You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3027 lines
118KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2011 Mashiat Sarker Shakkhar
  4. * Copyright (c) 2006-2007 Konstantin Shishkov
  5. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * VC-1 and WMV3 block decoding routines
  26. */
  27. #include "avcodec.h"
  28. #include "mpegutils.h"
  29. #include "mpegvideo.h"
  30. #include "msmpeg4data.h"
  31. #include "unary.h"
  32. #include "vc1.h"
  33. #include "vc1_pred.h"
  34. #include "vc1acdata.h"
  35. #include "vc1data.h"
  36. #define MB_INTRA_VLC_BITS 9
  37. #define DC_VLC_BITS 9
  38. // offset tables for interlaced picture MVDATA decoding
  39. static const uint8_t offset_table[2][9] = {
  40. { 0, 1, 2, 4, 8, 16, 32, 64, 128 },
  41. { 0, 1, 3, 7, 15, 31, 63, 127, 255 },
  42. };
  43. // mapping table for internal block representation
  44. static const int block_map[6] = {0, 2, 1, 3, 4, 5};
  45. /***********************************************************************/
  46. /**
  47. * @name VC-1 Bitplane decoding
  48. * @see 8.7, p56
  49. * @{
  50. */
  51. static inline void init_block_index(VC1Context *v)
  52. {
  53. MpegEncContext *s = &v->s;
  54. ff_init_block_index(s);
  55. if (v->field_mode && !(v->second_field ^ v->tff)) {
  56. s->dest[0] += s->current_picture_ptr->f->linesize[0];
  57. s->dest[1] += s->current_picture_ptr->f->linesize[1];
  58. s->dest[2] += s->current_picture_ptr->f->linesize[2];
  59. }
  60. }
  61. /** @} */ //Bitplane group
  62. static void vc1_put_blocks_clamped(VC1Context *v, int put_signed)
  63. {
  64. MpegEncContext *s = &v->s;
  65. uint8_t *dest;
  66. int block_count = CONFIG_GRAY && (s->avctx->flags & AV_CODEC_FLAG_GRAY) ? 4 : 6;
  67. int fieldtx = 0;
  68. int i;
  69. /* The put pixels loop is one MB row and one MB column behind the decoding
  70. * loop because we can only put pixels when overlap filtering is done. For
  71. * interlaced frame pictures, however, the put pixels loop is only one
  72. * column behind the decoding loop as interlaced frame pictures only need
  73. * horizontal overlap filtering. */
  74. if (!s->first_slice_line && v->fcm != ILACE_FRAME) {
  75. if (s->mb_x) {
  76. for (i = 0; i < block_count; i++) {
  77. if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i] - 1] :
  78. v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i] - 2]) {
  79. dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + ((i & 1) - 2) * 8;
  80. if (put_signed)
  81. s->idsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][block_map[i]],
  82. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
  83. i > 3 ? s->uvlinesize : s->linesize);
  84. else
  85. s->idsp.put_pixels_clamped(v->block[v->topleft_blk_idx][block_map[i]],
  86. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize - 8 : dest,
  87. i > 3 ? s->uvlinesize : s->linesize);
  88. }
  89. }
  90. }
  91. if (s->mb_x == v->end_mb_x - 1) {
  92. for (i = 0; i < block_count; i++) {
  93. if (i > 3 ? v->mb_type[0][s->block_index[i] - s->block_wrap[i]] :
  94. v->mb_type[0][s->block_index[i] - 2 * s->block_wrap[i]]) {
  95. dest = s->dest[0] + ((i & 2) - 4) * 4 * s->linesize + (i & 1) * 8;
  96. if (put_signed)
  97. s->idsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][block_map[i]],
  98. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
  99. i > 3 ? s->uvlinesize : s->linesize);
  100. else
  101. s->idsp.put_pixels_clamped(v->block[v->top_blk_idx][block_map[i]],
  102. i > 3 ? s->dest[i - 3] - 8 * s->uvlinesize : dest,
  103. i > 3 ? s->uvlinesize : s->linesize);
  104. }
  105. }
  106. }
  107. }
  108. if (s->mb_y == s->end_mb_y - 1 || v->fcm == ILACE_FRAME) {
  109. if (s->mb_x) {
  110. if (v->fcm == ILACE_FRAME)
  111. fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x - 1];
  112. for (i = 0; i < block_count; i++) {
  113. if (i > 3 ? v->mb_type[0][s->block_index[i] - 1] :
  114. v->mb_type[0][s->block_index[i] - 2]) {
  115. if (fieldtx)
  116. dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + ((i & 1) - 2) * 8;
  117. else
  118. dest = s->dest[0] + (i & 2) * 4 * s->linesize + ((i & 1) - 2) * 8;
  119. if (put_signed)
  120. s->idsp.put_signed_pixels_clamped(v->block[v->left_blk_idx][block_map[i]],
  121. i > 3 ? s->dest[i - 3] - 8 : dest,
  122. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  123. else
  124. s->idsp.put_pixels_clamped(v->block[v->left_blk_idx][block_map[i]],
  125. i > 3 ? s->dest[i - 3] - 8 : dest,
  126. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  127. }
  128. }
  129. }
  130. if (s->mb_x == v->end_mb_x - 1) {
  131. if (v->fcm == ILACE_FRAME)
  132. fieldtx = v->fieldtx_plane[s->mb_y * s->mb_stride + s->mb_x];
  133. for (i = 0; i < block_count; i++) {
  134. if (v->mb_type[0][s->block_index[i]]) {
  135. if (fieldtx)
  136. dest = s->dest[0] + ((i & 2) >> 1) * s->linesize + (i & 1) * 8;
  137. else
  138. dest = s->dest[0] + (i & 2) * 4 * s->linesize + (i & 1) * 8;
  139. if (put_signed)
  140. s->idsp.put_signed_pixels_clamped(v->block[v->cur_blk_idx][block_map[i]],
  141. i > 3 ? s->dest[i - 3] : dest,
  142. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  143. else
  144. s->idsp.put_pixels_clamped(v->block[v->cur_blk_idx][block_map[i]],
  145. i > 3 ? s->dest[i - 3] : dest,
  146. i > 3 ? s->uvlinesize : s->linesize << fieldtx);
  147. }
  148. }
  149. }
  150. }
  151. }
  152. #define inc_blk_idx(idx) do { \
  153. idx++; \
  154. if (idx >= v->n_allocated_blks) \
  155. idx = 0; \
  156. } while (0)
  157. /***********************************************************************/
  158. /**
  159. * @name VC-1 Block-level functions
  160. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  161. * @{
  162. */
  163. /**
  164. * @def GET_MQUANT
  165. * @brief Get macroblock-level quantizer scale
  166. */
  167. #define GET_MQUANT() \
  168. if (v->dquantfrm) { \
  169. int edges = 0; \
  170. if (v->dqprofile == DQPROFILE_ALL_MBS) { \
  171. if (v->dqbilevel) { \
  172. mquant = (get_bits1(gb)) ? -v->altpq : v->pq; \
  173. } else { \
  174. mqdiff = get_bits(gb, 3); \
  175. if (mqdiff != 7) \
  176. mquant = -v->pq - mqdiff; \
  177. else \
  178. mquant = -get_bits(gb, 5); \
  179. } \
  180. } \
  181. if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  182. edges = 1 << v->dqsbedge; \
  183. else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  184. edges = (3 << v->dqsbedge) % 15; \
  185. else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
  186. edges = 15; \
  187. if ((edges&1) && !s->mb_x) \
  188. mquant = -v->altpq; \
  189. if ((edges&2) && !s->mb_y) \
  190. mquant = -v->altpq; \
  191. if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
  192. mquant = -v->altpq; \
  193. if ((edges&8) && \
  194. s->mb_y == ((s->mb_height >> v->field_mode) - 1)) \
  195. mquant = -v->altpq; \
  196. if (!mquant || mquant > 31 || mquant < -31) { \
  197. av_log(v->s.avctx, AV_LOG_ERROR, \
  198. "Overriding invalid mquant %d\n", mquant); \
  199. mquant = 1; \
  200. } \
  201. }
  202. /**
  203. * @def GET_MVDATA(_dmv_x, _dmv_y)
  204. * @brief Get MV differentials
  205. * @see MVDATA decoding from 8.3.5.2, p(1)20
  206. * @param _dmv_x Horizontal differential for decoded MV
  207. * @param _dmv_y Vertical differential for decoded MV
  208. */
  209. #define GET_MVDATA(_dmv_x, _dmv_y) \
  210. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
  211. VC1_MV_DIFF_VLC_BITS, 2); \
  212. if (index > 36) { \
  213. mb_has_coeffs = 1; \
  214. index -= 37; \
  215. } else \
  216. mb_has_coeffs = 0; \
  217. s->mb_intra = 0; \
  218. if (!index) { \
  219. _dmv_x = _dmv_y = 0; \
  220. } else if (index == 35) { \
  221. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  222. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  223. } else if (index == 36) { \
  224. _dmv_x = 0; \
  225. _dmv_y = 0; \
  226. s->mb_intra = 1; \
  227. } else { \
  228. index1 = index % 6; \
  229. _dmv_x = offset_table[1][index1]; \
  230. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  231. if (val > 0) { \
  232. val = get_bits(gb, val); \
  233. sign = 0 - (val & 1); \
  234. _dmv_x = (sign ^ ((val >> 1) + _dmv_x)) - sign; \
  235. } \
  236. \
  237. index1 = index / 6; \
  238. _dmv_y = offset_table[1][index1]; \
  239. val = size_table[index1] - (!s->quarter_sample && index1 == 5); \
  240. if (val > 0) { \
  241. val = get_bits(gb, val); \
  242. sign = 0 - (val & 1); \
  243. _dmv_y = (sign ^ ((val >> 1) + _dmv_y)) - sign; \
  244. } \
  245. }
  246. static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
  247. int *dmv_y, int *pred_flag)
  248. {
  249. int index, index1;
  250. int extend_x, extend_y;
  251. GetBitContext *gb = &v->s.gb;
  252. int bits, esc;
  253. int val, sign;
  254. if (v->numref) {
  255. bits = VC1_2REF_MVDATA_VLC_BITS;
  256. esc = 125;
  257. } else {
  258. bits = VC1_1REF_MVDATA_VLC_BITS;
  259. esc = 71;
  260. }
  261. extend_x = v->dmvrange & 1;
  262. extend_y = (v->dmvrange >> 1) & 1;
  263. index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
  264. if (index == esc) {
  265. *dmv_x = get_bits(gb, v->k_x);
  266. *dmv_y = get_bits(gb, v->k_y);
  267. if (v->numref) {
  268. if (pred_flag)
  269. *pred_flag = *dmv_y & 1;
  270. *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
  271. }
  272. }
  273. else {
  274. av_assert0(index < esc);
  275. index1 = (index + 1) % 9;
  276. if (index1 != 0) {
  277. val = get_bits(gb, index1 + extend_x);
  278. sign = 0 - (val & 1);
  279. *dmv_x = (sign ^ ((val >> 1) + offset_table[extend_x][index1])) - sign;
  280. } else
  281. *dmv_x = 0;
  282. index1 = (index + 1) / 9;
  283. if (index1 > v->numref) {
  284. val = get_bits(gb, (index1 >> v->numref) + extend_y);
  285. sign = 0 - (val & 1);
  286. *dmv_y = (sign ^ ((val >> 1) + offset_table[extend_y][index1 >> v->numref])) - sign;
  287. } else
  288. *dmv_y = 0;
  289. if (v->numref && pred_flag)
  290. *pred_flag = index1 & 1;
  291. }
  292. }
  293. /** Reconstruct motion vector for B-frame and do motion compensation
  294. */
  295. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
  296. int direct, int mode)
  297. {
  298. if (direct) {
  299. ff_vc1_mc_1mv(v, 0);
  300. ff_vc1_interp_mc(v);
  301. return;
  302. }
  303. if (mode == BMV_TYPE_INTERPOLATED) {
  304. ff_vc1_mc_1mv(v, 0);
  305. ff_vc1_interp_mc(v);
  306. return;
  307. }
  308. ff_vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  309. }
  310. /** Get predicted DC value for I-frames only
  311. * prediction dir: left=0, top=1
  312. * @param s MpegEncContext
  313. * @param overlap flag indicating that overlap filtering is used
  314. * @param pq integer part of picture quantizer
  315. * @param[in] n block index in the current MB
  316. * @param dc_val_ptr Pointer to DC predictor
  317. * @param dir_ptr Prediction direction for use in AC prediction
  318. */
  319. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  320. int16_t **dc_val_ptr, int *dir_ptr)
  321. {
  322. int a, b, c, wrap, pred, scale;
  323. int16_t *dc_val;
  324. static const uint16_t dcpred[32] = {
  325. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  326. 114, 102, 93, 85, 79, 73, 68, 64,
  327. 60, 57, 54, 51, 49, 47, 45, 43,
  328. 41, 39, 38, 37, 35, 34, 33
  329. };
  330. /* find prediction - wmv3_dc_scale always used here in fact */
  331. if (n < 4) scale = s->y_dc_scale;
  332. else scale = s->c_dc_scale;
  333. wrap = s->block_wrap[n];
  334. dc_val = s->dc_val[0] + s->block_index[n];
  335. /* B A
  336. * C X
  337. */
  338. c = dc_val[ - 1];
  339. b = dc_val[ - 1 - wrap];
  340. a = dc_val[ - wrap];
  341. if (pq < 9 || !overlap) {
  342. /* Set outer values */
  343. if (s->first_slice_line && (n != 2 && n != 3))
  344. b = a = dcpred[scale];
  345. if (s->mb_x == 0 && (n != 1 && n != 3))
  346. b = c = dcpred[scale];
  347. } else {
  348. /* Set outer values */
  349. if (s->first_slice_line && (n != 2 && n != 3))
  350. b = a = 0;
  351. if (s->mb_x == 0 && (n != 1 && n != 3))
  352. b = c = 0;
  353. }
  354. if (abs(a - b) <= abs(b - c)) {
  355. pred = c;
  356. *dir_ptr = 1; // left
  357. } else {
  358. pred = a;
  359. *dir_ptr = 0; // top
  360. }
  361. /* update predictor */
  362. *dc_val_ptr = &dc_val[0];
  363. return pred;
  364. }
  365. /** Get predicted DC value
  366. * prediction dir: left=0, top=1
  367. * @param s MpegEncContext
  368. * @param overlap flag indicating that overlap filtering is used
  369. * @param pq integer part of picture quantizer
  370. * @param[in] n block index in the current MB
  371. * @param a_avail flag indicating top block availability
