbr->n_q; k++) {
  505. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  506. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  507. }
  508. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  509. return -1;
  510. sbr_make_f_tablelim(sbr);
  511. sbr->data[0].f_indexnoise = 0;
  512. sbr->data[1].f_indexnoise = 0;
  513. return 0;
  514. }
  515. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  516. int elements)
  517. {
  518. int i;
  519. for (i = 0; i < elements; i++) {
  520. vec[i] = get_bits1(gb);
  521. }
  522. }
  523. /** ceil(log2(index+1)) */
  524. static const int8_t ceil_log2[] = {
  525. 0, 1, 2, 2, 3, 3,
  526. };
  527. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  528. GetBitContext *gb, SBRData *ch_data)
  529. {
  530. int i;
  531. unsigned bs_pointer = 0;
  532. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  533. int abs_bord_trail = 16;
  534. int num_rel_lead, num_rel_trail;
  535. unsigned bs_num_env_old = ch_data->bs_num_env;
  536. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  537. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  538. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  539. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  540. case FIXFIX:
  541. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  542. num_rel_lead = ch_data->bs_num_env - 1;
  543. if (ch_data->bs_num_env == 1)
  544. ch_data->bs_amp_res = 0;
  545. if (ch_data->bs_num_env > 4) {
  546. av_log(ac->avccontext, AV_LOG_ERROR,
  547. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  548. ch_data->bs_num_env);
  549. return -1;
  550. }
  551. ch_data->t_env[0] = 0;
  552. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  553. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  554. ch_data->bs_num_env;
  555. for (i = 0; i < num_rel_lead; i++)
  556. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  557. ch_data->bs_freq_res[1] = get_bits1(gb);
  558. for (i = 1; i < ch_data->bs_num_env; i++)
  559. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  560. break;
  561. case FIXVAR:
  562. abs_bord_trail += get_bits(gb, 2);
  563. num_rel_trail = get_bits(gb, 2);
  564. ch_data->bs_num_env = num_rel_trail + 1;
  565. ch_data->t_env[0] = 0;
  566. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  567. for (i = 0; i < num_rel_trail; i++)
  568. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  569. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  570. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  571. for (i = 0; i < ch_data->bs_num_env; i++)
  572. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  573. break;
  574. case VARFIX:
  575. ch_data->t_env[0] = get_bits(gb, 2);
  576. num_rel_lead = get_bits(gb, 2);
  577. ch_data->bs_num_env = num_rel_lead + 1;
  578. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  579. for (i = 0; i < num_rel_lead; i++)
  580. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  581. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  582. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  583. break;
  584. case VARVAR:
  585. ch_data->t_env[0] = get_bits(gb, 2);
  586. abs_bord_trail += get_bits(gb, 2);
  587. num_rel_lead = get_bits(gb, 2);
  588. num_rel_trail = get_bits(gb, 2);
  589. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  590. if (ch_data->bs_num_env > 5) {
  591. av_log(ac->avccontext, AV_LOG_ERROR,
  592. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  593. ch_data->bs_num_env);
  594. return -1;
  595. }
  596. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  597. for (i = 0; i < num_rel_lead; i++)
  598. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  599. for (i = 0; i < num_rel_trail; i++)
  600. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  601. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  602. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  603. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  604. break;
  605. }
  606. if (bs_pointer > ch_data->bs_num_env + 1) {
  607. av_log(ac->avccontext, AV_LOG_ERROR,
  608. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  609. bs_pointer);
  610. return -1;
  611. }
  612. for (i = 1; i <= ch_data->bs_num_env; i++) {
  613. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  614. av_log(ac->avccontext, AV_LOG_ERROR, "Non monotone time borders\n");
  615. return -1;
  616. }
  617. }
  618. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  619. ch_data->t_q[0] = ch_data->t_env[0];
  620. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  621. if (ch_data->bs_num_noise > 1) {
  622. unsigned int idx;
  623. if (ch_data->bs_frame_class == FIXFIX) {
  624. idx = ch_data->bs_num_env >> 1;
  625. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  626. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  627. } else { // VARFIX
  628. if (!bs_pointer)
  629. idx = 1;
  630. else if (bs_pointer == 1)
  631. idx = ch_data->bs_num_env - 1;
  632. else // bs_pointer > 1
  633. idx = bs_pointer - 1;
  634. }
  635. ch_data->t_q[1] = ch_data->t_env[idx];
  636. }
  637. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  638. ch_data->e_a[1] = -1;
  639. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  640. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  641. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  642. ch_data->e_a[1] = bs_pointer - 1;
  643. return 0;
  644. }
  645. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  646. //These variables are saved from the previous frame rather than copied
