You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

409 lines
12KB

  1. /*
  2. * imdct.c
  3. *
  4. * Copyright (C) Aaron Holtzman - May 1999
  5. *
  6. * This file is part of ac3dec, a free Dolby AC-3 stream decoder.
  7. *
  8. * ac3dec is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * ac3dec is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with GNU Make; see the file COPYING. If not, write to
  20. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  21. *
  22. *
  23. */
  24. //#include "config.h"
  25. #include <inttypes.h>
  26. #include <stdlib.h>
  27. #include <stdio.h>
  28. #include <math.h>
  29. #include "ac3.h"
  30. #include "ac3_internal.h"
  31. void (* imdct_256) (float data[], float delay[]);
  32. void (* imdct_512) (float data[], float delay[]);
  33. typedef struct complex_s
  34. {
  35. float real;
  36. float imag;
  37. } complex_t;
  38. /* 128 point bit-reverse LUT */
  39. static uint8_t bit_reverse_512[] = {
  40. 0x00, 0x40, 0x20, 0x60, 0x10, 0x50, 0x30, 0x70,
  41. 0x08, 0x48, 0x28, 0x68, 0x18, 0x58, 0x38, 0x78,
  42. 0x04, 0x44, 0x24, 0x64, 0x14, 0x54, 0x34, 0x74,
  43. 0x0c, 0x4c, 0x2c, 0x6c, 0x1c, 0x5c, 0x3c, 0x7c,
  44. 0x02, 0x42, 0x22, 0x62, 0x12, 0x52, 0x32, 0x72,
  45. 0x0a, 0x4a, 0x2a, 0x6a, 0x1a, 0x5a, 0x3a, 0x7a,
  46. 0x06, 0x46, 0x26, 0x66, 0x16, 0x56, 0x36, 0x76,
  47. 0x0e, 0x4e, 0x2e, 0x6e, 0x1e, 0x5e, 0x3e, 0x7e,
  48. 0x01, 0x41, 0x21, 0x61, 0x11, 0x51, 0x31, 0x71,
  49. 0x09, 0x49, 0x29, 0x69, 0x19, 0x59, 0x39, 0x79,
  50. 0x05, 0x45, 0x25, 0x65, 0x15, 0x55, 0x35, 0x75,
  51. 0x0d, 0x4d, 0x2d, 0x6d, 0x1d, 0x5d, 0x3d, 0x7d,
  52. 0x03, 0x43, 0x23, 0x63, 0x13, 0x53, 0x33, 0x73,
  53. 0x0b, 0x4b, 0x2b, 0x6b, 0x1b, 0x5b, 0x3b, 0x7b,
  54. 0x07, 0x47, 0x27, 0x67, 0x17, 0x57, 0x37, 0x77,
  55. 0x0f, 0x4f, 0x2f, 0x6f, 0x1f, 0x5f, 0x3f, 0x7f};
  56. static uint8_t bit_reverse_256[] = {
  57. 0x00, 0x20, 0x10, 0x30, 0x08, 0x28, 0x18, 0x38,
  58. 0x04, 0x24, 0x14, 0x34, 0x0c, 0x2c, 0x1c, 0x3c,
  59. 0x02, 0x22, 0x12, 0x32, 0x0a, 0x2a, 0x1a, 0x3a,
  60. 0x06, 0x26, 0x16, 0x36, 0x0e, 0x2e, 0x1e, 0x3e,
  61. 0x01, 0x21, 0x11, 0x31, 0x09, 0x29, 0x19, 0x39,
  62. 0x05, 0x25, 0x15, 0x35, 0x0d, 0x2d, 0x1d, 0x3d,
  63. 0x03, 0x23, 0x13, 0x33, 0x0b, 0x2b, 0x1b, 0x3b,
  64. 0x07, 0x27, 0x17, 0x37, 0x0f, 0x2f, 0x1f, 0x3f};
  65. static complex_t buf[128];
  66. /* Twiddle factor LUT */
  67. static complex_t w_1[1];
  68. static complex_t w_2[2];
  69. static complex_t w_4[4];
  70. static complex_t w_8[8];
  71. static complex_t w_16[16];
  72. static complex_t w_32[32];
  73. static complex_t w_64[64];
  74. static complex_t * w[7] = {w_1, w_2, w_4, w_8, w_16, w_32, w_64};
  75. /* Twiddle factors for IMDCT */