  372. * @param c_avail flag indicating left block availability
  373. * @param dc_val_ptr Pointer to DC predictor
  374. * @param dir_ptr Prediction direction for use in AC prediction
  375. */
  376. static inline int ff_vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  377. int a_avail, int c_avail,
  378. int16_t **dc_val_ptr, int *dir_ptr)
  379. {
  380. int a, b, c, wrap, pred;
  381. int16_t *dc_val;
  382. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  383. int q1, q2 = 0;
  384. int dqscale_index;
  385. /* scale predictors if needed */
  386. q1 = FFABS(s->current_picture.qscale_table[mb_pos]);
  387. dqscale_index = s->y_dc_scale_table[q1] - 1;
  388. if (dqscale_index < 0)
  389. return 0;
  390. wrap = s->block_wrap[n];
  391. dc_val = s->dc_val[0] + s->block_index[n];
  392. /* B A
  393. * C X
  394. */
  395. c = dc_val[ - 1];
  396. b = dc_val[ - 1 - wrap];
  397. a = dc_val[ - wrap];
  398. if (c_avail && (n != 1 && n != 3)) {
  399. q2 = FFABS(s->current_picture.qscale_table[mb_pos - 1]);
  400. if (q2 && q2 != q1)
  401. c = (int)((unsigned)c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  402. }
  403. if (a_avail && (n != 2 && n != 3)) {
  404. q2 = FFABS(s->current_picture.qscale_table[mb_pos - s->mb_stride]);
  405. if (q2 && q2 != q1)
  406. a = (int)((unsigned)a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  407. }
  408. if (a_avail && c_avail && (n != 3)) {
  409. int off = mb_pos;
  410. if (n != 1)
  411. off--;
  412. if (n != 2)
  413. off -= s->mb_stride;
  414. q2 = FFABS(s->current_picture.qscale_table[off]);
  415. if (q2 && q2 != q1)
  416. b = (int)((unsigned)b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
  417. }
  418. if (c_avail && (!a_avail || abs(a - b) <= abs(b - c))) {
  419. pred = c;
  420. *dir_ptr = 1; // left
  421. } else if (a_avail) {
  422. pred = a;
  423. *dir_ptr = 0; // top
  424. } else {
  425. pred = 0;
  426. *dir_ptr = 1; // left
  427. }
  428. /* update predictor */
  429. *dc_val_ptr = &dc_val[0];
  430. return pred;
  431. }
  432. /** @} */ // Block group
  433. /**
  434. * @name VC1 Macroblock-level functions in Simple/Main Profiles
  435. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  436. * @{
  437. */
  438. static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
  439. uint8_t **coded_block_ptr)
  440. {
  441. int xy, wrap, pred, a, b, c;
  442. xy = s->block_index[n];
  443. wrap = s->b8_stride;
  444. /* B C
  445. * A X
  446. */
  447. a = s->coded_block[xy - 1 ];
  448. b = s->coded_block[xy - 1 - wrap];
  449. c = s->coded_block[xy - wrap];
  450. if (b == c) {
  451. pred = a;
  452. } else {
  453. pred = c;
  454. }
  455. /* store value */
  456. *coded_block_ptr = &s->coded_block[xy];
  457. return pred;
  458. }
  459. /**
  460. * Decode one AC coefficient
  461. * @param v The VC1 context
  462. * @param last Last coefficient
  463. * @param skip How much zero coefficients to skip
  464. * @param value Decoded AC coefficient value
  465. * @param codingset set of VLC to decode data
  466. * @see 8.1.3.4
  467. */
  468. static int vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
  469. int *value, int codingset)
  470. {
  471. GetBitContext *gb = &v->s.gb;
  472. int index, run, level, lst, sign;
  473. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  474. if (index < 0)
  475. return index;
  476. if (index != ff_vc1_ac_sizes[codingset] - 1) {
  477. run = vc1_index_decode_table[codingset][index][0];
  478. level = vc1_index_decode_table[codingset][index][1];
  479. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  480. sign = get_bits1(gb);
  481. } else {
  482. int escape = decode210(gb);
  483. if (escape != 2) {
  484. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  485. if (index >= ff_vc1_ac_sizes[codingset] - 1U)
  486. return AVERROR_INVALIDDATA;
  487. run = vc1_index_decode_table[codingset][index][0];
  488. level = vc1_index_decode_table[codingset][index][1];
  489. lst = index >= vc1_last_decode_table[codingset];
  490. if (escape == 0) {
  491. if (lst)
  492. level += vc1_last_delta_level_table[codingset][run];
  493. else
  494. level += vc1_delta_level_table[codingset][run];
  495. } else {
  496. if (lst)
  497. run += vc1_last_delta_run_table[codingset][level] + 1;
  498. else
  499. run += vc1_delta_run_table[codingset][level] + 1;
  500. }
  501. sign = get_bits1(gb);
  502. } else {
  503. lst = get_bits1(gb);
  504. if (v->s.esc3_level_length == 0) {
  505. if (v->pq < 8 || v->dquantfrm) { // table 59
  506. v->s.esc3_level_length = get_bits(gb, 3);
  507. if (!v->s.esc3_level_length)
  508. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  509. } else { // table 60
  510. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  511. }
  512. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  513. }
  514. run = get_bits(gb, v->s.esc3_run_length);
  515. sign = get_bits1(gb);
  516. level = get_bits(gb, v->s.esc3_level_length);
  517. }
  518. }
  519. *last = lst;
  520. *skip = run;
  521. *value = (level ^ -sign) + sign;
  522. return 0;
  523. }
  524. /** Decode intra block in intra frames - should be faster than decode_intra_block
  525. * @param v VC1Context
  526. * @param block block to decode
  527. * @param[in] n subblock index
  528. * @param coded are AC coeffs present or not
  529. * @param codingset set of VLC to decode data
  530. */
  531. static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
  532. int coded, int codingset)
  533. {
  534. GetBitContext *gb = &v->s.gb;
  535. MpegEncContext *s = &v->s;
  536. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  537. int i;
  538. int16_t *dc_val;
  539. int16_t *ac_val, *ac_val2;
  540. int dcdiff, scale;
  541. /* Get DC differential */
  542. if (n < 4) {
  543. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  544. } else {
  545. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  546. }
  547. if (dcdiff < 0) {
  548. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  549. return -1;
  550. }
  551. if (dcdiff) {
  552. const int m = (v->pq == 1 || v->pq == 2) ? 3 - v->pq : 0;
  553. if (dcdiff == 119 /* ESC index value */) {
  554. dcdiff = get_bits(gb, 8 + m);
  555. } else {
  556. if (m)
  557. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  558. }
  559. if (get_bits1(gb))
  560. dcdiff = -dcdiff;
  561. }
  562. /* Prediction */
  563. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  564. *dc_val = dcdiff;
  565. /* Store the quantized DC coeff, used for prediction */
  566. if (n < 4)
  567. scale = s->y_dc_scale;
  568. else
  569. scale = s->c_dc_scale;
  570. block[0] = dcdiff * scale;
  571. ac_val = s->ac_val[0][s->block_index[n]];
  572. ac_val2 = ac_val;
  573. if (dc_pred_dir) // left
  574. ac_val -= 16;
  575. else // top
  576. ac_val -= 16 * s->block_wrap[n];
  577. scale = v->pq * 2 + v->halfpq;
  578. //AC Decoding
  579. i = !!coded;
  580. if (coded) {
  581. int last = 0, skip, value;
  582. const uint8_t *zz_table;
  583. int k;
  584. if (v->s.ac_pred) {
  585. if (!dc_pred_dir)
  586. zz_table = v->zz_8x8[2];
  587. else
  588. zz_table = v->zz_8x8[3];
  589. } else
  590. zz_table = v->zz_8x8[1];
  591. while (!last) {
  592. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  593. if (ret < 0)
  594. return ret;
  595. i += skip;
  596. if (i > 63)
  597. break;
  598. block[zz_table[i++]] = value;
  599. }
  600. /* apply AC prediction if needed */
  601. if (s->ac_pred) {
  602. int sh;
  603. if (dc_pred_dir) { // left
  604. sh = v->left_blk_sh;
  605. } else { // top
  606. sh = v->top_blk_sh;
  607. ac_val += 8;
  608. }
  609. for (k = 1; k < 8; k++)
  610. block[k << sh] += ac_val[k];
  611. }
  612. /* save AC coeffs for further prediction */
  613. for (k = 1; k < 8; k++) {
  614. ac_val2[k] = block[k << v->left_blk_sh];
  615. ac_val2[k + 8] = block[k << v->top_blk_sh];
  616. }
  617. /* scale AC coeffs */
  618. for (k = 1; k < 64; k++)
  619. if (block[k]) {
  620. block[k] *= scale;
  621. if (!v->pquantizer)
  622. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  623. }
  624. } else {
  625. int k;
  626. memset(ac_val2, 0, 16 * 2);
  627. /* apply AC prediction if needed */
  628. if (s->ac_pred) {
  629. int sh;
  630. if (dc_pred_dir) { //left
  631. sh = v->left_blk_sh;
  632. } else { // top
  633. sh = v->top_blk_sh;
  634. ac_val += 8;
  635. ac_val2 += 8;
  636. }
  637. memcpy(ac_val2, ac_val, 8 * 2);
  638. for (k = 1; k < 8; k++) {
  639. block[k << sh] = ac_val[k] * scale;
  640. if (!v->pquantizer && block[k << sh])
  641. block[k << sh] += (block[k << sh] < 0) ? -v->pq : v->pq;
  642. }
  643. }
  644. }
  645. if (s->ac_pred) i = 63;
  646. s->block_last_index[n] = i;
  647. return 0;
  648. }
  649. /** Decode intra block in intra frames - should be faster than decode_intra_block
  650. * @param v VC1Context
  651. * @param block block to decode
  652. * @param[in] n subblock number
  653. * @param coded are AC coeffs present or not
  654. * @param codingset set of VLC to decode data
  655. * @param mquant quantizer value for this macroblock
  656. */
  657. static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
  658. int coded, int codingset, int mquant)
  659. {
  660. GetBitContext *gb = &v->s.gb;
  661. MpegEncContext *s = &v->s;
  662. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  663. int i;
  664. int16_t *dc_val = NULL;
  665. int16_t *ac_val, *ac_val2;
  666. int dcdiff;
  667. int a_avail = v->a_avail, c_avail = v->c_avail;
  668. int use_pred = s->ac_pred;
  669. int scale;
  670. int q1, q2 = 0;
  671. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  672. int quant = FFABS(mquant);
  673. /* Get DC differential */
  674. if (n < 4) {
  675. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  676. } else {
  677. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  678. }
  679. if (dcdiff < 0) {
  680. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  681. return -1;
  682. }
  683. if (dcdiff) {
  684. const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
  685. if (dcdiff == 119 /* ESC index value */) {
  686. dcdiff = get_bits(gb, 8 + m);
  687. } else {
  688. if (m)
  689. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  690. }
  691. if (get_bits1(gb))
  692. dcdiff = -dcdiff;
  693. }
  694. /* Prediction */
  695. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  696. *dc_val = dcdiff;
  697. /* Store the quantized DC coeff, used for prediction */
  698. if (n < 4)
  699. scale = s->y_dc_scale;
  700. else
  701. scale = s->c_dc_scale;
  702. block[0] = dcdiff * scale;
  703. /* check if AC is needed at all */
  704. if (!a_avail && !c_avail)
  705. use_pred = 0;
  706. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  707. ac_val = s->ac_val[0][s->block_index[n]];
  708. ac_val2 = ac_val;
  709. if (dc_pred_dir) // left
  710. ac_val -= 16;
  711. else // top
  712. ac_val -= 16 * s->block_wrap[n];
  713. q1 = s->current_picture.qscale_table[mb_pos];
  714. if (n == 3)
  715. q2 = q1;
  716. else if (dc_pred_dir) {
  717. if (n == 1)
  718. q2 = q1;
  719. else if (c_avail && mb_pos)
  720. q2 = s->current_picture.qscale_table[mb_pos - 1];
  721. } else {
  722. if (n == 2)
  723. q2 = q1;
  724. else if (a_avail && mb_pos >= s->mb_stride)
  725. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  726. }
  727. //AC Decoding
  728. i = 1;
  729. if (coded) {
  730. int last = 0, skip, value;
  731. const uint8_t *zz_table;
  732. int k;
  733. if (v->s.ac_pred) {
  734. if (!use_pred && v->fcm == ILACE_FRAME) {
  735. zz_table = v->zzi_8x8;
  736. } else {
  737. if (!dc_pred_dir) // top
  738. zz_table = v->zz_8x8[2];
  739. else // left
  740. zz_table = v->zz_8x8[3];
  741. }
  742. } else {
  743. if (v->fcm != ILACE_FRAME)
  744. zz_table = v->zz_8x8[1];
  745. else
  746. zz_table = v->zzi_8x8;
  747. }
  748. while (!last) {
  749. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  750. if (ret < 0)
  751. return ret;
  752. i += skip;
  753. if (i > 63)
  754. break;
  755. block[zz_table[i++]] = value;
  756. }
  757. /* apply AC prediction if needed */
  758. if (use_pred) {
  759. int sh;
  760. if (dc_pred_dir) { // left
  761. sh = v->left_blk_sh;
  762. } else { // top
  763. sh = v->top_blk_sh;
  764. ac_val += 8;
  765. }
  766. /* scale predictors if needed*/
  767. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  768. if (q1 < 1)
  769. return AVERROR_INVALIDDATA;
  770. if (q2)
  771. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  772. if (q2 && q1 != q2) {
  773. for (k = 1; k < 8; k++)