  647. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  648. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  649. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  650. //These variables are read from the bitstream and therefore copied
  651. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  652. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  653. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  654. dst->bs_num_env = src->bs_num_env;
  655. dst->bs_amp_res = src->bs_amp_res;
  656. dst->bs_num_noise = src->bs_num_noise;
  657. dst->bs_frame_class = src->bs_frame_class;
  658. dst->e_a[1] = src->e_a[1];
  659. }
  660. /// Read how the envelope and noise floor data is delta coded
  661. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  662. SBRData *ch_data)
  663. {
  664. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  665. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  666. }
  667. /// Read inverse filtering data
  668. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  669. SBRData *ch_data)
  670. {
  671. int i;
  672. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  673. for (i = 0; i < sbr->n_q; i++)
  674. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  675. }
  676. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  677. SBRData *ch_data, int ch)
  678. {
  679. int bits;
  680. int i, j, k;
  681. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  682. int t_lav, f_lav;
  683. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  684. const int odd = sbr->n[1] & 1;
  685. if (sbr->bs_coupling && ch) {
  686. if (ch_data->bs_amp_res) {
  687. bits = 5;
  688. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  689. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  690. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  691. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  692. } else {
  693. bits = 6;
  694. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  695. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  696. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  697. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  698. }
  699. } else {
  700. if (ch_data->bs_amp_res) {
  701. bits = 6;
  702. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  703. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  704. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  705. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  706. } else {
  707. bits = 7;
  708. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  709. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  710. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  711. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  712. }
  713. }
  714. for (i = 0; i < ch_data->bs_num_env; i++) {
  715. if (ch_data->bs_df_env[i]) {
  716. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  717. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  718. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  719. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  720. } else if (ch_data->bs_freq_res[i + 1]) {
  721. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  722. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  723. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  724. }
  725. } else {
  726. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  727. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  728. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  729. }
  730. }
  731. } else {
  732. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  733. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  734. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  735. }
  736. }
  737. //assign 0th elements of env_facs from last elements
  738. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  739. sizeof(ch_data->env_facs[0]));
  740. }
  741. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  742. SBRData *ch_data, int ch)
  743. {
  744. int i, j;
  745. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  746. int t_lav, f_lav;
  747. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  748. if (sbr->bs_coupling && ch) {
  749. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  750. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  751. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  752. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  753. } else {
  754. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  755. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  756. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  757. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  758. }
  759. for (i = 0; i < ch_data->bs_num_noise; i++) {
  760. if (ch_data->bs_df_noise[i]) {
  761. for (j = 0; j < sbr->n_q; j++)
  762. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  763. } else {
  764. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  765. for (j = 1; j < sbr->n_q; j++)
  766. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  767. }
  768. }
  769. //assign 0th elements of noise_facs from last elements
  770. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  771. sizeof(ch_data->noise_facs[0]));
  772. }
  773. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  774. GetBitContext *gb,
  775. int bs_extension_id, int *num_bits_left)
  776. {
  777. //TODO - implement ps_data for parametric stereo parsing
  778. switch (bs_extension_id) {
  779. case EXTENSION_ID_PS:
  780. if (!ac->m4ac.ps) {
