You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3425 lines
133KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. * Copyright (C) 2012 - 2013 Mickael Raulet
  6. * Copyright (C) 2012 - 2013 Gildas Cocherel
  7. * Copyright (C) 2012 - 2013 Wassim Hamidouche
  8. *
  9. * This file is part of FFmpeg.
  10. *
  11. * FFmpeg is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU Lesser General Public
  13. * License as published by the Free Software Foundation; either
  14. * version 2.1 of the License, or (at your option) any later version.
  15. *
  16. * FFmpeg is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * Lesser General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU Lesser General Public
  22. * License along with FFmpeg; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  24. */
  25. #include "libavutil/attributes.h"
  26. #include "libavutil/common.h"
  27. #include "libavutil/display.h"
  28. #include "libavutil/internal.h"
  29. #include "libavutil/mastering_display_metadata.h"
  30. #include "libavutil/md5.h"
  31. #include "libavutil/opt.h"
  32. #include "libavutil/pixdesc.h"
  33. #include "libavutil/stereo3d.h"
  34. #include "bswapdsp.h"
  35. #include "bytestream.h"
  36. #include "cabac_functions.h"
  37. #include "golomb.h"
  38. #include "hevc.h"
  39. #include "hevc_data.h"
  40. #include "hevc_parse.h"
  41. #include "hevcdec.h"
  42. #include "profiles.h"
  43. const uint8_t ff_hevc_pel_weight[65] = { [2] = 0, [4] = 1, [6] = 2, [8] = 3, [12] = 4, [16] = 5, [24] = 6, [32] = 7, [48] = 8, [64] = 9 };
  44. /**
  45. * NOTE: Each function hls_foo correspond to the function foo in the
  46. * specification (HLS stands for High Level Syntax).
  47. */
  48. /**
  49. * Section 5.7
  50. */
  51. /* free everything allocated by pic_arrays_init() */
  52. static void pic_arrays_free(HEVCContext *s)
  53. {
  54. av_freep(&s->sao);
  55. av_freep(&s->deblock);
  56. av_freep(&s->skip_flag);
  57. av_freep(&s->tab_ct_depth);
  58. av_freep(&s->tab_ipm);
  59. av_freep(&s->cbf_luma);
  60. av_freep(&s->is_pcm);
  61. av_freep(&s->qp_y_tab);
  62. av_freep(&s->tab_slice_address);
  63. av_freep(&s->filter_slice_edges);
  64. av_freep(&s->horizontal_bs);
  65. av_freep(&s->vertical_bs);
  66. av_freep(&s->sh.entry_point_offset);
  67. av_freep(&s->sh.size);
  68. av_freep(&s->sh.offset);
  69. av_buffer_pool_uninit(&s->tab_mvf_pool);
  70. av_buffer_pool_uninit(&s->rpl_tab_pool);
  71. }
  72. /* allocate arrays that depend on frame dimensions */
  73. static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
  74. {
  75. int log2_min_cb_size = sps->log2_min_cb_size;
  76. int width = sps->width;
  77. int height = sps->height;
  78. int pic_size_in_ctb = ((width >> log2_min_cb_size) + 1) *
  79. ((height >> log2_min_cb_size) + 1);
  80. int ctb_count = sps->ctb_width * sps->ctb_height;
  81. int min_pu_size = sps->min_pu_width * sps->min_pu_height;
  82. s->bs_width = (width >> 2) + 1;
  83. s->bs_height = (height >> 2) + 1;
  84. s->sao = av_mallocz_array(ctb_count, sizeof(*s->sao));
  85. s->deblock = av_mallocz_array(ctb_count, sizeof(*s->deblock));
  86. if (!s->sao || !s->deblock)
  87. goto fail;
  88. s->skip_flag = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  89. s->tab_ct_depth = av_malloc_array(sps->min_cb_height, sps->min_cb_width);
  90. if (!s->skip_flag || !s->tab_ct_depth)
  91. goto fail;
  92. s->cbf_luma = av_malloc_array(sps->min_tb_width, sps->min_tb_height);
  93. s->tab_ipm = av_mallocz(min_pu_size);
  94. s->is_pcm = av_malloc_array(sps->min_pu_width + 1, sps->min_pu_height + 1);
  95. if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
  96. goto fail;
  97. s->filter_slice_edges = av_mallocz(ctb_count);
  98. s->tab_slice_address = av_malloc_array(pic_size_in_ctb,
  99. sizeof(*s->tab_slice_address));
  100. s->qp_y_tab = av_malloc_array(pic_size_in_ctb,
  101. sizeof(*s->qp_y_tab));
  102. if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
  103. goto fail;
  104. s->horizontal_bs = av_mallocz_array(s->bs_width, s->bs_height);
  105. s->vertical_bs = av_mallocz_array(s->bs_width, s->bs_height);
  106. if (!s->horizontal_bs || !s->vertical_bs)
  107. goto fail;
  108. s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
  109. av_buffer_allocz);
  110. s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
  111. av_buffer_allocz);
  112. if (!s->tab_mvf_pool || !s->rpl_tab_pool)
  113. goto fail;
  114. return 0;
  115. fail:
  116. pic_arrays_free(s);
  117. return AVERROR(ENOMEM);
  118. }
  119. static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
  120. {
  121. int i = 0;
  122. int j = 0;
  123. uint8_t luma_weight_l0_flag[16];
  124. uint8_t chroma_weight_l0_flag[16];
  125. uint8_t luma_weight_l1_flag[16];
  126. uint8_t chroma_weight_l1_flag[16];
  127. int luma_log2_weight_denom;
  128. luma_log2_weight_denom = get_ue_golomb_long(gb);
  129. if (luma_log2_weight_denom < 0 || luma_log2_weight_denom > 7)
  130. av_log(s->avctx, AV_LOG_ERROR, "luma_log2_weight_denom %d is invalid\n", luma_log2_weight_denom);
  131. s->sh.luma_log2_weight_denom = av_clip_uintp2(luma_log2_weight_denom, 3);
  132. if (s->ps.sps->chroma_format_idc != 0) {
  133. int delta = get_se_golomb(gb);
  134. s->sh.chroma_log2_weight_denom = av_clip_uintp2(s->sh.luma_log2_weight_denom + delta, 3);
  135. }
  136. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  137. luma_weight_l0_flag[i] = get_bits1(gb);
  138. if (!luma_weight_l0_flag[i]) {
  139. s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
  140. s->sh.luma_offset_l0[i] = 0;
  141. }
  142. }
  143. if (s->ps.sps->chroma_format_idc != 0) {
  144. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  145. chroma_weight_l0_flag[i] = get_bits1(gb);
  146. } else {
  147. for (i = 0; i < s->sh.nb_refs[L0]; i++)
  148. chroma_weight_l0_flag[i] = 0;
  149. }
  150. for (i = 0; i < s->sh.nb_refs[L0]; i++) {
  151. if (luma_weight_l0_flag[i]) {
  152. int delta_luma_weight_l0 = get_se_golomb(gb);
  153. s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
  154. s->sh.luma_offset_l0[i] = get_se_golomb(gb);
  155. }
  156. if (chroma_weight_l0_flag[i]) {
  157. for (j = 0; j < 2; j++) {
  158. int delta_chroma_weight_l0 = get_se_golomb(gb);
  159. int delta_chroma_offset_l0 = get_se_golomb(gb);
  160. s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
  161. s->sh.chroma_offset_l0[i][j] = av_clip((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
  162. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  163. }
  164. } else {
  165. s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  166. s->sh.chroma_offset_l0[i][0] = 0;
  167. s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  168. s->sh.chroma_offset_l0[i][1] = 0;
  169. }
  170. }
  171. if (s->sh.slice_type == HEVC_SLICE_B) {
  172. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  173. luma_weight_l1_flag[i] = get_bits1(gb);
  174. if (!luma_weight_l1_flag[i]) {
  175. s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
  176. s->sh.luma_offset_l1[i] = 0;
  177. }
  178. }
  179. if (s->ps.sps->chroma_format_idc != 0) {
  180. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  181. chroma_weight_l1_flag[i] = get_bits1(gb);
  182. } else {
  183. for (i = 0; i < s->sh.nb_refs[L1]; i++)
  184. chroma_weight_l1_flag[i] = 0;
  185. }
  186. for (i = 0; i < s->sh.nb_refs[L1]; i++) {
  187. if (luma_weight_l1_flag[i]) {
  188. int delta_luma_weight_l1 = get_se_golomb(gb);
  189. s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
  190. s->sh.luma_offset_l1[i] = get_se_golomb(gb);
  191. }
  192. if (chroma_weight_l1_flag[i]) {
  193. for (j = 0; j < 2; j++) {
  194. int delta_chroma_weight_l1 = get_se_golomb(gb);
  195. int delta_chroma_offset_l1 = get_se_golomb(gb);
  196. s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
  197. s->sh.chroma_offset_l1[i][j] = av_clip((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
  198. >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
  199. }
  200. } else {
  201. s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
  202. s->sh.chroma_offset_l1[i][0] = 0;
  203. s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
  204. s->sh.chroma_offset_l1[i][1] = 0;
  205. }
  206. }
  207. }
  208. }
  209. static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
  210. {
  211. const HEVCSPS *sps = s->ps.sps;
  212. int max_poc_lsb = 1 << sps->log2_max_poc_lsb;
  213. int prev_delta_msb = 0;
  214. unsigned int nb_sps = 0, nb_sh;
  215. int i;
  216. rps->nb_refs = 0;
  217. if (!sps->long_term_ref_pics_present_flag)
  218. return 0;
  219. if (sps->num_long_term_ref_pics_sps > 0)
  220. nb_sps = get_ue_golomb_long(gb);
  221. nb_sh = get_ue_golomb_long(gb);
  222. if (nb_sps > sps->num_long_term_ref_pics_sps)
  223. return AVERROR_INVALIDDATA;
  224. if (nb_sh + (uint64_t)nb_sps > FF_ARRAY_ELEMS(rps->poc))
  225. return AVERROR_INVALIDDATA;
  226. rps->nb_refs = nb_sh + nb_sps;
  227. for (i = 0; i < rps->nb_refs; i++) {
  228. uint8_t delta_poc_msb_present;
  229. if (i < nb_sps) {
  230. uint8_t lt_idx_sps = 0;
  231. if (sps->num_long_term_ref_pics_sps > 1)
  232. lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
  233. rps->poc[i] = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
  234. rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
  235. } else {
  236. rps->poc[i] = get_bits(gb, sps->log2_max_poc_lsb);
  237. rps->used[i] = get_bits1(gb);
  238. }
  239. delta_poc_msb_present = get_bits1(gb);
  240. if (delta_poc_msb_present) {
  241. int64_t delta = get_ue_golomb_long(gb);
  242. int64_t poc;
  243. if (i && i != nb_sps)
  244. delta += prev_delta_msb;
  245. poc = rps->poc[i] + s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
  246. if (poc != (int32_t)poc)
  247. return AVERROR_INVALIDDATA;
  248. rps->poc[i] = poc;
  249. prev_delta_msb = delta;
  250. }
  251. }
  252. return 0;
  253. }
  254. static void export_stream_params(AVCodecContext *avctx, const HEVCParamSets *ps,
  255. const HEVCSPS *sps)
  256. {
  257. const HEVCVPS *vps = (const HEVCVPS*)ps->vps_list[sps->vps_id]->data;
  258. const HEVCWindow *ow = &sps->output_window;
  259. unsigned int num = 0, den = 0;
  260. avctx->pix_fmt = sps->pix_fmt;
  261. avctx->coded_width = sps->width;
  262. avctx->coded_height = sps->height;
  263. avctx->width = sps->width - ow->left_offset - ow->right_offset;
  264. avctx->height = sps->height - ow->top_offset - ow->bottom_offset;
  265. avctx->has_b_frames = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
  266. avctx->profile = sps->ptl.general_ptl.profile_idc;
  267. avctx->level = sps->ptl.general_ptl.level_idc;
  268. ff_set_sar(avctx, sps->vui.sar);
  269. if (sps->vui.video_signal_type_present_flag)
  270. avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
  271. : AVCOL_RANGE_MPEG;
  272. else
  273. avctx->color_range = AVCOL_RANGE_MPEG;
  274. if (sps->vui.colour_description_present_flag) {
  275. avctx->color_primaries = sps->vui.colour_primaries;
  276. avctx->color_trc = sps->vui.transfer_characteristic;
  277. avctx->colorspace = sps->vui.matrix_coeffs;
  278. } else {
  279. avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
  280. avctx->color_trc = AVCOL_TRC_UNSPECIFIED;
  281. avctx->colorspace = AVCOL_SPC_UNSPECIFIED;
  282. }
  283. if (vps->vps_timing_info_present_flag) {
  284. num = vps->vps_num_units_in_tick;
  285. den = vps->vps_time_scale;
  286. } else if (sps->vui.vui_timing_info_present_flag) {
  287. num = sps->vui.vui_num_units_in_tick;
  288. den = sps->vui.vui_time_scale;
  289. }
  290. if (num != 0 && den != 0)
  291. av_reduce(&avctx->framerate.den, &avctx->framerate.num,
  292. num, den, 1 << 30);
  293. }
  294. static enum AVPixelFormat get_format(HEVCContext *s, const HEVCSPS *sps)
  295. {
  296. #define HWACCEL_MAX (CONFIG_HEVC_DXVA2_HWACCEL + CONFIG_HEVC_D3D11VA_HWACCEL + CONFIG_HEVC_VAAPI_HWACCEL + CONFIG_HEVC_VDPAU_HWACCEL)
  297. enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
  298. switch (sps->pix_fmt) {
  299. case AV_PIX_FMT_YUV420P:
  300. case AV_PIX_FMT_YUVJ420P:
  301. #if CONFIG_HEVC_DXVA2_HWACCEL
  302. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  303. #endif
  304. #if CONFIG_HEVC_D3D11VA_HWACCEL
  305. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  306. #endif
  307. #if CONFIG_HEVC_VAAPI_HWACCEL
  308. *fmt++ = AV_PIX_FMT_VAAPI;
  309. #endif
  310. #if CONFIG_HEVC_VDPAU_HWACCEL
  311. *fmt++ = AV_PIX_FMT_VDPAU;
  312. #endif
  313. break;
  314. case AV_PIX_FMT_YUV420P10:
  315. #if CONFIG_HEVC_DXVA2_HWACCEL
  316. *fmt++ = AV_PIX_FMT_DXVA2_VLD;
  317. #endif
  318. #if CONFIG_HEVC_D3D11VA_HWACCEL
  319. *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
  320. #endif
  321. #if CONFIG_HEVC_VAAPI_HWACCEL
  322. *fmt++ = AV_PIX_FMT_VAAPI;
  323. #endif
  324. break;
  325. }
  326. *fmt++ = sps->pix_fmt;
  327. *fmt = AV_PIX_FMT_NONE;
  328. return ff_thread_get_format(s->avctx, pix_fmts);
  329. }
  330. static int set_sps(HEVCContext *s, const HEVCSPS *sps,
  331. enum AVPixelFormat pix_fmt)
  332. {
  333. int ret, i;
  334. pic_arrays_free(s);
  335. s->ps.sps = NULL;
  336. s->ps.vps = NULL;
  337. if (!sps)
  338. return 0;
  339. ret = pic_arrays_init(s, sps);
  340. if (ret < 0)
  341. goto fail;
  342. export_stream_params(s->avctx, &s->ps, sps);
  343. s->avctx->pix_fmt = pix_fmt;
  344. ff_hevc_pred_init(&s->hpc, sps->bit_depth);
  345. ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
  346. ff_videodsp_init (&s->vdsp, sps->bit_depth);
  347. for (i = 0; i < 3; i++) {
  348. av_freep(&s->sao_pixel_buffer_h[i]);
  349. av_freep(&s->sao_pixel_buffer_v[i]);
  350. }
  351. if (sps->sao_enabled && !s->avctx->hwaccel) {
  352. int c_count = (sps->chroma_format_idc != 0) ? 3 : 1;
  353. int c_idx;
  354. for(c_idx = 0; c_idx < c_count; c_idx++) {
  355. int w = sps->width >> sps->hshift[c_idx];
  356. int h = sps->height >> sps->vshift[c_idx];
  357. s->sao_pixel_buffer_h[c_idx] =
  358. av_malloc((w * 2 * sps->ctb_height) <<
  359. sps->pixel_shift);
  360. s->sao_pixel_buffer_v[c_idx] =
  361. av_malloc((h * 2 * sps->ctb_width) <<
  362. sps->pixel_shift);
  363. }
  364. }
  365. s->ps.sps = sps;
  366. s->ps.vps = (HEVCVPS*) s->ps.vps_list[s->ps.sps->vps_id]->data;
  367. return 0;
  368. fail:
  369. pic_arrays_free(s);
  370. s->ps.sps = NULL;
  371. return ret;
  372. }
  373. static int hls_slice_header(HEVCContext *s)
  374. {
  375. GetBitContext *gb = &s->HEVClc->gb;
  376. SliceHeader *sh = &s->sh;
  377. int i, ret;
  378. // Coded parameters
  379. sh->first_slice_in_pic_flag = get_bits1(gb);
  380. if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
  381. s->seq_decode = (s->seq_decode + 1) & 0xff;
  382. s->max_ra = INT_MAX;
  383. if (IS_IDR(s))
  384. ff_hevc_clear_refs(s);
  385. }
  386. sh->no_output_of_prior_pics_flag = 0;
  387. if (IS_IRAP(s))
  388. sh->no_output_of_prior_pics_flag = get_bits1(gb);
  389. sh->pps_id = get_ue_golomb_long(gb);
  390. if (sh->pps_id >= HEVC_MAX_PPS_COUNT || !s->ps.pps_list[sh->pps_id]) {
  391. av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
  392. return AVERROR_INVALIDDATA;
  393. }
  394. if (!sh->first_slice_in_pic_flag &&
  395. s->ps.pps != (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data) {
  396. av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
  397. return AVERROR_INVALIDDATA;
  398. }
  399. s->ps.pps = (HEVCPPS*)s->ps.pps_list[sh->pps_id]->data;
  400. if (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos == 1)
  401. sh->no_output_of_prior_pics_flag = 1;
  402. if (s->ps.sps != (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data) {
  403. const HEVCSPS *sps = (HEVCSPS*)s->ps.sps_list[s->ps.pps->sps_id]->data;
  404. const HEVCSPS *last_sps = s->ps.sps;
  405. enum AVPixelFormat pix_fmt;
  406. if (last_sps && IS_IRAP(s) && s->nal_unit_type != HEVC_NAL_CRA_NUT) {
  407. if (sps->width != last_sps->width || sps->height != last_sps->height ||
  408. sps->temporal_layer[sps->max_sub_layers - 1].max_dec_pic_buffering !=
  409. last_sps->temporal_layer[last_sps->max_sub_layers - 1].max_dec_pic_buffering)
  410. sh->no_output_of_prior_pics_flag = 0;
  411. }
  412. ff_hevc_clear_refs(s);
  413. pix_fmt = get_format(s, sps);
  414. if (pix_fmt < 0)
  415. return pix_fmt;
  416. ret = set_sps(s, sps, pix_fmt);
  417. if (ret < 0)
  418. return ret;
  419. s->seq_decode = (s->seq_decode + 1) & 0xff;
  420. s->max_ra = INT_MAX;
  421. }
  422. sh->dependent_slice_segment_flag = 0;
  423. if (!sh->first_slice_in_pic_flag) {
  424. int slice_address_length;