  774. block[k << sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  775. } else {
  776. for (k = 1; k < 8; k++)
  777. block[k << sh] += ac_val[k];
  778. }
  779. }
  780. /* save AC coeffs for further prediction */
  781. for (k = 1; k < 8; k++) {
  782. ac_val2[k ] = block[k << v->left_blk_sh];
  783. ac_val2[k + 8] = block[k << v->top_blk_sh];
  784. }
  785. /* scale AC coeffs */
  786. for (k = 1; k < 64; k++)
  787. if (block[k]) {
  788. block[k] *= scale;
  789. if (!v->pquantizer)
  790. block[k] += (block[k] < 0) ? -quant : quant;
  791. }
  792. } else { // no AC coeffs
  793. int k;
  794. memset(ac_val2, 0, 16 * 2);
  795. /* apply AC prediction if needed */
  796. if (use_pred) {
  797. int sh;
  798. if (dc_pred_dir) { // left
  799. sh = v->left_blk_sh;
  800. } else { // top
  801. sh = v->top_blk_sh;
  802. ac_val += 8;
  803. ac_val2 += 8;
  804. }
  805. memcpy(ac_val2, ac_val, 8 * 2);
  806. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  807. if (q1 < 1)
  808. return AVERROR_INVALIDDATA;
  809. if (q2)
  810. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  811. if (q2 && q1 != q2) {
  812. for (k = 1; k < 8; k++)
  813. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  814. }
  815. for (k = 1; k < 8; k++) {
  816. block[k << sh] = ac_val2[k] * scale;
  817. if (!v->pquantizer && block[k << sh])
  818. block[k << sh] += (block[k << sh] < 0) ? -quant : quant;
  819. }
  820. }
  821. }
  822. if (use_pred) i = 63;
  823. s->block_last_index[n] = i;
  824. return 0;
  825. }
  826. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  827. * @param v VC1Context
  828. * @param block block to decode
  829. * @param[in] n subblock index
  830. * @param coded are AC coeffs present or not
  831. * @param mquant block quantizer
  832. * @param codingset set of VLC to decode data
  833. */
  834. static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
  835. int coded, int mquant, int codingset)
  836. {
  837. GetBitContext *gb = &v->s.gb;
  838. MpegEncContext *s = &v->s;
  839. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  840. int i;
  841. int16_t *dc_val = NULL;
  842. int16_t *ac_val, *ac_val2;
  843. int dcdiff;
  844. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  845. int a_avail = v->a_avail, c_avail = v->c_avail;
  846. int use_pred = s->ac_pred;
  847. int scale;
  848. int q1, q2 = 0;
  849. int quant = FFABS(mquant);
  850. s->bdsp.clear_block(block);
  851. /* XXX: Guard against dumb values of mquant */
  852. quant = av_clip_uintp2(quant, 5);
  853. /* Set DC scale - y and c use the same */
  854. s->y_dc_scale = s->y_dc_scale_table[quant];
  855. s->c_dc_scale = s->c_dc_scale_table[quant];
  856. /* Get DC differential */
  857. if (n < 4) {
  858. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  859. } else {
  860. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  861. }
  862. if (dcdiff < 0) {
  863. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  864. return -1;
  865. }
  866. if (dcdiff) {
  867. const int m = (quant == 1 || quant == 2) ? 3 - quant : 0;
  868. if (dcdiff == 119 /* ESC index value */) {
  869. dcdiff = get_bits(gb, 8 + m);
  870. } else {
  871. if (m)
  872. dcdiff = (dcdiff << m) + get_bits(gb, m) - ((1 << m) - 1);
  873. }
  874. if (get_bits1(gb))
  875. dcdiff = -dcdiff;
  876. }
  877. /* Prediction */
  878. dcdiff += ff_vc1_pred_dc(&v->s, v->overlap, quant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  879. *dc_val = dcdiff;
  880. /* Store the quantized DC coeff, used for prediction */
  881. if (n < 4) {
  882. block[0] = dcdiff * s->y_dc_scale;
  883. } else {
  884. block[0] = dcdiff * s->c_dc_scale;
  885. }
  886. //AC Decoding
  887. i = 1;
  888. /* check if AC is needed at all and adjust direction if needed */
  889. if (!a_avail) dc_pred_dir = 1;
  890. if (!c_avail) dc_pred_dir = 0;
  891. if (!a_avail && !c_avail) use_pred = 0;
  892. ac_val = s->ac_val[0][s->block_index[n]];
  893. ac_val2 = ac_val;
  894. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  895. if (dc_pred_dir) //left
  896. ac_val -= 16;
  897. else //top
  898. ac_val -= 16 * s->block_wrap[n];
  899. q1 = s->current_picture.qscale_table[mb_pos];
  900. if (dc_pred_dir && c_avail && mb_pos)
  901. q2 = s->current_picture.qscale_table[mb_pos - 1];
  902. if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
  903. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  904. if (dc_pred_dir && n == 1)
  905. q2 = q1;
  906. if (!dc_pred_dir && n == 2)
  907. q2 = q1;
  908. if (n == 3) q2 = q1;
  909. if (coded) {
  910. int last = 0, skip, value;
  911. int k;
  912. while (!last) {
  913. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  914. if (ret < 0)
  915. return ret;
  916. i += skip;
  917. if (i > 63)
  918. break;
  919. if (v->fcm == PROGRESSIVE)
  920. block[v->zz_8x8[0][i++]] = value;
  921. else {
  922. if (use_pred && (v->fcm == ILACE_FRAME)) {
  923. if (!dc_pred_dir) // top
  924. block[v->zz_8x8[2][i++]] = value;
  925. else // left
  926. block[v->zz_8x8[3][i++]] = value;
  927. } else {
  928. block[v->zzi_8x8[i++]] = value;
  929. }
  930. }
  931. }
  932. /* apply AC prediction if needed */
  933. if (use_pred) {
  934. /* scale predictors if needed*/
  935. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  936. if (q1 < 1)
  937. return AVERROR_INVALIDDATA;
  938. if (q2)
  939. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  940. if (q2 && q1 != q2) {
  941. if (dc_pred_dir) { // left
  942. for (k = 1; k < 8; k++)
  943. block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  944. } else { //top
  945. for (k = 1; k < 8; k++)
  946. block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  947. }
  948. } else {
  949. if (dc_pred_dir) { // left
  950. for (k = 1; k < 8; k++)
  951. block[k << v->left_blk_sh] += ac_val[k];
  952. } else { // top
  953. for (k = 1; k < 8; k++)
  954. block[k << v->top_blk_sh] += ac_val[k + 8];
  955. }
  956. }
  957. }
  958. /* save AC coeffs for further prediction */
  959. for (k = 1; k < 8; k++) {
  960. ac_val2[k ] = block[k << v->left_blk_sh];
  961. ac_val2[k + 8] = block[k << v->top_blk_sh];
  962. }
  963. /* scale AC coeffs */
  964. for (k = 1; k < 64; k++)
  965. if (block[k]) {
  966. block[k] *= scale;
  967. if (!v->pquantizer)
  968. block[k] += (block[k] < 0) ? -quant : quant;
  969. }
  970. if (use_pred) i = 63;
  971. } else { // no AC coeffs
  972. int k;
  973. memset(ac_val2, 0, 16 * 2);
  974. if (dc_pred_dir) { // left
  975. if (use_pred) {
  976. memcpy(ac_val2, ac_val, 8 * 2);
  977. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  978. if (q1 < 1)
  979. return AVERROR_INVALIDDATA;
  980. if (q2)
  981. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  982. if (q2 && q1 != q2) {
  983. for (k = 1; k < 8; k++)
  984. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  985. }
  986. }
  987. } else { // top
  988. if (use_pred) {
  989. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  990. q1 = FFABS(q1) * 2 + ((q1 < 0) ? 0 : v->halfpq) - 1;
  991. if (q1 < 1)
  992. return AVERROR_INVALIDDATA;
  993. if (q2)
  994. q2 = FFABS(q2) * 2 + ((q2 < 0) ? 0 : v->halfpq) - 1;
  995. if (q2 && q1 != q2) {
  996. for (k = 1; k < 8; k++)
  997. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  998. }
  999. }
  1000. }
  1001. /* apply AC prediction if needed */
  1002. if (use_pred) {
  1003. if (dc_pred_dir) { // left
  1004. for (k = 1; k < 8; k++) {
  1005. block[k << v->left_blk_sh] = ac_val2[k] * scale;
  1006. if (!v->pquantizer && block[k << v->left_blk_sh])
  1007. block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -quant : quant;
  1008. }
  1009. } else { // top
  1010. for (k = 1; k < 8; k++) {
  1011. block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
  1012. if (!v->pquantizer && block[k << v->top_blk_sh])
  1013. block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -quant : quant;
  1014. }
  1015. }
  1016. i = 63;
  1017. }
  1018. }
  1019. s->block_last_index[n] = i;
  1020. return 0;
  1021. }
  1022. /** Decode P block
  1023. */
  1024. static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
  1025. int mquant, int ttmb, int first_block,
  1026. uint8_t *dst, int linesize, int skip_block,
  1027. int *ttmb_out)
  1028. {
  1029. MpegEncContext *s = &v->s;
  1030. GetBitContext *gb = &s->gb;
  1031. int i, j;
  1032. int subblkpat = 0;
  1033. int scale, off, idx, last, skip, value;
  1034. int ttblk = ttmb & 7;
  1035. int pat = 0;
  1036. int quant = FFABS(mquant);
  1037. s->bdsp.clear_block(block);
  1038. if (ttmb == -1) {
  1039. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1040. }
  1041. if (ttblk == TT_4X4) {
  1042. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1043. }
  1044. if ((ttblk != TT_8X8 && ttblk != TT_4X4)
  1045. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1046. || (!v->res_rtm_flag && !first_block))) {
  1047. subblkpat = decode012(gb);
  1048. if (subblkpat)
  1049. subblkpat ^= 3; // swap decoded pattern bits
  1050. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
  1051. ttblk = TT_8X4;
  1052. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
  1053. ttblk = TT_4X8;
  1054. }
  1055. scale = quant * 2 + ((mquant < 0) ? 0 : v->halfpq);
  1056. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1057. if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1058. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1059. ttblk = TT_8X4;
  1060. }
  1061. if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1062. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1063. ttblk = TT_4X8;
  1064. }
  1065. switch (ttblk) {
  1066. case TT_8X8:
  1067. pat = 0xF;
  1068. i = 0;
  1069. last = 0;
  1070. while (!last) {
  1071. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1072. if (ret < 0)
  1073. return ret;
  1074. i += skip;
  1075. if (i > 63)
  1076. break;
  1077. if (!v->fcm)
  1078. idx = v->zz_8x8[0][i++];
  1079. else
  1080. idx = v->zzi_8x8[i++];
  1081. block[idx] = value * scale;
  1082. if (!v->pquantizer)
  1083. block[idx] += (block[idx] < 0) ? -quant : quant;
  1084. }
  1085. if (!skip_block) {
  1086. if (i == 1)
  1087. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1088. else {
  1089. v->vc1dsp.vc1_inv_trans_8x8(block);
  1090. s->idsp.add_pixels_clamped(block, dst, linesize);
  1091. }
  1092. }
  1093. break;
  1094. case TT_4X4:
  1095. pat = ~subblkpat & 0xF;
  1096. for (j = 0; j < 4; j++) {
  1097. last = subblkpat & (1 << (3 - j));
  1098. i = 0;
  1099. off = (j & 1) * 4 + (j & 2) * 16;
  1100. while (!last) {
  1101. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1102. if (ret < 0)
  1103. return ret;
  1104. i += skip;
  1105. if (i > 15)
  1106. break;
  1107. if (!v->fcm)
  1108. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1109. else
  1110. idx = ff_vc1_adv_interlaced_4x4_zz[i++];
  1111. block[idx + off] = value * scale;
  1112. if (!v->pquantizer)
  1113. block[idx + off] += (block[idx + off] < 0) ? -quant : quant;
  1114. }
  1115. if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
  1116. if (i == 1)
  1117. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1118. else
  1119. v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
  1120. }
  1121. }
  1122. break;
  1123. case TT_8X4:
  1124. pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
  1125. for (j = 0; j < 2; j++) {
  1126. last = subblkpat & (1 << (1 - j));
  1127. i = 0;
  1128. off = j * 32;
  1129. while (!last) {
  1130. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1131. if (ret < 0)
  1132. return ret;
  1133. i += skip;
  1134. if (i > 31)
  1135. break;
  1136. if (!v->fcm)
  1137. idx = v->zz_8x4[i++] + off;
  1138. else
  1139. idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
  1140. block[idx] = value * scale;
  1141. if (!v->pquantizer)
  1142. block[idx] += (block[idx] < 0) ? -quant : quant;
  1143. }
  1144. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1145. if (i == 1)
  1146. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
  1147. else
  1148. v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
  1149. }
  1150. }
  1151. break;
  1152. case TT_4X8:
  1153. pat = ~(subblkpat * 5) & 0xF;
  1154. for (j = 0; j < 2; j++) {
  1155. last = subblkpat & (1 << (1 - j));
  1156. i = 0;
  1157. off = j * 4;
  1158. while (!last) {
  1159. int ret = vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1160. if (ret < 0)
  1161. return ret;
  1162. i += skip;
  1163. if (i > 31)
  1164. break;
  1165. if (!v->fcm)
  1166. idx = v->zz_4x8[i++] + off;
  1167. else