  781. av_log(ac->avccontext, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  782. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  783. *num_bits_left = 0;
  784. } else {
  785. #if 0
  786. *num_bits_left -= ff_ps_data(gb, ps);
  787. #else
  788. av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
  789. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  790. *num_bits_left = 0;
  791. #endif
  792. }
  793. break;
  794. default:
  795. av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
  796. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  797. *num_bits_left = 0;
  798. break;
  799. }
  800. }
  801. static int read_sbr_single_channel_element(AACContext *ac,
  802. SpectralBandReplication *sbr,
  803. GetBitContext *gb)
  804. {
  805. if (get_bits1(gb)) // bs_data_extra
  806. skip_bits(gb, 4); // bs_reserved
  807. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  808. return -1;
  809. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  810. read_sbr_invf(sbr, gb, &sbr->data[0]);
  811. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  812. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  813. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  814. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  815. return 0;
  816. }
  817. static int read_sbr_channel_pair_element(AACContext *ac,
  818. SpectralBandReplication *sbr,
  819. GetBitContext *gb)
  820. {
  821. if (get_bits1(gb)) // bs_data_extra
  822. skip_bits(gb, 8); // bs_reserved
  823. if ((sbr->bs_coupling = get_bits1(gb))) {
  824. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  825. return -1;
  826. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  827. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  828. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  829. read_sbr_invf(sbr, gb, &sbr->data[0]);
  830. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  831. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  832. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  833. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  834. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  835. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  836. } else {
  837. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  838. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  839. return -1;
  840. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  841. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  842. read_sbr_invf(sbr, gb, &sbr->data[0]);
  843. read_sbr_invf(sbr, gb, &sbr->data[1]);
  844. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  845. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  846. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  847. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  848. }
  849. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  850. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  851. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  852. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  853. return 0;
  854. }
  855. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  856. GetBitContext *gb, int id_aac)
  857. {
  858. unsigned int cnt = get_bits_count(gb);
  859. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  860. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  861. sbr->start = 0;
  862. return get_bits_count(gb) - cnt;
  863. }
  864. } else if (id_aac == TYPE_CPE) {
  865. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  866. sbr->start = 0;
  867. return get_bits_count(gb) - cnt;
  868. }
  869. } else {
  870. av_log(ac->avccontext, AV_LOG_ERROR,
  871. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  872. sbr->start = 0;
  873. return get_bits_count(gb) - cnt;
  874. }
  875. if (get_bits1(gb)) { // bs_extended_data
  876. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  877. if (num_bits_left == 15)
  878. num_bits_left += get_bits(gb, 8); // bs_esc_count
  879. num_bits_left <<= 3;
  880. while (num_bits_left > 7) {
  881. num_bits_left -= 2;
  882. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  883. }
  884. }
  885. return get_bits_count(gb) - cnt;
  886. }
  887. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  888. {
  889. int err;
  890. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  891. if (err >= 0)
  892. err = sbr_make_f_derived(ac, sbr);
  893. if (err < 0) {
  894. av_log(ac->avccontext, AV_LOG_ERROR,
  895. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  896. sbr->start = 0;
  897. }
  898. }
  899. /**
  900. * Decode Spectral Band Replication extension data; reference: table 4.55.
  901. *
  902. * @param crc flag indicating the presence of CRC checksum
  903. * @param cnt length of TYPE_FIL syntactic element in bytes
  904. *
  905. * @return Returns number of bytes consumed from the TYPE_FIL element.
  906. */
  907. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  908. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  909. {
  910. unsigned int num_sbr_bits = 0, num_align_bits;
  911. unsigned bytes_read;
  912. GetBitContext gbc = *gb_host, *gb = &gbc;
  913. skip_bits_long(gb_host, cnt*8 - 4);
  914. sbr->reset = 0;
  915. if (!sbr->sample_rate)
  916. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  917. if (!ac->m4ac.ext_sample_rate)
  918. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  919. if (crc) {
  920. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  921. num_sbr_bits += 10;
  922. }
  923. //Save some state from the previous frame.
