You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

944 lines
28KB

  1. /*
  2. * MJPEG encoder and decoder
  3. * Copyright (c) 2000, 2001 Gerard Lantau.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <stdlib.h>
  20. #include <stdio.h>
  21. #include "avcodec.h"
  22. #include "dsputil.h"
  23. #include "mpegvideo.h"
  24. typedef struct MJpegContext {
  25. UINT8 huff_size_dc_luminance[12];
  26. UINT16 huff_code_dc_luminance[12];
  27. UINT8 huff_size_dc_chrominance[12];
  28. UINT16 huff_code_dc_chrominance[12];
  29. UINT8 huff_size_ac_luminance[256];
  30. UINT16 huff_code_ac_luminance[256];
  31. UINT8 huff_size_ac_chrominance[256];
  32. UINT16 huff_code_ac_chrominance[256];
  33. } MJpegContext;
  34. #define SOF0 0xc0
  35. #define SOI 0xd8
  36. #define EOI 0xd9
  37. #define DQT 0xdb
  38. #define DHT 0xc4
  39. #define SOS 0xda
  40. #if 0
  41. /* These are the sample quantization tables given in JPEG spec section K.1.
  42. * The spec says that the values given produce "good" quality, and
  43. * when divided by 2, "very good" quality.
  44. */
  45. static const unsigned char std_luminance_quant_tbl[64] = {
  46. 16, 11, 10, 16, 24, 40, 51, 61,
  47. 12, 12, 14, 19, 26, 58, 60, 55,
  48. 14, 13, 16, 24, 40, 57, 69, 56,
  49. 14, 17, 22, 29, 51, 87, 80, 62,
  50. 18, 22, 37, 56, 68, 109, 103, 77,
  51. 24, 35, 55, 64, 81, 104, 113, 92,
  52. 49, 64, 78, 87, 103, 121, 120, 101,
  53. 72, 92, 95, 98, 112, 100, 103, 99
  54. };
  55. static const unsigned char std_chrominance_quant_tbl[64] = {
  56. 17, 18, 24, 47, 99, 99, 99, 99,
  57. 18, 21, 26, 66, 99, 99, 99, 99,
  58. 24, 26, 56, 99, 99, 99, 99, 99,
  59. 47, 66, 99, 99, 99, 99, 99, 99,
  60. 99, 99, 99, 99, 99, 99, 99, 99,
  61. 99, 99, 99, 99, 99, 99, 99, 99,
  62. 99, 99, 99, 99, 99, 99, 99, 99,
  63. 99, 99, 99, 99, 99, 99, 99, 99
  64. };
  65. #endif
  66. /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */
  67. /* IMPORTANT: these are only valid for 8-bit data precision! */
  68. static const UINT8 bits_dc_luminance[17] =
  69. { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 };
  70. static const UINT8 val_dc_luminance[] =
  71. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  72. static const UINT8 bits_dc_chrominance[17] =
  73. { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
  74. static const UINT8 val_dc_chrominance[] =
  75. { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 };
  76. static const UINT8 bits_ac_luminance[17] =
  77. { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d };
  78. static const UINT8 val_ac_luminance[] =
  79. { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12,
  80. 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07,
  81. 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08,
  82. 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0,
  83. 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16,
  84. 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28,
  85. 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39,
  86. 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49,
  87. 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59,
  88. 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69,
  89. 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79,
  90. 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89,
  91. 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98,
  92. 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