  1168. idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
  1169. block[idx] = value * scale;
  1170. if (!v->pquantizer)
  1171. block[idx] += (block[idx] < 0) ? -quant : quant;
  1172. }
  1173. if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
  1174. if (i == 1)
  1175. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
  1176. else
  1177. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1178. }
  1179. }
  1180. break;
  1181. }
  1182. if (ttmb_out)
  1183. *ttmb_out |= ttblk << (n * 4);
  1184. return pat;
  1185. }
  1186. /** @} */ // Macroblock group
  1187. static const uint8_t size_table[6] = { 0, 2, 3, 4, 5, 8 };
  1188. /** Decode one P-frame MB
  1189. */
  1190. static int vc1_decode_p_mb(VC1Context *v)
  1191. {
  1192. MpegEncContext *s = &v->s;
  1193. GetBitContext *gb = &s->gb;
  1194. int i, j;
  1195. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1196. int cbp; /* cbp decoding stuff */
  1197. int mqdiff, mquant; /* MB quantization */
  1198. int ttmb = v->ttfrm; /* MB Transform type */
  1199. int mb_has_coeffs = 1; /* last_flag */
  1200. int dmv_x, dmv_y; /* Differential MV components */
  1201. int index, index1; /* LUT indexes */
  1202. int val, sign; /* temp values */
  1203. int first_block = 1;
  1204. int dst_idx, off;
  1205. int skipped, fourmv;
  1206. int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
  1207. mquant = v->pq; /* lossy initialization */
  1208. if (v->mv_type_is_raw)
  1209. fourmv = get_bits1(gb);
  1210. else
  1211. fourmv = v->mv_type_mb_plane[mb_pos];
  1212. if (v->skip_is_raw)
  1213. skipped = get_bits1(gb);
  1214. else
  1215. skipped = v->s.mbskip_table[mb_pos];
  1216. if (!fourmv) { /* 1MV mode */
  1217. if (!skipped) {
  1218. GET_MVDATA(dmv_x, dmv_y);
  1219. if (s->mb_intra) {
  1220. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1221. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1222. }
  1223. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1224. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1225. /* FIXME Set DC val for inter block ? */
  1226. if (s->mb_intra && !mb_has_coeffs) {
  1227. GET_MQUANT();
  1228. s->ac_pred = get_bits1(gb);
  1229. cbp = 0;
  1230. } else if (mb_has_coeffs) {
  1231. if (s->mb_intra)
  1232. s->ac_pred = get_bits1(gb);
  1233. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1234. GET_MQUANT();
  1235. } else {
  1236. mquant = v->pq;
  1237. cbp = 0;
  1238. }
  1239. s->current_picture.qscale_table[mb_pos] = mquant;
  1240. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1241. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  1242. VC1_TTMB_VLC_BITS, 2);
  1243. if (!s->mb_intra) ff_vc1_mc_1mv(v, 0);
  1244. dst_idx = 0;
  1245. for (i = 0; i < 6; i++) {
  1246. s->dc_val[0][s->block_index[i]] = 0;
  1247. dst_idx += i >> 2;
  1248. val = ((cbp >> (5 - i)) & 1);
  1249. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1250. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1251. if (s->mb_intra) {
  1252. /* check if prediction blocks A and C are available */
  1253. v->a_avail = v->c_avail = 0;
  1254. if (i == 2 || i == 3 || !s->first_slice_line)
  1255. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1256. if (i == 1 || i == 3 || s->mb_x)
  1257. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1258. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
  1259. (i & 4) ? v->codingset2 : v->codingset);
  1260. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1261. continue;
  1262. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1263. if (v->rangeredfrm)
  1264. for (j = 0; j < 64; j++)
  1265. v->block[v->cur_blk_idx][block_map[i]][j] *= 2;
  1266. block_cbp |= 0xF << (i << 2);
  1267. block_intra |= 1 << i;
  1268. } else if (val) {
  1269. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb, first_block,
  1270. s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
  1271. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1272. if (pat < 0)
  1273. return pat;
  1274. block_cbp |= pat << (i << 2);
  1275. if (!v->ttmbf && ttmb < 8)
  1276. ttmb = -1;
  1277. first_block = 0;
  1278. }
  1279. }
  1280. } else { // skipped
  1281. s->mb_intra = 0;
  1282. for (i = 0; i < 6; i++) {
  1283. v->mb_type[0][s->block_index[i]] = 0;
  1284. s->dc_val[0][s->block_index[i]] = 0;
  1285. }
  1286. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1287. s->current_picture.qscale_table[mb_pos] = 0;
  1288. ff_vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1289. ff_vc1_mc_1mv(v, 0);
  1290. }
  1291. } else { // 4MV mode
  1292. if (!skipped /* unskipped MB */) {
  1293. int intra_count = 0, coded_inter = 0;
  1294. int is_intra[6], is_coded[6];
  1295. /* Get CBPCY */
  1296. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1297. for (i = 0; i < 6; i++) {
  1298. val = ((cbp >> (5 - i)) & 1);
  1299. s->dc_val[0][s->block_index[i]] = 0;
  1300. s->mb_intra = 0;
  1301. if (i < 4) {
  1302. dmv_x = dmv_y = 0;
  1303. s->mb_intra = 0;
  1304. mb_has_coeffs = 0;
  1305. if (val) {
  1306. GET_MVDATA(dmv_x, dmv_y);
  1307. }
  1308. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1309. if (!s->mb_intra)
  1310. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1311. intra_count += s->mb_intra;
  1312. is_intra[i] = s->mb_intra;
  1313. is_coded[i] = mb_has_coeffs;
  1314. }
  1315. if (i & 4) {
  1316. is_intra[i] = (intra_count >= 3);
  1317. is_coded[i] = val;
  1318. }
  1319. if (i == 4)
  1320. ff_vc1_mc_4mv_chroma(v, 0);
  1321. v->mb_type[0][s->block_index[i]] = is_intra[i];
  1322. if (!coded_inter)
  1323. coded_inter = !is_intra[i] & is_coded[i];
  1324. }
  1325. // if there are no coded blocks then don't do anything more
  1326. dst_idx = 0;
  1327. if (!intra_count && !coded_inter)
  1328. goto end;
  1329. GET_MQUANT();
  1330. s->current_picture.qscale_table[mb_pos] = mquant;
  1331. /* test if block is intra and has pred */
  1332. {
  1333. int intrapred = 0;
  1334. for (i = 0; i < 6; i++)
  1335. if (is_intra[i]) {
  1336. if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  1337. || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
  1338. intrapred = 1;
  1339. break;
  1340. }
  1341. }
  1342. if (intrapred)
  1343. s->ac_pred = get_bits1(gb);
  1344. else
  1345. s->ac_pred = 0;
  1346. }
  1347. if (!v->ttmbf && coded_inter)
  1348. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1349. for (i = 0; i < 6; i++) {
  1350. dst_idx += i >> 2;
  1351. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1352. s->mb_intra = is_intra[i];
  1353. if (is_intra[i]) {
  1354. /* check if prediction blocks A and C are available */
  1355. v->a_avail = v->c_avail = 0;
  1356. if (i == 2 || i == 3 || !s->first_slice_line)
  1357. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1358. if (i == 1 || i == 3 || s->mb_x)
  1359. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1360. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, is_coded[i], mquant,
  1361. (i & 4) ? v->codingset2 : v->codingset);
  1362. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1363. continue;
  1364. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1365. if (v->rangeredfrm)
  1366. for (j = 0; j < 64; j++)
  1367. v->block[v->cur_blk_idx][block_map[i]][j] <<= 1;
  1368. block_cbp |= 0xF << (i << 2);
  1369. block_intra |= 1 << i;
  1370. } else if (is_coded[i]) {
  1371. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
  1372. first_block, s->dest[dst_idx] + off,
  1373. (i & 4) ? s->uvlinesize : s->linesize,
  1374. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1375. &block_tt);
  1376. if (pat < 0)
  1377. return pat;
  1378. block_cbp |= pat << (i << 2);
  1379. if (!v->ttmbf && ttmb < 8)
  1380. ttmb = -1;
  1381. first_block = 0;
  1382. }
  1383. }
  1384. } else { // skipped MB
  1385. s->mb_intra = 0;
  1386. s->current_picture.qscale_table[mb_pos] = 0;
  1387. for (i = 0; i < 6; i++) {
  1388. v->mb_type[0][s->block_index[i]] = 0;
  1389. s->dc_val[0][s->block_index[i]] = 0;
  1390. }
  1391. for (i = 0; i < 4; i++) {
  1392. ff_vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
  1393. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1394. }
  1395. ff_vc1_mc_4mv_chroma(v, 0);
  1396. s->current_picture.qscale_table[mb_pos] = 0;
  1397. }
  1398. }
  1399. end:
  1400. if (v->overlap && v->pq >= 9)
  1401. ff_vc1_p_overlap_filter(v);
  1402. vc1_put_blocks_clamped(v, 1);
  1403. v->cbp[s->mb_x] = block_cbp;
  1404. v->ttblk[s->mb_x] = block_tt;
  1405. v->is_intra[s->mb_x] = block_intra;
  1406. return 0;
  1407. }
  1408. /* Decode one macroblock in an interlaced frame p picture */
  1409. static int vc1_decode_p_mb_intfr(VC1Context *v)
  1410. {
  1411. MpegEncContext *s = &v->s;
  1412. GetBitContext *gb = &s->gb;
  1413. int i;
  1414. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1415. int cbp = 0; /* cbp decoding stuff */
  1416. int mqdiff, mquant; /* MB quantization */
  1417. int ttmb = v->ttfrm; /* MB Transform type */
  1418. int mb_has_coeffs = 1; /* last_flag */
  1419. int dmv_x, dmv_y; /* Differential MV components */
  1420. int val; /* temp value */
  1421. int first_block = 1;
  1422. int dst_idx, off;
  1423. int skipped, fourmv = 0, twomv = 0;
  1424. int block_cbp = 0, pat, block_tt = 0;
  1425. int idx_mbmode = 0, mvbp;
  1426. int fieldtx;
  1427. mquant = v->pq; /* Lossy initialization */
  1428. if (v->skip_is_raw)
  1429. skipped = get_bits1(gb);
  1430. else
  1431. skipped = v->s.mbskip_table[mb_pos];
  1432. if (!skipped) {
  1433. if (v->fourmvswitch)
  1434. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
  1435. else
  1436. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
  1437. switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
  1438. /* store the motion vector type in a flag (useful later) */
  1439. case MV_PMODE_INTFR_4MV:
  1440. fourmv = 1;
  1441. v->blk_mv_type[s->block_index[0]] = 0;
  1442. v->blk_mv_type[s->block_index[1]] = 0;
  1443. v->blk_mv_type[s->block_index[2]] = 0;
  1444. v->blk_mv_type[s->block_index[3]] = 0;
  1445. break;
  1446. case MV_PMODE_INTFR_4MV_FIELD:
  1447. fourmv = 1;
  1448. v->blk_mv_type[s->block_index[0]] = 1;
  1449. v->blk_mv_type[s->block_index[1]] = 1;
  1450. v->blk_mv_type[s->block_index[2]] = 1;
  1451. v->blk_mv_type[s->block_index[3]] = 1;
  1452. break;
  1453. case MV_PMODE_INTFR_2MV_FIELD:
  1454. twomv = 1;
  1455. v->blk_mv_type[s->block_index[0]] = 1;
  1456. v->blk_mv_type[s->block_index[1]] = 1;
  1457. v->blk_mv_type[s->block_index[2]] = 1;
  1458. v->blk_mv_type[s->block_index[3]] = 1;
  1459. break;
  1460. case MV_PMODE_INTFR_1MV:
  1461. v->blk_mv_type[s->block_index[0]] = 0;
  1462. v->blk_mv_type[s->block_index[1]] = 0;
  1463. v->blk_mv_type[s->block_index[2]] = 0;
  1464. v->blk_mv_type[s->block_index[3]] = 0;
  1465. break;
  1466. }
  1467. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  1468. for (i = 0; i < 4; i++) {
  1469. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  1470. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  1471. }
  1472. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1473. s->mb_intra = 1;
  1474. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  1475. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  1476. mb_has_coeffs = get_bits1(gb);
  1477. if (mb_has_coeffs)
  1478. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1479. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1480. GET_MQUANT();
  1481. s->current_picture.qscale_table[mb_pos] = mquant;
  1482. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1483. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1484. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1485. dst_idx = 0;
  1486. for (i = 0; i < 6; i++) {
  1487. v->a_avail = v->c_avail = 0;
  1488. v->mb_type[0][s->block_index[i]] = 1;
  1489. s->dc_val[0][s->block_index[i]] = 0;
  1490. dst_idx += i >> 2;
  1491. val = ((cbp >> (5 - i)) & 1);
  1492. if (i == 2 || i == 3 || !s->first_slice_line)
  1493. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1494. if (i == 1 || i == 3 || s->mb_x)
  1495. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1496. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
  1497. (i & 4) ? v->codingset2 : v->codingset);
  1498. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1499. continue;
  1500. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1501. if (i < 4)
  1502. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  1503. else
  1504. off = 0;
  1505. block_cbp |= 0xf << (i << 2);
  1506. }
  1507. } else { // inter MB
  1508. mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
  1509. if (mb_has_coeffs)