  924. sbr->kx[0] = sbr->kx[1];
  925. sbr->m[0] = sbr->m[1];
  926. num_sbr_bits++;
  927. if (get_bits1(gb)) // bs_header_flag
  928. num_sbr_bits += read_sbr_header(sbr, gb);
  929. if (sbr->reset)
  930. sbr_reset(ac, sbr);
  931. if (sbr->start)
  932. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  933. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  934. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  935. if (bytes_read > cnt) {
  936. av_log(ac->avccontext, AV_LOG_ERROR,
  937. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  938. }
  939. return cnt;
  940. }
  941. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  942. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  943. {
  944. int k, e;
  945. int ch;
  946. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  947. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  948. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  949. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  950. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  951. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  952. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  953. float fac = temp1 / (1.0f + temp2);
  954. sbr->data[0].env_facs[e][k] = fac;
  955. sbr->data[1].env_facs[e][k] = fac * temp2;
  956. }
  957. }
  958. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  959. for (k = 0; k < sbr->n_q; k++) {
  960. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  961. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  962. float fac = temp1 / (1.0f + temp2);
  963. sbr->data[0].noise_facs[e][k] = fac;
  964. sbr->data[1].noise_facs[e][k] = fac * temp2;
  965. }
  966. }
  967. } else { // SCE or one non-coupled CPE
  968. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  969. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  970. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  971. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  972. sbr->data[ch].env_facs[e][k] =
  973. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  974. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  975. for (k = 0; k < sbr->n_q; k++)
  976. sbr->data[ch].noise_facs[e][k] =
  977. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  978. }
  979. }
  980. }
  981. /**
  982. * Analysis QMF Bank (14496-3 sp04 p206)
  983. *
  984. * @param x pointer to the beginning of the first sample window
  985. * @param W array of complex-valued samples split into subbands
  986. */
  987. static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
  988. float z[320], float W[2][32][32][2],
  989. float scale)
  990. {
  991. int i, k;
  992. memcpy(W[0], W[1], sizeof(W[0]));
  993. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  994. if (scale != 1.0f)
  995. dsp->vector_fmul_scalar(x+288, in, scale, 1024);
  996. else
  997. memcpy(x+288, in, 1024*sizeof(*x));
  998. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  999. // are not supported
  1000. float re, im;
  1001. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1002. for (k = 0; k < 64; k++) {
  1003. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  1004. z[k] = f * analysis_cos_pre[k];
  1005. z[k+64] = f;
  1006. }
  1007. ff_rdft_calc(rdft, z);
  1008. re = z[0] * 0.5f;
  1009. im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
  1010. W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
  1011. W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
  1012. for (k = 1; k < 32; k++) {
  1013. re = z[2*k ] - re;
  1014. im = z[2*k+1] - im;
  1015. W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
  1016. W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
  1017. }
  1018. x += 32;
  1019. }
  1020. }
  1021. /**
  1022. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1023. * (14496-3 sp04 p206)
  1024. */
  1025. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1026. float *out, float X[2][32][64],
  1027. float mdct_buf[2][64],
  1028. float *v0, int *v_off, const unsigned int div,
  1029. float bias, float scale)
  1030. {
  1031. int i, n;
  1032. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1033. int scale_and_bias = scale != 1.0f || bias != 0.0f;
  1034. float *v;
  1035. for (i = 0; i < 32; i++) {
  1036. if (*v_off == 0) {
  1037. int saved_samples = (1280 - 128) >> div;
  1038. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1039. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1040. } else {
  1041. *v_off -= 128 >> div;
  1042. }
  1043. v = v0 + *v_off;
  1044. for (n = 1; n < 64 >> div; n+=2) {
  1045. X[1][i][n] = -X[1][i][n];
  1046. }
  1047. if (div) {
  1048. memset(X[0][i]+32, 0, 32*sizeof(float));
  1049. memset(X[1][i]+32, 0, 32*sizeof(float));
  1050. }
  1051. ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
  1052. ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
  1053. if (div) {
  1054. for (n = 0; n < 32; n++) {
  1055. v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
  1056. v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
  1057. }
  1058. } else {
  1059. for (n = 0; n < 64; n++) {
  1060. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1061. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1062. }
  1063. }
  1064. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1065. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1066. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1067. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1068. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1069. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1070. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1071. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1072. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1073. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1074. if (scale_and_bias)
  1075. for (n = 0; n < 64 >> div; n++)
  1076. out[n] = out[n] * scale + bias;
  1077. out += 64 >> div;
  1078. }
  1079. }
  1080. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1081. {
  1082. int i;
  1083. float real_sum = 0.0f;
  1084. float imag_sum = 0.0f;
  1085. if (lag) {
  1086. for (i = 1; i < 38; i++) {
  1087. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1088. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1089. }
  1090. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1091. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1092. if (lag == 1) {
  1093. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1094. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1095. }
  1096. } else {
  1097. for (i = 1; i < 38; i++) {
  1098. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1099. }
  1100. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1101. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1102. }
  1103. }
  1104. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1105. * (14496-3 sp04 p214)
  1106. * Warning: This routine does not seem numerically stable.
