|
- /*
- * Copyright (c) 2011 Jan Kokemüller
- *
- * This file is part of FFmpeg.
- *
- * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2.1 of the License, or (at your option) any later version.
- *
- * FFmpeg is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with FFmpeg; if not, write to the Free Software
- * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
- * This file is based on libebur128 which is available at
- * https://github.com/jiixyj/libebur128/
- *
- * Libebur128 has the following copyright:
- *
- * Permission is hereby granted, free of charge, to any person obtaining a copy
- * of this software and associated documentation files (the "Software"), to deal
- * in the Software without restriction, including without limitation the rights
- * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
- * copies of the Software, and to permit persons to whom the Software is
- * furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice shall be included in
- * all copies or substantial portions of the Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
- * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
- * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
- * THE SOFTWARE.
- */
-
- #include "ebur128.h"
-
- #include <float.h>
- #include <limits.h>
- #include <math.h> /* You may have to define _USE_MATH_DEFINES if you use MSVC */
-
- #include "libavutil/common.h"
- #include "libavutil/mem.h"
- #include "libavutil/thread.h"
-
- #define CHECK_ERROR(condition, errorcode, goto_point) \
- if ((condition)) { \
- errcode = (errorcode); \
- goto goto_point; \
- }
-
- #define ALMOST_ZERO 0.000001
-
- #define RELATIVE_GATE (-10.0)
- #define RELATIVE_GATE_FACTOR pow(10.0, RELATIVE_GATE / 10.0)
- #define MINUS_20DB pow(10.0, -20.0 / 10.0)
-
- struct FFEBUR128StateInternal {
- /** Filtered audio data (used as ring buffer). */
- double *audio_data;
- /** Size of audio_data array. */
- size_t audio_data_frames;
- /** Current index for audio_data. */
- size_t audio_data_index;
- /** How many frames are needed for a gating block. Will correspond to 400ms
- * of audio at initialization, and 100ms after the first block (75% overlap
- * as specified in the 2011 revision of BS1770). */
- unsigned long needed_frames;
- /** The channel map. Has as many elements as there are channels. */
- int *channel_map;
- /** How many samples fit in 100ms (rounded). */
- unsigned long samples_in_100ms;
- /** BS.1770 filter coefficients (nominator). */
- double b[5];
- /** BS.1770 filter coefficients (denominator). */
- double a[5];
- /** BS.1770 filter state. */
- double v[5][5];
- /** Histograms, used to calculate LRA. */
- unsigned long *block_energy_histogram;
- unsigned long *short_term_block_energy_histogram;
- /** Keeps track of when a new short term block is needed. */
- size_t short_term_frame_counter;
- /** Maximum sample peak, one per channel */
- double *sample_peak;
- /** The maximum window duration in ms. */
- unsigned long window;
- /** Data pointer array for interleaved data */
- void **data_ptrs;
- };
-
- static AVOnce histogram_init = AV_ONCE_INIT;
- static DECLARE_ALIGNED(32, double, histogram_energies)[1000];
- static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001];
-
- static void ebur128_init_filter(FFEBUR128State * st)
- {
- int i, j;
-
- double f0 = 1681.974450955533;
- double G = 3.999843853973347;
- double Q = 0.7071752369554196;
-
- double K = tan(M_PI * f0 / (double) st->samplerate);
- double Vh = pow(10.0, G / 20.0);
- double Vb = pow(Vh, 0.4996667741545416);
-
- double pb[3] = { 0.0, 0.0, 0.0 };
- double pa[3] = { 1.0, 0.0, 0.0 };
- double rb[3] = { 1.0, -2.0, 1.0 };
- double ra[3] = { 1.0, 0.0, 0.0 };
-
- double a0 = 1.0 + K / Q + K * K;
- pb[0] = (Vh + Vb * K / Q + K * K) / a0;
- pb[1] = 2.0 * (K * K - Vh) / a0;
- pb[2] = (Vh - Vb * K / Q + K * K) / a0;
- pa[1] = 2.0 * (K * K - 1.0) / a0;
- pa[2] = (1.0 - K / Q + K * K) / a0;
-
- f0 = 38.13547087602444;
- Q = 0.5003270373238773;