  425. if (s->ps.pps->dependent_slice_segments_enabled_flag)
  426. sh->dependent_slice_segment_flag = get_bits1(gb);
  427. slice_address_length = av_ceil_log2(s->ps.sps->ctb_width *
  428. s->ps.sps->ctb_height);
  429. sh->slice_segment_addr = get_bitsz(gb, slice_address_length);
  430. if (sh->slice_segment_addr >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  431. av_log(s->avctx, AV_LOG_ERROR,
  432. "Invalid slice segment address: %u.\n",
  433. sh->slice_segment_addr);
  434. return AVERROR_INVALIDDATA;
  435. }
  436. if (!sh->dependent_slice_segment_flag) {
  437. sh->slice_addr = sh->slice_segment_addr;
  438. s->slice_idx++;
  439. }
  440. } else {
  441. sh->slice_segment_addr = sh->slice_addr = 0;
  442. s->slice_idx = 0;
  443. s->slice_initialized = 0;
  444. }
  445. if (!sh->dependent_slice_segment_flag) {
  446. s->slice_initialized = 0;
  447. for (i = 0; i < s->ps.pps->num_extra_slice_header_bits; i++)
  448. skip_bits(gb, 1); // slice_reserved_undetermined_flag[]
  449. sh->slice_type = get_ue_golomb_long(gb);
  450. if (!(sh->slice_type == HEVC_SLICE_I ||
  451. sh->slice_type == HEVC_SLICE_P ||
  452. sh->slice_type == HEVC_SLICE_B)) {
  453. av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
  454. sh->slice_type);
  455. return AVERROR_INVALIDDATA;
  456. }
  457. if (IS_IRAP(s) && sh->slice_type != HEVC_SLICE_I) {
  458. av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
  459. return AVERROR_INVALIDDATA;
  460. }
  461. // when flag is not present, picture is inferred to be output
  462. sh->pic_output_flag = 1;
  463. if (s->ps.pps->output_flag_present_flag)
  464. sh->pic_output_flag = get_bits1(gb);
  465. if (s->ps.sps->separate_colour_plane_flag)
  466. sh->colour_plane_id = get_bits(gb, 2);
  467. if (!IS_IDR(s)) {
  468. int poc, pos;
  469. sh->pic_order_cnt_lsb = get_bits(gb, s->ps.sps->log2_max_poc_lsb);
  470. poc = ff_hevc_compute_poc(s->ps.sps, s->pocTid0, sh->pic_order_cnt_lsb, s->nal_unit_type);
  471. if (!sh->first_slice_in_pic_flag && poc != s->poc) {
  472. av_log(s->avctx, AV_LOG_WARNING,
  473. "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
  474. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  475. return AVERROR_INVALIDDATA;
  476. poc = s->poc;
  477. }
  478. s->poc = poc;
  479. sh->short_term_ref_pic_set_sps_flag = get_bits1(gb);
  480. pos = get_bits_left(gb);
  481. if (!sh->short_term_ref_pic_set_sps_flag) {
  482. ret = ff_hevc_decode_short_term_rps(gb, s->avctx, &sh->slice_rps, s->ps.sps, 1);
  483. if (ret < 0)
  484. return ret;
  485. sh->short_term_rps = &sh->slice_rps;
  486. } else {
  487. int numbits, rps_idx;
  488. if (!s->ps.sps->nb_st_rps) {
  489. av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
  490. return AVERROR_INVALIDDATA;
  491. }
  492. numbits = av_ceil_log2(s->ps.sps->nb_st_rps);
  493. rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
  494. sh->short_term_rps = &s->ps.sps->st_rps[rps_idx];
  495. }
  496. sh->short_term_ref_pic_set_size = pos - get_bits_left(gb);
  497. pos = get_bits_left(gb);
  498. ret = decode_lt_rps(s, &sh->long_term_rps, gb);
  499. if (ret < 0) {
  500. av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
  501. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  502. return AVERROR_INVALIDDATA;
  503. }
  504. sh->long_term_ref_pic_set_size = pos - get_bits_left(gb);
  505. if (s->ps.sps->sps_temporal_mvp_enabled_flag)
  506. sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
  507. else
  508. sh->slice_temporal_mvp_enabled_flag = 0;
  509. } else {
  510. s->sh.short_term_rps = NULL;
  511. s->poc = 0;
  512. }
  513. /* 8.3.1 */
  514. if (sh->first_slice_in_pic_flag && s->temporal_id == 0 &&
  515. s->nal_unit_type != HEVC_NAL_TRAIL_N &&
  516. s->nal_unit_type != HEVC_NAL_TSA_N &&
  517. s->nal_unit_type != HEVC_NAL_STSA_N &&
  518. s->nal_unit_type != HEVC_NAL_RADL_N &&
  519. s->nal_unit_type != HEVC_NAL_RADL_R &&
  520. s->nal_unit_type != HEVC_NAL_RASL_N &&
  521. s->nal_unit_type != HEVC_NAL_RASL_R)
  522. s->pocTid0 = s->poc;
  523. if (s->ps.sps->sao_enabled) {
  524. sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
  525. if (s->ps.sps->chroma_format_idc) {
  526. sh->slice_sample_adaptive_offset_flag[1] =
  527. sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
  528. }
  529. } else {
  530. sh->slice_sample_adaptive_offset_flag[0] = 0;
  531. sh->slice_sample_adaptive_offset_flag[1] = 0;
  532. sh->slice_sample_adaptive_offset_flag[2] = 0;
  533. }
  534. sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
  535. if (sh->slice_type == HEVC_SLICE_P || sh->slice_type == HEVC_SLICE_B) {
  536. int nb_refs;
  537. sh->nb_refs[L0] = s->ps.pps->num_ref_idx_l0_default_active;
  538. if (sh->slice_type == HEVC_SLICE_B)
  539. sh->nb_refs[L1] = s->ps.pps->num_ref_idx_l1_default_active;
  540. if (get_bits1(gb)) { // num_ref_idx_active_override_flag
  541. sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
  542. if (sh->slice_type == HEVC_SLICE_B)
  543. sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
  544. }
  545. if (sh->nb_refs[L0] > HEVC_MAX_REFS || sh->nb_refs[L1] > HEVC_MAX_REFS) {
  546. av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
  547. sh->nb_refs[L0], sh->nb_refs[L1]);
  548. return AVERROR_INVALIDDATA;
  549. }
  550. sh->rpl_modification_flag[0] = 0;
  551. sh->rpl_modification_flag[1] = 0;
  552. nb_refs = ff_hevc_frame_nb_refs(s);
  553. if (!nb_refs) {
  554. av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
  555. return AVERROR_INVALIDDATA;
  556. }
  557. if (s->ps.pps->lists_modification_present_flag && nb_refs > 1) {
  558. sh->rpl_modification_flag[0] = get_bits1(gb);
  559. if (sh->rpl_modification_flag[0]) {
  560. for (i = 0; i < sh->nb_refs[L0]; i++)
  561. sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
  562. }
  563. if (sh->slice_type == HEVC_SLICE_B) {
  564. sh->rpl_modification_flag[1] = get_bits1(gb);
  565. if (sh->rpl_modification_flag[1] == 1)
  566. for (i = 0; i < sh->nb_refs[L1]; i++)
  567. sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
  568. }
  569. }
  570. if (sh->slice_type == HEVC_SLICE_B)
  571. sh->mvd_l1_zero_flag = get_bits1(gb);
  572. if (s->ps.pps->cabac_init_present_flag)
  573. sh->cabac_init_flag = get_bits1(gb);
  574. else
  575. sh->cabac_init_flag = 0;
  576. sh->collocated_ref_idx = 0;
  577. if (sh->slice_temporal_mvp_enabled_flag) {
  578. sh->collocated_list = L0;
  579. if (sh->slice_type == HEVC_SLICE_B)
  580. sh->collocated_list = !get_bits1(gb);
  581. if (sh->nb_refs[sh->collocated_list] > 1) {
  582. sh->collocated_ref_idx = get_ue_golomb_long(gb);
  583. if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
  584. av_log(s->avctx, AV_LOG_ERROR,
  585. "Invalid collocated_ref_idx: %d.\n",
  586. sh->collocated_ref_idx);
  587. return AVERROR_INVALIDDATA;
  588. }
  589. }
  590. }
  591. if ((s->ps.pps->weighted_pred_flag && sh->slice_type == HEVC_SLICE_P) ||
  592. (s->ps.pps->weighted_bipred_flag && sh->slice_type == HEVC_SLICE_B)) {
  593. pred_weight_table(s, gb);
  594. }
  595. sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
  596. if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
  597. av_log(s->avctx, AV_LOG_ERROR,
  598. "Invalid number of merging MVP candidates: %d.\n",
  599. sh->max_num_merge_cand);
  600. return AVERROR_INVALIDDATA;
  601. }
  602. }
  603. sh->slice_qp_delta = get_se_golomb(gb);
  604. if (s->ps.pps->pic_slice_level_chroma_qp_offsets_present_flag) {
  605. sh->slice_cb_qp_offset = get_se_golomb(gb);
  606. sh->slice_cr_qp_offset = get_se_golomb(gb);
  607. } else {
  608. sh->slice_cb_qp_offset = 0;
  609. sh->slice_cr_qp_offset = 0;
  610. }
  611. if (s->ps.pps->chroma_qp_offset_list_enabled_flag)
  612. sh->cu_chroma_qp_offset_enabled_flag = get_bits1(gb);
  613. else
  614. sh->cu_chroma_qp_offset_enabled_flag = 0;
  615. if (s->ps.pps->deblocking_filter_control_present_flag) {
  616. int deblocking_filter_override_flag = 0;
  617. if (s->ps.pps->deblocking_filter_override_enabled_flag)
  618. deblocking_filter_override_flag = get_bits1(gb);
  619. if (deblocking_filter_override_flag) {
  620. sh->disable_deblocking_filter_flag = get_bits1(gb);
  621. if (!sh->disable_deblocking_filter_flag) {
  622. int beta_offset_div2 = get_se_golomb(gb);
  623. int tc_offset_div2 = get_se_golomb(gb) ;
  624. if (beta_offset_div2 < -6 || beta_offset_div2 > 6 ||
  625. tc_offset_div2 < -6 || tc_offset_div2 > 6) {
  626. av_log(s->avctx, AV_LOG_ERROR,
  627. "Invalid deblock filter offsets: %d, %d\n",
  628. beta_offset_div2, tc_offset_div2);
  629. return AVERROR_INVALIDDATA;
  630. }
  631. sh->beta_offset = beta_offset_div2 * 2;
  632. sh->tc_offset = tc_offset_div2 * 2;
  633. }
  634. } else {
  635. sh->disable_deblocking_filter_flag = s->ps.pps->disable_dbf;
  636. sh->beta_offset = s->ps.pps->beta_offset;
  637. sh->tc_offset = s->ps.pps->tc_offset;
  638. }
  639. } else {
  640. sh->disable_deblocking_filter_flag = 0;
  641. sh->beta_offset = 0;
  642. sh->tc_offset = 0;
  643. }
  644. if (s->ps.pps->seq_loop_filter_across_slices_enabled_flag &&
  645. (sh->slice_sample_adaptive_offset_flag[0] ||
  646. sh->slice_sample_adaptive_offset_flag[1] ||
  647. !sh->disable_deblocking_filter_flag)) {
  648. sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
  649. } else {
  650. sh->slice_loop_filter_across_slices_enabled_flag = s->ps.pps->seq_loop_filter_across_slices_enabled_flag;
  651. }
  652. } else if (!s->slice_initialized) {
  653. av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
  654. return AVERROR_INVALIDDATA;
  655. }
  656. sh->num_entry_point_offsets = 0;
  657. if (s->ps.pps->tiles_enabled_flag || s->ps.pps->entropy_coding_sync_enabled_flag) {
  658. unsigned num_entry_point_offsets = get_ue_golomb_long(gb);
  659. // It would be possible to bound this tighter but this here is simpler
  660. if (num_entry_point_offsets > get_bits_left(gb)) {
  661. av_log(s->avctx, AV_LOG_ERROR, "num_entry_point_offsets %d is invalid\n", num_entry_point_offsets);
  662. return AVERROR_INVALIDDATA;
  663. }
  664. sh->num_entry_point_offsets = num_entry_point_offsets;
  665. if (sh->num_entry_point_offsets > 0) {
  666. int offset_len = get_ue_golomb_long(gb) + 1;
  667. if (offset_len < 1 || offset_len > 32) {
  668. sh->num_entry_point_offsets = 0;
  669. av_log(s->avctx, AV_LOG_ERROR, "offset_len %d is invalid\n", offset_len);
  670. return AVERROR_INVALIDDATA;
  671. }
  672. av_freep(&sh->entry_point_offset);
  673. av_freep(&sh->offset);
  674. av_freep(&sh->size);
  675. sh->entry_point_offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(unsigned));
  676. sh->offset = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  677. sh->size = av_malloc_array(sh->num_entry_point_offsets, sizeof(int));
  678. if (!sh->entry_point_offset || !sh->offset || !sh->size) {
  679. sh->num_entry_point_offsets = 0;
  680. av_log(s->avctx, AV_LOG_ERROR, "Failed to allocate memory\n");
  681. return AVERROR(ENOMEM);
  682. }
  683. for (i = 0; i < sh->num_entry_point_offsets; i++) {
  684. unsigned val = get_bits_long(gb, offset_len);
  685. sh->entry_point_offset[i] = val + 1; // +1; // +1 to get the size
  686. }
  687. if (s->threads_number > 1 && (s->ps.pps->num_tile_rows > 1 || s->ps.pps->num_tile_columns > 1)) {
  688. s->enable_parallel_tiles = 0; // TODO: you can enable tiles in parallel here
  689. s->threads_number = 1;
  690. } else
  691. s->enable_parallel_tiles = 0;
  692. } else
  693. s->enable_parallel_tiles = 0;
  694. }
  695. if (s->ps.pps->slice_header_extension_present_flag) {
  696. unsigned int length = get_ue_golomb_long(gb);
  697. if (length*8LL > get_bits_left(gb)) {
  698. av_log(s->avctx, AV_LOG_ERROR, "too many slice_header_extension_data_bytes\n");
  699. return AVERROR_INVALIDDATA;
  700. }
  701. for (i = 0; i < length; i++)
  702. skip_bits(gb, 8); // slice_header_extension_data_byte
  703. }
  704. // Inferred parameters
  705. sh->slice_qp = 26U + s->ps.pps->pic_init_qp_minus26 + sh->slice_qp_delta;
  706. if (sh->slice_qp > 51 ||
  707. sh->slice_qp < -s->ps.sps->qp_bd_offset) {
  708. av_log(s->avctx, AV_LOG_ERROR,
  709. "The slice_qp %d is outside the valid range "
  710. "[%d, 51].\n",
  711. sh->slice_qp,
  712. -s->ps.sps->qp_bd_offset);
  713. return AVERROR_INVALIDDATA;
  714. }
  715. sh->slice_ctb_addr_rs = sh->slice_segment_addr;
  716. if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
  717. av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
  718. return AVERROR_INVALIDDATA;
  719. }
  720. if (get_bits_left(gb) < 0) {
  721. av_log(s->avctx, AV_LOG_ERROR,
  722. "Overread slice header by %d bits\n", -get_bits_left(gb));
  723. return AVERROR_INVALIDDATA;
  724. }
  725. s->HEVClc->first_qp_group = !s->sh.dependent_slice_segment_flag;
  726. if (!s->ps.pps->cu_qp_delta_enabled_flag)
  727. s->HEVClc->qp_y = s->sh.slice_qp;
  728. s->slice_initialized = 1;
  729. s->HEVClc->tu.cu_qp_offset_cb = 0;
  730. s->HEVClc->tu.cu_qp_offset_cr = 0;
  731. return 0;
  732. }
  733. #define CTB(tab, x, y) ((tab)[(y) * s->ps.sps->ctb_width + (x)])
  734. #define SET_SAO(elem, value) \
  735. do { \
  736. if (!sao_merge_up_flag && !sao_merge_left_flag) \
  737. sao->elem = value; \
  738. else if (sao_merge_left_flag) \
  739. sao->elem = CTB(s->sao, rx-1, ry).elem; \
  740. else if (sao_merge_up_flag) \
  741. sao->elem = CTB(s->sao, rx, ry-1).elem; \
  742. else \
  743. sao->elem = 0; \
  744. } while (0)
  745. static void hls_sao_param(HEVCContext *s, int rx, int ry)
  746. {
  747. HEVCLocalContext *lc = s->HEVClc;
  748. int sao_merge_left_flag = 0;
  749. int sao_merge_up_flag = 0;
  750. SAOParams *sao = &CTB(s->sao, rx, ry);
  751. int c_idx, i;
  752. if (s->sh.slice_sample_adaptive_offset_flag[0] ||
  753. s->sh.slice_sample_adaptive_offset_flag[1]) {
  754. if (rx > 0) {
  755. if (lc->ctb_left_flag)
  756. sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
  757. }
  758. if (ry > 0 && !sao_merge_left_flag) {
  759. if (lc->ctb_up_flag)
  760. sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
  761. }
  762. }
  763. for (c_idx = 0; c_idx < (s->ps.sps->chroma_format_idc ? 3 : 1); c_idx++) {
  764. int log2_sao_offset_scale = c_idx == 0 ? s->ps.pps->log2_sao_offset_scale_luma :
  765. s->ps.pps->log2_sao_offset_scale_chroma;
  766. if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
  767. sao->type_idx[c_idx] = SAO_NOT_APPLIED;
  768. continue;
  769. }
  770. if (c_idx == 2) {
  771. sao->type_idx[2] = sao->type_idx[1];
  772. sao->eo_class[2] = sao->eo_class[1];
  773. } else {
  774. SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
  775. }
  776. if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
  777. continue;
  778. for (i = 0; i < 4; i++)
  779. SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
  780. if (sao->type_idx[c_idx] == SAO_BAND) {
  781. for (i = 0; i < 4; i++) {
  782. if (sao->offset_abs[c_idx][i]) {
  783. SET_SAO(offset_sign[c_idx][i],
  784. ff_hevc_sao_offset_sign_decode(s));
  785. } else {
  786. sao->offset_sign[c_idx][i] = 0;
  787. }
  788. }
  789. SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
  790. } else if (c_idx != 2) {
  791. SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
  792. }
  793. // Inferred parameters
  794. sao->offset_val[c_idx][0] = 0;
  795. for (i = 0; i < 4; i++) {
  796. sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i];
  797. if (sao->type_idx[c_idx] == SAO_EDGE) {
  798. if (i > 1)
  799. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  800. } else if (sao->offset_sign[c_idx][i]) {
  801. sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
  802. }
  803. sao->offset_val[c_idx][i + 1] *= 1 << log2_sao_offset_scale;
  804. }
  805. }
  806. }
  807. #undef SET_SAO
  808. #undef CTB
  809. static int hls_cross_component_pred(HEVCContext *s, int idx) {
  810. HEVCLocalContext *lc = s->HEVClc;
  811. int log2_res_scale_abs_plus1 = ff_hevc_log2_res_scale_abs(s, idx);
  812. if (log2_res_scale_abs_plus1 != 0) {
  813. int res_scale_sign_flag = ff_hevc_res_scale_sign_flag(s, idx);
  814. lc->tu.res_scale_val = (1 << (log2_res_scale_abs_plus1 - 1)) *
  815. (1 - 2 * res_scale_sign_flag);
  816. } else {
  817. lc->tu.res_scale_val = 0;
  818. }
  819. return 0;
  820. }
  821. static int hls_transform_unit(HEVCContext *s, int x0, int y0,
  822. int xBase, int yBase, int cb_xBase, int cb_yBase,
  823. int log2_cb_size, int log2_trafo_size,
  824. int blk_idx, int cbf_luma, int *cbf_cb, int *cbf_cr)
  825. {
  826. HEVCLocalContext *lc = s->HEVClc;