  93. 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6,
  94. 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5,
  95. 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4,
  96. 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2,
  97. 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea,
  98. 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
  99. 0xf9, 0xfa
  100. };
  101. static const UINT8 bits_ac_chrominance[17] =
  102. { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 };
  103. static const UINT8 val_ac_chrominance[] =
  104. { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21,
  105. 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71,
  106. 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91,
  107. 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0,
  108. 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34,
  109. 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26,
  110. 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38,
  111. 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
  112. 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58,
  113. 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
  114. 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
  115. 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
  116. 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96,
  117. 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5,
  118. 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4,
  119. 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3,
  120. 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2,
  121. 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda,
  122. 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9,
  123. 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8,
  124. 0xf9, 0xfa
  125. };
  126. /* isn't this function nicer than the one in the libjpeg ? */
  127. static void build_huffman_codes(UINT8 *huff_size, UINT16 *huff_code,
  128. const UINT8 *bits_table, const UINT8 *val_table)
  129. {
  130. int i, j, k,nb, code, sym;
  131. code = 0;
  132. k = 0;
  133. for(i=1;i<=16;i++) {
  134. nb = bits_table[i];
  135. for(j=0;j<nb;j++) {
  136. sym = val_table[k++];
  137. huff_size[sym] = i;
  138. huff_code[sym] = code;
  139. code++;
  140. }
  141. code <<= 1;
  142. }
  143. }
  144. int mjpeg_init(MpegEncContext *s)
  145. {
  146. MJpegContext *m;
  147. m = malloc(sizeof(MJpegContext));
  148. if (!m)
  149. return -1;
  150. /* build all the huffman tables */
  151. build_huffman_codes(m->huff_size_dc_luminance,
  152. m->huff_code_dc_luminance,
  153. bits_dc_luminance,
  154. val_dc_luminance);
  155. build_huffman_codes(m->huff_size_dc_chrominance,
  156. m->huff_code_dc_chrominance,
  157. bits_dc_chrominance,
  158. val_dc_chrominance);
  159. build_huffman_codes(m->huff_size_ac_luminance,
  160. m->huff_code_ac_luminance,
  161. bits_ac_luminance,
  162. val_ac_luminance);
  163. build_huffman_codes(m->huff_size_ac_chrominance,
  164. m->huff_code_ac_chrominance,
  165. bits_ac_chrominance,
  166. val_ac_chrominance);
  167. s->mjpeg_ctx = m;
  168. return 0;
  169. }
  170. void mjpeg_close(MpegEncContext *s)
  171. {
  172. free(s->mjpeg_ctx);
  173. }
  174. static inline void put_marker(PutBitContext *p, int code)
  175. {
  176. put_bits(p, 8, 0xff);
  177. put_bits(p, 8, code);
  178. }
  179. /* table_class: 0 = DC coef, 1 = AC coefs */
  180. static int put_huffman_table(MpegEncContext *s, int table_class, int table_id,