  1510. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1511. if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  1512. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  1513. } else {
  1514. if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
  1515. || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
  1516. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1517. }
  1518. }
  1519. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1520. for (i = 0; i < 6; i++)
  1521. v->mb_type[0][s->block_index[i]] = 0;
  1522. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
  1523. /* for all motion vector read MVDATA and motion compensate each block */
  1524. dst_idx = 0;
  1525. if (fourmv) {
  1526. mvbp = v->fourmvbp;
  1527. for (i = 0; i < 4; i++) {
  1528. dmv_x = dmv_y = 0;
  1529. if (mvbp & (8 >> i))
  1530. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1531. ff_vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0);
  1532. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1533. }
  1534. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1535. } else if (twomv) {
  1536. mvbp = v->twomvbp;
  1537. dmv_x = dmv_y = 0;
  1538. if (mvbp & 2) {
  1539. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1540. }
  1541. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1542. ff_vc1_mc_4mv_luma(v, 0, 0, 0);
  1543. ff_vc1_mc_4mv_luma(v, 1, 0, 0);
  1544. dmv_x = dmv_y = 0;
  1545. if (mvbp & 1) {
  1546. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1547. }
  1548. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], 0);
  1549. ff_vc1_mc_4mv_luma(v, 2, 0, 0);
  1550. ff_vc1_mc_4mv_luma(v, 3, 0, 0);
  1551. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  1552. } else {
  1553. mvbp = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][2];
  1554. dmv_x = dmv_y = 0;
  1555. if (mvbp) {
  1556. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  1557. }
  1558. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1559. ff_vc1_mc_1mv(v, 0);
  1560. }
  1561. if (cbp)
  1562. GET_MQUANT(); // p. 227
  1563. s->current_picture.qscale_table[mb_pos] = mquant;
  1564. if (!v->ttmbf && cbp)
  1565. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1566. for (i = 0; i < 6; i++) {
  1567. s->dc_val[0][s->block_index[i]] = 0;
  1568. dst_idx += i >> 2;
  1569. val = ((cbp >> (5 - i)) & 1);
  1570. if (!fieldtx)
  1571. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1572. else
  1573. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  1574. if (val) {
  1575. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
  1576. first_block, s->dest[dst_idx] + off,
  1577. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  1578. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  1579. if (pat < 0)
  1580. return pat;
  1581. block_cbp |= pat << (i << 2);
  1582. if (!v->ttmbf && ttmb < 8)
  1583. ttmb = -1;
  1584. first_block = 0;
  1585. }
  1586. }
  1587. }
  1588. } else { // skipped
  1589. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1590. for (i = 0; i < 6; i++) {
  1591. v->mb_type[0][s->block_index[i]] = 0;
  1592. s->dc_val[0][s->block_index[i]] = 0;
  1593. }
  1594. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  1595. s->current_picture.qscale_table[mb_pos] = 0;
  1596. v->blk_mv_type[s->block_index[0]] = 0;
  1597. v->blk_mv_type[s->block_index[1]] = 0;
  1598. v->blk_mv_type[s->block_index[2]] = 0;
  1599. v->blk_mv_type[s->block_index[3]] = 0;
  1600. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  1601. ff_vc1_mc_1mv(v, 0);
  1602. v->fieldtx_plane[mb_pos] = 0;
  1603. }
  1604. if (v->overlap && v->pq >= 9)
  1605. ff_vc1_p_overlap_filter(v);
  1606. vc1_put_blocks_clamped(v, 1);
  1607. v->cbp[s->mb_x] = block_cbp;
  1608. v->ttblk[s->mb_x] = block_tt;
  1609. return 0;
  1610. }
  1611. static int vc1_decode_p_mb_intfi(VC1Context *v)
  1612. {
  1613. MpegEncContext *s = &v->s;
  1614. GetBitContext *gb = &s->gb;
  1615. int i;
  1616. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1617. int cbp = 0; /* cbp decoding stuff */
  1618. int mqdiff, mquant; /* MB quantization */
  1619. int ttmb = v->ttfrm; /* MB Transform type */
  1620. int mb_has_coeffs = 1; /* last_flag */
  1621. int dmv_x, dmv_y; /* Differential MV components */
  1622. int val; /* temp values */
  1623. int first_block = 1;
  1624. int dst_idx, off;
  1625. int pred_flag = 0;
  1626. int block_cbp = 0, pat, block_tt = 0;
  1627. int idx_mbmode = 0;
  1628. mquant = v->pq; /* Lossy initialization */
  1629. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1630. if (idx_mbmode <= 1) { // intra MB
  1631. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1632. s->mb_intra = 1;
  1633. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
  1634. s->current_picture.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
  1635. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1636. GET_MQUANT();
  1637. s->current_picture.qscale_table[mb_pos] = mquant;
  1638. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1639. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1640. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1641. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1642. mb_has_coeffs = idx_mbmode & 1;
  1643. if (mb_has_coeffs)
  1644. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1645. dst_idx = 0;
  1646. for (i = 0; i < 6; i++) {
  1647. v->a_avail = v->c_avail = 0;
  1648. v->mb_type[0][s->block_index[i]] = 1;
  1649. s->dc_val[0][s->block_index[i]] = 0;
  1650. dst_idx += i >> 2;
  1651. val = ((cbp >> (5 - i)) & 1);
  1652. if (i == 2 || i == 3 || !s->first_slice_line)
  1653. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1654. if (i == 1 || i == 3 || s->mb_x)
  1655. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1656. vc1_decode_intra_block(v, v->block[v->cur_blk_idx][block_map[i]], i, val, mquant,
  1657. (i & 4) ? v->codingset2 : v->codingset);
  1658. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1659. continue;
  1660. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[i]]);
  1661. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1662. block_cbp |= 0xf << (i << 2);
  1663. }
  1664. } else {
  1665. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1666. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1667. for (i = 0; i < 6; i++)
  1668. v->mb_type[0][s->block_index[i]] = 0;
  1669. if (idx_mbmode <= 5) { // 1-MV
  1670. dmv_x = dmv_y = pred_flag = 0;
  1671. if (idx_mbmode & 1) {
  1672. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1673. }
  1674. ff_vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1675. ff_vc1_mc_1mv(v, 0);
  1676. mb_has_coeffs = !(idx_mbmode & 2);
  1677. } else { // 4-MV
  1678. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1679. for (i = 0; i < 4; i++) {
  1680. dmv_x = dmv_y = pred_flag = 0;
  1681. if (v->fourmvbp & (8 >> i))
  1682. get_mvdata_interlaced(v, &dmv_x, &dmv_y, &pred_flag);
  1683. ff_vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], pred_flag, 0);
  1684. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  1685. }
  1686. ff_vc1_mc_4mv_chroma(v, 0);
  1687. mb_has_coeffs = idx_mbmode & 1;
  1688. }
  1689. if (mb_has_coeffs)
  1690. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1691. if (cbp) {
  1692. GET_MQUANT();
  1693. }
  1694. s->current_picture.qscale_table[mb_pos] = mquant;
  1695. if (!v->ttmbf && cbp) {
  1696. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1697. }
  1698. dst_idx = 0;
  1699. for (i = 0; i < 6; i++) {
  1700. s->dc_val[0][s->block_index[i]] = 0;
  1701. dst_idx += i >> 2;
  1702. val = ((cbp >> (5 - i)) & 1);
  1703. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  1704. if (val) {
  1705. pat = vc1_decode_p_block(v, v->block[v->cur_blk_idx][block_map[i]], i, mquant, ttmb,
  1706. first_block, s->dest[dst_idx] + off,
  1707. (i & 4) ? s->uvlinesize : s->linesize,
  1708. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY),
  1709. &block_tt);
  1710. if (pat < 0)
  1711. return pat;
  1712. block_cbp |= pat << (i << 2);
  1713. if (!v->ttmbf && ttmb < 8)
  1714. ttmb = -1;
  1715. first_block = 0;
  1716. }
  1717. }
  1718. }
  1719. if (v->overlap && v->pq >= 9)
  1720. ff_vc1_p_overlap_filter(v);
  1721. vc1_put_blocks_clamped(v, 1);
  1722. v->cbp[s->mb_x] = block_cbp;
  1723. v->ttblk[s->mb_x] = block_tt;
  1724. return 0;
  1725. }
  1726. /** Decode one B-frame MB (in Main profile)
  1727. */
  1728. static int vc1_decode_b_mb(VC1Context *v)
  1729. {
  1730. MpegEncContext *s = &v->s;
  1731. GetBitContext *gb = &s->gb;
  1732. int i, j;
  1733. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1734. int cbp = 0; /* cbp decoding stuff */
  1735. int mqdiff, mquant; /* MB quantization */
  1736. int ttmb = v->ttfrm; /* MB Transform type */
  1737. int mb_has_coeffs = 0; /* last_flag */
  1738. int index, index1; /* LUT indexes */
  1739. int val, sign; /* temp values */
  1740. int first_block = 1;
  1741. int dst_idx, off;
  1742. int skipped, direct;
  1743. int dmv_x[2], dmv_y[2];
  1744. int bmvtype = BMV_TYPE_BACKWARD;
  1745. mquant = v->pq; /* lossy initialization */
  1746. s->mb_intra = 0;
  1747. if (v->dmb_is_raw)
  1748. direct = get_bits1(gb);
  1749. else
  1750. direct = v->direct_mb_plane[mb_pos];
  1751. if (v->skip_is_raw)
  1752. skipped = get_bits1(gb);
  1753. else
  1754. skipped = v->s.mbskip_table[mb_pos];
  1755. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1756. for (i = 0; i < 6; i++) {
  1757. v->mb_type[0][s->block_index[i]] = 0;
  1758. s->dc_val[0][s->block_index[i]] = 0;
  1759. }
  1760. s->current_picture.qscale_table[mb_pos] = 0;
  1761. if (!direct) {
  1762. if (!skipped) {
  1763. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1764. dmv_x[1] = dmv_x[0];
  1765. dmv_y[1] = dmv_y[0];
  1766. }
  1767. if (skipped || !s->mb_intra) {
  1768. bmvtype = decode012(gb);
  1769. switch (bmvtype) {
  1770. case 0:
  1771. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  1772. break;
  1773. case 1:
  1774. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  1775. break;
  1776. case 2:
  1777. bmvtype = BMV_TYPE_INTERPOLATED;
  1778. dmv_x[0] = dmv_y[0] = 0;
  1779. }
  1780. }
  1781. }
  1782. for (i = 0; i < 6; i++)
  1783. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1784. if (skipped) {
  1785. if (direct)
  1786. bmvtype = BMV_TYPE_INTERPOLATED;
  1787. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1788. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1789. return 0;
  1790. }
  1791. if (direct) {
  1792. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1793. GET_MQUANT();
  1794. s->mb_intra = 0;
  1795. s->current_picture.qscale_table[mb_pos] = mquant;
  1796. if (!v->ttmbf)
  1797. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1798. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  1799. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1800. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1801. } else {
  1802. if (!mb_has_coeffs && !s->mb_intra) {
  1803. /* no coded blocks - effectively skipped */
  1804. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1805. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1806. return 0;
  1807. }
  1808. if (s->mb_intra && !mb_has_coeffs) {
  1809. GET_MQUANT();
  1810. s->current_picture.qscale_table[mb_pos] = mquant;
  1811. s->ac_pred = get_bits1(gb);
  1812. cbp = 0;
  1813. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1814. } else {
  1815. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  1816. GET_MVDATA(dmv_x[0], dmv_y[0]);
  1817. if (!mb_has_coeffs) {
  1818. /* interpolated skipped block */
  1819. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1820. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1821. return 0;
  1822. }
  1823. }
  1824. ff_vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  1825. if (!s->mb_intra) {
  1826. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  1827. }
  1828. if (s->mb_intra)
  1829. s->ac_pred = get_bits1(gb);
  1830. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1831. GET_MQUANT();
  1832. s->current_picture.qscale_table[mb_pos] = mquant;
  1833. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1834. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  1835. }
  1836. }
  1837. dst_idx = 0;
  1838. for (i = 0; i < 6; i++) {
  1839. s->dc_val[0][s->block_index[i]] = 0;
  1840. dst_idx += i >> 2;
  1841. val = ((cbp >> (5 - i)) & 1);
  1842. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1843. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  1844. if (s->mb_intra) {