  827. const int log2_trafo_size_c = log2_trafo_size - s->ps.sps->hshift[1];
  828. int i;
  829. if (lc->cu.pred_mode == MODE_INTRA) {
  830. int trafo_size = 1 << log2_trafo_size;
  831. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
  832. s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
  833. }
  834. if (cbf_luma || cbf_cb[0] || cbf_cr[0] ||
  835. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  836. int scan_idx = SCAN_DIAG;
  837. int scan_idx_c = SCAN_DIAG;
  838. int cbf_chroma = cbf_cb[0] || cbf_cr[0] ||
  839. (s->ps.sps->chroma_format_idc == 2 &&
  840. (cbf_cb[1] || cbf_cr[1]));
  841. if (s->ps.pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
  842. lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
  843. if (lc->tu.cu_qp_delta != 0)
  844. if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
  845. lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
  846. lc->tu.is_cu_qp_delta_coded = 1;
  847. if (lc->tu.cu_qp_delta < -(26 + s->ps.sps->qp_bd_offset / 2) ||
  848. lc->tu.cu_qp_delta > (25 + s->ps.sps->qp_bd_offset / 2)) {
  849. av_log(s->avctx, AV_LOG_ERROR,
  850. "The cu_qp_delta %d is outside the valid range "
  851. "[%d, %d].\n",
  852. lc->tu.cu_qp_delta,
  853. -(26 + s->ps.sps->qp_bd_offset / 2),
  854. (25 + s->ps.sps->qp_bd_offset / 2));
  855. return AVERROR_INVALIDDATA;
  856. }
  857. ff_hevc_set_qPy(s, cb_xBase, cb_yBase, log2_cb_size);
  858. }
  859. if (s->sh.cu_chroma_qp_offset_enabled_flag && cbf_chroma &&
  860. !lc->cu.cu_transquant_bypass_flag && !lc->tu.is_cu_chroma_qp_offset_coded) {
  861. int cu_chroma_qp_offset_flag = ff_hevc_cu_chroma_qp_offset_flag(s);
  862. if (cu_chroma_qp_offset_flag) {
  863. int cu_chroma_qp_offset_idx = 0;
  864. if (s->ps.pps->chroma_qp_offset_list_len_minus1 > 0) {
  865. cu_chroma_qp_offset_idx = ff_hevc_cu_chroma_qp_offset_idx(s);
  866. av_log(s->avctx, AV_LOG_ERROR,
  867. "cu_chroma_qp_offset_idx not yet tested.\n");
  868. }
  869. lc->tu.cu_qp_offset_cb = s->ps.pps->cb_qp_offset_list[cu_chroma_qp_offset_idx];
  870. lc->tu.cu_qp_offset_cr = s->ps.pps->cr_qp_offset_list[cu_chroma_qp_offset_idx];
  871. } else {
  872. lc->tu.cu_qp_offset_cb = 0;
  873. lc->tu.cu_qp_offset_cr = 0;
  874. }
  875. lc->tu.is_cu_chroma_qp_offset_coded = 1;
  876. }
  877. if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
  878. if (lc->tu.intra_pred_mode >= 6 &&
  879. lc->tu.intra_pred_mode <= 14) {
  880. scan_idx = SCAN_VERT;
  881. } else if (lc->tu.intra_pred_mode >= 22 &&
  882. lc->tu.intra_pred_mode <= 30) {
  883. scan_idx = SCAN_HORIZ;
  884. }
  885. if (lc->tu.intra_pred_mode_c >= 6 &&
  886. lc->tu.intra_pred_mode_c <= 14) {
  887. scan_idx_c = SCAN_VERT;
  888. } else if (lc->tu.intra_pred_mode_c >= 22 &&
  889. lc->tu.intra_pred_mode_c <= 30) {
  890. scan_idx_c = SCAN_HORIZ;
  891. }
  892. }
  893. lc->tu.cross_pf = 0;
  894. if (cbf_luma)
  895. ff_hevc_hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
  896. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  897. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  898. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  899. lc->tu.cross_pf = (s->ps.pps->cross_component_prediction_enabled_flag && cbf_luma &&
  900. (lc->cu.pred_mode == MODE_INTER ||
  901. (lc->tu.chroma_mode_c == 4)));
  902. if (lc->tu.cross_pf) {
  903. hls_cross_component_pred(s, 0);
  904. }
  905. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  906. if (lc->cu.pred_mode == MODE_INTRA) {
  907. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  908. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 1);
  909. }
  910. if (cbf_cb[i])
  911. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  912. log2_trafo_size_c, scan_idx_c, 1);
  913. else
  914. if (lc->tu.cross_pf) {
  915. ptrdiff_t stride = s->frame->linesize[1];
  916. int hshift = s->ps.sps->hshift[1];
  917. int vshift = s->ps.sps->vshift[1];
  918. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  919. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  920. int size = 1 << log2_trafo_size_c;
  921. uint8_t *dst = &s->frame->data[1][(y0 >> vshift) * stride +
  922. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  923. for (i = 0; i < (size * size); i++) {
  924. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  925. }
  926. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  927. }
  928. }
  929. if (lc->tu.cross_pf) {
  930. hls_cross_component_pred(s, 1);
  931. }
  932. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  933. if (lc->cu.pred_mode == MODE_INTRA) {
  934. ff_hevc_set_neighbour_available(s, x0, y0 + (i << log2_trafo_size_c), trafo_size_h, trafo_size_v);
  935. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (i << log2_trafo_size_c), 2);
  936. }
  937. if (cbf_cr[i])
  938. ff_hevc_hls_residual_coding(s, x0, y0 + (i << log2_trafo_size_c),
  939. log2_trafo_size_c, scan_idx_c, 2);
  940. else
  941. if (lc->tu.cross_pf) {
  942. ptrdiff_t stride = s->frame->linesize[2];
  943. int hshift = s->ps.sps->hshift[2];
  944. int vshift = s->ps.sps->vshift[2];
  945. int16_t *coeffs_y = (int16_t*)lc->edge_emu_buffer;
  946. int16_t *coeffs = (int16_t*)lc->edge_emu_buffer2;
  947. int size = 1 << log2_trafo_size_c;
  948. uint8_t *dst = &s->frame->data[2][(y0 >> vshift) * stride +
  949. ((x0 >> hshift) << s->ps.sps->pixel_shift)];
  950. for (i = 0; i < (size * size); i++) {
  951. coeffs[i] = ((lc->tu.res_scale_val * coeffs_y[i]) >> 3);
  952. }
  953. s->hevcdsp.add_residual[log2_trafo_size_c-2](dst, coeffs, stride);
  954. }
  955. }
  956. } else if (s->ps.sps->chroma_format_idc && blk_idx == 3) {
  957. int trafo_size_h = 1 << (log2_trafo_size + 1);
  958. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  959. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  960. if (lc->cu.pred_mode == MODE_INTRA) {
  961. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  962. trafo_size_h, trafo_size_v);
  963. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 1);
  964. }
  965. if (cbf_cb[i])
  966. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  967. log2_trafo_size, scan_idx_c, 1);
  968. }
  969. for (i = 0; i < (s->ps.sps->chroma_format_idc == 2 ? 2 : 1); i++) {
  970. if (lc->cu.pred_mode == MODE_INTRA) {
  971. ff_hevc_set_neighbour_available(s, xBase, yBase + (i << log2_trafo_size),
  972. trafo_size_h, trafo_size_v);
  973. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (i << log2_trafo_size), 2);
  974. }
  975. if (cbf_cr[i])
  976. ff_hevc_hls_residual_coding(s, xBase, yBase + (i << log2_trafo_size),
  977. log2_trafo_size, scan_idx_c, 2);
  978. }
  979. }
  980. } else if (s->ps.sps->chroma_format_idc && lc->cu.pred_mode == MODE_INTRA) {
  981. if (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3) {
  982. int trafo_size_h = 1 << (log2_trafo_size_c + s->ps.sps->hshift[1]);
  983. int trafo_size_v = 1 << (log2_trafo_size_c + s->ps.sps->vshift[1]);
  984. ff_hevc_set_neighbour_available(s, x0, y0, trafo_size_h, trafo_size_v);
  985. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 1);
  986. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0, 2);
  987. if (s->ps.sps->chroma_format_idc == 2) {
  988. ff_hevc_set_neighbour_available(s, x0, y0 + (1 << log2_trafo_size_c),
  989. trafo_size_h, trafo_size_v);
  990. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 1);
  991. s->hpc.intra_pred[log2_trafo_size_c - 2](s, x0, y0 + (1 << log2_trafo_size_c), 2);
  992. }
  993. } else if (blk_idx == 3) {
  994. int trafo_size_h = 1 << (log2_trafo_size + 1);
  995. int trafo_size_v = 1 << (log2_trafo_size + s->ps.sps->vshift[1]);
  996. ff_hevc_set_neighbour_available(s, xBase, yBase,
  997. trafo_size_h, trafo_size_v);
  998. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
  999. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
  1000. if (s->ps.sps->chroma_format_idc == 2) {
  1001. ff_hevc_set_neighbour_available(s, xBase, yBase + (1 << (log2_trafo_size)),
  1002. trafo_size_h, trafo_size_v);
  1003. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 1);
  1004. s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase + (1 << (log2_trafo_size)), 2);
  1005. }
  1006. }
  1007. }
  1008. return 0;
  1009. }
  1010. static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1011. {
  1012. int cb_size = 1 << log2_cb_size;
  1013. int log2_min_pu_size = s->ps.sps->log2_min_pu_size;
  1014. int min_pu_width = s->ps.sps->min_pu_width;
  1015. int x_end = FFMIN(x0 + cb_size, s->ps.sps->width);
  1016. int y_end = FFMIN(y0 + cb_size, s->ps.sps->height);
  1017. int i, j;
  1018. for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
  1019. for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
  1020. s->is_pcm[i + j * min_pu_width] = 2;
  1021. }
  1022. static int hls_transform_tree(HEVCContext *s, int x0, int y0,
  1023. int xBase, int yBase, int cb_xBase, int cb_yBase,
  1024. int log2_cb_size, int log2_trafo_size,
  1025. int trafo_depth, int blk_idx,
  1026. const int *base_cbf_cb, const int *base_cbf_cr)
  1027. {
  1028. HEVCLocalContext *lc = s->HEVClc;
  1029. uint8_t split_transform_flag;
  1030. int cbf_cb[2];
  1031. int cbf_cr[2];
  1032. int ret;
  1033. cbf_cb[0] = base_cbf_cb[0];
  1034. cbf_cb[1] = base_cbf_cb[1];
  1035. cbf_cr[0] = base_cbf_cr[0];
  1036. cbf_cr[1] = base_cbf_cr[1];
  1037. if (lc->cu.intra_split_flag) {
  1038. if (trafo_depth == 1) {
  1039. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
  1040. if (s->ps.sps->chroma_format_idc == 3) {
  1041. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[blk_idx];
  1042. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[blk_idx];
  1043. } else {
  1044. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1045. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1046. }
  1047. }
  1048. } else {
  1049. lc->tu.intra_pred_mode = lc->pu.intra_pred_mode[0];
  1050. lc->tu.intra_pred_mode_c = lc->pu.intra_pred_mode_c[0];
  1051. lc->tu.chroma_mode_c = lc->pu.chroma_mode_c[0];
  1052. }
  1053. if (log2_trafo_size <= s->ps.sps->log2_max_trafo_size &&
  1054. log2_trafo_size > s->ps.sps->log2_min_tb_size &&
  1055. trafo_depth < lc->cu.max_trafo_depth &&
  1056. !(lc->cu.intra_split_flag && trafo_depth == 0)) {
  1057. split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
  1058. } else {
  1059. int inter_split = s->ps.sps->max_transform_hierarchy_depth_inter == 0 &&
  1060. lc->cu.pred_mode == MODE_INTER &&
  1061. lc->cu.part_mode != PART_2Nx2N &&
  1062. trafo_depth == 0;
  1063. split_transform_flag = log2_trafo_size > s->ps.sps->log2_max_trafo_size ||
  1064. (lc->cu.intra_split_flag && trafo_depth == 0) ||
  1065. inter_split;
  1066. }
  1067. if (s->ps.sps->chroma_format_idc && (log2_trafo_size > 2 || s->ps.sps->chroma_format_idc == 3)) {
  1068. if (trafo_depth == 0 || cbf_cb[0]) {
  1069. cbf_cb[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1070. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1071. cbf_cb[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1072. }
  1073. }
  1074. if (trafo_depth == 0 || cbf_cr[0]) {
  1075. cbf_cr[0] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1076. if (s->ps.sps->chroma_format_idc == 2 && (!split_transform_flag || log2_trafo_size == 3)) {
  1077. cbf_cr[1] = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
  1078. }
  1079. }
  1080. }
  1081. if (split_transform_flag) {
  1082. const int trafo_size_split = 1 << (log2_trafo_size - 1);
  1083. const int x1 = x0 + trafo_size_split;
  1084. const int y1 = y0 + trafo_size_split;
  1085. #define SUBDIVIDE(x, y, idx) \
  1086. do { \
  1087. ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
  1088. log2_trafo_size - 1, trafo_depth + 1, idx, \
  1089. cbf_cb, cbf_cr); \
  1090. if (ret < 0) \
  1091. return ret; \
  1092. } while (0)
  1093. SUBDIVIDE(x0, y0, 0);
  1094. SUBDIVIDE(x1, y0, 1);
  1095. SUBDIVIDE(x0, y1, 2);
  1096. SUBDIVIDE(x1, y1, 3);
  1097. #undef SUBDIVIDE
  1098. } else {
  1099. int min_tu_size = 1 << s->ps.sps->log2_min_tb_size;
  1100. int log2_min_tu_size = s->ps.sps->log2_min_tb_size;
  1101. int min_tu_width = s->ps.sps->min_tb_width;
  1102. int cbf_luma = 1;
  1103. if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
  1104. cbf_cb[0] || cbf_cr[0] ||
  1105. (s->ps.sps->chroma_format_idc == 2 && (cbf_cb[1] || cbf_cr[1]))) {
  1106. cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
  1107. }
  1108. ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
  1109. log2_cb_size, log2_trafo_size,
  1110. blk_idx, cbf_luma, cbf_cb, cbf_cr);
  1111. if (ret < 0)
  1112. return ret;
  1113. // TODO: store cbf_luma somewhere else
  1114. if (cbf_luma) {
  1115. int i, j;
  1116. for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
  1117. for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
  1118. int x_tu = (x0 + j) >> log2_min_tu_size;
  1119. int y_tu = (y0 + i) >> log2_min_tu_size;
  1120. s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
  1121. }
  1122. }
  1123. if (!s->sh.disable_deblocking_filter_flag) {
  1124. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
  1125. if (s->ps.pps->transquant_bypass_enable_flag &&
  1126. lc->cu.cu_transquant_bypass_flag)
  1127. set_deblocking_bypass(s, x0, y0, log2_trafo_size);
  1128. }
  1129. }
  1130. return 0;
  1131. }
  1132. static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1133. {
  1134. HEVCLocalContext *lc = s->HEVClc;
  1135. GetBitContext gb;
  1136. int cb_size = 1 << log2_cb_size;
  1137. ptrdiff_t stride0 = s->frame->linesize[0];
  1138. ptrdiff_t stride1 = s->frame->linesize[1];
  1139. ptrdiff_t stride2 = s->frame->linesize[2];
  1140. uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->ps.sps->pixel_shift)];
  1141. uint8_t *dst1 = &s->frame->data[1][(y0 >> s->ps.sps->vshift[1]) * stride1 + ((x0 >> s->ps.sps->hshift[1]) << s->ps.sps->pixel_shift)];
  1142. uint8_t *dst2 = &s->frame->data[2][(y0 >> s->ps.sps->vshift[2]) * stride2 + ((x0 >> s->ps.sps->hshift[2]) << s->ps.sps->pixel_shift)];
  1143. int length = cb_size * cb_size * s->ps.sps->pcm.bit_depth +
  1144. (((cb_size >> s->ps.sps->hshift[1]) * (cb_size >> s->ps.sps->vshift[1])) +
  1145. ((cb_size >> s->ps.sps->hshift[2]) * (cb_size >> s->ps.sps->vshift[2]))) *
  1146. s->ps.sps->pcm.bit_depth_chroma;
  1147. const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
  1148. int ret;
  1149. if (!s->sh.disable_deblocking_filter_flag)
  1150. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1151. ret = init_get_bits(&gb, pcm, length);
  1152. if (ret < 0)
  1153. return ret;
  1154. s->hevcdsp.put_pcm(dst0, stride0, cb_size, cb_size, &gb, s->ps.sps->pcm.bit_depth);
  1155. if (s->ps.sps->chroma_format_idc) {
  1156. s->hevcdsp.put_pcm(dst1, stride1,
  1157. cb_size >> s->ps.sps->hshift[1],
  1158. cb_size >> s->ps.sps->vshift[1],
  1159. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1160. s->hevcdsp.put_pcm(dst2, stride2,
  1161. cb_size >> s->ps.sps->hshift[2],
  1162. cb_size >> s->ps.sps->vshift[2],
  1163. &gb, s->ps.sps->pcm.bit_depth_chroma);
  1164. }
  1165. return 0;
  1166. }
  1167. /**
  1168. * 8.5.3.2.2.1 Luma sample unidirectional interpolation process
  1169. *
  1170. * @param s HEVC decoding context
  1171. * @param dst target buffer for block data at block position
  1172. * @param dststride stride of the dst buffer
  1173. * @param ref reference picture buffer at origin (0, 0)
  1174. * @param mv motion vector (relative to block position) to get pixel data from
  1175. * @param x_off horizontal position of block from origin (0, 0)
  1176. * @param y_off vertical position of block from origin (0, 0)
  1177. * @param block_w width of block
  1178. * @param block_h height of block
  1179. * @param luma_weight weighting factor applied to the luma prediction
  1180. * @param luma_offset additive offset applied to the luma prediction value
  1181. */
  1182. static void luma_mc_uni(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1183. AVFrame *ref, const Mv *mv, int x_off, int y_off,
  1184. int block_w, int block_h, int luma_weight, int luma_offset)
  1185. {
  1186. HEVCLocalContext *lc = s->HEVClc;
  1187. uint8_t *src = ref->data[0];
  1188. ptrdiff_t srcstride = ref->linesize[0];
  1189. int pic_width = s->ps.sps->width;
  1190. int pic_height = s->ps.sps->height;
  1191. int mx = mv->x & 3;
  1192. int my = mv->y & 3;
  1193. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1194. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1195. int idx = ff_hevc_pel_weight[block_w];
  1196. x_off += mv->x >> 2;
  1197. y_off += mv->y >> 2;