  1107. */
  1108. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1109. const float X_low[32][40][2], int k0)
  1110. {
  1111. int k;
  1112. for (k = 0; k < k0; k++) {
  1113. float phi[3][2][2], dk;
  1114. autocorrelate(X_low[k], phi, 0);
  1115. autocorrelate(X_low[k], phi, 1);
  1116. autocorrelate(X_low[k], phi, 2);
  1117. dk = phi[2][1][0] * phi[1][0][0] -
  1118. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1119. if (!dk) {
  1120. alpha1[k][0] = 0;
  1121. alpha1[k][1] = 0;
  1122. } else {
  1123. float temp_real, temp_im;
  1124. temp_real = phi[0][0][0] * phi[1][1][0] -
  1125. phi[0][0][1] * phi[1][1][1] -
  1126. phi[0][1][0] * phi[1][0][0];
  1127. temp_im = phi[0][0][0] * phi[1][1][1] +
  1128. phi[0][0][1] * phi[1][1][0] -
  1129. phi[0][1][1] * phi[1][0][0];
  1130. alpha1[k][0] = temp_real / dk;
  1131. alpha1[k][1] = temp_im / dk;
  1132. }
  1133. if (!phi[1][0][0]) {
  1134. alpha0[k][0] = 0;
  1135. alpha0[k][1] = 0;
  1136. } else {
  1137. float temp_real, temp_im;
  1138. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1139. alpha1[k][1] * phi[1][1][1];
  1140. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1141. alpha1[k][0] * phi[1][1][1];
  1142. alpha0[k][0] = -temp_real / phi[1][0][0];
  1143. alpha0[k][1] = -temp_im / phi[1][0][0];
  1144. }
  1145. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1146. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1147. alpha1[k][0] = 0;
  1148. alpha1[k][1] = 0;
  1149. alpha0[k][0] = 0;
  1150. alpha0[k][1] = 0;
  1151. }
  1152. }
  1153. }
  1154. /// Chirp Factors (14496-3 sp04 p214)
  1155. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1156. {
  1157. int i;
  1158. float new_bw;
  1159. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1160. for (i = 0; i < sbr->n_q; i++) {
  1161. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1162. new_bw = 0.6f;
  1163. } else
  1164. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1165. if (new_bw < ch_data->bw_array[i]) {
  1166. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1167. } else
  1168. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1169. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1170. }
  1171. }
  1172. /// Generate the subband filtered lowband
  1173. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1174. float X_low[32][40][2], const float W[2][32][32][2])
  1175. {
  1176. int i, k;
  1177. const int t_HFGen = 8;
  1178. const int i_f = 32;
  1179. memset(X_low, 0, 32*sizeof(*X_low));
  1180. for (k = 0; k < sbr->kx[1]; k++) {
  1181. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1182. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1183. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1184. }
  1185. }
  1186. for (k = 0; k < sbr->kx[0]; k++) {
  1187. for (i = 0; i < t_HFGen; i++) {
  1188. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1189. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1190. }
  1191. }
  1192. return 0;
  1193. }
  1194. /// High Frequency Generator (14496-3 sp04 p215)
  1195. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1196. float X_high[64][40][2], const float X_low[32][40][2],
  1197. const float (*alpha0)[2], const float (*alpha1)[2],
  1198. const float bw_array[5], const uint8_t *t_env,
  1199. int bs_num_env)
  1200. {
  1201. int i, j, x;
  1202. int g = 0;
  1203. int k = sbr->kx[1];
  1204. for (j = 0; j < sbr->num_patches; j++) {
  1205. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1206. float alpha[4];
  1207. const int p = sbr->patch_start_subband[j] + x;
  1208. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1209. g++;
  1210. g--;
  1211. if (g < 0) {
  1212. av_log(ac->avccontext, AV_LOG_ERROR,
  1213. "ERROR : no subband found for frequency %d\n", k);
  1214. return -1;
  1215. }
  1216. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1217. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1218. alpha[2] = alpha0[p][0] * bw_array[g];
  1219. alpha[3] = alpha0[p][1] * bw_array[g];
  1220. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1221. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1222. X_high[k][idx][0] =
  1223. X_low[p][idx - 2][0] * alpha[0] -