  1845. /* check if prediction blocks A and C are available */
  1846. v->a_avail = v->c_avail = 0;
  1847. if (i == 2 || i == 3 || !s->first_slice_line)
  1848. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1849. if (i == 1 || i == 3 || s->mb_x)
  1850. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1851. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1852. (i & 4) ? v->codingset2 : v->codingset);
  1853. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1854. continue;
  1855. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1856. if (v->rangeredfrm)
  1857. for (j = 0; j < 64; j++)
  1858. s->block[i][j] <<= 1;
  1859. s->idsp.put_signed_pixels_clamped(s->block[i],
  1860. s->dest[dst_idx] + off,
  1861. i & 4 ? s->uvlinesize
  1862. : s->linesize);
  1863. } else if (val) {
  1864. int pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  1865. first_block, s->dest[dst_idx] + off,
  1866. (i & 4) ? s->uvlinesize : s->linesize,
  1867. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), NULL);
  1868. if (pat < 0)
  1869. return pat;
  1870. if (!v->ttmbf && ttmb < 8)
  1871. ttmb = -1;
  1872. first_block = 0;
  1873. }
  1874. }
  1875. return 0;
  1876. }
  1877. /** Decode one B-frame MB (in interlaced field B picture)
  1878. */
  1879. static int vc1_decode_b_mb_intfi(VC1Context *v)
  1880. {
  1881. MpegEncContext *s = &v->s;
  1882. GetBitContext *gb = &s->gb;
  1883. int i, j;
  1884. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1885. int cbp = 0; /* cbp decoding stuff */
  1886. int mqdiff, mquant; /* MB quantization */
  1887. int ttmb = v->ttfrm; /* MB Transform type */
  1888. int mb_has_coeffs = 0; /* last_flag */
  1889. int val; /* temp value */
  1890. int first_block = 1;
  1891. int dst_idx, off;
  1892. int fwd;
  1893. int dmv_x[2], dmv_y[2], pred_flag[2];
  1894. int bmvtype = BMV_TYPE_BACKWARD;
  1895. int block_cbp = 0, pat, block_tt = 0;
  1896. int idx_mbmode;
  1897. mquant = v->pq; /* Lossy initialization */
  1898. s->mb_intra = 0;
  1899. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_IF_MBMODE_VLC_BITS, 2);
  1900. if (idx_mbmode <= 1) { // intra MB
  1901. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  1902. s->mb_intra = 1;
  1903. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1904. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1905. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  1906. GET_MQUANT();
  1907. s->current_picture.qscale_table[mb_pos] = mquant;
  1908. /* Set DC scale - y and c use the same (not sure if necessary here) */
  1909. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  1910. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  1911. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  1912. mb_has_coeffs = idx_mbmode & 1;
  1913. if (mb_has_coeffs)
  1914. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_ICBPCY_VLC_BITS, 2);
  1915. dst_idx = 0;
  1916. for (i = 0; i < 6; i++) {
  1917. v->a_avail = v->c_avail = 0;
  1918. v->mb_type[0][s->block_index[i]] = 1;
  1919. s->dc_val[0][s->block_index[i]] = 0;
  1920. dst_idx += i >> 2;
  1921. val = ((cbp >> (5 - i)) & 1);
  1922. if (i == 2 || i == 3 || !s->first_slice_line)
  1923. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  1924. if (i == 1 || i == 3 || s->mb_x)
  1925. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  1926. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  1927. (i & 4) ? v->codingset2 : v->codingset);
  1928. if (CONFIG_GRAY && (i > 3) && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  1929. continue;
  1930. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  1931. if (v->rangeredfrm)
  1932. for (j = 0; j < 64; j++)
  1933. s->block[i][j] <<= 1;
  1934. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  1935. s->idsp.put_signed_pixels_clamped(s->block[i],
  1936. s->dest[dst_idx] + off,
  1937. (i & 4) ? s->uvlinesize
  1938. : s->linesize);
  1939. }
  1940. } else {
  1941. s->mb_intra = v->is_intra[s->mb_x] = 0;
  1942. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_16x16;
  1943. for (i = 0; i < 6; i++)
  1944. v->mb_type[0][s->block_index[i]] = 0;
  1945. if (v->fmb_is_raw)
  1946. fwd = v->forward_mb_plane[mb_pos] = get_bits1(gb);
  1947. else
  1948. fwd = v->forward_mb_plane[mb_pos];
  1949. if (idx_mbmode <= 5) { // 1-MV
  1950. int interpmvp = 0;
  1951. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  1952. pred_flag[0] = pred_flag[1] = 0;
  1953. if (fwd)
  1954. bmvtype = BMV_TYPE_FORWARD;
  1955. else {
  1956. bmvtype = decode012(gb);
  1957. switch (bmvtype) {
  1958. case 0:
  1959. bmvtype = BMV_TYPE_BACKWARD;
  1960. break;
  1961. case 1:
  1962. bmvtype = BMV_TYPE_DIRECT;
  1963. break;
  1964. case 2:
  1965. bmvtype = BMV_TYPE_INTERPOLATED;
  1966. interpmvp = get_bits1(gb);
  1967. }
  1968. }
  1969. v->bmvtype = bmvtype;
  1970. if (bmvtype != BMV_TYPE_DIRECT && idx_mbmode & 1) {
  1971. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD], &dmv_y[bmvtype == BMV_TYPE_BACKWARD], &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1972. }
  1973. if (interpmvp) {
  1974. get_mvdata_interlaced(v, &dmv_x[1], &dmv_y[1], &pred_flag[1]);
  1975. }
  1976. if (bmvtype == BMV_TYPE_DIRECT) {
  1977. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1978. dmv_x[1] = dmv_y[1] = pred_flag[0] = 0;
  1979. if (!s->next_picture_ptr->field_picture) {
  1980. av_log(s->avctx, AV_LOG_ERROR, "Mixed field/frame direct mode not supported\n");
  1981. return AVERROR_INVALIDDATA;
  1982. }
  1983. }
  1984. ff_vc1_pred_b_mv_intfi(v, 0, dmv_x, dmv_y, 1, pred_flag);
  1985. vc1_b_mc(v, dmv_x, dmv_y, (bmvtype == BMV_TYPE_DIRECT), bmvtype);
  1986. mb_has_coeffs = !(idx_mbmode & 2);
  1987. } else { // 4-MV
  1988. if (fwd)
  1989. bmvtype = BMV_TYPE_FORWARD;
  1990. v->bmvtype = bmvtype;
  1991. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  1992. for (i = 0; i < 4; i++) {
  1993. dmv_x[0] = dmv_y[0] = pred_flag[0] = 0;
  1994. dmv_x[1] = dmv_y[1] = pred_flag[1] = 0;
  1995. if (v->fourmvbp & (8 >> i)) {
  1996. get_mvdata_interlaced(v, &dmv_x[bmvtype == BMV_TYPE_BACKWARD],
  1997. &dmv_y[bmvtype == BMV_TYPE_BACKWARD],
  1998. &pred_flag[bmvtype == BMV_TYPE_BACKWARD]);
  1999. }
  2000. ff_vc1_pred_b_mv_intfi(v, i, dmv_x, dmv_y, 0, pred_flag);
  2001. ff_vc1_mc_4mv_luma(v, i, bmvtype == BMV_TYPE_BACKWARD, 0);
  2002. }
  2003. ff_vc1_mc_4mv_chroma(v, bmvtype == BMV_TYPE_BACKWARD);
  2004. mb_has_coeffs = idx_mbmode & 1;
  2005. }
  2006. if (mb_has_coeffs)
  2007. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2008. if (cbp) {
  2009. GET_MQUANT();
  2010. }
  2011. s->current_picture.qscale_table[mb_pos] = mquant;
  2012. if (!v->ttmbf && cbp) {
  2013. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2014. }
  2015. dst_idx = 0;
  2016. for (i = 0; i < 6; i++) {
  2017. s->dc_val[0][s->block_index[i]] = 0;
  2018. dst_idx += i >> 2;
  2019. val = ((cbp >> (5 - i)) & 1);
  2020. off = (i & 4) ? 0 : (i & 1) * 8 + (i & 2) * 4 * s->linesize;
  2021. if (val) {
  2022. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2023. first_block, s->dest[dst_idx] + off,
  2024. (i & 4) ? s->uvlinesize : s->linesize,
  2025. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  2026. if (pat < 0)
  2027. return pat;
  2028. block_cbp |= pat << (i << 2);
  2029. if (!v->ttmbf && ttmb < 8)
  2030. ttmb = -1;
  2031. first_block = 0;
  2032. }
  2033. }
  2034. }
  2035. v->cbp[s->mb_x] = block_cbp;
  2036. v->ttblk[s->mb_x] = block_tt;
  2037. return 0;
  2038. }
  2039. /** Decode one B-frame MB (in interlaced frame B picture)
  2040. */
  2041. static int vc1_decode_b_mb_intfr(VC1Context *v)
  2042. {
  2043. MpegEncContext *s = &v->s;
  2044. GetBitContext *gb = &s->gb;
  2045. int i, j;
  2046. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2047. int cbp = 0; /* cbp decoding stuff */
  2048. int mqdiff, mquant; /* MB quantization */
  2049. int ttmb = v->ttfrm; /* MB Transform type */
  2050. int mvsw = 0; /* motion vector switch */
  2051. int mb_has_coeffs = 1; /* last_flag */
  2052. int dmv_x, dmv_y; /* Differential MV components */
  2053. int val; /* temp value */
  2054. int first_block = 1;
  2055. int dst_idx, off;
  2056. int skipped, direct, twomv = 0;
  2057. int block_cbp = 0, pat, block_tt = 0;
  2058. int idx_mbmode = 0, mvbp;
  2059. int stride_y, fieldtx;
  2060. int bmvtype = BMV_TYPE_BACKWARD;
  2061. int dir, dir2;
  2062. mquant = v->pq; /* Lossy initialization */
  2063. s->mb_intra = 0;
  2064. if (v->skip_is_raw)
  2065. skipped = get_bits1(gb);
  2066. else
  2067. skipped = v->s.mbskip_table[mb_pos];
  2068. if (!skipped) {
  2069. idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2);
  2070. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
  2071. twomv = 1;
  2072. v->blk_mv_type[s->block_index[0]] = 1;
  2073. v->blk_mv_type[s->block_index[1]] = 1;
  2074. v->blk_mv_type[s->block_index[2]] = 1;
  2075. v->blk_mv_type[s->block_index[3]] = 1;
  2076. } else {
  2077. v->blk_mv_type[s->block_index[0]] = 0;
  2078. v->blk_mv_type[s->block_index[1]] = 0;
  2079. v->blk_mv_type[s->block_index[2]] = 0;
  2080. v->blk_mv_type[s->block_index[3]] = 0;
  2081. }
  2082. }
  2083. if (ff_vc1_mbmode_intfrp[0][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
  2084. for (i = 0; i < 4; i++) {
  2085. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = 0;
  2086. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = 0;
  2087. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2088. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2089. }
  2090. v->is_intra[s->mb_x] = 0x3f; // Set the bitfield to all 1.
  2091. s->mb_intra = 1;
  2092. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2093. fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
  2094. mb_has_coeffs = get_bits1(gb);
  2095. if (mb_has_coeffs)
  2096. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2097. v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
  2098. GET_MQUANT();
  2099. s->current_picture.qscale_table[mb_pos] = mquant;
  2100. /* Set DC scale - y and c use the same (not sure if necessary here) */
  2101. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  2102. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  2103. dst_idx = 0;
  2104. for (i = 0; i < 6; i++) {
  2105. v->a_avail = v->c_avail = 0;
  2106. v->mb_type[0][s->block_index[i]] = 1;
  2107. s->dc_val[0][s->block_index[i]] = 0;
  2108. dst_idx += i >> 2;
  2109. val = ((cbp >> (5 - i)) & 1);
  2110. if (i == 2 || i == 3 || !s->first_slice_line)
  2111. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2112. if (i == 1 || i == 3 || s->mb_x)
  2113. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2114. vc1_decode_intra_block(v, s->block[i], i, val, mquant,
  2115. (i & 4) ? v->codingset2 : v->codingset);
  2116. if (CONFIG_GRAY && i > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2117. continue;
  2118. v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
  2119. if (i < 4) {
  2120. stride_y = s->linesize << fieldtx;
  2121. off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
  2122. } else {
  2123. stride_y = s->uvlinesize;
  2124. off = 0;
  2125. }
  2126. s->idsp.put_signed_pixels_clamped(s->block[i],
  2127. s->dest[dst_idx] + off,
  2128. stride_y);
  2129. }
  2130. } else {
  2131. s->mb_intra = v->is_intra[s->mb_x] = 0;
  2132. if (v->dmb_is_raw)
  2133. direct = get_bits1(gb);
  2134. else
  2135. direct = v->direct_mb_plane[mb_pos];
  2136. if (direct) {
  2137. if (s->next_picture_ptr->field_picture)
  2138. av_log(s->avctx, AV_LOG_WARNING, "Mixed frame/field direct mode not supported\n");
  2139. s->mv[0][0][0] = s->current_picture.motion_val[0][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 0, s->quarter_sample);
  2140. s->mv[0][0][1] = s->current_picture.motion_val[0][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 0, s->quarter_sample);
  2141. s->mv[1][0][0] = s->current_picture.motion_val[1][s->block_index[0]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][0], v->bfraction, 1, s->quarter_sample);
  2142. s->mv[1][0][1] = s->current_picture.motion_val[1][s->block_index[0]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[0]][1], v->bfraction, 1, s->quarter_sample);
  2143. if (twomv) {
  2144. s->mv[0][2][0] = s->current_picture.motion_val[0][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 0, s->quarter_sample);
  2145. s->mv[0][2][1] = s->current_picture.motion_val[0][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 0, s->quarter_sample);
  2146. s->mv[1][2][0] = s->current_picture.motion_val[1][s->block_index[2]][0] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][0], v->bfraction, 1, s->quarter_sample);