  1198. src += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1199. if (x_off < QPEL_EXTRA_BEFORE || y_off < QPEL_EXTRA_AFTER ||
  1200. x_off >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1201. y_off >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1202. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1203. int offset = QPEL_EXTRA_BEFORE * srcstride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1204. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1205. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
  1206. edge_emu_stride, srcstride,
  1207. block_w + QPEL_EXTRA,
  1208. block_h + QPEL_EXTRA,
  1209. x_off - QPEL_EXTRA_BEFORE, y_off - QPEL_EXTRA_BEFORE,
  1210. pic_width, pic_height);
  1211. src = lc->edge_emu_buffer + buf_offset;
  1212. srcstride = edge_emu_stride;
  1213. }
  1214. if (!weight_flag)
  1215. s->hevcdsp.put_hevc_qpel_uni[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1216. block_h, mx, my, block_w);
  1217. else
  1218. s->hevcdsp.put_hevc_qpel_uni_w[idx][!!my][!!mx](dst, dststride, src, srcstride,
  1219. block_h, s->sh.luma_log2_weight_denom,
  1220. luma_weight, luma_offset, mx, my, block_w);
  1221. }
  1222. /**
  1223. * 8.5.3.2.2.1 Luma sample bidirectional interpolation process
  1224. *
  1225. * @param s HEVC decoding context
  1226. * @param dst target buffer for block data at block position
  1227. * @param dststride stride of the dst buffer
  1228. * @param ref0 reference picture0 buffer at origin (0, 0)
  1229. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1230. * @param x_off horizontal position of block from origin (0, 0)
  1231. * @param y_off vertical position of block from origin (0, 0)
  1232. * @param block_w width of block
  1233. * @param block_h height of block
  1234. * @param ref1 reference picture1 buffer at origin (0, 0)
  1235. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1236. * @param current_mv current motion vector structure
  1237. */
  1238. static void luma_mc_bi(HEVCContext *s, uint8_t *dst, ptrdiff_t dststride,
  1239. AVFrame *ref0, const Mv *mv0, int x_off, int y_off,
  1240. int block_w, int block_h, AVFrame *ref1, const Mv *mv1, struct MvField *current_mv)
  1241. {
  1242. HEVCLocalContext *lc = s->HEVClc;
  1243. ptrdiff_t src0stride = ref0->linesize[0];
  1244. ptrdiff_t src1stride = ref1->linesize[0];
  1245. int pic_width = s->ps.sps->width;
  1246. int pic_height = s->ps.sps->height;
  1247. int mx0 = mv0->x & 3;
  1248. int my0 = mv0->y & 3;
  1249. int mx1 = mv1->x & 3;
  1250. int my1 = mv1->y & 3;
  1251. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1252. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1253. int x_off0 = x_off + (mv0->x >> 2);
  1254. int y_off0 = y_off + (mv0->y >> 2);
  1255. int x_off1 = x_off + (mv1->x >> 2);
  1256. int y_off1 = y_off + (mv1->y >> 2);
  1257. int idx = ff_hevc_pel_weight[block_w];
  1258. uint8_t *src0 = ref0->data[0] + y_off0 * src0stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1259. uint8_t *src1 = ref1->data[0] + y_off1 * src1stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1260. if (x_off0 < QPEL_EXTRA_BEFORE || y_off0 < QPEL_EXTRA_AFTER ||
  1261. x_off0 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1262. y_off0 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1263. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1264. int offset = QPEL_EXTRA_BEFORE * src0stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1265. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1266. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset,
  1267. edge_emu_stride, src0stride,
  1268. block_w + QPEL_EXTRA,
  1269. block_h + QPEL_EXTRA,
  1270. x_off0 - QPEL_EXTRA_BEFORE, y_off0 - QPEL_EXTRA_BEFORE,
  1271. pic_width, pic_height);
  1272. src0 = lc->edge_emu_buffer + buf_offset;
  1273. src0stride = edge_emu_stride;
  1274. }
  1275. if (x_off1 < QPEL_EXTRA_BEFORE || y_off1 < QPEL_EXTRA_AFTER ||
  1276. x_off1 >= pic_width - block_w - QPEL_EXTRA_AFTER ||
  1277. y_off1 >= pic_height - block_h - QPEL_EXTRA_AFTER) {
  1278. const ptrdiff_t edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1279. int offset = QPEL_EXTRA_BEFORE * src1stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1280. int buf_offset = QPEL_EXTRA_BEFORE * edge_emu_stride + (QPEL_EXTRA_BEFORE << s->ps.sps->pixel_shift);
  1281. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src1 - offset,
  1282. edge_emu_stride, src1stride,
  1283. block_w + QPEL_EXTRA,
  1284. block_h + QPEL_EXTRA,
  1285. x_off1 - QPEL_EXTRA_BEFORE, y_off1 - QPEL_EXTRA_BEFORE,
  1286. pic_width, pic_height);
  1287. src1 = lc->edge_emu_buffer2 + buf_offset;
  1288. src1stride = edge_emu_stride;
  1289. }
  1290. s->hevcdsp.put_hevc_qpel[idx][!!my0][!!mx0](lc->tmp, src0, src0stride,
  1291. block_h, mx0, my0, block_w);
  1292. if (!weight_flag)
  1293. s->hevcdsp.put_hevc_qpel_bi[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1294. block_h, mx1, my1, block_w);
  1295. else
  1296. s->hevcdsp.put_hevc_qpel_bi_w[idx][!!my1][!!mx1](dst, dststride, src1, src1stride, lc->tmp,
  1297. block_h, s->sh.luma_log2_weight_denom,
  1298. s->sh.luma_weight_l0[current_mv->ref_idx[0]],
  1299. s->sh.luma_weight_l1[current_mv->ref_idx[1]],
  1300. s->sh.luma_offset_l0[current_mv->ref_idx[0]],
  1301. s->sh.luma_offset_l1[current_mv->ref_idx[1]],
  1302. mx1, my1, block_w);
  1303. }
  1304. /**
  1305. * 8.5.3.2.2.2 Chroma sample uniprediction interpolation process
  1306. *
  1307. * @param s HEVC decoding context
  1308. * @param dst1 target buffer for block data at block position (U plane)
  1309. * @param dst2 target buffer for block data at block position (V plane)
  1310. * @param dststride stride of the dst1 and dst2 buffers
  1311. * @param ref reference picture buffer at origin (0, 0)
  1312. * @param mv motion vector (relative to block position) to get pixel data from
  1313. * @param x_off horizontal position of block from origin (0, 0)
  1314. * @param y_off vertical position of block from origin (0, 0)
  1315. * @param block_w width of block
  1316. * @param block_h height of block
  1317. * @param chroma_weight weighting factor applied to the chroma prediction
  1318. * @param chroma_offset additive offset applied to the chroma prediction value
  1319. */
  1320. static void chroma_mc_uni(HEVCContext *s, uint8_t *dst0,
  1321. ptrdiff_t dststride, uint8_t *src0, ptrdiff_t srcstride, int reflist,
  1322. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int chroma_weight, int chroma_offset)
  1323. {
  1324. HEVCLocalContext *lc = s->HEVClc;
  1325. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1326. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1327. const Mv *mv = &current_mv->mv[reflist];
  1328. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1329. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1330. int idx = ff_hevc_pel_weight[block_w];
  1331. int hshift = s->ps.sps->hshift[1];
  1332. int vshift = s->ps.sps->vshift[1];
  1333. intptr_t mx = av_mod_uintp2(mv->x, 2 + hshift);
  1334. intptr_t my = av_mod_uintp2(mv->y, 2 + vshift);
  1335. intptr_t _mx = mx << (1 - hshift);
  1336. intptr_t _my = my << (1 - vshift);
  1337. x_off += mv->x >> (2 + hshift);
  1338. y_off += mv->y >> (2 + vshift);
  1339. src0 += y_off * srcstride + (x_off * (1 << s->ps.sps->pixel_shift));
  1340. if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
  1341. x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1342. y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1343. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1344. int offset0 = EPEL_EXTRA_BEFORE * (srcstride + (1 << s->ps.sps->pixel_shift));
  1345. int buf_offset0 = EPEL_EXTRA_BEFORE *
  1346. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1347. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src0 - offset0,
  1348. edge_emu_stride, srcstride,
  1349. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1350. x_off - EPEL_EXTRA_BEFORE,
  1351. y_off - EPEL_EXTRA_BEFORE,
  1352. pic_width, pic_height);
  1353. src0 = lc->edge_emu_buffer + buf_offset0;
  1354. srcstride = edge_emu_stride;
  1355. }
  1356. if (!weight_flag)
  1357. s->hevcdsp.put_hevc_epel_uni[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1358. block_h, _mx, _my, block_w);
  1359. else
  1360. s->hevcdsp.put_hevc_epel_uni_w[idx][!!my][!!mx](dst0, dststride, src0, srcstride,
  1361. block_h, s->sh.chroma_log2_weight_denom,
  1362. chroma_weight, chroma_offset, _mx, _my, block_w);
  1363. }
  1364. /**
  1365. * 8.5.3.2.2.2 Chroma sample bidirectional interpolation process
  1366. *
  1367. * @param s HEVC decoding context
  1368. * @param dst target buffer for block data at block position
  1369. * @param dststride stride of the dst buffer
  1370. * @param ref0 reference picture0 buffer at origin (0, 0)
  1371. * @param mv0 motion vector0 (relative to block position) to get pixel data from
  1372. * @param x_off horizontal position of block from origin (0, 0)
  1373. * @param y_off vertical position of block from origin (0, 0)
  1374. * @param block_w width of block
  1375. * @param block_h height of block
  1376. * @param ref1 reference picture1 buffer at origin (0, 0)
  1377. * @param mv1 motion vector1 (relative to block position) to get pixel data from
  1378. * @param current_mv current motion vector structure
  1379. * @param cidx chroma component(cb, cr)
  1380. */
  1381. static void chroma_mc_bi(HEVCContext *s, uint8_t *dst0, ptrdiff_t dststride, AVFrame *ref0, AVFrame *ref1,
  1382. int x_off, int y_off, int block_w, int block_h, struct MvField *current_mv, int cidx)
  1383. {
  1384. HEVCLocalContext *lc = s->HEVClc;
  1385. uint8_t *src1 = ref0->data[cidx+1];
  1386. uint8_t *src2 = ref1->data[cidx+1];
  1387. ptrdiff_t src1stride = ref0->linesize[cidx+1];
  1388. ptrdiff_t src2stride = ref1->linesize[cidx+1];
  1389. int weight_flag = (s->sh.slice_type == HEVC_SLICE_P && s->ps.pps->weighted_pred_flag) ||
  1390. (s->sh.slice_type == HEVC_SLICE_B && s->ps.pps->weighted_bipred_flag);
  1391. int pic_width = s->ps.sps->width >> s->ps.sps->hshift[1];
  1392. int pic_height = s->ps.sps->height >> s->ps.sps->vshift[1];
  1393. Mv *mv0 = &current_mv->mv[0];
  1394. Mv *mv1 = &current_mv->mv[1];
  1395. int hshift = s->ps.sps->hshift[1];
  1396. int vshift = s->ps.sps->vshift[1];
  1397. intptr_t mx0 = av_mod_uintp2(mv0->x, 2 + hshift);
  1398. intptr_t my0 = av_mod_uintp2(mv0->y, 2 + vshift);
  1399. intptr_t mx1 = av_mod_uintp2(mv1->x, 2 + hshift);
  1400. intptr_t my1 = av_mod_uintp2(mv1->y, 2 + vshift);
  1401. intptr_t _mx0 = mx0 << (1 - hshift);
  1402. intptr_t _my0 = my0 << (1 - vshift);
  1403. intptr_t _mx1 = mx1 << (1 - hshift);
  1404. intptr_t _my1 = my1 << (1 - vshift);
  1405. int x_off0 = x_off + (mv0->x >> (2 + hshift));
  1406. int y_off0 = y_off + (mv0->y >> (2 + vshift));
  1407. int x_off1 = x_off + (mv1->x >> (2 + hshift));
  1408. int y_off1 = y_off + (mv1->y >> (2 + vshift));
  1409. int idx = ff_hevc_pel_weight[block_w];
  1410. src1 += y_off0 * src1stride + (int)((unsigned)x_off0 << s->ps.sps->pixel_shift);
  1411. src2 += y_off1 * src2stride + (int)((unsigned)x_off1 << s->ps.sps->pixel_shift);
  1412. if (x_off0 < EPEL_EXTRA_BEFORE || y_off0 < EPEL_EXTRA_AFTER ||
  1413. x_off0 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1414. y_off0 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1415. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1416. int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->ps.sps->pixel_shift));
  1417. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1418. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1419. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
  1420. edge_emu_stride, src1stride,
  1421. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1422. x_off0 - EPEL_EXTRA_BEFORE,
  1423. y_off0 - EPEL_EXTRA_BEFORE,
  1424. pic_width, pic_height);
  1425. src1 = lc->edge_emu_buffer + buf_offset1;
  1426. src1stride = edge_emu_stride;
  1427. }
  1428. if (x_off1 < EPEL_EXTRA_BEFORE || y_off1 < EPEL_EXTRA_AFTER ||
  1429. x_off1 >= pic_width - block_w - EPEL_EXTRA_AFTER ||
  1430. y_off1 >= pic_height - block_h - EPEL_EXTRA_AFTER) {
  1431. const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->ps.sps->pixel_shift;
  1432. int offset1 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->ps.sps->pixel_shift));
  1433. int buf_offset1 = EPEL_EXTRA_BEFORE *
  1434. (edge_emu_stride + (1 << s->ps.sps->pixel_shift));
  1435. s->vdsp.emulated_edge_mc(lc->edge_emu_buffer2, src2 - offset1,
  1436. edge_emu_stride, src2stride,
  1437. block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
  1438. x_off1 - EPEL_EXTRA_BEFORE,
  1439. y_off1 - EPEL_EXTRA_BEFORE,
  1440. pic_width, pic_height);
  1441. src2 = lc->edge_emu_buffer2 + buf_offset1;
  1442. src2stride = edge_emu_stride;
  1443. }
  1444. s->hevcdsp.put_hevc_epel[idx][!!my0][!!mx0](lc->tmp, src1, src1stride,
  1445. block_h, _mx0, _my0, block_w);
  1446. if (!weight_flag)
  1447. s->hevcdsp.put_hevc_epel_bi[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1448. src2, src2stride, lc->tmp,
  1449. block_h, _mx1, _my1, block_w);
  1450. else
  1451. s->hevcdsp.put_hevc_epel_bi_w[idx][!!my1][!!mx1](dst0, s->frame->linesize[cidx+1],
  1452. src2, src2stride, lc->tmp,
  1453. block_h,
  1454. s->sh.chroma_log2_weight_denom,
  1455. s->sh.chroma_weight_l0[current_mv->ref_idx[0]][cidx],
  1456. s->sh.chroma_weight_l1[current_mv->ref_idx[1]][cidx],
  1457. s->sh.chroma_offset_l0[current_mv->ref_idx[0]][cidx],
  1458. s->sh.chroma_offset_l1[current_mv->ref_idx[1]][cidx],
  1459. _mx1, _my1, block_w);
  1460. }
  1461. static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
  1462. const Mv *mv, int y0, int height)
  1463. {
  1464. int y = FFMAX(0, (mv->y >> 2) + y0 + height + 9);
  1465. if (s->threads_type == FF_THREAD_FRAME )
  1466. ff_thread_await_progress(&ref->tf, y, 0);
  1467. }
  1468. static void hevc_luma_mv_mvp_mode(HEVCContext *s, int x0, int y0, int nPbW,
  1469. int nPbH, int log2_cb_size, int part_idx,
  1470. int merge_idx, MvField *mv)
  1471. {
  1472. HEVCLocalContext *lc = s->HEVClc;
  1473. enum InterPredIdc inter_pred_idc = PRED_L0;
  1474. int mvp_flag;
  1475. ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
  1476. mv->pred_flag = 0;
  1477. if (s->sh.slice_type == HEVC_SLICE_B)
  1478. inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
  1479. if (inter_pred_idc != PRED_L1) {
  1480. if (s->sh.nb_refs[L0])
  1481. mv->ref_idx[0]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
  1482. mv->pred_flag = PF_L0;
  1483. ff_hevc_hls_mvd_coding(s, x0, y0, 0);
  1484. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1485. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1486. part_idx, merge_idx, mv, mvp_flag, 0);
  1487. mv->mv[0].x += lc->pu.mvd.x;
  1488. mv->mv[0].y += lc->pu.mvd.y;
  1489. }
  1490. if (inter_pred_idc != PRED_L0) {
  1491. if (s->sh.nb_refs[L1])
  1492. mv->ref_idx[1]= ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
  1493. if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
  1494. AV_ZERO32(&lc->pu.mvd);
  1495. } else {
  1496. ff_hevc_hls_mvd_coding(s, x0, y0, 1);
  1497. }
  1498. mv->pred_flag += PF_L1;
  1499. mvp_flag = ff_hevc_mvp_lx_flag_decode(s);
  1500. ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1501. part_idx, merge_idx, mv, mvp_flag, 1);
  1502. mv->mv[1].x += lc->pu.mvd.x;
  1503. mv->mv[1].y += lc->pu.mvd.y;
  1504. }
  1505. }
  1506. static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
  1507. int nPbW, int nPbH,
  1508. int log2_cb_size, int partIdx, int idx)
  1509. {
  1510. #define POS(c_idx, x, y) \
  1511. &s->frame->data[c_idx][((y) >> s->ps.sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
  1512. (((x) >> s->ps.sps->hshift[c_idx]) << s->ps.sps->pixel_shift)]
  1513. HEVCLocalContext *lc = s->HEVClc;
  1514. int merge_idx = 0;
  1515. struct MvField current_mv = {{{ 0 }}};
  1516. int min_pu_width = s->ps.sps->min_pu_width;
  1517. MvField *tab_mvf = s->ref->tab_mvf;
  1518. RefPicList *refPicList = s->ref->refPicList;
  1519. HEVCFrame *ref0 = NULL, *ref1 = NULL;
  1520. uint8_t *dst0 = POS(0, x0, y0);
  1521. uint8_t *dst1 = POS(1, x0, y0);
  1522. uint8_t *dst2 = POS(2, x0, y0);
  1523. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1524. int min_cb_width = s->ps.sps->min_cb_width;
  1525. int x_cb = x0 >> log2_min_cb_size;
  1526. int y_cb = y0 >> log2_min_cb_size;
  1527. int x_pu, y_pu;
  1528. int i, j;
  1529. int skip_flag = SAMPLE_CTB(s->skip_flag, x_cb, y_cb);
  1530. if (!skip_flag)