  1224. X_low[p][idx - 2][1] * alpha[1] +
  1225. X_low[p][idx - 1][0] * alpha[2] -
  1226. X_low[p][idx - 1][1] * alpha[3] +
  1227. X_low[p][idx][0];
  1228. X_high[k][idx][1] =
  1229. X_low[p][idx - 2][1] * alpha[0] +
  1230. X_low[p][idx - 2][0] * alpha[1] +
  1231. X_low[p][idx - 1][1] * alpha[2] +
  1232. X_low[p][idx - 1][0] * alpha[3] +
  1233. X_low[p][idx][1];
  1234. }
  1235. }
  1236. }
  1237. if (k < sbr->m[1] + sbr->kx[1])
  1238. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1239. return 0;
  1240. }
  1241. /// Generate the subband filtered lowband
  1242. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
  1243. const float X_low[32][40][2], const float Y[2][38][64][2],
  1244. int ch)
  1245. {
  1246. int k, i;
  1247. const int i_f = 32;
  1248. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1249. memset(X, 0, 2*sizeof(*X));
  1250. for (k = 0; k < sbr->kx[0]; k++) {
  1251. for (i = 0; i < i_Temp; i++) {
  1252. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1253. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1254. }
  1255. }
  1256. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1257. for (i = 0; i < i_Temp; i++) {
  1258. X[0][i][k] = Y[0][i + i_f][k][0];
  1259. X[1][i][k] = Y[0][i + i_f][k][1];
  1260. }
  1261. }
  1262. for (k = 0; k < sbr->kx[1]; k++) {
  1263. for (i = i_Temp; i < i_f; i++) {
  1264. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1265. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1266. }
  1267. }
  1268. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1269. for (i = i_Temp; i < i_f; i++) {
  1270. X[0][i][k] = Y[1][i][k][0];
  1271. X[1][i][k] = Y[1][i][k][1];
  1272. }
  1273. }
  1274. return 0;
  1275. }
  1276. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1277. * (14496-3 sp04 p217)
  1278. */
  1279. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1280. SBRData *ch_data, int e_a[2])
  1281. {
  1282. int e, i, m;
  1283. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1284. for (e = 0; e < ch_data->bs_num_env; e++) {
  1285. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1286. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1287. int k;
  1288. for (i = 0; i < ilim; i++)
  1289. for (m = table[i]; m < table[i + 1]; m++)
  1290. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1291. // ch_data->bs_num_noise > 1 => 2 noise floors
  1292. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1293. for (i = 0; i < sbr->n_q; i++)
  1294. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1295. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1296. for (i = 0; i < sbr->n[1]; i++) {
  1297. if (ch_data->bs_add_harmonic_flag) {
  1298. const unsigned int m_midpoint =
  1299. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1300. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1301. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1302. }
  1303. }
  1304. for (i = 0; i < ilim; i++) {
  1305. int additional_sinusoid_present = 0;
  1306. for (m = table[i]; m < table[i + 1]; m++) {
  1307. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1308. additional_sinusoid_present = 1;
  1309. break;
  1310. }
  1311. }
  1312. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1313. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1314. }
  1315. }
  1316. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1317. }
  1318. /// Estimation of current envelope (14496-3 sp04 p218)
  1319. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1320. SpectralBandReplication *sbr, SBRData *ch_data)
  1321. {
  1322. int e, i, m;
  1323. if (sbr->bs_interpol_freq) {
  1324. for (e = 0; e < ch_data->bs_num_env; e++) {
  1325. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1326. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1327. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1328. for (m = 0; m < sbr->m[1]; m++) {
  1329. float sum = 0.0f;
  1330. for (i = ilb; i < iub; i++) {
  1331. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1332. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1333. }
  1334. e_curr[e][m] = sum * recip_env_size;
  1335. }
  1336. }
  1337. } else {
  1338. int k, p;
  1339. for (e = 0; e < ch_data->bs_num_env; e++) {