  76. static float xcos1[128];
  77. static float xsin1[128];
  78. static float xcos2[64];
  79. static float xsin2[64];
  80. /* Windowing function for Modified DCT - Thank you acroread */
  81. float imdct_window[] = {
  82. 0.00014, 0.00024, 0.00037, 0.00051, 0.00067, 0.00086, 0.00107, 0.00130,
  83. 0.00157, 0.00187, 0.00220, 0.00256, 0.00297, 0.00341, 0.00390, 0.00443,
  84. 0.00501, 0.00564, 0.00632, 0.00706, 0.00785, 0.00871, 0.00962, 0.01061,
  85. 0.01166, 0.01279, 0.01399, 0.01526, 0.01662, 0.01806, 0.01959, 0.02121,
  86. 0.02292, 0.02472, 0.02662, 0.02863, 0.03073, 0.03294, 0.03527, 0.03770,
  87. 0.04025, 0.04292, 0.04571, 0.04862, 0.05165, 0.05481, 0.05810, 0.06153,
  88. 0.06508, 0.06878, 0.07261, 0.07658, 0.08069, 0.08495, 0.08935, 0.09389,
  89. 0.09859, 0.10343, 0.10842, 0.11356, 0.11885, 0.12429, 0.12988, 0.13563,
  90. 0.14152, 0.14757, 0.15376, 0.16011, 0.16661, 0.17325, 0.18005, 0.18699,
  91. 0.19407, 0.20130, 0.20867, 0.21618, 0.22382, 0.23161, 0.23952, 0.24757,
  92. 0.25574, 0.26404, 0.27246, 0.28100, 0.28965, 0.29841, 0.30729, 0.31626,
  93. 0.32533, 0.33450, 0.34376, 0.35311, 0.36253, 0.37204, 0.38161, 0.39126,
  94. 0.40096, 0.41072, 0.42054, 0.43040, 0.44030, 0.45023, 0.46020, 0.47019,
  95. 0.48020, 0.49022, 0.50025, 0.51028, 0.52031, 0.53033, 0.54033, 0.55031,
  96. 0.56026, 0.57019, 0.58007, 0.58991, 0.59970, 0.60944, 0.61912, 0.62873,
  97. 0.63827, 0.64774, 0.65713, 0.66643, 0.67564, 0.68476, 0.69377, 0.70269,
  98. 0.71150, 0.72019, 0.72877, 0.73723, 0.74557, 0.75378, 0.76186, 0.76981,
  99. 0.77762, 0.78530, 0.79283, 0.80022, 0.80747, 0.81457, 0.82151, 0.82831,
  100. 0.83496, 0.84145, 0.84779, 0.85398, 0.86001, 0.86588, 0.87160, 0.87716,
  101. 0.88257, 0.88782, 0.89291, 0.89785, 0.90264, 0.90728, 0.91176, 0.91610,
  102. 0.92028, 0.92432, 0.92822, 0.93197, 0.93558, 0.93906, 0.94240, 0.94560,
  103. 0.94867, 0.95162, 0.95444, 0.95713, 0.95971, 0.96217, 0.96451, 0.96674,
  104. 0.96887, 0.97089, 0.97281, 0.97463, 0.97635, 0.97799, 0.97953, 0.98099,
  105. 0.98236, 0.98366, 0.98488, 0.98602, 0.98710, 0.98811, 0.98905, 0.98994,
  106. 0.99076, 0.99153, 0.99225, 0.99291, 0.99353, 0.99411, 0.99464, 0.99513,
  107. 0.99558, 0.99600, 0.99639, 0.99674, 0.99706, 0.99736, 0.99763, 0.99788,
  108. 0.99811, 0.99831, 0.99850, 0.99867, 0.99882, 0.99895, 0.99908, 0.99919,
  109. 0.99929, 0.99938, 0.99946, 0.99953, 0.99959, 0.99965, 0.99969, 0.99974,
  110. 0.99978, 0.99981, 0.99984, 0.99986, 0.99988, 0.99990, 0.99992, 0.99993,
  111. 0.99994, 0.99995, 0.99996, 0.99997, 0.99998, 0.99998, 0.99998, 0.99999,
  112. 0.99999, 0.99999, 0.99999, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000,
  113. 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000, 1.00000 };