  1531. lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
  1532. if (skip_flag || lc->pu.merge_flag) {
  1533. if (s->sh.max_num_merge_cand > 1)
  1534. merge_idx = ff_hevc_merge_idx_decode(s);
  1535. else
  1536. merge_idx = 0;
  1537. ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1538. partIdx, merge_idx, &current_mv);
  1539. } else {
  1540. hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
  1541. partIdx, merge_idx, &current_mv);
  1542. }
  1543. x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1544. y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1545. for (j = 0; j < nPbH >> s->ps.sps->log2_min_pu_size; j++)
  1546. for (i = 0; i < nPbW >> s->ps.sps->log2_min_pu_size; i++)
  1547. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
  1548. if (current_mv.pred_flag & PF_L0) {
  1549. ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
  1550. if (!ref0)
  1551. return;
  1552. hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
  1553. }
  1554. if (current_mv.pred_flag & PF_L1) {
  1555. ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
  1556. if (!ref1)
  1557. return;
  1558. hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
  1559. }
  1560. if (current_mv.pred_flag == PF_L0) {
  1561. int x0_c = x0 >> s->ps.sps->hshift[1];
  1562. int y0_c = y0 >> s->ps.sps->vshift[1];
  1563. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1564. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1565. luma_mc_uni(s, dst0, s->frame->linesize[0], ref0->frame,
  1566. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1567. s->sh.luma_weight_l0[current_mv.ref_idx[0]],
  1568. s->sh.luma_offset_l0[current_mv.ref_idx[0]]);
  1569. if (s->ps.sps->chroma_format_idc) {
  1570. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref0->frame->data[1], ref0->frame->linesize[1],
  1571. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1572. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0]);
  1573. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref0->frame->data[2], ref0->frame->linesize[2],
  1574. 0, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1575. s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1], s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1]);
  1576. }
  1577. } else if (current_mv.pred_flag == PF_L1) {
  1578. int x0_c = x0 >> s->ps.sps->hshift[1];
  1579. int y0_c = y0 >> s->ps.sps->vshift[1];
  1580. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1581. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1582. luma_mc_uni(s, dst0, s->frame->linesize[0], ref1->frame,
  1583. &current_mv.mv[1], x0, y0, nPbW, nPbH,
  1584. s->sh.luma_weight_l1[current_mv.ref_idx[1]],
  1585. s->sh.luma_offset_l1[current_mv.ref_idx[1]]);
  1586. if (s->ps.sps->chroma_format_idc) {
  1587. chroma_mc_uni(s, dst1, s->frame->linesize[1], ref1->frame->data[1], ref1->frame->linesize[1],
  1588. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1589. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0]);
  1590. chroma_mc_uni(s, dst2, s->frame->linesize[2], ref1->frame->data[2], ref1->frame->linesize[2],
  1591. 1, x0_c, y0_c, nPbW_c, nPbH_c, &current_mv,
  1592. s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1], s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1]);
  1593. }
  1594. } else if (current_mv.pred_flag == PF_BI) {
  1595. int x0_c = x0 >> s->ps.sps->hshift[1];
  1596. int y0_c = y0 >> s->ps.sps->vshift[1];
  1597. int nPbW_c = nPbW >> s->ps.sps->hshift[1];
  1598. int nPbH_c = nPbH >> s->ps.sps->vshift[1];
  1599. luma_mc_bi(s, dst0, s->frame->linesize[0], ref0->frame,
  1600. &current_mv.mv[0], x0, y0, nPbW, nPbH,
  1601. ref1->frame, &current_mv.mv[1], &current_mv);
  1602. if (s->ps.sps->chroma_format_idc) {
  1603. chroma_mc_bi(s, dst1, s->frame->linesize[1], ref0->frame, ref1->frame,
  1604. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 0);
  1605. chroma_mc_bi(s, dst2, s->frame->linesize[2], ref0->frame, ref1->frame,
  1606. x0_c, y0_c, nPbW_c, nPbH_c, &current_mv, 1);
  1607. }
  1608. }
  1609. }
  1610. /**
  1611. * 8.4.1
  1612. */
  1613. static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
  1614. int prev_intra_luma_pred_flag)
  1615. {
  1616. HEVCLocalContext *lc = s->HEVClc;
  1617. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1618. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1619. int min_pu_width = s->ps.sps->min_pu_width;
  1620. int size_in_pus = pu_size >> s->ps.sps->log2_min_pu_size;
  1621. int x0b = av_mod_uintp2(x0, s->ps.sps->log2_ctb_size);
  1622. int y0b = av_mod_uintp2(y0, s->ps.sps->log2_ctb_size);
  1623. int cand_up = (lc->ctb_up_flag || y0b) ?
  1624. s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
  1625. int cand_left = (lc->ctb_left_flag || x0b) ?
  1626. s->tab_ipm[y_pu * min_pu_width + x_pu - 1] : INTRA_DC;
  1627. int y_ctb = (y0 >> (s->ps.sps->log2_ctb_size)) << (s->ps.sps->log2_ctb_size);
  1628. MvField *tab_mvf = s->ref->tab_mvf;
  1629. int intra_pred_mode;
  1630. int candidate[3];
  1631. int i, j;
  1632. // intra_pred_mode prediction does not cross vertical CTB boundaries
  1633. if ((y0 - 1) < y_ctb)
  1634. cand_up = INTRA_DC;
  1635. if (cand_left == cand_up) {
  1636. if (cand_left < 2) {
  1637. candidate[0] = INTRA_PLANAR;
  1638. candidate[1] = INTRA_DC;
  1639. candidate[2] = INTRA_ANGULAR_26;
  1640. } else {
  1641. candidate[0] = cand_left;
  1642. candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
  1643. candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
  1644. }
  1645. } else {
  1646. candidate[0] = cand_left;
  1647. candidate[1] = cand_up;
  1648. if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
  1649. candidate[2] = INTRA_PLANAR;
  1650. } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
  1651. candidate[2] = INTRA_DC;
  1652. } else {
  1653. candidate[2] = INTRA_ANGULAR_26;
  1654. }
  1655. }
  1656. if (prev_intra_luma_pred_flag) {
  1657. intra_pred_mode = candidate[lc->pu.mpm_idx];
  1658. } else {
  1659. if (candidate[0] > candidate[1])
  1660. FFSWAP(uint8_t, candidate[0], candidate[1]);
  1661. if (candidate[0] > candidate[2])
  1662. FFSWAP(uint8_t, candidate[0], candidate[2]);
  1663. if (candidate[1] > candidate[2])
  1664. FFSWAP(uint8_t, candidate[1], candidate[2]);
  1665. intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
  1666. for (i = 0; i < 3; i++)
  1667. if (intra_pred_mode >= candidate[i])
  1668. intra_pred_mode++;
  1669. }
  1670. /* write the intra prediction units into the mv array */
  1671. if (!size_in_pus)
  1672. size_in_pus = 1;
  1673. for (i = 0; i < size_in_pus; i++) {
  1674. memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
  1675. intra_pred_mode, size_in_pus);
  1676. for (j = 0; j < size_in_pus; j++) {
  1677. tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag = PF_INTRA;
  1678. }
  1679. }
  1680. return intra_pred_mode;
  1681. }
  1682. static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
  1683. int log2_cb_size, int ct_depth)
  1684. {
  1685. int length = (1 << log2_cb_size) >> s->ps.sps->log2_min_cb_size;
  1686. int x_cb = x0 >> s->ps.sps->log2_min_cb_size;
  1687. int y_cb = y0 >> s->ps.sps->log2_min_cb_size;
  1688. int y;
  1689. for (y = 0; y < length; y++)
  1690. memset(&s->tab_ct_depth[(y_cb + y) * s->ps.sps->min_cb_width + x_cb],
  1691. ct_depth, length);
  1692. }
  1693. static const uint8_t tab_mode_idx[] = {
  1694. 0, 1, 2, 2, 2, 2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 18, 19, 20,
  1695. 21, 22, 23, 23, 24, 24, 25, 25, 26, 27, 27, 28, 28, 29, 29, 30, 31};
  1696. static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
  1697. int log2_cb_size)
  1698. {
  1699. HEVCLocalContext *lc = s->HEVClc;
  1700. static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
  1701. uint8_t prev_intra_luma_pred_flag[4];
  1702. int split = lc->cu.part_mode == PART_NxN;
  1703. int pb_size = (1 << log2_cb_size) >> split;
  1704. int side = split + 1;
  1705. int chroma_mode;
  1706. int i, j;
  1707. for (i = 0; i < side; i++)
  1708. for (j = 0; j < side; j++)
  1709. prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
  1710. for (i = 0; i < side; i++) {
  1711. for (j = 0; j < side; j++) {
  1712. if (prev_intra_luma_pred_flag[2 * i + j])
  1713. lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
  1714. else
  1715. lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
  1716. lc->pu.intra_pred_mode[2 * i + j] =
  1717. luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
  1718. prev_intra_luma_pred_flag[2 * i + j]);
  1719. }
  1720. }
  1721. if (s->ps.sps->chroma_format_idc == 3) {
  1722. for (i = 0; i < side; i++) {
  1723. for (j = 0; j < side; j++) {
  1724. lc->pu.chroma_mode_c[2 * i + j] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1725. if (chroma_mode != 4) {
  1726. if (lc->pu.intra_pred_mode[2 * i + j] == intra_chroma_table[chroma_mode])
  1727. lc->pu.intra_pred_mode_c[2 * i + j] = 34;
  1728. else
  1729. lc->pu.intra_pred_mode_c[2 * i + j] = intra_chroma_table[chroma_mode];
  1730. } else {
  1731. lc->pu.intra_pred_mode_c[2 * i + j] = lc->pu.intra_pred_mode[2 * i + j];
  1732. }
  1733. }
  1734. }
  1735. } else if (s->ps.sps->chroma_format_idc == 2) {
  1736. int mode_idx;
  1737. lc->pu.chroma_mode_c[0] = chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1738. if (chroma_mode != 4) {
  1739. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1740. mode_idx = 34;
  1741. else
  1742. mode_idx = intra_chroma_table[chroma_mode];
  1743. } else {
  1744. mode_idx = lc->pu.intra_pred_mode[0];
  1745. }
  1746. lc->pu.intra_pred_mode_c[0] = tab_mode_idx[mode_idx];
  1747. } else if (s->ps.sps->chroma_format_idc != 0) {
  1748. chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
  1749. if (chroma_mode != 4) {
  1750. if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
  1751. lc->pu.intra_pred_mode_c[0] = 34;
  1752. else
  1753. lc->pu.intra_pred_mode_c[0] = intra_chroma_table[chroma_mode];
  1754. } else {
  1755. lc->pu.intra_pred_mode_c[0] = lc->pu.intra_pred_mode[0];
  1756. }
  1757. }
  1758. }
  1759. static void intra_prediction_unit_default_value(HEVCContext *s,
  1760. int x0, int y0,
  1761. int log2_cb_size)
  1762. {
  1763. HEVCLocalContext *lc = s->HEVClc;
  1764. int pb_size = 1 << log2_cb_size;
  1765. int size_in_pus = pb_size >> s->ps.sps->log2_min_pu_size;
  1766. int min_pu_width = s->ps.sps->min_pu_width;
  1767. MvField *tab_mvf = s->ref->tab_mvf;
  1768. int x_pu = x0 >> s->ps.sps->log2_min_pu_size;
  1769. int y_pu = y0 >> s->ps.sps->log2_min_pu_size;
  1770. int j, k;
  1771. if (size_in_pus == 0)
  1772. size_in_pus = 1;
  1773. for (j = 0; j < size_in_pus; j++)
  1774. memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
  1775. if (lc->cu.pred_mode == MODE_INTRA)
  1776. for (j = 0; j < size_in_pus; j++)
  1777. for (k = 0; k < size_in_pus; k++)
  1778. tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].pred_flag = PF_INTRA;
  1779. }
  1780. static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
  1781. {
  1782. int cb_size = 1 << log2_cb_size;
  1783. HEVCLocalContext *lc = s->HEVClc;
  1784. int log2_min_cb_size = s->ps.sps->log2_min_cb_size;
  1785. int length = cb_size >> log2_min_cb_size;
  1786. int min_cb_width = s->ps.sps->min_cb_width;
  1787. int x_cb = x0 >> log2_min_cb_size;
  1788. int y_cb = y0 >> log2_min_cb_size;
  1789. int idx = log2_cb_size - 2;
  1790. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1791. int x, y, ret;
  1792. lc->cu.x = x0;
  1793. lc->cu.y = y0;
  1794. lc->cu.pred_mode = MODE_INTRA;
  1795. lc->cu.part_mode = PART_2Nx2N;
  1796. lc->cu.intra_split_flag = 0;
  1797. SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
  1798. for (x = 0; x < 4; x++)
  1799. lc->pu.intra_pred_mode[x] = 1;
  1800. if (s->ps.pps->transquant_bypass_enable_flag) {
  1801. lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
  1802. if (lc->cu.cu_transquant_bypass_flag)
  1803. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1804. } else
  1805. lc->cu.cu_transquant_bypass_flag = 0;
  1806. if (s->sh.slice_type != HEVC_SLICE_I) {
  1807. uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
  1808. x = y_cb * min_cb_width + x_cb;
  1809. for (y = 0; y < length; y++) {
  1810. memset(&s->skip_flag[x], skip_flag, length);
  1811. x += min_cb_width;
  1812. }
  1813. lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
  1814. } else {
  1815. x = y_cb * min_cb_width + x_cb;
  1816. for (y = 0; y < length; y++) {
  1817. memset(&s->skip_flag[x], 0, length);
  1818. x += min_cb_width;
  1819. }
  1820. }
  1821. if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
  1822. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1823. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1824. if (!s->sh.disable_deblocking_filter_flag)
  1825. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1826. } else {
  1827. int pcm_flag = 0;
  1828. if (s->sh.slice_type != HEVC_SLICE_I)
  1829. lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
  1830. if (lc->cu.pred_mode != MODE_INTRA ||
  1831. log2_cb_size == s->ps.sps->log2_min_cb_size) {
  1832. lc->cu.part_mode = ff_hevc_part_mode_decode(s, log2_cb_size);
  1833. lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
  1834. lc->cu.pred_mode == MODE_INTRA;
  1835. }
  1836. if (lc->cu.pred_mode == MODE_INTRA) {
  1837. if (lc->cu.part_mode == PART_2Nx2N && s->ps.sps->pcm_enabled_flag &&
  1838. log2_cb_size >= s->ps.sps->pcm.log2_min_pcm_cb_size &&
  1839. log2_cb_size <= s->ps.sps->pcm.log2_max_pcm_cb_size) {
  1840. pcm_flag = ff_hevc_pcm_flag_decode(s);
  1841. }
  1842. if (pcm_flag) {
  1843. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1844. ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
  1845. if (s->ps.sps->pcm.loop_filter_disable_flag)
  1846. set_deblocking_bypass(s, x0, y0, log2_cb_size);
  1847. if (ret < 0)
  1848. return ret;
  1849. } else {
  1850. intra_prediction_unit(s, x0, y0, log2_cb_size);
  1851. }
  1852. } else {
  1853. intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
  1854. switch (lc->cu.part_mode) {
  1855. case PART_2Nx2N:
  1856. hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0, idx);
  1857. break;
  1858. case PART_2NxN:
  1859. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 2, log2_cb_size, 0, idx);
  1860. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1, idx);
  1861. break;
  1862. case PART_Nx2N:
  1863. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size, log2_cb_size, 0, idx - 1);
  1864. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1, idx - 1);
  1865. break;
  1866. case PART_2NxnU:
  1867. hls_prediction_unit(s, x0, y0, cb_size, cb_size / 4, log2_cb_size, 0, idx);
  1868. hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1, idx);
  1869. break;
  1870. case PART_2NxnD:
  1871. hls_prediction_unit(s, x0, y0, cb_size, cb_size * 3 / 4, log2_cb_size, 0, idx);
  1872. hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size / 4, log2_cb_size, 1, idx);
  1873. break;
  1874. case PART_nLx2N:
  1875. hls_prediction_unit(s, x0, y0, cb_size / 4, cb_size, log2_cb_size, 0, idx - 2);
  1876. hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1, idx - 2);
  1877. break;
  1878. case PART_nRx2N:
  1879. hls_prediction_unit(s, x0, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0, idx - 2);
  1880. hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size / 4, cb_size, log2_cb_size, 1, idx - 2);
  1881. break;
  1882. case PART_NxN:
  1883. hls_prediction_unit(s, x0, y0, cb_size / 2, cb_size / 2, log2_cb_size, 0, idx - 1);
  1884. hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size / 2, log2_cb_size, 1, idx - 1);
  1885. hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2, idx - 1);
  1886. hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3, idx - 1);
  1887. break;
  1888. }
  1889. }
  1890. if (!pcm_flag) {
  1891. int rqt_root_cbf = 1;
  1892. if (lc->cu.pred_mode != MODE_INTRA &&
  1893. !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
  1894. rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
  1895. }
  1896. if (rqt_root_cbf) {
  1897. const static int cbf[2] = { 0 };
  1898. lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
  1899. s->ps.sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
  1900. s->ps.sps->max_transform_hierarchy_depth_inter;
  1901. ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
  1902. log2_cb_size,
  1903. log2_cb_size, 0, 0, cbf, cbf);
  1904. if (ret < 0)
  1905. return ret;
  1906. } else {
  1907. if (!s->sh.disable_deblocking_filter_flag)