  2147. s->mv[1][2][1] = s->current_picture.motion_val[1][s->block_index[2]][1] = scale_mv(s->next_picture.motion_val[1][s->block_index[2]][1], v->bfraction, 1, s->quarter_sample);
  2148. for (i = 1; i < 4; i += 2) {
  2149. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][i-1][0];
  2150. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][i-1][1];
  2151. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][i-1][0];
  2152. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][i-1][1];
  2153. }
  2154. } else {
  2155. for (i = 1; i < 4; i++) {
  2156. s->mv[0][i][0] = s->current_picture.motion_val[0][s->block_index[i]][0] = s->mv[0][0][0];
  2157. s->mv[0][i][1] = s->current_picture.motion_val[0][s->block_index[i]][1] = s->mv[0][0][1];
  2158. s->mv[1][i][0] = s->current_picture.motion_val[1][s->block_index[i]][0] = s->mv[1][0][0];
  2159. s->mv[1][i][1] = s->current_picture.motion_val[1][s->block_index[i]][1] = s->mv[1][0][1];
  2160. }
  2161. }
  2162. }
  2163. if (!direct) {
  2164. if (skipped || !s->mb_intra) {
  2165. bmvtype = decode012(gb);
  2166. switch (bmvtype) {
  2167. case 0:
  2168. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2169. break;
  2170. case 1:
  2171. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2172. break;
  2173. case 2:
  2174. bmvtype = BMV_TYPE_INTERPOLATED;
  2175. }
  2176. }
  2177. if (twomv && bmvtype != BMV_TYPE_INTERPOLATED)
  2178. mvsw = get_bits1(gb);
  2179. }
  2180. if (!skipped) { // inter MB
  2181. mb_has_coeffs = ff_vc1_mbmode_intfrp[0][idx_mbmode][3];
  2182. if (mb_has_coeffs)
  2183. cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2184. if (!direct) {
  2185. if (bmvtype == BMV_TYPE_INTERPOLATED && twomv) {
  2186. v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
  2187. } else if (bmvtype == BMV_TYPE_INTERPOLATED || twomv) {
  2188. v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
  2189. }
  2190. }
  2191. for (i = 0; i < 6; i++)
  2192. v->mb_type[0][s->block_index[i]] = 0;
  2193. fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[0][idx_mbmode][1];
  2194. /* for all motion vector read MVDATA and motion compensate each block */
  2195. dst_idx = 0;
  2196. if (direct) {
  2197. if (twomv) {
  2198. for (i = 0; i < 4; i++) {
  2199. ff_vc1_mc_4mv_luma(v, i, 0, 0);
  2200. ff_vc1_mc_4mv_luma(v, i, 1, 1);
  2201. }
  2202. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2203. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2204. } else {
  2205. ff_vc1_mc_1mv(v, 0);
  2206. ff_vc1_interp_mc(v);
  2207. }
  2208. } else if (twomv && bmvtype == BMV_TYPE_INTERPOLATED) {
  2209. mvbp = v->fourmvbp;
  2210. for (i = 0; i < 4; i++) {
  2211. dir = i==1 || i==3;
  2212. dmv_x = dmv_y = 0;
  2213. val = ((mvbp >> (3 - i)) & 1);
  2214. if (val)
  2215. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2216. j = i > 1 ? 2 : 0;
  2217. ff_vc1_pred_mv_intfr(v, j, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2218. ff_vc1_mc_4mv_luma(v, j, dir, dir);
  2219. ff_vc1_mc_4mv_luma(v, j+1, dir, dir);
  2220. }
  2221. ff_vc1_mc_4mv_chroma4(v, 0, 0, 0);
  2222. ff_vc1_mc_4mv_chroma4(v, 1, 1, 1);
  2223. } else if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2224. mvbp = v->twomvbp;
  2225. dmv_x = dmv_y = 0;
  2226. if (mvbp & 2)
  2227. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2228. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2229. ff_vc1_mc_1mv(v, 0);
  2230. dmv_x = dmv_y = 0;
  2231. if (mvbp & 1)
  2232. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2233. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2234. ff_vc1_interp_mc(v);
  2235. } else if (twomv) {
  2236. dir = bmvtype == BMV_TYPE_BACKWARD;
  2237. dir2 = dir;
  2238. if (mvsw)
  2239. dir2 = !dir;
  2240. mvbp = v->twomvbp;
  2241. dmv_x = dmv_y = 0;
  2242. if (mvbp & 2)
  2243. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2244. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir);
  2245. dmv_x = dmv_y = 0;
  2246. if (mvbp & 1)
  2247. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2248. ff_vc1_pred_mv_intfr(v, 2, dmv_x, dmv_y, 2, v->range_x, v->range_y, v->mb_type[0], dir2);
  2249. if (mvsw) {
  2250. for (i = 0; i < 2; i++) {
  2251. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2252. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2253. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2254. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2255. }
  2256. } else {
  2257. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2258. ff_vc1_pred_mv_intfr(v, 2, 0, 0, 2, v->range_x, v->range_y, v->mb_type[0], !dir);
  2259. }
  2260. ff_vc1_mc_4mv_luma(v, 0, dir, 0);
  2261. ff_vc1_mc_4mv_luma(v, 1, dir, 0);
  2262. ff_vc1_mc_4mv_luma(v, 2, dir2, 0);
  2263. ff_vc1_mc_4mv_luma(v, 3, dir2, 0);
  2264. ff_vc1_mc_4mv_chroma4(v, dir, dir2, 0);
  2265. } else {
  2266. dir = bmvtype == BMV_TYPE_BACKWARD;
  2267. mvbp = ff_vc1_mbmode_intfrp[0][idx_mbmode][2];
  2268. dmv_x = dmv_y = 0;
  2269. if (mvbp)
  2270. get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
  2271. ff_vc1_pred_mv_intfr(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2272. v->blk_mv_type[s->block_index[0]] = 1;
  2273. v->blk_mv_type[s->block_index[1]] = 1;
  2274. v->blk_mv_type[s->block_index[2]] = 1;
  2275. v->blk_mv_type[s->block_index[3]] = 1;
  2276. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2277. for (i = 0; i < 2; i++) {
  2278. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2279. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2280. }
  2281. ff_vc1_mc_1mv(v, dir);
  2282. }
  2283. if (cbp)
  2284. GET_MQUANT(); // p. 227
  2285. s->current_picture.qscale_table[mb_pos] = mquant;
  2286. if (!v->ttmbf && cbp)
  2287. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2288. for (i = 0; i < 6; i++) {
  2289. s->dc_val[0][s->block_index[i]] = 0;
  2290. dst_idx += i >> 2;
  2291. val = ((cbp >> (5 - i)) & 1);
  2292. if (!fieldtx)
  2293. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2294. else
  2295. off = (i & 4) ? 0 : ((i & 1) * 8 + ((i > 1) * s->linesize));
  2296. if (val) {
  2297. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
  2298. first_block, s->dest[dst_idx] + off,
  2299. (i & 4) ? s->uvlinesize : (s->linesize << fieldtx),
  2300. CONFIG_GRAY && (i & 4) && (s->avctx->flags & AV_CODEC_FLAG_GRAY), &block_tt);
  2301. if (pat < 0)
  2302. return pat;
  2303. block_cbp |= pat << (i << 2);
  2304. if (!v->ttmbf && ttmb < 8)
  2305. ttmb = -1;
  2306. first_block = 0;
  2307. }
  2308. }
  2309. } else { // skipped
  2310. dir = 0;
  2311. for (i = 0; i < 6; i++) {
  2312. v->mb_type[0][s->block_index[i]] = 0;
  2313. s->dc_val[0][s->block_index[i]] = 0;
  2314. }
  2315. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2316. s->current_picture.qscale_table[mb_pos] = 0;
  2317. v->blk_mv_type[s->block_index[0]] = 0;
  2318. v->blk_mv_type[s->block_index[1]] = 0;
  2319. v->blk_mv_type[s->block_index[2]] = 0;
  2320. v->blk_mv_type[s->block_index[3]] = 0;
  2321. if (!direct) {
  2322. if (bmvtype == BMV_TYPE_INTERPOLATED) {
  2323. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0);
  2324. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 1);
  2325. } else {
  2326. dir = bmvtype == BMV_TYPE_BACKWARD;
  2327. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], dir);
  2328. if (mvsw) {
  2329. int dir2 = dir;
  2330. if (mvsw)
  2331. dir2 = !dir;
  2332. for (i = 0; i < 2; i++) {
  2333. s->mv[dir][i+2][0] = s->mv[dir][i][0] = s->current_picture.motion_val[dir][s->block_index[i+2]][0] = s->current_picture.motion_val[dir][s->block_index[i]][0];
  2334. s->mv[dir][i+2][1] = s->mv[dir][i][1] = s->current_picture.motion_val[dir][s->block_index[i+2]][1] = s->current_picture.motion_val[dir][s->block_index[i]][1];
  2335. s->mv[dir2][i+2][0] = s->mv[dir2][i][0] = s->current_picture.motion_val[dir2][s->block_index[i]][0] = s->current_picture.motion_val[dir2][s->block_index[i+2]][0];
  2336. s->mv[dir2][i+2][1] = s->mv[dir2][i][1] = s->current_picture.motion_val[dir2][s->block_index[i]][1] = s->current_picture.motion_val[dir2][s->block_index[i+2]][1];
  2337. }
  2338. } else {
  2339. v->blk_mv_type[s->block_index[0]] = 1;
  2340. v->blk_mv_type[s->block_index[1]] = 1;
  2341. v->blk_mv_type[s->block_index[2]] = 1;
  2342. v->blk_mv_type[s->block_index[3]] = 1;
  2343. ff_vc1_pred_mv_intfr(v, 0, 0, 0, 2, v->range_x, v->range_y, 0, !dir);
  2344. for (i = 0; i < 2; i++) {
  2345. s->mv[!dir][i+2][0] = s->mv[!dir][i][0] = s->current_picture.motion_val[!dir][s->block_index[i+2]][0] = s->current_picture.motion_val[!dir][s->block_index[i]][0];
  2346. s->mv[!dir][i+2][1] = s->mv[!dir][i][1] = s->current_picture.motion_val[!dir][s->block_index[i+2]][1] = s->current_picture.motion_val[!dir][s->block_index[i]][1];
  2347. }
  2348. }
  2349. }
  2350. }
  2351. ff_vc1_mc_1mv(v, dir);
  2352. if (direct || bmvtype == BMV_TYPE_INTERPOLATED) {
  2353. ff_vc1_interp_mc(v);
  2354. }
  2355. v->fieldtx_plane[mb_pos] = 0;
  2356. }
  2357. }
  2358. v->cbp[s->mb_x] = block_cbp;
  2359. v->ttblk[s->mb_x] = block_tt;
  2360. return 0;
  2361. }
  2362. /** Decode blocks of I-frame
  2363. */
  2364. static void vc1_decode_i_blocks(VC1Context *v)
  2365. {
  2366. int k, j;
  2367. MpegEncContext *s = &v->s;
  2368. int cbp, val;
  2369. uint8_t *coded_val;
  2370. int mb_pos;
  2371. /* select coding mode used for VLC tables selection */
  2372. switch (v->y_ac_table_index) {
  2373. case 0:
  2374. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2375. break;
  2376. case 1:
  2377. v->codingset = CS_HIGH_MOT_INTRA;
  2378. break;
  2379. case 2:
  2380. v->codingset = CS_MID_RATE_INTRA;
  2381. break;
  2382. }
  2383. switch (v->c_ac_table_index) {
  2384. case 0:
  2385. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2386. break;
  2387. case 1:
  2388. v->codingset2 = CS_HIGH_MOT_INTER;
  2389. break;
  2390. case 2:
  2391. v->codingset2 = CS_MID_RATE_INTER;
  2392. break;
  2393. }
  2394. /* Set DC scale - y and c use the same */
  2395. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2396. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2397. //do frame decode
  2398. s->mb_x = s->mb_y = 0;
  2399. s->mb_intra = 1;
  2400. s->first_slice_line = 1;
  2401. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2402. s->mb_x = 0;
  2403. init_block_index(v);
  2404. for (; s->mb_x < v->end_mb_x; s->mb_x++) {
  2405. ff_update_block_index(s);
  2406. s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
  2407. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2408. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2409. s->current_picture.qscale_table[mb_pos] = v->pq;
  2410. for (int i = 0; i < 4; i++) {
  2411. s->current_picture.motion_val[1][s->block_index[i]][0] = 0;
  2412. s->current_picture.motion_val[1][s->block_index[i]][1] = 0;
  2413. }
  2414. // do actual MB decoding and displaying
  2415. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2416. v->s.ac_pred = get_bits1(&v->s.gb);
  2417. for (k = 0; k < 6; k++) {
  2418. v->mb_type[0][s->block_index[k]] = 1;
  2419. val = ((cbp >> (5 - k)) & 1);
  2420. if (k < 4) {
  2421. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2422. val = val ^ pred;
  2423. *coded_val = val;
  2424. }
  2425. cbp |= val << (5 - k);
  2426. vc1_decode_i_block(v, v->block[v->cur_blk_idx][block_map[k]], k, val, (k < 4) ? v->codingset : v->codingset2);
  2427. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2428. continue;
  2429. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[k]]);
  2430. }
  2431. if (v->overlap && v->pq >= 9) {
  2432. ff_vc1_i_overlap_filter(v);
  2433. if (v->rangeredfrm)
  2434. for (k = 0; k < 6; k++)
  2435. for (j = 0; j < 64; j++)
  2436. v->block[v->cur_blk_idx][block_map[k]][j] *= 2;
  2437. vc1_put_blocks_clamped(v, 1);
  2438. } else {
  2439. if (v->rangeredfrm)
  2440. for (k = 0; k < 6; k++)
  2441. for (j = 0; j < 64; j++)
  2442. v->block[v->cur_blk_idx][block_map[k]][j] = (v->block[v->cur_blk_idx][block_map[k]][j] - 64) * 2;
  2443. vc1_put_blocks_clamped(v, 0);
  2444. }
  2445. if (v->s.loop_filter)
  2446. ff_vc1_i_loop_filter(v);
  2447. if (get_bits_count(&s->gb) > v->bits) {
  2448. ff_er_add_slice(&s->er, 0, 0, s->mb_x, s->mb_y, ER_MB_ERROR);
  2449. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2450. get_bits_count(&s->gb), v->bits);
  2451. return;
  2452. }
  2453. v->topleft_blk_idx = (v->topleft_blk_idx + 1) % (v->end_mb_x + 2);
  2454. v->top_blk_idx = (v->top_blk_idx + 1) % (v->end_mb_x + 2);
  2455. v->left_blk_idx = (v->left_blk_idx + 1) % (v->end_mb_x + 2);
