You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

480 lines
15KB

  1. /*
  2. * MagicYUV decoder
  3. * Copyright (c) 2016 Paul B Mahol
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include <stdio.h>
  22. #include <stdlib.h>
  23. #include <string.h>
  24. #include "libavutil/qsort.h"
  25. #include "avcodec.h"
  26. #include "bytestream.h"
  27. #include "get_bits.h"
  28. #include "huffyuvdsp.h"
  29. #include "internal.h"
  30. #include "thread.h"
  31. typedef struct Slice {
  32. uint32_t start;
  33. uint32_t size;
  34. } Slice;
  35. typedef enum Prediction {
  36. LEFT = 1,
  37. GRADIENT,
  38. MEDIAN,
  39. } Prediction;
  40. typedef struct MagicYUVContext {
  41. AVFrame *p;
  42. int slice_height;
  43. int nb_slices;
  44. int planes; // number of encoded planes in bitstream
  45. int decorrelate; // postprocessing work
  46. int interlaced; // video is interlaced
  47. uint8_t *buf; // pointer to AVPacket->data
  48. int hshift[4];
  49. int vshift[4];
  50. Slice *slices[4]; // slice positions and size in bitstream for each plane
  51. int slices_size[4];
  52. uint8_t len[4][256]; // table of code lengths for each plane
  53. VLC vlc[4]; // VLC for each plane
  54. HuffYUVDSPContext hdsp;
  55. } MagicYUVContext;
  56. static av_cold int decode_init(AVCodecContext *avctx)
  57. {
  58. MagicYUVContext *s = avctx->priv_data;
  59. ff_huffyuvdsp_init(&s->hdsp);
  60. return 0;
  61. }
  62. typedef struct HuffEntry {
  63. uint8_t sym;
  64. uint8_t len;
  65. uint32_t code;
  66. } HuffEntry;
  67. static int ff_magy_huff_cmp_len(const void *a, const void *b)
  68. {
  69. const HuffEntry *aa = a, *bb = b;
  70. return (aa->len - bb->len) * 256 + aa->sym - bb->sym;
  71. }
  72. static int build_huff(VLC *vlc, uint8_t *len)
  73. {
  74. HuffEntry he[256];
  75. uint32_t codes[256];
  76. uint8_t bits[256];
  77. uint8_t syms[256];
  78. uint32_t code;
  79. int i;
  80. for (i = 0; i < 256; i++) {
  81. he[i].sym = 255 - i;
  82. he[i].len = len[i];
  83. }
  84. AV_QSORT(he, 256, HuffEntry, ff_magy_huff_cmp_len);
  85. code = 1;
  86. for (i = 255; i >= 0; i--) {
  87. codes[i] = code >> (32 - he[i].len);
  88. bits[i] = he[i].len;
  89. syms[i] = he[i].sym;
  90. code += 0x80000000u >> (he[i].len - 1);
  91. }
  92. ff_free_vlc(vlc);
  93. return ff_init_vlc_sparse(vlc, FFMIN(he[255].len, 12), 256,
  94. bits, sizeof(*bits), sizeof(*bits),
  95. codes, sizeof(*codes), sizeof(*codes),
  96. syms, sizeof(*syms), sizeof(*syms), 0);
  97. }
  98. static int decode_slice(AVCodecContext *avctx, void *tdata,
  99. int j, int threadnr)
  100. {
  101. MagicYUVContext *s = avctx->priv_data;
  102. int interlaced = s->interlaced;
  103. AVFrame *p = s->p;
  104. int i, k, x, ret;
  105. GetBitContext b;
  106. uint8_t *dst;
  107. for (i = 0; i < s->planes; i++) {
  108. int height = AV_CEIL_RSHIFT(FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height), s->vshift[i]);
  109. int width = AV_CEIL_RSHIFT(avctx->coded_width, s->hshift[i]);
  110. int sheight = AV_CEIL_RSHIFT(s->slice_height, s->vshift[i]);
  111. int fake_stride = p->linesize[i] * (1 + interlaced);
  112. int stride = p->linesize[i];
  113. int flags, pred;
  114. if ((ret = init_get_bits8(&b, s->buf + s->slices[i][j].start, s->slices[i][j].size)) < 0)
  115. return ret;
  116. flags = get_bits(&b, 8);
  117. pred = get_bits(&b, 8);