  1908. ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
  1909. }
  1910. }
  1911. }
  1912. if (s->ps.pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
  1913. ff_hevc_set_qPy(s, x0, y0, log2_cb_size);
  1914. x = y_cb * min_cb_width + x_cb;
  1915. for (y = 0; y < length; y++) {
  1916. memset(&s->qp_y_tab[x], lc->qp_y, length);
  1917. x += min_cb_width;
  1918. }
  1919. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1920. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0) {
  1921. lc->qPy_pred = lc->qp_y;
  1922. }
  1923. set_ct_depth(s, x0, y0, log2_cb_size, lc->ct_depth);
  1924. return 0;
  1925. }
  1926. static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
  1927. int log2_cb_size, int cb_depth)
  1928. {
  1929. HEVCLocalContext *lc = s->HEVClc;
  1930. const int cb_size = 1 << log2_cb_size;
  1931. int ret;
  1932. int split_cu;
  1933. lc->ct_depth = cb_depth;
  1934. if (x0 + cb_size <= s->ps.sps->width &&
  1935. y0 + cb_size <= s->ps.sps->height &&
  1936. log2_cb_size > s->ps.sps->log2_min_cb_size) {
  1937. split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
  1938. } else {
  1939. split_cu = (log2_cb_size > s->ps.sps->log2_min_cb_size);
  1940. }
  1941. if (s->ps.pps->cu_qp_delta_enabled_flag &&
  1942. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth) {
  1943. lc->tu.is_cu_qp_delta_coded = 0;
  1944. lc->tu.cu_qp_delta = 0;
  1945. }
  1946. if (s->sh.cu_chroma_qp_offset_enabled_flag &&
  1947. log2_cb_size >= s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_chroma_qp_offset_depth) {
  1948. lc->tu.is_cu_chroma_qp_offset_coded = 0;
  1949. }
  1950. if (split_cu) {
  1951. int qp_block_mask = (1<<(s->ps.sps->log2_ctb_size - s->ps.pps->diff_cu_qp_delta_depth)) - 1;
  1952. const int cb_size_split = cb_size >> 1;
  1953. const int x1 = x0 + cb_size_split;
  1954. const int y1 = y0 + cb_size_split;
  1955. int more_data = 0;
  1956. more_data = hls_coding_quadtree(s, x0, y0, log2_cb_size - 1, cb_depth + 1);
  1957. if (more_data < 0)
  1958. return more_data;
  1959. if (more_data && x1 < s->ps.sps->width) {
  1960. more_data = hls_coding_quadtree(s, x1, y0, log2_cb_size - 1, cb_depth + 1);
  1961. if (more_data < 0)
  1962. return more_data;
  1963. }
  1964. if (more_data && y1 < s->ps.sps->height) {
  1965. more_data = hls_coding_quadtree(s, x0, y1, log2_cb_size - 1, cb_depth + 1);
  1966. if (more_data < 0)
  1967. return more_data;
  1968. }
  1969. if (more_data && x1 < s->ps.sps->width &&
  1970. y1 < s->ps.sps->height) {
  1971. more_data = hls_coding_quadtree(s, x1, y1, log2_cb_size - 1, cb_depth + 1);
  1972. if (more_data < 0)
  1973. return more_data;
  1974. }
  1975. if(((x0 + (1<<log2_cb_size)) & qp_block_mask) == 0 &&
  1976. ((y0 + (1<<log2_cb_size)) & qp_block_mask) == 0)
  1977. lc->qPy_pred = lc->qp_y;
  1978. if (more_data)
  1979. return ((x1 + cb_size_split) < s->ps.sps->width ||
  1980. (y1 + cb_size_split) < s->ps.sps->height);
  1981. else
  1982. return 0;
  1983. } else {
  1984. ret = hls_coding_unit(s, x0, y0, log2_cb_size);
  1985. if (ret < 0)
  1986. return ret;
  1987. if ((!((x0 + cb_size) %
  1988. (1 << (s->ps.sps->log2_ctb_size))) ||
  1989. (x0 + cb_size >= s->ps.sps->width)) &&
  1990. (!((y0 + cb_size) %
  1991. (1 << (s->ps.sps->log2_ctb_size))) ||
  1992. (y0 + cb_size >= s->ps.sps->height))) {
  1993. int end_of_slice_flag = ff_hevc_end_of_slice_flag_decode(s);
  1994. return !end_of_slice_flag;
  1995. } else {
  1996. return 1;
  1997. }
  1998. }
  1999. return 0;
  2000. }
  2001. static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
  2002. int ctb_addr_ts)
  2003. {
  2004. HEVCLocalContext *lc = s->HEVClc;
  2005. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2006. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2007. int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
  2008. s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
  2009. if (s->ps.pps->entropy_coding_sync_enabled_flag) {
  2010. if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
  2011. lc->first_qp_group = 1;
  2012. lc->end_of_tiles_x = s->ps.sps->width;
  2013. } else if (s->ps.pps->tiles_enabled_flag) {
  2014. if (ctb_addr_ts && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[ctb_addr_ts - 1]) {
  2015. int idxX = s->ps.pps->col_idxX[x_ctb >> s->ps.sps->log2_ctb_size];
  2016. lc->end_of_tiles_x = x_ctb + (s->ps.pps->column_width[idxX] << s->ps.sps->log2_ctb_size);
  2017. lc->first_qp_group = 1;
  2018. }
  2019. } else {
  2020. lc->end_of_tiles_x = s->ps.sps->width;
  2021. }
  2022. lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->ps.sps->height);
  2023. lc->boundary_flags = 0;
  2024. if (s->ps.pps->tiles_enabled_flag) {
  2025. if (x_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
  2026. lc->boundary_flags |= BOUNDARY_LEFT_TILE;
  2027. if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
  2028. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2029. if (y_ctb > 0 && s->ps.pps->tile_id[ctb_addr_ts] != s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->ps.sps->ctb_width]])
  2030. lc->boundary_flags |= BOUNDARY_UPPER_TILE;
  2031. if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->ps.sps->ctb_width])
  2032. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2033. } else {
  2034. if (ctb_addr_in_slice <= 0)
  2035. lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
  2036. if (ctb_addr_in_slice < s->ps.sps->ctb_width)
  2037. lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
  2038. }
  2039. lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
  2040. lc->ctb_up_flag = ((y_ctb > 0) && (ctb_addr_in_slice >= s->ps.sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
  2041. lc->ctb_up_right_flag = ((y_ctb > 0) && (ctb_addr_in_slice+1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->ps.sps->ctb_width]]));
  2042. lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0) && (ctb_addr_in_slice-1 >= s->ps.sps->ctb_width) && (s->ps.pps->tile_id[ctb_addr_ts] == s->ps.pps->tile_id[s->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->ps.sps->ctb_width]]));
  2043. }
  2044. static int hls_decode_entry(AVCodecContext *avctxt, void *isFilterThread)
  2045. {
  2046. HEVCContext *s = avctxt->priv_data;
  2047. int ctb_size = 1 << s->ps.sps->log2_ctb_size;
  2048. int more_data = 1;
  2049. int x_ctb = 0;
  2050. int y_ctb = 0;
  2051. int ctb_addr_ts = s->ps.pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
  2052. if (!ctb_addr_ts && s->sh.dependent_slice_segment_flag) {
  2053. av_log(s->avctx, AV_LOG_ERROR, "Impossible initial tile.\n");
  2054. return AVERROR_INVALIDDATA;
  2055. }
  2056. if (s->sh.dependent_slice_segment_flag) {
  2057. int prev_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts - 1];
  2058. if (s->tab_slice_address[prev_rs] != s->sh.slice_addr) {
  2059. av_log(s->avctx, AV_LOG_ERROR, "Previous slice segment missing\n");
  2060. return AVERROR_INVALIDDATA;
  2061. }
  2062. }
  2063. while (more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2064. int ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2065. x_ctb = (ctb_addr_rs % ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2066. y_ctb = (ctb_addr_rs / ((s->ps.sps->width + ctb_size - 1) >> s->ps.sps->log2_ctb_size)) << s->ps.sps->log2_ctb_size;
  2067. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2068. ff_hevc_cabac_init(s, ctb_addr_ts);
  2069. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2070. s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
  2071. s->deblock[ctb_addr_rs].tc_offset = s->sh.tc_offset;
  2072. s->filter_slice_edges[ctb_addr_rs] = s->sh.slice_loop_filter_across_slices_enabled_flag;
  2073. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2074. if (more_data < 0) {
  2075. s->tab_slice_address[ctb_addr_rs] = -1;
  2076. return more_data;
  2077. }
  2078. ctb_addr_ts++;
  2079. ff_hevc_save_states(s, ctb_addr_ts);
  2080. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2081. }
  2082. if (x_ctb + ctb_size >= s->ps.sps->width &&
  2083. y_ctb + ctb_size >= s->ps.sps->height)
  2084. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2085. return ctb_addr_ts;
  2086. }
  2087. static int hls_slice_data(HEVCContext *s)
  2088. {
  2089. int arg[2];
  2090. int ret[2];
  2091. arg[0] = 0;
  2092. arg[1] = 1;
  2093. s->avctx->execute(s->avctx, hls_decode_entry, arg, ret , 1, sizeof(int));
  2094. return ret[0];
  2095. }
  2096. static int hls_decode_entry_wpp(AVCodecContext *avctxt, void *input_ctb_row, int job, int self_id)
  2097. {
  2098. HEVCContext *s1 = avctxt->priv_data, *s;
  2099. HEVCLocalContext *lc;
  2100. int ctb_size = 1<< s1->ps.sps->log2_ctb_size;
  2101. int more_data = 1;
  2102. int *ctb_row_p = input_ctb_row;
  2103. int ctb_row = ctb_row_p[job];
  2104. int ctb_addr_rs = s1->sh.slice_ctb_addr_rs + ctb_row * ((s1->ps.sps->width + ctb_size - 1) >> s1->ps.sps->log2_ctb_size);
  2105. int ctb_addr_ts = s1->ps.pps->ctb_addr_rs_to_ts[ctb_addr_rs];
  2106. int thread = ctb_row % s1->threads_number;
  2107. int ret;
  2108. s = s1->sList[self_id];
  2109. lc = s->HEVClc;
  2110. if(ctb_row) {
  2111. ret = init_get_bits8(&lc->gb, s->data + s->sh.offset[ctb_row - 1], s->sh.size[ctb_row - 1]);
  2112. if (ret < 0)
  2113. return ret;
  2114. ff_init_cabac_decoder(&lc->cc, s->data + s->sh.offset[(ctb_row)-1], s->sh.size[ctb_row - 1]);
  2115. }
  2116. while(more_data && ctb_addr_ts < s->ps.sps->ctb_size) {
  2117. int x_ctb = (ctb_addr_rs % s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2118. int y_ctb = (ctb_addr_rs / s->ps.sps->ctb_width) << s->ps.sps->log2_ctb_size;
  2119. hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
  2120. ff_thread_await_progress2(s->avctx, ctb_row, thread, SHIFT_CTB_WPP);
  2121. if (atomic_load(&s1->wpp_err)) {
  2122. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2123. return 0;
  2124. }
  2125. ff_hevc_cabac_init(s, ctb_addr_ts);
  2126. hls_sao_param(s, x_ctb >> s->ps.sps->log2_ctb_size, y_ctb >> s->ps.sps->log2_ctb_size);
  2127. more_data = hls_coding_quadtree(s, x_ctb, y_ctb, s->ps.sps->log2_ctb_size, 0);
  2128. if (more_data < 0) {
  2129. s->tab_slice_address[ctb_addr_rs] = -1;
  2130. atomic_store(&s1->wpp_err, 1);
  2131. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2132. return more_data;
  2133. }
  2134. ctb_addr_ts++;
  2135. ff_hevc_save_states(s, ctb_addr_ts);
  2136. ff_thread_report_progress2(s->avctx, ctb_row, thread, 1);
  2137. ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
  2138. if (!more_data && (x_ctb+ctb_size) < s->ps.sps->width && ctb_row != s->sh.num_entry_point_offsets) {
  2139. atomic_store(&s1->wpp_err, 1);
  2140. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2141. return 0;
  2142. }
  2143. if ((x_ctb+ctb_size) >= s->ps.sps->width && (y_ctb+ctb_size) >= s->ps.sps->height ) {
  2144. ff_hevc_hls_filter(s, x_ctb, y_ctb, ctb_size);
  2145. ff_thread_report_progress2(s->avctx, ctb_row , thread, SHIFT_CTB_WPP);
  2146. return ctb_addr_ts;
  2147. }
  2148. ctb_addr_rs = s->ps.pps->ctb_addr_ts_to_rs[ctb_addr_ts];
  2149. x_ctb+=ctb_size;
  2150. if(x_ctb >= s->ps.sps->width) {
  2151. break;
  2152. }
  2153. }
  2154. ff_thread_report_progress2(s->avctx, ctb_row ,thread, SHIFT_CTB_WPP);
  2155. return 0;
  2156. }
  2157. static int hls_slice_data_wpp(HEVCContext *s, const H2645NAL *nal)
  2158. {
  2159. const uint8_t *data = nal->data;
  2160. int length = nal->size;
  2161. HEVCLocalContext *lc = s->HEVClc;
  2162. int *ret = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2163. int *arg = av_malloc_array(s->sh.num_entry_point_offsets + 1, sizeof(int));
  2164. int64_t offset;
  2165. int64_t startheader, cmpt = 0;
  2166. int i, j, res = 0;
  2167. if (!ret || !arg) {
  2168. av_free(ret);
  2169. av_free(arg);
  2170. return AVERROR(ENOMEM);
  2171. }
  2172. if (s->sh.slice_ctb_addr_rs + s->sh.num_entry_point_offsets * s->ps.sps->ctb_width >= s->ps.sps->ctb_width * s->ps.sps->ctb_height) {
  2173. av_log(s->avctx, AV_LOG_ERROR, "WPP ctb addresses are wrong (%d %d %d %d)\n",
  2174. s->sh.slice_ctb_addr_rs, s->sh.num_entry_point_offsets,
  2175. s->ps.sps->ctb_width, s->ps.sps->ctb_height
  2176. );
  2177. res = AVERROR_INVALIDDATA;
  2178. goto error;
  2179. }
  2180. ff_alloc_entries(s->avctx, s->sh.num_entry_point_offsets + 1);
  2181. if (!s->sList[1]) {
  2182. for (i = 1; i < s->threads_number; i++) {
  2183. s->sList[i] = av_malloc(sizeof(HEVCContext));
  2184. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2185. s->HEVClcList[i] = av_mallocz(sizeof(HEVCLocalContext));
  2186. s->sList[i]->HEVClc = s->HEVClcList[i];
  2187. }
  2188. }
  2189. offset = (lc->gb.index >> 3);
  2190. for (j = 0, cmpt = 0, startheader = offset + s->sh.entry_point_offset[0]; j < nal->skipped_bytes; j++) {
  2191. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2192. startheader--;
  2193. cmpt++;
  2194. }
  2195. }
  2196. for (i = 1; i < s->sh.num_entry_point_offsets; i++) {
  2197. offset += (s->sh.entry_point_offset[i - 1] - cmpt);
  2198. for (j = 0, cmpt = 0, startheader = offset
  2199. + s->sh.entry_point_offset[i]; j < nal->skipped_bytes; j++) {
  2200. if (nal->skipped_bytes_pos[j] >= offset && nal->skipped_bytes_pos[j] < startheader) {
  2201. startheader--;
  2202. cmpt++;
  2203. }
  2204. }
  2205. s->sh.size[i - 1] = s->sh.entry_point_offset[i] - cmpt;
  2206. s->sh.offset[i - 1] = offset;
  2207. }
  2208. if (s->sh.num_entry_point_offsets != 0) {
  2209. offset += s->sh.entry_point_offset[s->sh.num_entry_point_offsets - 1] - cmpt;
  2210. if (length < offset) {
  2211. av_log(s->avctx, AV_LOG_ERROR, "entry_point_offset table is corrupted\n");
  2212. res = AVERROR_INVALIDDATA;
  2213. goto error;
  2214. }
  2215. s->sh.size[s->sh.num_entry_point_offsets - 1] = length - offset;
  2216. s->sh.offset[s->sh.num_entry_point_offsets - 1] = offset;
  2217. }
  2218. s->data = data;
  2219. for (i = 1; i < s->threads_number; i++) {
  2220. s->sList[i]->HEVClc->first_qp_group = 1;
  2221. s->sList[i]->HEVClc->qp_y = s->sList[0]->HEVClc->qp_y;
  2222. memcpy(s->sList[i], s, sizeof(HEVCContext));
  2223. s->sList[i]->HEVClc = s->HEVClcList[i];
  2224. }
  2225. atomic_store(&s->wpp_err, 0);
  2226. ff_reset_entries(s->avctx);
  2227. for (i = 0; i <= s->sh.num_entry_point_offsets; i++) {
  2228. arg[i] = i;
  2229. ret[i] = 0;
  2230. }
  2231. if (s->ps.pps->entropy_coding_sync_enabled_flag)
  2232. s->avctx->execute2(s->avctx, hls_decode_entry_wpp, arg, ret, s->sh.num_entry_point_offsets + 1);
  2233. for (i = 0; i <= s->sh.num_entry_point_offsets; i++)
  2234. res += ret[i];
  2235. error:
  2236. av_free(ret);
  2237. av_free(arg);
  2238. return res;
  2239. }
  2240. static int set_side_data(HEVCContext *s)
  2241. {
  2242. AVFrame *out = s->ref->frame;
  2243. if (s->sei.frame_packing.present &&
  2244. s->sei.frame_packing.arrangement_type >= 3 &&
  2245. s->sei.frame_packing.arrangement_type <= 5 &&
  2246. s->sei.frame_packing.content_interpretation_type > 0 &&
  2247. s->sei.frame_packing.content_interpretation_type < 3) {
  2248. AVStereo3D *stereo = av_stereo3d_create_side_data(out);
  2249. if (!stereo)
  2250. return AVERROR(ENOMEM);
  2251. switch (s->sei.frame_packing.arrangement_type) {
  2252. case 3:
  2253. if (s->sei.frame_packing.quincunx_subsampling)
  2254. stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
  2255. else
  2256. stereo->type = AV_STEREO3D_SIDEBYSIDE;
  2257. break;
  2258. case 4:
  2259. stereo->type = AV_STEREO3D_TOPBOTTOM;
  2260. break;
  2261. case 5:
  2262. stereo->type = AV_STEREO3D_FRAMESEQUENCE;
  2263. break;
  2264. }
  2265. if (s->sei.frame_packing.content_interpretation_type == 2)
  2266. stereo->flags = AV_STEREO3D_FLAG_INVERT;
  2267. }
  2268. if (s->sei.display_orientation.present &&
  2269. (s->sei.display_orientation.anticlockwise_rotation ||
  2270. s->sei.display_orientation.hflip || s->sei.display_orientation.vflip)) {
  2271. double angle = s->sei.display_orientation.anticlockwise_rotation * 360 / (double) (1 << 16);
  2272. AVFrameSideData *rotation = av_frame_new_side_data(out,
  2273. AV_FRAME_DATA_DISPLAYMATRIX,
  2274. sizeof(int32_t) * 9);
  2275. if (!rotation)
  2276. return AVERROR(ENOMEM);
  2277. av_display_rotation_set((int32_t *)rotation->data, angle);
  2278. av_display_matrix_flip((int32_t *)rotation->data,
  2279. s->sei.display_orientation.hflip,
  2280. s->sei.display_orientation.vflip);
  2281. }
  2282. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2283. // so the side data persists for the entire coded video sequence.