  181. const UINT8 *bits_table, const UINT8 *value_table)
  182. {
  183. PutBitContext *p = &s->pb;
  184. int n, i;
  185. put_bits(p, 4, table_class);
  186. put_bits(p, 4, table_id);
  187. n = 0;
  188. for(i=1;i<=16;i++) {
  189. n += bits_table[i];
  190. put_bits(p, 8, bits_table[i]);
  191. }
  192. for(i=0;i<n;i++)
  193. put_bits(p, 8, value_table[i]);
  194. return n + 17;
  195. }
  196. static void jpeg_table_header(MpegEncContext *s)
  197. {
  198. PutBitContext *p = &s->pb;
  199. int i, size;
  200. UINT8 *ptr;
  201. /* quant matrixes */
  202. put_marker(p, DQT);
  203. put_bits(p, 16, 2 + 1 * (1 + 64));
  204. put_bits(p, 4, 0); /* 8 bit precision */
  205. put_bits(p, 4, 0); /* table 0 */
  206. for(i=0;i<64;i++) {
  207. put_bits(p, 8, s->intra_matrix[i]);
  208. }
  209. #if 0
  210. put_bits(p, 4, 0); /* 8 bit precision */
  211. put_bits(p, 4, 1); /* table 1 */
  212. for(i=0;i<64;i++) {
  213. put_bits(p, 8, s->chroma_intra_matrix[i]);
  214. }
  215. #endif
  216. /* huffman table */
  217. put_marker(p, DHT);
  218. flush_put_bits(p);
  219. ptr = p->buf_ptr;
  220. put_bits(p, 16, 0); /* patched later */
  221. size = 2;
  222. size += put_huffman_table(s, 0, 0, bits_dc_luminance, val_dc_luminance);
  223. size += put_huffman_table(s, 0, 1, bits_dc_chrominance, val_dc_chrominance);
  224. size += put_huffman_table(s, 1, 0, bits_ac_luminance, val_ac_luminance);
  225. size += put_huffman_table(s, 1, 1, bits_ac_chrominance, val_ac_chrominance);
  226. ptr[0] = size >> 8;
  227. ptr[1] = size;
  228. }
  229. void mjpeg_picture_header(MpegEncContext *s)
  230. {
  231. put_marker(&s->pb, SOI);
  232. jpeg_table_header(s);
  233. put_marker(&s->pb, SOF0);
  234. put_bits(&s->pb, 16, 17);
  235. put_bits(&s->pb, 8, 8); /* 8 bits/component */
  236. put_bits(&s->pb, 16, s->height);
  237. put_bits(&s->pb, 16, s->width);
  238. put_bits(&s->pb, 8, 3); /* 3 components */
  239. /* Y component */
  240. put_bits(&s->pb, 8, 1); /* component number */
  241. put_bits(&s->pb, 4, 2); /* H factor */
  242. put_bits(&s->pb, 4, 2); /* V factor */
  243. put_bits(&s->pb, 8, 0); /* select matrix */
  244. /* Cb component */
  245. put_bits(&s->pb, 8, 2); /* component number */
  246. put_bits(&s->pb, 4, 1); /* H factor */
  247. put_bits(&s->pb, 4, 1); /* V factor */
  248. put_bits(&s->pb, 8, 0); /* select matrix */
  249. /* Cr component */
  250. put_bits(&s->pb, 8, 3); /* component number */
  251. put_bits(&s->pb, 4, 1); /* H factor */
  252. put_bits(&s->pb, 4, 1); /* V factor */
  253. put_bits(&s->pb, 8, 0); /* select matrix */
  254. /* scan header */
  255. put_marker(&s->pb, SOS);
  256. put_bits(&s->pb, 16, 12); /* length */
  257. put_bits(&s->pb, 8, 3); /* 3 components */
  258. /* Y component */
  259. put_bits(&s->pb, 8, 1); /* index */
  260. put_bits(&s->pb, 4, 0); /* DC huffman table index */
  261. put_bits(&s->pb, 4, 0); /* AC huffman table index */
  262. /* Cb component */
  263. put_bits(&s->pb, 8, 2); /* index */
  264. put_bits(&s->pb, 4, 1); /* DC huffman table index */
  265. put_bits(&s->pb, 4, 1); /* AC huffman table index */
  266. /* Cr component */
  267. put_bits(&s->pb, 8, 3); /* index */
  268. put_bits(&s->pb, 4, 1); /* DC huffman table index */
  269. put_bits(&s->pb, 4, 1); /* AC huffman table index */
  270. put_bits(&s->pb, 8, 0); /* Ss (not used) */
  271. put_bits(&s->pb, 8, 63); /* Se (not used) */
  272. put_bits(&s->pb, 8, 0); /* (not used) */
  273. }