  118. dst = p->data[i] + j * sheight * stride;
  119. if (flags & 1) {
  120. for (k = 0; k < height; k++) {
  121. for (x = 0; x < width; x++) {
  122. dst[x] = get_bits(&b, 8);
  123. }
  124. dst += stride;
  125. }
  126. } else {
  127. for (k = 0; k < height; k++) {
  128. for (x = 0; x < width; x++) {
  129. int pix;
  130. if (get_bits_left(&b) <= 0) {
  131. return AVERROR_INVALIDDATA;
  132. }
  133. pix = get_vlc2(&b, s->vlc[i].table, s->vlc[i].bits, 3);
  134. if (pix < 0) {
  135. return AVERROR_INVALIDDATA;
  136. }
  137. dst[x] = 255 - pix;
  138. }
  139. dst += stride;
  140. }
  141. }
  142. if (pred == LEFT) {
  143. dst = p->data[i] + j * sheight * stride;
  144. s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
  145. dst += stride;
  146. if (interlaced) {
  147. s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
  148. dst += stride;
  149. }
  150. for (k = 1 + interlaced; k < height; k++) {
  151. s->hdsp.add_hfyu_left_pred(dst, dst, width, dst[-fake_stride]);
  152. dst += stride;
  153. }
  154. } else if (pred == GRADIENT) {
  155. int left, lefttop, top;
  156. dst = p->data[i] + j * sheight * stride;
  157. s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
  158. left = lefttop = 0;
  159. dst += stride;
  160. if (interlaced) {
  161. s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
  162. left = lefttop = 0;
  163. dst += stride;
  164. }
  165. for (k = 1 + interlaced; k < height; k++) {
  166. top = dst[-fake_stride];
  167. left = top + dst[0];
  168. dst[0] = left;
  169. for (x = 1; x < width; x++) {
  170. top = dst[x - fake_stride];
  171. lefttop = dst[x - (fake_stride + 1)];
  172. left += top - lefttop + dst[x];
  173. dst[x] = left;
  174. }
  175. dst += stride;
  176. }
  177. } else if (pred == MEDIAN) {
  178. int left, lefttop;
  179. dst = p->data[i] + j * sheight * stride;
  180. lefttop = left = dst[0];
  181. s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
  182. dst += stride;
  183. if (interlaced) {
  184. lefttop = left = dst[0];
  185. s->hdsp.add_hfyu_left_pred(dst, dst, width, 0);
  186. dst += stride;
  187. }
  188. for (k = 1 + interlaced; k < height; k++) {
  189. s->hdsp.add_hfyu_median_pred(dst, dst - fake_stride, dst, width, &left, &lefttop);
  190. lefttop = left = dst[0];
  191. dst += stride;
  192. }
  193. } else {
  194. avpriv_request_sample(avctx, "unknown prediction: %d", pred);
  195. }
  196. }
  197. if (s->decorrelate) {
  198. int height = FFMIN(s->slice_height, avctx->coded_height - j * s->slice_height);
  199. int width = avctx->coded_width;
  200. uint8_t *b = p->data[0] + j * s->slice_height * p->linesize[0];
  201. uint8_t *g = p->data[1] + j * s->slice_height * p->linesize[1];
  202. uint8_t *r = p->data[2] + j * s->slice_height * p->linesize[2];
  203. for (i = 0; i < height; i++) {
  204. s->hdsp.add_bytes(b, g, width);
  205. s->hdsp.add_bytes(r, g, width);
  206. b += p->linesize[0];
  207. g += p->linesize[1];
  208. r += p->linesize[2];
  209. }
  210. }
  211. return 0;
  212. }
  213. static int decode_frame(AVCodecContext *avctx,
  214. void *data, int *got_frame,
  215. AVPacket *avpkt)
  216. {
  217. uint32_t first_offset, offset, next_offset, header_size, slice_width;
  218. int ret, format, version, table_size;
  219. MagicYUVContext *s = avctx->priv_data;
  220. ThreadFrame frame = { .f = data };
  221. AVFrame *p = data;