  2284. if (s->sei.mastering_display.present > 0 &&
  2285. IS_IRAP(s) && s->no_rasl_output_flag) {
  2286. s->sei.mastering_display.present--;
  2287. }
  2288. if (s->sei.mastering_display.present) {
  2289. // HEVC uses a g,b,r ordering, which we convert to a more natural r,g,b
  2290. const int mapping[3] = {2, 0, 1};
  2291. const int chroma_den = 50000;
  2292. const int luma_den = 10000;
  2293. int i;
  2294. AVMasteringDisplayMetadata *metadata =
  2295. av_mastering_display_metadata_create_side_data(out);
  2296. if (!metadata)
  2297. return AVERROR(ENOMEM);
  2298. for (i = 0; i < 3; i++) {
  2299. const int j = mapping[i];
  2300. metadata->display_primaries[i][0].num = s->sei.mastering_display.display_primaries[j][0];
  2301. metadata->display_primaries[i][0].den = chroma_den;
  2302. metadata->display_primaries[i][1].num = s->sei.mastering_display.display_primaries[j][1];
  2303. metadata->display_primaries[i][1].den = chroma_den;
  2304. }
  2305. metadata->white_point[0].num = s->sei.mastering_display.white_point[0];
  2306. metadata->white_point[0].den = chroma_den;
  2307. metadata->white_point[1].num = s->sei.mastering_display.white_point[1];
  2308. metadata->white_point[1].den = chroma_den;
  2309. metadata->max_luminance.num = s->sei.mastering_display.max_luminance;
  2310. metadata->max_luminance.den = luma_den;
  2311. metadata->min_luminance.num = s->sei.mastering_display.min_luminance;
  2312. metadata->min_luminance.den = luma_den;
  2313. metadata->has_luminance = 1;
  2314. metadata->has_primaries = 1;
  2315. av_log(s->avctx, AV_LOG_DEBUG, "Mastering Display Metadata:\n");
  2316. av_log(s->avctx, AV_LOG_DEBUG,
  2317. "r(%5.4f,%5.4f) g(%5.4f,%5.4f) b(%5.4f %5.4f) wp(%5.4f, %5.4f)\n",
  2318. av_q2d(metadata->display_primaries[0][0]),
  2319. av_q2d(metadata->display_primaries[0][1]),
  2320. av_q2d(metadata->display_primaries[1][0]),
  2321. av_q2d(metadata->display_primaries[1][1]),
  2322. av_q2d(metadata->display_primaries[2][0]),
  2323. av_q2d(metadata->display_primaries[2][1]),
  2324. av_q2d(metadata->white_point[0]), av_q2d(metadata->white_point[1]));
  2325. av_log(s->avctx, AV_LOG_DEBUG,
  2326. "min_luminance=%f, max_luminance=%f\n",
  2327. av_q2d(metadata->min_luminance), av_q2d(metadata->max_luminance));
  2328. }
  2329. // Decrement the mastering display flag when IRAP frame has no_rasl_output_flag=1
  2330. // so the side data persists for the entire coded video sequence.
  2331. if (s->sei.content_light.present > 0 &&
  2332. IS_IRAP(s) && s->no_rasl_output_flag) {
  2333. s->sei.content_light.present--;
  2334. }
  2335. if (s->sei.content_light.present) {
  2336. AVContentLightMetadata *metadata =
  2337. av_content_light_metadata_create_side_data(out);
  2338. if (!metadata)
  2339. return AVERROR(ENOMEM);
  2340. metadata->MaxCLL = s->sei.content_light.max_content_light_level;
  2341. metadata->MaxFALL = s->sei.content_light.max_pic_average_light_level;
  2342. av_log(s->avctx, AV_LOG_DEBUG, "Content Light Level Metadata:\n");
  2343. av_log(s->avctx, AV_LOG_DEBUG, "MaxCLL=%d, MaxFALL=%d\n",
  2344. metadata->MaxCLL, metadata->MaxFALL);
  2345. }
  2346. if (s->sei.a53_caption.a53_caption) {
  2347. AVFrameSideData* sd = av_frame_new_side_data(out,
  2348. AV_FRAME_DATA_A53_CC,
  2349. s->sei.a53_caption.a53_caption_size);
  2350. if (sd)
  2351. memcpy(sd->data, s->sei.a53_caption.a53_caption, s->sei.a53_caption.a53_caption_size);
  2352. av_freep(&s->sei.a53_caption.a53_caption);
  2353. s->sei.a53_caption.a53_caption_size = 0;
  2354. s->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
  2355. }
  2356. return 0;
  2357. }
  2358. static int hevc_frame_start(HEVCContext *s)
  2359. {
  2360. HEVCLocalContext *lc = s->HEVClc;
  2361. int pic_size_in_ctb = ((s->ps.sps->width >> s->ps.sps->log2_min_cb_size) + 1) *
  2362. ((s->ps.sps->height >> s->ps.sps->log2_min_cb_size) + 1);
  2363. int ret;
  2364. memset(s->horizontal_bs, 0, s->bs_width * s->bs_height);
  2365. memset(s->vertical_bs, 0, s->bs_width * s->bs_height);
  2366. memset(s->cbf_luma, 0, s->ps.sps->min_tb_width * s->ps.sps->min_tb_height);
  2367. memset(s->is_pcm, 0, (s->ps.sps->min_pu_width + 1) * (s->ps.sps->min_pu_height + 1));
  2368. memset(s->tab_slice_address, -1, pic_size_in_ctb * sizeof(*s->tab_slice_address));
  2369. s->is_decoded = 0;
  2370. s->first_nal_type = s->nal_unit_type;
  2371. s->no_rasl_output_flag = IS_IDR(s) || IS_BLA(s) || (s->nal_unit_type == HEVC_NAL_CRA_NUT && s->last_eos);
  2372. if (s->ps.pps->tiles_enabled_flag)
  2373. lc->end_of_tiles_x = s->ps.pps->column_width[0] << s->ps.sps->log2_ctb_size;
  2374. ret = ff_hevc_set_new_ref(s, &s->frame, s->poc);
  2375. if (ret < 0)
  2376. goto fail;
  2377. ret = ff_hevc_frame_rps(s);
  2378. if (ret < 0) {
  2379. av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
  2380. goto fail;
  2381. }
  2382. s->ref->frame->key_frame = IS_IRAP(s);
  2383. ret = set_side_data(s);
  2384. if (ret < 0)
  2385. goto fail;
  2386. s->frame->pict_type = 3 - s->sh.slice_type;
  2387. if (!IS_IRAP(s))
  2388. ff_hevc_bump_frame(s);
  2389. av_frame_unref(s->output_frame);
  2390. ret = ff_hevc_output_frame(s, s->output_frame, 0);
  2391. if (ret < 0)
  2392. goto fail;
  2393. if (!s->avctx->hwaccel)
  2394. ff_thread_finish_setup(s->avctx);
  2395. return 0;
  2396. fail:
  2397. if (s->ref)
  2398. ff_hevc_unref_frame(s, s->ref, ~0);
  2399. s->ref = NULL;
  2400. return ret;
  2401. }
  2402. static int decode_nal_unit(HEVCContext *s, const H2645NAL *nal)
  2403. {
  2404. HEVCLocalContext *lc = s->HEVClc;
  2405. GetBitContext *gb = &lc->gb;
  2406. int ctb_addr_ts, ret;
  2407. *gb = nal->gb;
  2408. s->nal_unit_type = nal->type;
  2409. s->temporal_id = nal->temporal_id;
  2410. switch (s->nal_unit_type) {
  2411. case HEVC_NAL_VPS:
  2412. ret = ff_hevc_decode_nal_vps(gb, s->avctx, &s->ps);
  2413. if (ret < 0)
  2414. goto fail;
  2415. break;
  2416. case HEVC_NAL_SPS:
  2417. ret = ff_hevc_decode_nal_sps(gb, s->avctx, &s->ps,
  2418. s->apply_defdispwin);
  2419. if (ret < 0)
  2420. goto fail;
  2421. break;
  2422. case HEVC_NAL_PPS:
  2423. ret = ff_hevc_decode_nal_pps(gb, s->avctx, &s->ps);
  2424. if (ret < 0)
  2425. goto fail;
  2426. break;
  2427. case HEVC_NAL_SEI_PREFIX:
  2428. case HEVC_NAL_SEI_SUFFIX:
  2429. ret = ff_hevc_decode_nal_sei(gb, s->avctx, &s->sei, &s->ps, s->nal_unit_type);
  2430. if (ret < 0)
  2431. goto fail;
  2432. break;
  2433. case HEVC_NAL_TRAIL_R:
  2434. case HEVC_NAL_TRAIL_N:
  2435. case HEVC_NAL_TSA_N:
  2436. case HEVC_NAL_TSA_R:
  2437. case HEVC_NAL_STSA_N:
  2438. case HEVC_NAL_STSA_R:
  2439. case HEVC_NAL_BLA_W_LP:
  2440. case HEVC_NAL_BLA_W_RADL:
  2441. case HEVC_NAL_BLA_N_LP:
  2442. case HEVC_NAL_IDR_W_RADL:
  2443. case HEVC_NAL_IDR_N_LP:
  2444. case HEVC_NAL_CRA_NUT:
  2445. case HEVC_NAL_RADL_N:
  2446. case HEVC_NAL_RADL_R:
  2447. case HEVC_NAL_RASL_N:
  2448. case HEVC_NAL_RASL_R:
  2449. ret = hls_slice_header(s);
  2450. if (ret < 0)
  2451. return ret;
  2452. if (s->sh.first_slice_in_pic_flag) {
  2453. if (s->max_ra == INT_MAX) {
  2454. if (s->nal_unit_type == HEVC_NAL_CRA_NUT || IS_BLA(s)) {
  2455. s->max_ra = s->poc;
  2456. } else {
  2457. if (IS_IDR(s))
  2458. s->max_ra = INT_MIN;
  2459. }
  2460. }
  2461. if ((s->nal_unit_type == HEVC_NAL_RASL_R || s->nal_unit_type == HEVC_NAL_RASL_N) &&
  2462. s->poc <= s->max_ra) {
  2463. s->is_decoded = 0;
  2464. break;
  2465. } else {
  2466. if (s->nal_unit_type == HEVC_NAL_RASL_R && s->poc > s->max_ra)
  2467. s->max_ra = INT_MIN;
  2468. }
  2469. ret = hevc_frame_start(s);
  2470. if (ret < 0)
  2471. return ret;
  2472. } else if (!s->ref) {
  2473. av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
  2474. goto fail;
  2475. }
  2476. if (s->nal_unit_type != s->first_nal_type) {
  2477. av_log(s->avctx, AV_LOG_ERROR,
  2478. "Non-matching NAL types of the VCL NALUs: %d %d\n",
  2479. s->first_nal_type, s->nal_unit_type);
  2480. return AVERROR_INVALIDDATA;
  2481. }
  2482. if (!s->sh.dependent_slice_segment_flag &&
  2483. s->sh.slice_type != HEVC_SLICE_I) {
  2484. ret = ff_hevc_slice_rpl(s);
  2485. if (ret < 0) {
  2486. av_log(s->avctx, AV_LOG_WARNING,
  2487. "Error constructing the reference lists for the current slice.\n");
  2488. goto fail;
  2489. }
  2490. }
  2491. if (s->sh.first_slice_in_pic_flag && s->avctx->hwaccel) {
  2492. ret = s->avctx->hwaccel->start_frame(s->avctx, NULL, 0);
  2493. if (ret < 0)
  2494. goto fail;
  2495. }
  2496. if (s->avctx->hwaccel) {
  2497. ret = s->avctx->hwaccel->decode_slice(s->avctx, nal->raw_data, nal->raw_size);
  2498. if (ret < 0)
  2499. goto fail;
  2500. } else {
  2501. if (s->threads_number > 1 && s->sh.num_entry_point_offsets > 0)
  2502. ctb_addr_ts = hls_slice_data_wpp(s, nal);
  2503. else
  2504. ctb_addr_ts = hls_slice_data(s);
  2505. if (ctb_addr_ts >= (s->ps.sps->ctb_width * s->ps.sps->ctb_height)) {
  2506. s->is_decoded = 1;
  2507. }
  2508. if (ctb_addr_ts < 0) {
  2509. ret = ctb_addr_ts;
  2510. goto fail;
  2511. }
  2512. }
  2513. break;
  2514. case HEVC_NAL_EOS_NUT:
  2515. case HEVC_NAL_EOB_NUT:
  2516. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2517. s->max_ra = INT_MAX;
  2518. break;
  2519. case HEVC_NAL_AUD:
  2520. case HEVC_NAL_FD_NUT:
  2521. break;
  2522. default:
  2523. av_log(s->avctx, AV_LOG_INFO,
  2524. "Skipping NAL unit %d\n", s->nal_unit_type);
  2525. }
  2526. return 0;
  2527. fail:
  2528. if (s->avctx->err_recognition & AV_EF_EXPLODE)
  2529. return ret;
  2530. return 0;
  2531. }
  2532. static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
  2533. {
  2534. int i, ret = 0;
  2535. int eos_at_start = 1;
  2536. s->ref = NULL;
  2537. s->last_eos = s->eos;
  2538. s->eos = 0;
  2539. /* split the input packet into NAL units, so we know the upper bound on the
  2540. * number of slices in the frame */
  2541. ret = ff_h2645_packet_split(&s->pkt, buf, length, s->avctx, s->is_nalff,
  2542. s->nal_length_size, s->avctx->codec_id, 1);
  2543. if (ret < 0) {
  2544. av_log(s->avctx, AV_LOG_ERROR,
  2545. "Error splitting the input into NAL units.\n");
  2546. return ret;
  2547. }
  2548. for (i = 0; i < s->pkt.nb_nals; i++) {
  2549. if (s->pkt.nals[i].type == HEVC_NAL_EOB_NUT ||
  2550. s->pkt.nals[i].type == HEVC_NAL_EOS_NUT) {
  2551. if (eos_at_start) {
  2552. s->last_eos = 1;
  2553. } else {
  2554. s->eos = 1;
  2555. }
  2556. } else {
  2557. eos_at_start = 0;
  2558. }
  2559. }
  2560. /* decode the NAL units */
  2561. for (i = 0; i < s->pkt.nb_nals; i++) {
  2562. ret = decode_nal_unit(s, &s->pkt.nals[i]);
  2563. if (ret < 0) {
  2564. av_log(s->avctx, AV_LOG_WARNING,
  2565. "Error parsing NAL unit #%d.\n", i);
  2566. goto fail;
  2567. }
  2568. }
  2569. fail:
  2570. if (s->ref && s->threads_type == FF_THREAD_FRAME)
  2571. ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
  2572. return ret;
  2573. }
  2574. static void print_md5(void *log_ctx, int level, uint8_t md5[16])
  2575. {
  2576. int i;
  2577. for (i = 0; i < 16; i++)
  2578. av_log(log_ctx, level, "%02"PRIx8, md5[i]);
  2579. }
  2580. static int verify_md5(HEVCContext *s, AVFrame *frame)
  2581. {
  2582. const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
  2583. int pixel_shift;
  2584. int i, j;
  2585. if (!desc)
  2586. return AVERROR(EINVAL);
  2587. pixel_shift = desc->comp[0].depth > 8;
  2588. av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
  2589. s->poc);
  2590. /* the checksums are LE, so we have to byteswap for >8bpp formats
  2591. * on BE arches */
  2592. #if HAVE_BIGENDIAN
  2593. if (pixel_shift && !s->checksum_buf) {
  2594. av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
  2595. FFMAX3(frame->linesize[0], frame->linesize[1],
  2596. frame->linesize[2]));
  2597. if (!s->checksum_buf)
  2598. return AVERROR(ENOMEM);
  2599. }
  2600. #endif
  2601. for (i = 0; frame->data[i]; i++) {
  2602. int width = s->avctx->coded_width;
  2603. int height = s->avctx->coded_height;
  2604. int w = (i == 1 || i == 2) ? (width >> desc->log2_chroma_w) : width;
  2605. int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
  2606. uint8_t md5[16];
  2607. av_md5_init(s->sei.picture_hash.md5_ctx);
  2608. for (j = 0; j < h; j++) {
  2609. const uint8_t *src = frame->data[i] + j * frame->linesize[i];