  274. void mjpeg_picture_trailer(MpegEncContext *s)
  275. {
  276. jflush_put_bits(&s->pb);
  277. put_marker(&s->pb, EOI);
  278. }
  279. static inline void encode_dc(MpegEncContext *s, int val,
  280. UINT8 *huff_size, UINT16 *huff_code)
  281. {
  282. int mant, nbits;
  283. if (val == 0) {
  284. jput_bits(&s->pb, huff_size[0], huff_code[0]);
  285. } else {
  286. mant = val;
  287. if (val < 0) {
  288. val = -val;
  289. mant--;
  290. }
  291. /* compute the log (XXX: optimize) */
  292. nbits = 0;
  293. while (val != 0) {
  294. val = val >> 1;
  295. nbits++;
  296. }
  297. jput_bits(&s->pb, huff_size[nbits], huff_code[nbits]);
  298. jput_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
  299. }
  300. }
  301. static void encode_block(MpegEncContext *s, DCTELEM *block, int n)
  302. {
  303. int mant, nbits, code, i, j;
  304. int component, dc, run, last_index, val;
  305. MJpegContext *m = s->mjpeg_ctx;
  306. UINT8 *huff_size_ac;
  307. UINT16 *huff_code_ac;
  308. /* DC coef */
  309. component = (n <= 3 ? 0 : n - 4 + 1);
  310. dc = block[0]; /* overflow is impossible */
  311. val = dc - s->last_dc[component];
  312. if (n < 4) {
  313. encode_dc(s, val, m->huff_size_dc_luminance, m->huff_code_dc_luminance);
  314. huff_size_ac = m->huff_size_ac_luminance;
  315. huff_code_ac = m->huff_code_ac_luminance;
  316. } else {
  317. encode_dc(s, val, m->huff_size_dc_chrominance, m->huff_code_dc_chrominance);
  318. huff_size_ac = m->huff_size_ac_chrominance;
  319. huff_code_ac = m->huff_code_ac_chrominance;
  320. }
  321. s->last_dc[component] = dc;
  322. /* AC coefs */
  323. run = 0;
  324. last_index = s->block_last_index[n];
  325. for(i=1;i<=last_index;i++) {
  326. j = zigzag_direct[i];
  327. val = block[j];
  328. if (val == 0) {
  329. run++;
  330. } else {
  331. while (run >= 16) {
  332. jput_bits(&s->pb, huff_size_ac[0xf0], huff_code_ac[0xf0]);
  333. run -= 16;
  334. }
  335. mant = val;
  336. if (val < 0) {
  337. val = -val;
  338. mant--;
  339. }
  340. /* compute the log (XXX: optimize) */
  341. nbits = 0;
  342. while (val != 0) {
  343. val = val >> 1;
  344. nbits++;
  345. }
  346. code = (run << 4) | nbits;
  347. jput_bits(&s->pb, huff_size_ac[code], huff_code_ac[code]);
  348. jput_bits(&s->pb, nbits, mant & ((1 << nbits) - 1));
  349. run = 0;
  350. }
  351. }
  352. /* output EOB only if not already 64 values */
  353. if (last_index < 63 || run != 0)
  354. jput_bits(&s->pb, huff_size_ac[0], huff_code_ac[0]);
  355. }
  356. void mjpeg_encode_mb(MpegEncContext *s,
  357. DCTELEM block[6][64])
  358. {
  359. int i;
  360. for(i=0;i<6;i++) {
  361. encode_block(s, block[i], i);
  362. }
  363. }
  364. /******************************************/
  365. /* decoding */
  366. //#define DEBUG
  367. #ifdef DEBUG
  368. #define dprintf(fmt,args...) printf(fmt, ## args)
  369. #else
  370. #define dprintf(fmt,args...)
  371. #endif
  372. /* compressed picture size */
  373. #define PICTURE_BUFFER_SIZE 100000
  374. #define MAX_COMPONENTS 4
  375. typedef struct MJpegDecodeContext {
  376. GetBitContext gb;
  377. UINT32 header_state;
  378. int start_code; /* current start code */
  379. UINT8 *buf_ptr;
  380. int buffer_size;
  381. int mpeg_enc_ctx_allocated; /* true if decoding context allocated */
  382. INT16 quant_matrixes[4][64];
  383. VLC vlcs[2][4];
  384. int width, height;
  385. int nb_components;
  386. int component_id[MAX_COMPONENTS];