  222. GetByteContext gb;
  223. GetBitContext b;
  224. int i, j, k, width, height;
  225. bytestream2_init(&gb, avpkt->data, avpkt->size);
  226. if (bytestream2_get_le32(&gb) != MKTAG('M','A','G','Y'))
  227. return AVERROR_INVALIDDATA;
  228. header_size = bytestream2_get_le32(&gb);
  229. if (header_size < 32 || header_size >= avpkt->size)
  230. return AVERROR_INVALIDDATA;
  231. version = bytestream2_get_byte(&gb);
  232. if (version != 7) {
  233. avpriv_request_sample(avctx, "unsupported version: %d", version);
  234. return AVERROR_PATCHWELCOME;
  235. }
  236. s->hshift[1] = s->vshift[1] = 0;
  237. s->hshift[2] = s->vshift[2] = 0;
  238. s->decorrelate = 0;
  239. format = bytestream2_get_byte(&gb);
  240. switch (format) {
  241. case 0x65:
  242. avctx->pix_fmt = AV_PIX_FMT_GBRP;
  243. s->decorrelate = 1;
  244. s->planes = 3;
  245. break;
  246. case 0x66:
  247. avctx->pix_fmt = AV_PIX_FMT_GBRAP;
  248. s->decorrelate = 1;
  249. s->planes = 4;
  250. break;
  251. case 0x67:
  252. avctx->pix_fmt = AV_PIX_FMT_YUV444P;
  253. s->planes = 3;
  254. break;
  255. case 0x68:
  256. avctx->pix_fmt = AV_PIX_FMT_YUV422P;
  257. s->planes = 3;
  258. s->hshift[1] = s->hshift[2] = 1;
  259. break;
  260. case 0x69:
  261. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  262. s->planes = 3;
  263. s->hshift[1] = s->vshift[1] = 1;
  264. s->hshift[2] = s->vshift[2] = 1;
  265. break;
  266. case 0x6a:
  267. avctx->pix_fmt = AV_PIX_FMT_YUVA444P;
  268. s->planes = 4;
  269. break;
  270. case 0x6b:
  271. avctx->pix_fmt = AV_PIX_FMT_GRAY8;
  272. s->planes = 1;
  273. break;
  274. default:
  275. avpriv_request_sample(avctx, "unsupported format: 0x%X", format);
  276. return AVERROR_PATCHWELCOME;
  277. }
  278. bytestream2_skip(&gb, 2);
  279. s->interlaced = !!(bytestream2_get_byte(&gb) & 2);
  280. bytestream2_skip(&gb, 3);
  281. width = bytestream2_get_le32(&gb);
  282. height = bytestream2_get_le32(&gb);
  283. if ((ret = ff_set_dimensions(avctx, width, height)) < 0)
  284. return ret;
  285. slice_width = bytestream2_get_le32(&gb);
  286. if (slice_width != avctx->coded_width) {
  287. avpriv_request_sample(avctx, "unsupported slice width: %d", slice_width);
  288. return AVERROR_PATCHWELCOME;
  289. }
  290. s->slice_height = bytestream2_get_le32(&gb);
  291. if ((s->slice_height <= 0) || (s->slice_height > INT_MAX - avctx->coded_height)) {
  292. av_log(avctx, AV_LOG_ERROR, "invalid slice height: %d\n", s->slice_height);
  293. return AVERROR_INVALIDDATA;
  294. }
  295. bytestream2_skip(&gb, 4);
  296. s->nb_slices = (avctx->coded_height + s->slice_height - 1) / s->slice_height;
  297. if (s->nb_slices > INT_MAX / sizeof(Slice)) {
  298. av_log(avctx, AV_LOG_ERROR, "invalid number of slices: %d\n", s->nb_slices);
  299. return AVERROR_INVALIDDATA;
  300. }
  301. for (i = 0; i < s->planes; i++) {
  302. av_fast_malloc(&s->slices[i], &s->slices_size[i], s->nb_slices * sizeof(Slice));
  303. if (!s->slices[i])
  304. return AVERROR(ENOMEM);
  305. offset = bytestream2_get_le32(&gb);
  306. if (offset >= avpkt->size - header_size)
  307. return AVERROR_INVALIDDATA;
  308. if (i == 0)
  309. first_offset = offset;
  310. for (j = 0; j < s->nb_slices - 1; j++) {
  311. s->slices[i][j].start = offset + header_size;
  312. next_offset = bytestream2_get_le32(&gb);
  313. s->slices[i][j].size = next_offset - offset;