  2610. #if HAVE_BIGENDIAN
  2611. if (pixel_shift) {
  2612. s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
  2613. (const uint16_t *) src, w);
  2614. src = s->checksum_buf;
  2615. }
  2616. #endif
  2617. av_md5_update(s->sei.picture_hash.md5_ctx, src, w << pixel_shift);
  2618. }
  2619. av_md5_final(s->sei.picture_hash.md5_ctx, md5);
  2620. if (!memcmp(md5, s->sei.picture_hash.md5[i], 16)) {
  2621. av_log (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
  2622. print_md5(s->avctx, AV_LOG_DEBUG, md5);
  2623. av_log (s->avctx, AV_LOG_DEBUG, "; ");
  2624. } else {
  2625. av_log (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
  2626. print_md5(s->avctx, AV_LOG_ERROR, md5);
  2627. av_log (s->avctx, AV_LOG_ERROR, " != ");
  2628. print_md5(s->avctx, AV_LOG_ERROR, s->sei.picture_hash.md5[i]);
  2629. av_log (s->avctx, AV_LOG_ERROR, "\n");
  2630. return AVERROR_INVALIDDATA;
  2631. }
  2632. }
  2633. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  2634. return 0;
  2635. }
  2636. static int hevc_decode_extradata(HEVCContext *s, uint8_t *buf, int length)
  2637. {
  2638. int ret, i;
  2639. ret = ff_hevc_decode_extradata(buf, length, &s->ps, &s->sei, &s->is_nalff,
  2640. &s->nal_length_size, s->avctx->err_recognition,
  2641. s->apply_defdispwin, s->avctx);
  2642. if (ret < 0)
  2643. return ret;
  2644. /* export stream parameters from the first SPS */
  2645. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2646. if (s->ps.sps_list[i]) {
  2647. const HEVCSPS *sps = (const HEVCSPS*)s->ps.sps_list[i]->data;
  2648. export_stream_params(s->avctx, &s->ps, sps);
  2649. break;
  2650. }
  2651. }
  2652. return 0;
  2653. }
  2654. static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
  2655. AVPacket *avpkt)
  2656. {
  2657. int ret;
  2658. int new_extradata_size;
  2659. uint8_t *new_extradata;
  2660. HEVCContext *s = avctx->priv_data;
  2661. if (!avpkt->size) {
  2662. ret = ff_hevc_output_frame(s, data, 1);
  2663. if (ret < 0)
  2664. return ret;
  2665. *got_output = ret;
  2666. return 0;
  2667. }
  2668. new_extradata = av_packet_get_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
  2669. &new_extradata_size);
  2670. if (new_extradata && new_extradata_size > 0) {
  2671. ret = hevc_decode_extradata(s, new_extradata, new_extradata_size);
  2672. if (ret < 0)
  2673. return ret;
  2674. }
  2675. s->ref = NULL;
  2676. ret = decode_nal_units(s, avpkt->data, avpkt->size);
  2677. if (ret < 0)
  2678. return ret;
  2679. if (avctx->hwaccel) {
  2680. if (s->ref && (ret = avctx->hwaccel->end_frame(avctx)) < 0) {
  2681. av_log(avctx, AV_LOG_ERROR,
  2682. "hardware accelerator failed to decode picture\n");
  2683. ff_hevc_unref_frame(s, s->ref, ~0);
  2684. return ret;
  2685. }
  2686. } else {
  2687. /* verify the SEI checksum */
  2688. if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
  2689. s->sei.picture_hash.is_md5) {
  2690. ret = verify_md5(s, s->ref->frame);
  2691. if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
  2692. ff_hevc_unref_frame(s, s->ref, ~0);
  2693. return ret;
  2694. }
  2695. }
  2696. }
  2697. s->sei.picture_hash.is_md5 = 0;
  2698. if (s->is_decoded) {
  2699. av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
  2700. s->is_decoded = 0;
  2701. }
  2702. if (s->output_frame->buf[0]) {
  2703. av_frame_move_ref(data, s->output_frame);
  2704. *got_output = 1;
  2705. }
  2706. return avpkt->size;
  2707. }
  2708. static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
  2709. {
  2710. int ret;
  2711. ret = ff_thread_ref_frame(&dst->tf, &src->tf);
  2712. if (ret < 0)
  2713. return ret;
  2714. dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
  2715. if (!dst->tab_mvf_buf)
  2716. goto fail;
  2717. dst->tab_mvf = src->tab_mvf;
  2718. dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
  2719. if (!dst->rpl_tab_buf)
  2720. goto fail;
  2721. dst->rpl_tab = src->rpl_tab;
  2722. dst->rpl_buf = av_buffer_ref(src->rpl_buf);
  2723. if (!dst->rpl_buf)
  2724. goto fail;
  2725. dst->poc = src->poc;
  2726. dst->ctb_count = src->ctb_count;
  2727. dst->flags = src->flags;
  2728. dst->sequence = src->sequence;
  2729. if (src->hwaccel_picture_private) {
  2730. dst->hwaccel_priv_buf = av_buffer_ref(src->hwaccel_priv_buf);
  2731. if (!dst->hwaccel_priv_buf)
  2732. goto fail;
  2733. dst->hwaccel_picture_private = dst->hwaccel_priv_buf->data;
  2734. }
  2735. return 0;
  2736. fail:
  2737. ff_hevc_unref_frame(s, dst, ~0);
  2738. return AVERROR(ENOMEM);
  2739. }
  2740. static av_cold int hevc_decode_free(AVCodecContext *avctx)
  2741. {
  2742. HEVCContext *s = avctx->priv_data;
  2743. int i;
  2744. pic_arrays_free(s);
  2745. av_freep(&s->sei.picture_hash.md5_ctx);
  2746. av_freep(&s->cabac_state);
  2747. for (i = 0; i < 3; i++) {
  2748. av_freep(&s->sao_pixel_buffer_h[i]);
  2749. av_freep(&s->sao_pixel_buffer_v[i]);
  2750. }
  2751. av_frame_free(&s->output_frame);
  2752. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2753. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2754. av_frame_free(&s->DPB[i].frame);
  2755. }
  2756. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++)
  2757. av_buffer_unref(&s->ps.vps_list[i]);
  2758. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++)
  2759. av_buffer_unref(&s->ps.sps_list[i]);
  2760. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++)
  2761. av_buffer_unref(&s->ps.pps_list[i]);
  2762. s->ps.sps = NULL;
  2763. s->ps.pps = NULL;
  2764. s->ps.vps = NULL;
  2765. av_freep(&s->sh.entry_point_offset);
  2766. av_freep(&s->sh.offset);
  2767. av_freep(&s->sh.size);
  2768. for (i = 1; i < s->threads_number; i++) {
  2769. HEVCLocalContext *lc = s->HEVClcList[i];
  2770. if (lc) {
  2771. av_freep(&s->HEVClcList[i]);
  2772. av_freep(&s->sList[i]);
  2773. }
  2774. }
  2775. if (s->HEVClc == s->HEVClcList[0])
  2776. s->HEVClc = NULL;
  2777. av_freep(&s->HEVClcList[0]);
  2778. ff_h2645_packet_uninit(&s->pkt);
  2779. return 0;
  2780. }
  2781. static av_cold int hevc_init_context(AVCodecContext *avctx)
  2782. {
  2783. HEVCContext *s = avctx->priv_data;
  2784. int i;
  2785. s->avctx = avctx;
  2786. s->HEVClc = av_mallocz(sizeof(HEVCLocalContext));
  2787. if (!s->HEVClc)
  2788. goto fail;
  2789. s->HEVClcList[0] = s->HEVClc;
  2790. s->sList[0] = s;
  2791. s->cabac_state = av_malloc(HEVC_CONTEXTS);
  2792. if (!s->cabac_state)
  2793. goto fail;
  2794. s->output_frame = av_frame_alloc();
  2795. if (!s->output_frame)
  2796. goto fail;
  2797. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2798. s->DPB[i].frame = av_frame_alloc();
  2799. if (!s->DPB[i].frame)
  2800. goto fail;
  2801. s->DPB[i].tf.f = s->DPB[i].frame;
  2802. }
  2803. s->max_ra = INT_MAX;
  2804. s->sei.picture_hash.md5_ctx = av_md5_alloc();
  2805. if (!s->sei.picture_hash.md5_ctx)
  2806. goto fail;
  2807. ff_bswapdsp_init(&s->bdsp);
  2808. s->context_initialized = 1;
  2809. s->eos = 0;
  2810. ff_hevc_reset_sei(&s->sei);
  2811. return 0;
  2812. fail:
  2813. hevc_decode_free(avctx);
  2814. return AVERROR(ENOMEM);
  2815. }
  2816. static int hevc_update_thread_context(AVCodecContext *dst,
  2817. const AVCodecContext *src)
  2818. {
  2819. HEVCContext *s = dst->priv_data;
  2820. HEVCContext *s0 = src->priv_data;
  2821. int i, ret;
  2822. if (!s->context_initialized) {
  2823. ret = hevc_init_context(dst);
  2824. if (ret < 0)
  2825. return ret;
  2826. }
  2827. for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
  2828. ff_hevc_unref_frame(s, &s->DPB[i], ~0);
  2829. if (s0->DPB[i].frame->buf[0]) {
  2830. ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
  2831. if (ret < 0)
  2832. return ret;
  2833. }
  2834. }
  2835. if (s->ps.sps != s0->ps.sps)
  2836. s->ps.sps = NULL;
  2837. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.vps_list); i++) {
  2838. av_buffer_unref(&s->ps.vps_list[i]);
  2839. if (s0->ps.vps_list[i]) {
  2840. s->ps.vps_list[i] = av_buffer_ref(s0->ps.vps_list[i]);
  2841. if (!s->ps.vps_list[i])
  2842. return AVERROR(ENOMEM);
  2843. }
  2844. }
  2845. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.sps_list); i++) {
  2846. av_buffer_unref(&s->ps.sps_list[i]);
  2847. if (s0->ps.sps_list[i]) {
  2848. s->ps.sps_list[i] = av_buffer_ref(s0->ps.sps_list[i]);
  2849. if (!s->ps.sps_list[i])
  2850. return AVERROR(ENOMEM);
  2851. }
  2852. }
  2853. for (i = 0; i < FF_ARRAY_ELEMS(s->ps.pps_list); i++) {
  2854. av_buffer_unref(&s->ps.pps_list[i]);
  2855. if (s0->ps.pps_list[i]) {
  2856. s->ps.pps_list[i] = av_buffer_ref(s0->ps.pps_list[i]);
  2857. if (!s->ps.pps_list[i])
  2858. return AVERROR(ENOMEM);
  2859. }
  2860. }
  2861. if (s->ps.sps != s0->ps.sps)
  2862. if ((ret = set_sps(s, s0->ps.sps, src->pix_fmt)) < 0)
  2863. return ret;
  2864. s->seq_decode = s0->seq_decode;
  2865. s->seq_output = s0->seq_output;
  2866. s->pocTid0 = s0->pocTid0;
  2867. s->max_ra = s0->max_ra;
  2868. s->eos = s0->eos;
  2869. s->no_rasl_output_flag = s0->no_rasl_output_flag;
  2870. s->is_nalff = s0->is_nalff;
  2871. s->nal_length_size = s0->nal_length_size;
  2872. s->threads_number = s0->threads_number;
  2873. s->threads_type = s0->threads_type;
  2874. if (s0->eos) {
  2875. s->seq_decode = (s->seq_decode + 1) & 0xff;
  2876. s->max_ra = INT_MAX;
  2877. }
  2878. return 0;
  2879. }
  2880. static av_cold int hevc_decode_init(AVCodecContext *avctx)
  2881. {
  2882. HEVCContext *s = avctx->priv_data;
  2883. int ret;
  2884. avctx->internal->allocate_progress = 1;
  2885. ret = hevc_init_context(avctx);
  2886. if (ret < 0)
  2887. return ret;
  2888. s->enable_parallel_tiles = 0;
  2889. s->sei.picture_timing.picture_struct = 0;
  2890. s->eos = 1;
  2891. atomic_init(&s->wpp_err, 0);
  2892. if(avctx->active_thread_type & FF_THREAD_SLICE)
  2893. s->threads_number = avctx->thread_count;
  2894. else
  2895. s->threads_number = 1;
  2896. if (avctx->extradata_size > 0 && avctx->extradata) {
  2897. ret = hevc_decode_extradata(s, avctx->extradata, avctx->extradata_size);
  2898. if (ret < 0) {
  2899. hevc_decode_free(avctx);
  2900. return ret;
  2901. }
  2902. }
  2903. if((avctx->active_thread_type & FF_THREAD_FRAME) && avctx->thread_count > 1)
  2904. s->threads_type = FF_THREAD_FRAME;
  2905. else
  2906. s->threads_type = FF_THREAD_SLICE;
  2907. return 0;
  2908. }
  2909. static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
  2910. {
  2911. HEVCContext *s = avctx->priv_data;
  2912. int ret;
  2913. memset(s, 0, sizeof(*s));
  2914. ret = hevc_init_context(avctx);
  2915. if (ret < 0)
  2916. return ret;
  2917. return 0;
  2918. }
  2919. static void hevc_decode_flush(AVCodecContext *avctx)
  2920. {
  2921. HEVCContext *s = avctx->priv_data;
  2922. ff_hevc_flush_dpb(s);
  2923. s->max_ra = INT_MAX;
  2924. s->eos = 1;
  2925. }
  2926. #define OFFSET(x) offsetof(HEVCContext, x)
  2927. #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
  2928. static const AVOption options[] = {
  2929. { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
  2930. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2931. { "strict-displaywin", "stricly apply default display window size", OFFSET(apply_defdispwin),
  2932. AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, PAR },
  2933. { NULL },
  2934. };
  2935. static const AVClass hevc_decoder_class = {
  2936. .class_name = "HEVC decoder",
  2937. .item_name = av_default_item_name,
  2938. .option = options,
  2939. .version = LIBAVUTIL_VERSION_INT,
  2940. };
  2941. AVCodec ff_hevc_decoder = {
  2942. .name = "hevc",
  2943. .long_name = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
  2944. .type = AVMEDIA_TYPE_VIDEO,
  2945. .id = AV_CODEC_ID_HEVC,
  2946. .priv_data_size = sizeof(HEVCContext),
  2947. .priv_class = &hevc_decoder_class,
  2948. .init = hevc_decode_init,
  2949. .close = hevc_decode_free,
  2950. .decode = hevc_decode_frame,
  2951. .flush = hevc_decode_flush,
  2952. .update_thread_context = hevc_update_thread_context,
  2953. .init_thread_copy = hevc_init_thread_copy,
  2954. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
  2955. AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
  2956. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_EXPORTS_CROPPING,
  2957. .profiles = NULL_IF_CONFIG_SMALL(ff_hevc_profiles),
  2958. };