  387. int h_count[MAX_COMPONENTS]; /* horizontal and vertical count for each component */
  388. int v_count[MAX_COMPONENTS];
  389. int h_max, v_max; /* maximum h and v counts */
  390. int quant_index[4]; /* quant table index for each component */
  391. int last_dc[MAX_COMPONENTS]; /* last DEQUANTIZED dc (XXX: am I right to do that ?) */
  392. UINT8 *current_picture[MAX_COMPONENTS]; /* picture structure */
  393. int linesize[MAX_COMPONENTS];
  394. DCTELEM block[64] __align8;
  395. UINT8 buffer[PICTURE_BUFFER_SIZE];
  396. } MJpegDecodeContext;
  397. static void build_vlc(VLC *vlc, const UINT8 *bits_table, const UINT8 *val_table,
  398. int nb_codes)
  399. {
  400. UINT8 huff_size[256];
  401. UINT16 huff_code[256];
  402. memset(huff_size, 0, sizeof(huff_size));
  403. build_huffman_codes(huff_size, huff_code, bits_table, val_table);
  404. init_vlc(vlc, 9, nb_codes, huff_size, 1, 1, huff_code, 2, 2);
  405. }
  406. static int mjpeg_decode_init(AVCodecContext *avctx)
  407. {
  408. MJpegDecodeContext *s = avctx->priv_data;
  409. s->header_state = 0;
  410. s->mpeg_enc_ctx_allocated = 0;
  411. s->buffer_size = PICTURE_BUFFER_SIZE - 1; /* minus 1 to take into
  412. account FF 00 case */
  413. s->start_code = -1;
  414. s->buf_ptr = s->buffer;
  415. build_vlc(&s->vlcs[0][0], bits_dc_luminance, val_dc_luminance, 12);
  416. build_vlc(&s->vlcs[0][1], bits_dc_chrominance, val_dc_chrominance, 12);
  417. build_vlc(&s->vlcs[1][0], bits_ac_luminance, val_ac_luminance, 251);
  418. build_vlc(&s->vlcs[1][1], bits_ac_chrominance, val_ac_chrominance, 251);
  419. return 0;
  420. }
  421. /* quantize tables */
  422. static int mjpeg_decode_dqt(MJpegDecodeContext *s,
  423. UINT8 *buf, int buf_size)
  424. {
  425. int len, index, i;
  426. init_get_bits(&s->gb, buf, buf_size);
  427. len = get_bits(&s->gb, 16);
  428. len -= 2;
  429. while (len >= 65) {
  430. /* only 8 bit precision handled */
  431. if (get_bits(&s->gb, 4) != 0)
  432. return -1;
  433. index = get_bits(&s->gb, 4);
  434. if (index >= 4)
  435. return -1;
  436. dprintf("index=%d\n", index);
  437. /* read quant table */
  438. for(i=0;i<64;i++)
  439. s->quant_matrixes[index][i] = get_bits(&s->gb, 8);
  440. len -= 65;
  441. }
  442. return 0;
  443. }
  444. /* decode huffman tables and build VLC decoders */
  445. static int mjpeg_decode_dht(MJpegDecodeContext *s,
  446. UINT8 *buf, int buf_size)
  447. {
  448. int len, index, i, class, n, v, code_max;
  449. UINT8 bits_table[17];
  450. UINT8 val_table[256];
  451. init_get_bits(&s->gb, buf, buf_size);
  452. len = get_bits(&s->gb, 16);
  453. len -= 2;
  454. while (len > 0) {
  455. if (len < 17)
  456. return -1;
  457. class = get_bits(&s->gb, 4);
  458. if (class >= 2)
  459. return -1;
  460. index = get_bits(&s->gb, 4);
  461. if (index >= 4)
  462. return -1;
  463. n = 0;
  464. for(i=1;i<=16;i++) {
  465. bits_table[i] = get_bits(&s->gb, 8);
  466. n += bits_table[i];
  467. }
  468. len -= 17;
  469. if (len < n || n > 256)
  470. return -1;
  471. code_max = 0;
  472. for(i=0;i<n;i++) {
  473. v = get_bits(&s->gb, 8);
  474. if (v > code_max)
  475. code_max = v;
  476. val_table[i] = v;
  477. }
  478. len -= n;
  479. /* build VLC and flush previous vlc if present */
  480. free_vlc(&s->vlcs[class][index]);
  481. dprintf("class=%d index=%d nb_codes=%d\n",
  482. class, index, code_max + 1);
  483. build_vlc(&s->vlcs[class][index], bits_table, val_table, code_max + 1);
  484. }
  485. return 0;
  486. }