  114. static inline void swap_cmplx(complex_t *a, complex_t *b)
  115. {
  116. complex_t tmp;
  117. tmp = *a;
  118. *a = *b;
  119. *b = tmp;
  120. }
  121. static inline complex_t cmplx_mult(complex_t a, complex_t b)
  122. {
  123. complex_t ret;
  124. ret.real = a.real * b.real - a.imag * b.imag;
  125. ret.imag = a.real * b.imag + a.imag * b.real;
  126. return ret;
  127. }
  128. void
  129. imdct_do_512(float data[],float delay[])
  130. {
  131. int i,k;
  132. int p,q;
  133. int m;
  134. int two_m;
  135. int two_m_plus_one;
  136. float tmp_a_i;
  137. float tmp_a_r;
  138. float tmp_b_i;
  139. float tmp_b_r;
  140. float *data_ptr;
  141. float *delay_ptr;
  142. float *window_ptr;
  143. //
  144. // 512 IMDCT with source and dest data in 'data'
  145. //
  146. // Pre IFFT complex multiply plus IFFT cmplx conjugate
  147. for( i=0; i < 128; i++) {
  148. /* z[i] = (X[256-2*i-1] + j * X[2*i]) * (xcos1[i] + j * xsin1[i]) ; */
  149. buf[i].real = (data[256-2*i-1] * xcos1[i]) - (data[2*i] * xsin1[i]);
  150. buf[i].imag = -1.0 * ((data[2*i] * xcos1[i]) + (data[256-2*i-1] * xsin1[i]));
  151. }
  152. //Bit reversed shuffling
  153. for(i=0; i<128; i++) {
  154. k = bit_reverse_512[i];
  155. if (k < i)
  156. swap_cmplx(&buf[i],&buf[k]);
  157. }
  158. /* FFT Merge */
  159. for (m=0; m < 7; m++) {
  160. if(m)
  161. two_m = (1 << m);
  162. else
  163. two_m = 1;
  164. two_m_plus_one = (1 << (m+1));
  165. for(k = 0; k < two_m; k++) {
  166. for(i = 0; i < 128; i += two_m_plus_one) {
  167. p = k + i;
  168. q = p + two_m;
  169. tmp_a_r = buf[p].real;
  170. tmp_a_i = buf[p].imag;
  171. tmp_b_r = buf[q].real * w[m][k].real - buf[q].imag * w[m][k].imag;
  172. tmp_b_i = buf[q].imag * w[m][k].real + buf[q].real * w[m][k].imag;
  173. buf[p].real = tmp_a_r + tmp_b_r;
  174. buf[p].imag = tmp_a_i + tmp_b_i;
  175. buf[q].real = tmp_a_r - tmp_b_r;
  176. buf[q].imag = tmp_a_i - tmp_b_i;
  177. }
  178. }
  179. }
  180. /* Post IFFT complex multiply plus IFFT complex conjugate*/
  181. for( i=0; i < 128; i++) {
  182. /* y[n] = z[n] * (xcos1[n] + j * xsin1[n]) ; */
  183. tmp_a_r = buf[i].real;
  184. tmp_a_i = -1.0 * buf[i].imag;
  185. buf[i].real =(tmp_a_r * xcos1[i]) - (tmp_a_i * xsin1[i]);
  186. buf[i].imag =(tmp_a_r * xsin1[i]) + (tmp_a_i * xcos1[i]);
  187. }
  188. data_ptr = data;
  189. delay_ptr = delay;
  190. window_ptr = imdct_window;
  191. /* Window and convert to real valued signal */
  192. for(i=0; i< 64; i++) {
  193. *data_ptr++ = 2.0f * (-buf[64+i].imag * *window_ptr++ + *delay_ptr++);
  194. *data_ptr++ = 2.0f * ( buf[64-i-1].real * *window_ptr++ + *delay_ptr++);
  195. }
  196. for(i=0; i< 64; i++) {