  1340. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1341. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1342. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1343. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1344. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1345. float sum = 0.0f;
  1346. const int den = env_size * (table[p + 1] - table[p]);
  1347. for (k = table[p]; k < table[p + 1]; k++) {
  1348. for (i = ilb; i < iub; i++) {
  1349. sum += X_high[k][i][0] * X_high[k][i][0] +
  1350. X_high[k][i][1] * X_high[k][i][1];
  1351. }
  1352. }
  1353. sum /= den;
  1354. for (k = table[p]; k < table[p + 1]; k++) {
  1355. e_curr[e][k - sbr->kx[1]] = sum;
  1356. }
  1357. }
  1358. }
  1359. }
  1360. }
  1361. /**
  1362. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1363. * and Calculation of gain (14496-3 sp04 p219)
  1364. */
  1365. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1366. SBRData *ch_data, const int e_a[2])
  1367. {
  1368. int e, k, m;
  1369. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1370. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1371. for (e = 0; e < ch_data->bs_num_env; e++) {
  1372. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1373. for (k = 0; k < sbr->n_lim; k++) {
  1374. float gain_boost, gain_max;
  1375. float sum[2] = { 0.0f, 0.0f };
  1376. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1377. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1378. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1379. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1380. if (!sbr->s_mapped[e][m]) {
  1381. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1382. ((1.0f + sbr->e_curr[e][m]) *
  1383. (1.0f + sbr->q_mapped[e][m] * delta)));
  1384. } else {
  1385. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1386. ((1.0f + sbr->e_curr[e][m]) *
  1387. (1.0f + sbr->q_mapped[e][m])));
  1388. }
  1389. }
  1390. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1391. sum[0] += sbr->e_origmapped[e][m];
  1392. sum[1] += sbr->e_curr[e][m];
  1393. }
  1394. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1395. gain_max = FFMIN(100000, gain_max);
  1396. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1397. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1398. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1399. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1400. }
  1401. sum[0] = sum[1] = 0.0f;
  1402. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1403. sum[0] += sbr->e_origmapped[e][m];
  1404. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1405. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1406. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1407. }
  1408. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1409. gain_boost = FFMIN(1.584893192, gain_boost);
  1410. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1411. sbr->gain[e][m] *= gain_boost;
  1412. sbr->q_m[e][m] *= gain_boost;
  1413. sbr->s_m[e][m] *= gain_boost;
  1414. }
  1415. }
  1416. }
  1417. }
  1418. /// Assembling HF Signals (14496-3 sp04 p220)
  1419. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1420. SpectralBandReplication *sbr, SBRData *ch_data,
  1421. const int e_a[2])
  1422. {
  1423. int e, i, j, m;
  1424. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1425. const int kx = sbr->kx[1];
  1426. const int m_max = sbr->m[1];
  1427. static const float h_smooth[5] = {
  1428. 0.33333333333333,
  1429. 0.30150283239582,
  1430. 0.21816949906249,
  1431. 0.11516383427084,
  1432. 0.03183050093751,
  1433. };
  1434. static const int8_t phi[2][4] = {
  1435. { 1, 0, -1, 0}, // real
  1436. { 0, 1, 0, -1}, // imaginary
  1437. };
  1438. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1439. int indexnoise = ch_data->f_indexnoise;
  1440. int indexsine = ch_data->f_indexsine;
  1441. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1442. if (sbr->reset) {
  1443. for (i = 0; i < h_SL; i++) {
  1444. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1445. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1446. }
  1447. } else if (h_SL) {