  487. static int mjpeg_decode_sof0(MJpegDecodeContext *s,
  488. UINT8 *buf, int buf_size)
  489. {
  490. int len, nb_components, i, width, height;
  491. init_get_bits(&s->gb, buf, buf_size);
  492. /* XXX: verify len field validity */
  493. len = get_bits(&s->gb, 16);
  494. /* only 8 bits/component accepted */
  495. if (get_bits(&s->gb, 8) != 8)
  496. return -1;
  497. height = get_bits(&s->gb, 16);
  498. width = get_bits(&s->gb, 16);
  499. nb_components = get_bits(&s->gb, 8);
  500. if (nb_components <= 0 ||
  501. nb_components > MAX_COMPONENTS)
  502. return -1;
  503. s->nb_components = nb_components;
  504. s->h_max = 1;
  505. s->v_max = 1;
  506. for(i=0;i<nb_components;i++) {
  507. /* component id */
  508. s->component_id[i] = get_bits(&s->gb, 8) - 1;
  509. s->h_count[i] = get_bits(&s->gb, 4);
  510. s->v_count[i] = get_bits(&s->gb, 4);
  511. /* compute hmax and vmax (only used in interleaved case) */
  512. if (s->h_count[i] > s->h_max)
  513. s->h_max = s->h_count[i];
  514. if (s->v_count[i] > s->v_max)
  515. s->v_max = s->v_count[i];
  516. s->quant_index[i] = get_bits(&s->gb, 8);
  517. if (s->quant_index[i] >= 4)
  518. return -1;
  519. dprintf("component %d %d:%d\n", i, s->h_count[i], s->v_count[i]);
  520. }
  521. /* if different size, realloc/alloc picture */
  522. /* XXX: also check h_count and v_count */
  523. if (width != s->width || height != s->height) {
  524. for(i=0;i<MAX_COMPONENTS;i++) {
  525. free(s->current_picture[i]);
  526. s->current_picture[i] = NULL;
  527. }
  528. s->width = width;
  529. s->height = height;
  530. for(i=0;i<nb_components;i++) {
  531. int w, h, hh, vv;
  532. hh = s->h_max / s->h_count[i];
  533. vv = s->v_max / s->v_count[i];
  534. w = (s->width + 8 * hh - 1) / (8 * hh);
  535. h = (s->height + 8 * vv - 1) / (8 * vv);
  536. w = w * 8;
  537. h = h * 8;
  538. s->linesize[i] = w;
  539. /* memory test is done in mjpeg_decode_sos() */
  540. s->current_picture[i] = av_mallocz(w * h);
  541. }
  542. }
  543. return 0;
  544. }
  545. static inline int decode_dc(MJpegDecodeContext *s, int dc_index)
  546. {
  547. VLC *dc_vlc;
  548. int code, diff;
  549. dc_vlc = &s->vlcs[0][dc_index];
  550. code = get_vlc(&s->gb, dc_vlc);
  551. if (code < 0)
  552. return 0xffff;
  553. if (code == 0) {
  554. diff = 0;
  555. } else {
  556. diff = get_bits(&s->gb, code);
  557. if ((diff & (1 << (code - 1))) == 0)
  558. diff = (-1 << code) | (diff + 1);
  559. }
  560. return diff;
  561. }
  562. /* decode block and dequantize */
  563. static int decode_block(MJpegDecodeContext *s, DCTELEM *block,
  564. int component, int dc_index, int ac_index, int quant_index)
  565. {
  566. int nbits, code, i, j, level;
  567. int run, val;
  568. VLC *ac_vlc;
  569. INT16 *quant_matrix;
  570. quant_matrix = s->quant_matrixes[quant_index];
  571. /* DC coef */
  572. val = decode_dc(s, dc_index);
  573. if (val == 0xffff) {
  574. dprintf("error dc\n");
  575. return -1;
  576. }
  577. val = val * quant_matrix[0] + s->last_dc[component];
  578. s->last_dc[component] = val;
  579. block[0] = val;
  580. /* AC coefs */
  581. ac_vlc = &s->vlcs[1][ac_index];
  582. i = 1;
  583. for(;;) {
  584. code = get_vlc(&s->gb, ac_vlc);
  585. if (code < 0) {
  586. dprintf("error ac\n");
  587. return -1;
  588. }
  589. /* EOB */
  590. if (code == 0)
  591. break;
  592. if (code == 0xf0) {
  593. i += 16;
  594. } else {
  595. run = code >> 4;
  596. nbits = code & 0xf;
  597. level = get_bits(&s->gb, nbits);