  314. offset = next_offset;
  315. if (offset >= avpkt->size - header_size)
  316. return AVERROR_INVALIDDATA;
  317. }
  318. s->slices[i][j].start = offset + header_size;
  319. s->slices[i][j].size = avpkt->size - s->slices[i][j].start;
  320. }
  321. if (bytestream2_get_byte(&gb) != s->planes)
  322. return AVERROR_INVALIDDATA;
  323. bytestream2_skip(&gb, s->nb_slices * s->planes);
  324. table_size = header_size + first_offset - bytestream2_tell(&gb);
  325. if (table_size < 2)
  326. return AVERROR_INVALIDDATA;
  327. if ((ret = init_get_bits8(&b, avpkt->data + bytestream2_tell(&gb), table_size)) < 0)
  328. return ret;
  329. memset(s->len, 0, sizeof(s->len));
  330. j = i = 0;
  331. while (get_bits_left(&b) >= 8) {
  332. int l = get_bits(&b, 4);
  333. int x = get_bits(&b, 4);
  334. int L = get_bitsz(&b, l) + 1;
  335. for (k = 0; k < L; k++) {
  336. if (j + k < 256)
  337. s->len[i][j + k] = x;
  338. }
  339. j += L;
  340. if (j == 256) {
  341. j = 0;
  342. if (build_huff(&s->vlc[i], s->len[i])) {
  343. av_log(avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
  344. return AVERROR_INVALIDDATA;
  345. }
  346. i++;
  347. if (i == s->planes) {
  348. break;
  349. }
  350. } else if (j > 256) {
  351. return AVERROR_INVALIDDATA;
  352. }
  353. }
  354. if (i != s->planes) {
  355. av_log(avctx, AV_LOG_ERROR, "Huffman tables too short\n");
  356. return AVERROR_INVALIDDATA;
  357. }
  358. p->pict_type = AV_PICTURE_TYPE_I;
  359. p->key_frame = 1;
  360. if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
  361. return ret;
  362. s->buf = avpkt->data;
  363. s->p = p;
  364. avctx->execute2(avctx, decode_slice, NULL, NULL, s->nb_slices);
  365. if (avctx->pix_fmt == AV_PIX_FMT_GBRP ||
  366. avctx->pix_fmt == AV_PIX_FMT_GBRAP) {
  367. FFSWAP(uint8_t*, p->data[0], p->data[1]);
  368. FFSWAP(int, p->linesize[0], p->linesize[1]);
  369. }
  370. *got_frame = 1;
  371. if (ret < 0)
  372. return ret;
  373. return avpkt->size;
  374. }
  375. #if HAVE_THREADS
  376. static int decode_init_thread_copy(AVCodecContext *avctx)
  377. {
  378. MagicYUVContext *s = avctx->priv_data;
  379. s->slices[0] = 0;
  380. s->slices[1] = 0;
  381. s->slices[2] = 0;
  382. s->slices[3] = 0;
  383. s->slices_size[0] = 0;
  384. s->slices_size[1] = 0;
  385. s->slices_size[2] = 0;
  386. s->slices_size[3] = 0;
  387. return 0;
  388. }
  389. #endif
  390. static av_cold int decode_end(AVCodecContext *avctx)
  391. {
  392. MagicYUVContext * const s = avctx->priv_data;
  393. av_freep(&s->slices[0]);
  394. av_freep(&s->slices[1]);
  395. av_freep(&s->slices[2]);
  396. av_freep(&s->slices[3]);
  397. s->slices_size[0] = 0;
  398. s->slices_size[1] = 0;
  399. s->slices_size[2] = 0;
  400. s->slices_size[3] = 0;
  401. ff_free_vlc(&s->vlc[0]);
  402. ff_free_vlc(&s->vlc[1]);
  403. ff_free_vlc(&s->vlc[2]);
  404. ff_free_vlc(&s->vlc[3]);
  405. return 0;
  406. }
  407. AVCodec ff_magicyuv_decoder = {
  408. .name = "magicyuv",
  409. .long_name = NULL_IF_CONFIG_SMALL("MagicYUV Lossless Video"),
  410. .type = AVMEDIA_TYPE_VIDEO,
  411. .id = AV_CODEC_ID_MAGICYUV,
  412. .priv_data_size = sizeof(MagicYUVContext),
  413. .init = decode_init,
  414. .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
  415. .close = decode_end,
  416. .decode = decode_frame,
  417. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_SLICE_THREADS,
  418. };