  2456. v->cur_blk_idx = (v->cur_blk_idx + 1) % (v->end_mb_x + 2);
  2457. }
  2458. if (!v->s.loop_filter)
  2459. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2460. else if (s->mb_y)
  2461. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2462. s->first_slice_line = 0;
  2463. }
  2464. if (v->s.loop_filter)
  2465. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2466. /* This is intentionally mb_height and not end_mb_y - unlike in advanced
  2467. * profile, these only differ are when decoding MSS2 rectangles. */
  2468. ff_er_add_slice(&s->er, 0, 0, s->mb_width - 1, s->mb_height - 1, ER_MB_END);
  2469. }
  2470. /** Decode blocks of I-frame for advanced profile
  2471. */
  2472. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2473. {
  2474. int k;
  2475. MpegEncContext *s = &v->s;
  2476. int cbp, val;
  2477. uint8_t *coded_val;
  2478. int mb_pos;
  2479. int mquant;
  2480. int mqdiff;
  2481. GetBitContext *gb = &s->gb;
  2482. /* select coding mode used for VLC tables selection */
  2483. switch (v->y_ac_table_index) {
  2484. case 0:
  2485. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2486. break;
  2487. case 1:
  2488. v->codingset = CS_HIGH_MOT_INTRA;
  2489. break;
  2490. case 2:
  2491. v->codingset = CS_MID_RATE_INTRA;
  2492. break;
  2493. }
  2494. switch (v->c_ac_table_index) {
  2495. case 0:
  2496. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2497. break;
  2498. case 1:
  2499. v->codingset2 = CS_HIGH_MOT_INTER;
  2500. break;
  2501. case 2:
  2502. v->codingset2 = CS_MID_RATE_INTER;
  2503. break;
  2504. }
  2505. // do frame decode
  2506. s->mb_x = s->mb_y = 0;
  2507. s->mb_intra = 1;
  2508. s->first_slice_line = 1;
  2509. s->mb_y = s->start_mb_y;
  2510. if (s->start_mb_y) {
  2511. s->mb_x = 0;
  2512. init_block_index(v);
  2513. memset(&s->coded_block[s->block_index[0] - s->b8_stride], 0,
  2514. (1 + s->b8_stride) * sizeof(*s->coded_block));
  2515. }
  2516. for (; s->mb_y < s->end_mb_y; s->mb_y++) {
  2517. s->mb_x = 0;
  2518. init_block_index(v);
  2519. for (;s->mb_x < s->mb_width; s->mb_x++) {
  2520. mquant = v->pq;
  2521. ff_update_block_index(s);
  2522. s->bdsp.clear_blocks(v->block[v->cur_blk_idx][0]);
  2523. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2524. s->current_picture.mb_type[mb_pos + v->mb_off] = MB_TYPE_INTRA;
  2525. for (int i = 0; i < 4; i++) {
  2526. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][0] = 0;
  2527. s->current_picture.motion_val[1][s->block_index[i] + v->blocks_off][1] = 0;
  2528. }
  2529. // do actual MB decoding and displaying
  2530. if (v->fieldtx_is_raw)
  2531. v->fieldtx_plane[mb_pos] = get_bits1(&v->s.gb);
  2532. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2533. if (v->acpred_is_raw)
  2534. v->s.ac_pred = get_bits1(&v->s.gb);
  2535. else
  2536. v->s.ac_pred = v->acpred_plane[mb_pos];
  2537. if (v->condover == CONDOVER_SELECT && v->overflg_is_raw)
  2538. v->over_flags_plane[mb_pos] = get_bits1(&v->s.gb);
  2539. GET_MQUANT();
  2540. s->current_picture.qscale_table[mb_pos] = mquant;
  2541. /* Set DC scale - y and c use the same */
  2542. s->y_dc_scale = s->y_dc_scale_table[FFABS(mquant)];
  2543. s->c_dc_scale = s->c_dc_scale_table[FFABS(mquant)];
  2544. for (k = 0; k < 6; k++) {
  2545. v->mb_type[0][s->block_index[k]] = 1;
  2546. val = ((cbp >> (5 - k)) & 1);
  2547. if (k < 4) {
  2548. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2549. val = val ^ pred;
  2550. *coded_val = val;
  2551. }
  2552. cbp |= val << (5 - k);
  2553. v->a_avail = !s->first_slice_line || (k == 2 || k == 3);
  2554. v->c_avail = !!s->mb_x || (k == 1 || k == 3);
  2555. vc1_decode_i_block_adv(v, v->block[v->cur_blk_idx][block_map[k]], k, val,
  2556. (k < 4) ? v->codingset : v->codingset2, mquant);
  2557. if (CONFIG_GRAY && k > 3 && (s->avctx->flags & AV_CODEC_FLAG_GRAY))
  2558. continue;
  2559. v->vc1dsp.vc1_inv_trans_8x8(v->block[v->cur_blk_idx][block_map[k]]);
  2560. }
  2561. if (v->overlap && (v->pq >= 9 || v->condover != CONDOVER_NONE))
  2562. ff_vc1_i_overlap_filter(v);
  2563. vc1_put_blocks_clamped(v, 1);
  2564. if (v->s.loop_filter)
  2565. ff_vc1_i_loop_filter(v);
  2566. if (get_bits_count(&s->gb) > v->bits) {
  2567. // TODO: may need modification to handle slice coding
  2568. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2569. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n",
  2570. get_bits_count(&s->gb), v->bits);
  2571. return;
  2572. }
  2573. inc_blk_idx(v->topleft_blk_idx);
  2574. inc_blk_idx(v->top_blk_idx);
  2575. inc_blk_idx(v->left_blk_idx);
  2576. inc_blk_idx(v->cur_blk_idx);
  2577. }
  2578. if (!v->s.loop_filter)
  2579. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2580. else if (s->mb_y)
  2581. ff_mpeg_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2582. s->first_slice_line = 0;
  2583. }
  2584. if (v->s.loop_filter)
  2585. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2586. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2587. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2588. }
  2589. static void vc1_decode_p_blocks(VC1Context *v)
  2590. {
  2591. MpegEncContext *s = &v->s;
  2592. int apply_loop_filter;
  2593. /* select coding mode used for VLC tables selection */
  2594. switch (v->c_ac_table_index) {
  2595. case 0:
  2596. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2597. break;
  2598. case 1:
  2599. v->codingset = CS_HIGH_MOT_INTRA;
  2600. break;
  2601. case 2:
  2602. v->codingset = CS_MID_RATE_INTRA;
  2603. break;
  2604. }
  2605. switch (v->c_ac_table_index) {
  2606. case 0:
  2607. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2608. break;
  2609. case 1:
  2610. v->codingset2 = CS_HIGH_MOT_INTER;
  2611. break;
  2612. case 2:
  2613. v->codingset2 = CS_MID_RATE_INTER;
  2614. break;
  2615. }
  2616. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2617. s->first_slice_line = 1;
  2618. memset(v->cbp_base, 0, sizeof(v->cbp_base[0]) * 3 * s->mb_stride);
  2619. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2620. s->mb_x = 0;
  2621. init_block_index(v);
  2622. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2623. ff_update_block_index(s);
  2624. if (v->fcm == ILACE_FIELD) {
  2625. vc1_decode_p_mb_intfi(v);
  2626. if (apply_loop_filter)
  2627. ff_vc1_p_loop_filter(v);
  2628. } else if (v->fcm == ILACE_FRAME) {
  2629. vc1_decode_p_mb_intfr(v);
  2630. if (apply_loop_filter)
  2631. ff_vc1_p_intfr_loop_filter(v);
  2632. } else {
  2633. vc1_decode_p_mb(v);
  2634. if (apply_loop_filter)
  2635. ff_vc1_p_loop_filter(v);
  2636. }
  2637. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2638. // TODO: may need modification to handle slice coding
  2639. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2640. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2641. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2642. return;
  2643. }
  2644. inc_blk_idx(v->topleft_blk_idx);
  2645. inc_blk_idx(v->top_blk_idx);
  2646. inc_blk_idx(v->left_blk_idx);
  2647. inc_blk_idx(v->cur_blk_idx);
  2648. }
  2649. memmove(v->cbp_base,
  2650. v->cbp - s->mb_stride,
  2651. sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2652. memmove(v->ttblk_base,
  2653. v->ttblk - s->mb_stride,
  2654. sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  2655. memmove(v->is_intra_base,
  2656. v->is_intra - s->mb_stride,
  2657. sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  2658. memmove(v->luma_mv_base,
  2659. v->luma_mv - s->mb_stride,
  2660. sizeof(v->luma_mv_base[0]) * 2 * s->mb_stride);
  2661. if (s->mb_y != s->start_mb_y)
  2662. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2663. s->first_slice_line = 0;
  2664. }
  2665. if (s->end_mb_y >= s->start_mb_y)
  2666. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2667. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2668. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2669. }
  2670. static void vc1_decode_b_blocks(VC1Context *v)
  2671. {
  2672. MpegEncContext *s = &v->s;
  2673. /* select coding mode used for VLC tables selection */
  2674. switch (v->c_ac_table_index) {
  2675. case 0:
  2676. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2677. break;
  2678. case 1:
  2679. v->codingset = CS_HIGH_MOT_INTRA;
  2680. break;
  2681. case 2:
  2682. v->codingset = CS_MID_RATE_INTRA;
  2683. break;
  2684. }
  2685. switch (v->c_ac_table_index) {
  2686. case 0:
  2687. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2688. break;
  2689. case 1:
  2690. v->codingset2 = CS_HIGH_MOT_INTER;
  2691. break;
  2692. case 2:
  2693. v->codingset2 = CS_MID_RATE_INTER;
  2694. break;
  2695. }
  2696. s->first_slice_line = 1;
  2697. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2698. s->mb_x = 0;
  2699. init_block_index(v);
  2700. for (; s->mb_x < s->mb_width; s->mb_x++) {
  2701. ff_update_block_index(s);
  2702. if (v->fcm == ILACE_FIELD) {
  2703. vc1_decode_b_mb_intfi(v);
  2704. if (v->s.loop_filter)
  2705. ff_vc1_b_intfi_loop_filter(v);
  2706. } else if (v->fcm == ILACE_FRAME) {
  2707. vc1_decode_b_mb_intfr(v);
  2708. if (v->s.loop_filter)
  2709. ff_vc1_p_intfr_loop_filter(v);
  2710. } else {
  2711. vc1_decode_b_mb(v);
  2712. if (v->s.loop_filter)
  2713. ff_vc1_i_loop_filter(v);
  2714. }
  2715. if (get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2716. // TODO: may need modification to handle slice coding
  2717. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_x, s->mb_y, ER_MB_ERROR);
  2718. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n",
  2719. get_bits_count(&s->gb), v->bits, s->mb_x, s->mb_y);
  2720. return;
  2721. }
  2722. }
  2723. memmove(v->cbp_base,
  2724. v->cbp - s->mb_stride,
  2725. sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2726. memmove(v->ttblk_base,
  2727. v->ttblk - s->mb_stride,
  2728. sizeof(v->ttblk_base[0]) * 2 * s->mb_stride);
  2729. memmove(v->is_intra_base,
  2730. v->is_intra - s->mb_stride,
  2731. sizeof(v->is_intra_base[0]) * 2 * s->mb_stride);
  2732. if (!v->s.loop_filter)
  2733. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2734. else if (s->mb_y)
  2735. ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 16, 16);
  2736. s->first_slice_line = 0;
  2737. }
  2738. if (v->s.loop_filter)
  2739. ff_mpeg_draw_horiz_band(s, (s->end_mb_y - 1) * 16, 16);
  2740. ff_er_add_slice(&s->er, 0, s->start_mb_y << v->field_mode, s->mb_width - 1,
  2741. (s->end_mb_y << v->field_mode) - 1, ER_MB_END);
  2742. }
  2743. static void vc1_decode_skip_blocks(VC1Context *v)
  2744. {
  2745. MpegEncContext *s = &v->s;
  2746. if (!v->s.last_picture.f->data[0])
  2747. return;
  2748. ff_er_add_slice(&s->er, 0, s->start_mb_y, s->mb_width - 1, s->end_mb_y - 1, ER_MB_END);
  2749. s->first_slice_line = 1;
  2750. for (s->mb_y = s->start_mb_y; s->mb_y < s->end_mb_y; s->mb_y++) {
  2751. s->mb_x = 0;
  2752. init_block_index(v);
  2753. ff_update_block_index(s);
  2754. memcpy(s->dest[0], s->last_picture.f->data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2755. memcpy(s->dest[1], s->last_picture.f->data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2756. memcpy(s->dest[2], s->last_picture.f->data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2757. ff_mpeg_draw_horiz_band(s, s->mb_y * 16, 16);
  2758. s->first_slice_line = 0;
  2759. }
  2760. s->pict_type = AV_PICTURE_TYPE_P;
  2761. }
  2762. void ff_vc1_decode_blocks(VC1Context *v)
  2763. {
  2764. v->s.esc3_level_length = 0;
  2765. if (v->x8_type) {
  2766. ff_intrax8_decode_picture(&v->x8, &v->s.current_picture,
  2767. &v->s.gb, &v->s.mb_x, &v->s.mb_y,
  2768. 2 * v->pq + v->halfpq, v->pq * !v->pquantizer,
  2769. v->s.loop_filter, v->s.low_delay);
  2770. ff_er_add_slice(&v->s.er, 0, 0,
  2771. (v->s.mb_x >> 1) - 1, (v->s.mb_y >> 1) - 1,
  2772. ER_MB_END);
  2773. } else {
  2774. v->cur_blk_idx = 0;
  2775. v->left_blk_idx = -1;
  2776. v->topleft_blk_idx = 1;
  2777. v->top_blk_idx = 2;
  2778. switch (v->s.pict_type) {
  2779. case AV_PICTURE_TYPE_I:
  2780. if (v->profile == PROFILE_ADVANCED)
  2781. vc1_decode_i_blocks_adv(v);
  2782. else
  2783. vc1_decode_i_blocks(v);
  2784. break;
  2785. case AV_PICTURE_TYPE_P:
  2786. if (v->p_frame_skipped)
  2787. vc1_decode_skip_blocks(v);
  2788. else
  2789. vc1_decode_p_blocks(v);
  2790. break;
  2791. case AV_PICTURE_TYPE_B:
  2792. if (v->bi_type) {
  2793. if (v->profile == PROFILE_ADVANCED)
  2794. vc1_decode_i_blocks_adv(v);
  2795. else
  2796. vc1_decode_i_blocks(v);
  2797. } else
  2798. vc1_decode_b_blocks(v);
  2799. break;
  2800. }
  2801. }
  2802. }