  598. if ((level & (1 << (nbits - 1))) == 0)
  599. level = (-1 << nbits) | (level + 1);
  600. i += run;
  601. if (i >= 64) {
  602. dprintf("error count: %d\n", i);
  603. return -1;
  604. }
  605. j = zigzag_direct[i];
  606. block[j] = level * quant_matrix[j];
  607. i++;
  608. if (i >= 64)
  609. break;
  610. }
  611. }
  612. return 0;
  613. }
  614. static int mjpeg_decode_sos(MJpegDecodeContext *s,
  615. UINT8 *buf, int buf_size)
  616. {
  617. int len, nb_components, i, j, n, h, v;
  618. int mb_width, mb_height, mb_x, mb_y, vmax, hmax, index, id;
  619. int comp_index[4];
  620. int dc_index[4];
  621. int ac_index[4];
  622. int nb_blocks[4];
  623. int h_count[4];
  624. int v_count[4];
  625. init_get_bits(&s->gb, buf, buf_size);
  626. /* XXX: verify len field validity */
  627. len = get_bits(&s->gb, 16);
  628. nb_components = get_bits(&s->gb, 8);
  629. /* XXX: only interleaved scan accepted */
  630. if (nb_components != 3)
  631. return -1;
  632. vmax = 0;
  633. hmax = 0;
  634. for(i=0;i<nb_components;i++) {
  635. id = get_bits(&s->gb, 8) - 1;
  636. /* find component index */
  637. for(index=0;index<s->nb_components;index++)
  638. if (id == s->component_id[index])
  639. break;
  640. if (index == s->nb_components)
  641. return -1;
  642. comp_index[i] = index;
  643. nb_blocks[i] = s->h_count[index] * s->v_count[index];
  644. h_count[i] = s->h_count[index];
  645. v_count[i] = s->v_count[index];
  646. dc_index[i] = get_bits(&s->gb, 4);
  647. if (dc_index[i] >= 4)
  648. return -1;
  649. ac_index[i] = get_bits(&s->gb, 4);
  650. if (ac_index[i] >= 4)
  651. return -1;
  652. }
  653. get_bits(&s->gb, 8); /* Ss */
  654. get_bits(&s->gb, 8); /* Se */
  655. get_bits(&s->gb, 8); /* not used */
  656. for(i=0;i<nb_components;i++)
  657. s->last_dc[i] = 1024;
  658. if (nb_components > 1) {
  659. /* interleaved stream */
  660. mb_width = (s->width + s->h_max * 8 - 1) / (s->h_max * 8);
  661. mb_height = (s->height + s->v_max * 8 - 1) / (s->v_max * 8);
  662. } else {
  663. h = s->h_max / s->h_count[comp_index[0]];
  664. v = s->v_max / s->v_count[comp_index[0]];
  665. mb_width = (s->width + h * 8 - 1) / (h * 8);
  666. mb_height = (s->height + v * 8 - 1) / (v * 8);
  667. nb_blocks[0] = 1;
  668. h_count[0] = 1;
  669. v_count[0] = 1;
  670. }
  671. for(mb_y = 0; mb_y < mb_height; mb_y++) {
  672. for(mb_x = 0; mb_x < mb_width; mb_x++) {
  673. for(i=0;i<nb_components;i++) {
  674. UINT8 *ptr;
  675. int x, y, c;
  676. n = nb_blocks[i];
  677. c = comp_index[i];
  678. h = h_count[i];
  679. v = v_count[i];
  680. x = 0;
  681. y = 0;
  682. for(j=0;j<n;j++) {
  683. memset(s->block, 0, sizeof(s->block));
  684. if (decode_block(s, s->block, i,
  685. dc_index[i], ac_index[i],
  686. s->quant_index[c]) < 0) {
  687. dprintf("error %d %d\n", mb_y, mb_x);
  688. return -1;
  689. }
  690. ff_idct (s->block);
  691. ptr = s->current_picture[c] +
  692. (s->linesize[c] * (v * mb_y + y) * 8) +
  693. (h * mb_x + x) * 8;
  694. put_pixels_clamped(s->block, ptr, s->linesize[c]);
  695. if (++x == h) {
  696. x = 0;
  697. y++;
  698. }
  699. }
  700. }
  701. }
  702. }
  703. return 0;
  704. }
  705. /* return the 8 bit start code value and update the search
  706. state. Return -1 if no start code found */
  707. static int find_marker(UINT8 **pbuf_ptr, UINT8 *buf_end,
  708. UINT32 *header_state)
  709. {
  710. UINT8 *buf_ptr;
  711. unsigned int state, v;
  712. int val;