  1448. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1449. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1450. }
  1451. for (e = 0; e < ch_data->bs_num_env; e++) {
  1452. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1453. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1454. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1455. }
  1456. }
  1457. for (e = 0; e < ch_data->bs_num_env; e++) {
  1458. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1459. int phi_sign = (1 - 2*(kx & 1));
  1460. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1461. for (m = 0; m < m_max; m++) {
  1462. const int idx1 = i + h_SL;
  1463. float g_filt = 0.0f;
  1464. for (j = 0; j <= h_SL; j++)
  1465. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1466. Y[1][i][m + kx][0] =
  1467. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1468. Y[1][i][m + kx][1] =
  1469. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1470. }
  1471. } else {
  1472. for (m = 0; m < m_max; m++) {
  1473. const float g_filt = g_temp[i + h_SL][m];
  1474. Y[1][i][m + kx][0] =
  1475. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1476. Y[1][i][m + kx][1] =
  1477. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1478. }
  1479. }
  1480. if (e != e_a[0] && e != e_a[1]) {
  1481. for (m = 0; m < m_max; m++) {
  1482. indexnoise = (indexnoise + 1) & 0x1ff;
  1483. if (sbr->s_m[e][m]) {
  1484. Y[1][i][m + kx][0] +=
  1485. sbr->s_m[e][m] * phi[0][indexsine];
  1486. Y[1][i][m + kx][1] +=
  1487. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1488. } else {
  1489. float q_filt;
  1490. if (h_SL) {
  1491. const int idx1 = i + h_SL;
  1492. q_filt = 0.0f;
  1493. for (j = 0; j <= h_SL; j++)
  1494. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1495. } else {
  1496. q_filt = q_temp[i][m];
  1497. }
  1498. Y[1][i][m + kx][0] +=
  1499. q_filt * sbr_noise_table[indexnoise][0];
  1500. Y[1][i][m + kx][1] +=
  1501. q_filt * sbr_noise_table[indexnoise][1];
  1502. }
  1503. phi_sign = -phi_sign;
  1504. }
  1505. } else {
  1506. indexnoise = (indexnoise + m_max) & 0x1ff;
  1507. for (m = 0; m < m_max; m++) {
  1508. Y[1][i][m + kx][0] +=
  1509. sbr->s_m[e][m] * phi[0][indexsine];
  1510. Y[1][i][m + kx][1] +=
  1511. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1512. phi_sign = -phi_sign;
  1513. }
  1514. }
  1515. indexsine = (indexsine + 1) & 3;
  1516. }
  1517. }
  1518. ch_data->f_indexnoise = indexnoise;
  1519. ch_data->f_indexsine = indexsine;
  1520. }
  1521. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1522. float* L, float* R)
  1523. {
  1524. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1525. int ch;
  1526. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1527. if (sbr->start) {
  1528. sbr_dequant(sbr, id_aac);
  1529. }
  1530. for (ch = 0; ch < nch; ch++) {
  1531. /* decode channel */
  1532. sbr_qmf_analysis(&ac->dsp, &sbr->rdft, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1533. (float*)sbr->qmf_filter_scratch,
  1534. sbr->data[ch].W, 1/(-1024 * ac->sf_scale));
  1535. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1536. if (sbr->start) {
  1537. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1538. sbr_chirp(sbr, &sbr->data[ch]);
  1539. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1540. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1541. sbr->data[ch].bs_num_env);
  1542. // hf_adj
  1543. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1544. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1545. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1546. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1547. sbr->data[ch].e_a);
  1548. }
  1549. /* synthesis */
  1550. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1551. }
  1552. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1553. sbr->data[0].synthesis_filterbank_samples,
  1554. &sbr->data[0].synthesis_filterbank_samples_offset,
  1555. downsampled,
  1556. ac->add_bias, -1024 * ac->sf_scale);
  1557. if (nch == 2)
  1558. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1559. sbr->data[1].synthesis_filterbank_samples,
  1560. &sbr->data[1].synthesis_filterbank_samples_offset,
  1561. downsampled,
  1562. ac->add_bias, -1024 * ac->sf_scale);
  1563. }