  197. *data_ptr++ = 2.0f * (-buf[i].real * *window_ptr++ + *delay_ptr++);
  198. *data_ptr++ = 2.0f * ( buf[128-i-1].imag * *window_ptr++ + *delay_ptr++);
  199. }
  200. /* The trailing edge of the window goes into the delay line */
  201. delay_ptr = delay;
  202. for(i=0; i< 64; i++) {
  203. *delay_ptr++ = -buf[64+i].real * *--window_ptr;
  204. *delay_ptr++ = buf[64-i-1].imag * *--window_ptr;
  205. }
  206. for(i=0; i<64; i++) {
  207. *delay_ptr++ = buf[i].imag * *--window_ptr;
  208. *delay_ptr++ = -buf[128-i-1].real * *--window_ptr;
  209. }
  210. }
  211. void
  212. imdct_do_256(float data[],float delay[])
  213. {
  214. int i,k;
  215. int p,q;
  216. int m;
  217. int two_m;
  218. int two_m_plus_one;
  219. float tmp_a_i;
  220. float tmp_a_r;
  221. float tmp_b_i;
  222. float tmp_b_r;
  223. float *data_ptr;
  224. float *delay_ptr;
  225. float *window_ptr;
  226. complex_t *buf_1, *buf_2;
  227. buf_1 = &buf[0];
  228. buf_2 = &buf[64];
  229. /* Pre IFFT complex multiply plus IFFT cmplx conjugate */
  230. for(k=0; k<64; k++) {
  231. /* X1[k] = X[2*k] */
  232. /* X2[k] = X[2*k+1] */
  233. p = 2 * (128-2*k-1);
  234. q = 2 * (2 * k);
  235. /* Z1[k] = (X1[128-2*k-1] + j * X1[2*k]) * (xcos2[k] + j * xsin2[k]); */
  236. buf_1[k].real = data[p] * xcos2[k] - data[q] * xsin2[k];
  237. buf_1[k].imag = -1.0f * (data[q] * xcos2[k] + data[p] * xsin2[k]);
  238. /* Z2[k] = (X2[128-2*k-1] + j * X2[2*k]) * (xcos2[k] + j * xsin2[k]); */
  239. buf_2[k].real = data[p + 1] * xcos2[k] - data[q + 1] * xsin2[k];
  240. buf_2[k].imag = -1.0f * ( data[q + 1] * xcos2[k] + data[p + 1] * xsin2[k]);
  241. }
  242. //IFFT Bit reversed shuffling
  243. for(i=0; i<64; i++) {
  244. k = bit_reverse_256[i];
  245. if (k < i) {
  246. swap_cmplx(&buf_1[i],&buf_1[k]);
  247. swap_cmplx(&buf_2[i],&buf_2[k]);
  248. }
  249. }
  250. /* FFT Merge */
  251. for (m=0; m < 6; m++) {
  252. two_m = (1 << m);
  253. two_m_plus_one = (1 << (m+1));
  254. //FIXME
  255. if(m)
  256. two_m = (1 << m);
  257. else
  258. two_m = 1;
  259. for(k = 0; k < two_m; k++) {
  260. for(i = 0; i < 64; i += two_m_plus_one) {
  261. p = k + i;
  262. q = p + two_m;
  263. //Do block 1
  264. tmp_a_r = buf_1[p].real;
  265. tmp_a_i = buf_1[p].imag;
  266. tmp_b_r = buf_1[q].real * w[m][k].real - buf_1[q].imag * w[m][k].imag;
  267. tmp_b_i = buf_1[q].imag * w[m][k].real + buf_1[q].real * w[m][k].imag;
  268. buf_1[p].real = tmp_a_r + tmp_b_r;
  269. buf_1[p].imag = tmp_a_i + tmp_b_i;
  270. buf_1[q].real = tmp_a_r - tmp_b_r;
  271. buf_1[q].imag = tmp_a_i - tmp_b_i;
  272. //Do block 2
  273. tmp_a_r = buf_2[p].real;
  274. tmp_a_i = buf_2[p].imag;
  275. tmp_b_r = buf_2[q].real * w[m][k].real - buf_2[q].imag * w[m][k].imag;