  713. state = *header_state;
  714. buf_ptr = *pbuf_ptr;
  715. if (state) {
  716. /* get marker */
  717. found:
  718. if (buf_ptr < buf_end) {
  719. val = *buf_ptr++;
  720. state = 0;
  721. } else {
  722. val = -1;
  723. }
  724. } else {
  725. while (buf_ptr < buf_end) {
  726. v = *buf_ptr++;
  727. if (v == 0xff) {
  728. state = 1;
  729. goto found;
  730. }
  731. }
  732. val = -1;
  733. }
  734. *pbuf_ptr = buf_ptr;
  735. *header_state = state;
  736. return val;
  737. }
  738. static int mjpeg_decode_frame(AVCodecContext *avctx,
  739. void *data, int *data_size,
  740. UINT8 *buf, int buf_size)
  741. {
  742. MJpegDecodeContext *s = avctx->priv_data;
  743. UINT8 *buf_end, *buf_ptr, *buf_start;
  744. int len, code, start_code, input_size, i;
  745. AVPicture *picture = data;
  746. /* no supplementary picture */
  747. if (buf_size == 0) {
  748. *data_size = 0;
  749. return 0;
  750. }
  751. buf_ptr = buf;
  752. buf_end = buf + buf_size;
  753. while (buf_ptr < buf_end) {
  754. buf_start = buf_ptr;
  755. /* find start next marker */
  756. code = find_marker(&buf_ptr, buf_end, &s->header_state);
  757. /* copy to buffer */
  758. len = buf_ptr - buf_start;
  759. if (len + (s->buf_ptr - s->buffer) > s->buffer_size) {
  760. /* data too big : flush */
  761. s->buf_ptr = s->buffer;
  762. if (code > 0)
  763. s->start_code = code;
  764. } else {
  765. memcpy(s->buf_ptr, buf_start, len);
  766. s->buf_ptr += len;
  767. /* if we got FF 00, we copy FF to the stream to unescape FF 00 */
  768. if (code == 0) {
  769. s->buf_ptr--;
  770. } else if (code > 0) {
  771. /* prepare data for next start code */
  772. input_size = s->buf_ptr - s->buffer;
  773. start_code = s->start_code;
  774. s->buf_ptr = s->buffer;
  775. s->start_code = code;
  776. switch(start_code) {
  777. case SOI:
  778. /* nothing to do on SOI */
  779. break;
  780. case DQT:
  781. mjpeg_decode_dqt(s, s->buffer, input_size);
  782. break;
  783. case DHT:
  784. mjpeg_decode_dht(s, s->buffer, input_size);
  785. break;
  786. case SOF0:
  787. mjpeg_decode_sof0(s, s->buffer, input_size);
  788. break;
  789. case SOS:
  790. mjpeg_decode_sos(s, s->buffer, input_size);
  791. if (s->start_code == EOI) {
  792. for(i=0;i<3;i++) {
  793. picture->data[i] = s->current_picture[i];
  794. picture->linesize[i] = s->linesize[i];
  795. }
  796. *data_size = sizeof(AVPicture);
  797. avctx->height = s->height;
  798. avctx->width = s->width;
  799. /* XXX: not complete test ! */
  800. switch((s->h_count[0] << 4) | s->v_count[0]) {
  801. case 0x11:
  802. avctx->pix_fmt = PIX_FMT_YUV444P;
  803. break;
  804. case 0x21:
  805. avctx->pix_fmt = PIX_FMT_YUV422P;
  806. break;
  807. default:
  808. case 0x22:
  809. avctx->pix_fmt = PIX_FMT_YUV420P;
  810. break;
  811. }
  812. goto the_end;
  813. }
  814. break;
  815. }
  816. }
  817. }
  818. }
  819. the_end:
  820. return buf_ptr - buf;
  821. }
  822. static int mjpeg_decode_end(AVCodecContext *avctx)
  823. {
  824. MJpegDecodeContext *s = avctx->priv_data;
  825. int i, j;
  826. for(i=0;i<MAX_COMPONENTS;i++)
  827. free(s->current_picture[i]);
  828. for(i=0;i<2;i++) {
  829. for(j=0;j<4;j++)
  830. free_vlc(&s->vlcs[i][j]);
  831. }
  832. return 0;
  833. }
  834. AVCodec mjpeg_decoder = {
  835. "mjpeg",
  836. CODEC_TYPE_VIDEO,
  837. CODEC_ID_MJPEG,
  838. sizeof(MJpegDecodeContext),
  839. mjpeg_decode_init,
  840. NULL,
  841. mjpeg_decode_end,
  842. mjpeg_decode_frame,
  843. };