  276. tmp_b_i = buf_2[q].imag * w[m][k].real + buf_2[q].real * w[m][k].imag;
  277. buf_2[p].real = tmp_a_r + tmp_b_r;
  278. buf_2[p].imag = tmp_a_i + tmp_b_i;
  279. buf_2[q].real = tmp_a_r - tmp_b_r;
  280. buf_2[q].imag = tmp_a_i - tmp_b_i;
  281. }
  282. }
  283. }
  284. /* Post IFFT complex multiply */
  285. for( i=0; i < 64; i++) {
  286. /* y1[n] = z1[n] * (xcos2[n] + j * xs in2[n]) ; */
  287. tmp_a_r = buf_1[i].real;
  288. tmp_a_i = -buf_1[i].imag;
  289. buf_1[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
  290. buf_1[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
  291. /* y2[n] = z2[n] * (xcos2[n] + j * xsin2[n]) ; */
  292. tmp_a_r = buf_2[i].real;
  293. tmp_a_i = -buf_2[i].imag;
  294. buf_2[i].real =(tmp_a_r * xcos2[i]) - (tmp_a_i * xsin2[i]);
  295. buf_2[i].imag =(tmp_a_r * xsin2[i]) + (tmp_a_i * xcos2[i]);
  296. }
  297. data_ptr = data;
  298. delay_ptr = delay;
  299. window_ptr = imdct_window;
  300. /* Window and convert to real valued signal */
  301. for(i=0; i< 64; i++) {
  302. *data_ptr++ = 2.0f * (-buf_1[i].imag * *window_ptr++ + *delay_ptr++);
  303. *data_ptr++ = 2.0f * ( buf_1[64-i-1].real * *window_ptr++ + *delay_ptr++);
  304. }
  305. for(i=0; i< 64; i++) {
  306. *data_ptr++ = 2.0f * (-buf_1[i].real * *window_ptr++ + *delay_ptr++);
  307. *data_ptr++ = 2.0f * ( buf_1[64-i-1].imag * *window_ptr++ + *delay_ptr++);
  308. }
  309. delay_ptr = delay;
  310. for(i=0; i< 64; i++) {
  311. *delay_ptr++ = -buf_2[i].real * *--window_ptr;
  312. *delay_ptr++ = buf_2[64-i-1].imag * *--window_ptr;
  313. }
  314. for(i=0; i< 64; i++) {
  315. *delay_ptr++ = buf_2[i].imag * *--window_ptr;
  316. *delay_ptr++ = -buf_2[64-i-1].real * *--window_ptr;
  317. }
  318. }
  319. void imdct_init (void)
  320. {
  321. #ifdef LIBAC3_MLIB
  322. void imdct_do_256_mlib(float data[],float delay[]);
  323. void imdct_do_512_mlib(float data[],float delay[]);
  324. imdct_512 = imdct_do_512_mlib;
  325. imdct_256 = imdct_do_256_mlib;
  326. #else
  327. int i, j, k;
  328. /* Twiddle factors to turn IFFT into IMDCT */
  329. for (i = 0; i < 128; i++) {
  330. xcos1[i] = -cos ((M_PI / 2048) * (8 * i + 1));
  331. xsin1[i] = -sin ((M_PI / 2048) * (8 * i + 1));
  332. }
  333. /* More twiddle factors to turn IFFT into IMDCT */
  334. for (i = 0; i < 64; i++) {
  335. xcos2[i] = -cos ((M_PI / 1024) * (8 * i + 1));
  336. xsin2[i] = -sin ((M_PI / 1024) * (8 * i + 1));
  337. }
  338. for (i = 0; i < 7; i++) {
  339. j = 1 << i;
  340. for (k = 0; k < j; k++) {
  341. w[i][k].real = cos (-M_PI * k / j);
  342. w[i][k].imag = sin (-M_PI * k / j);
  343. }
  344. }
  345. imdct_512 = imdct_do_512;
  346. imdct_256 = imdct_do_256;
  347. #endif
  348. }