- K = tan(M_PI * f0 / (double) st->samplerate);
-
- ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
- ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
-
- st->d->b[0] = pb[0] * rb[0];
- st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0];
- st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0];
- st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1];
- st->d->b[4] = pb[2] * rb[2];
-
- st->d->a[0] = pa[0] * ra[0];
- st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0];
- st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0];
- st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1];
- st->d->a[4] = pa[2] * ra[2];
-
- for (i = 0; i < 5; ++i) {
- for (j = 0; j < 5; ++j) {
- st->d->v[i][j] = 0.0;
- }
- }
- }
-
- static int ebur128_init_channel_map(FFEBUR128State * st)
- {
- size_t i;
- st->d->channel_map =
- (int *) av_malloc_array(st->channels, sizeof(int));
- if (!st->d->channel_map)
- return AVERROR(ENOMEM);
- if (st->channels == 4) {
- st->d->channel_map[0] = FF_EBUR128_LEFT;
- st->d->channel_map[1] = FF_EBUR128_RIGHT;
- st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND;
- st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND;
- } else if (st->channels == 5) {
- st->d->channel_map[0] = FF_EBUR128_LEFT;
- st->d->channel_map[1] = FF_EBUR128_RIGHT;
- st->d->channel_map[2] = FF_EBUR128_CENTER;
- st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND;
- st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND;
- } else {
- for (i = 0; i < st->channels; ++i) {
- switch (i) {
- case 0:
- st->d->channel_map[i] = FF_EBUR128_LEFT;
- break;
- case 1:
- st->d->channel_map[i] = FF_EBUR128_RIGHT;
- break;
- case 2:
- st->d->channel_map[i] = FF_EBUR128_CENTER;
- break;
- case 3:
- st->d->channel_map[i] = FF_EBUR128_UNUSED;
- break;
- case 4:
- st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND;
- break;
- case 5:
- st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND;
- break;
- default:
- st->d->channel_map[i] = FF_EBUR128_UNUSED;
- break;
- }
- }
- }
- return 0;
- }
-
- static inline void init_histogram(void)
- {
- int i;
- /* initialize static constants */
- histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0);
- for (i = 0; i < 1000; ++i) {
- histogram_energies[i] =
- pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0);
- }
- for (i = 1; i < 1001; ++i) {
- histogram_energy_boundaries[i] =
- pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0);
- }
- }
-
- FFEBUR128State *ff_ebur128_init(unsigned int channels,
- unsigned long samplerate,
- unsigned long window, int mode)
- {
- int errcode;
- FFEBUR128State *st;
-
- st = (FFEBUR128State *) av_malloc(sizeof(FFEBUR128State));
- CHECK_ERROR(!st, 0, exit)
- st->d = (struct FFEBUR128StateInternal *)
- av_malloc(sizeof(struct FFEBUR128StateInternal));
- CHECK_ERROR(!st->d, 0, free_state)
- st->channels = channels;
- errcode = ebur128_init_channel_map(st);
- CHECK_ERROR(errcode, 0, free_internal)
-
- st->d->sample_peak =
- (double *) av_mallocz_array(channels, sizeof(double));
- CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map)
-
- st->samplerate = samplerate;
- st->d->samples_in_100ms = (st->samplerate + 5) / 10;
- st->mode = mode;
- if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) {
- st->d->window = FFMAX(window, 3000);
- } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) {
- st->d->window = FFMAX(window, 400);
- } else {
- goto free_sample_peak;
- }
- st->d->audio_data_frames = st->samplerate * st->d->window / 1000;
- if (st->d->audio_data_frames % st->d->samples_in_100ms) {
- /* round up to multiple of samples_in_100ms */
- st->d->audio_data_frames = st->d->audio_data_frames
- + st->d->samples_in_100ms
- - (st->d->audio_data_frames % st->d->samples_in_100ms);
- }
- st->d->audio_data =
- (double *) av_mallocz_array(st->d->audio_data_frames,
- st->channels * sizeof(double));
- CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak)
-
- ebur128_init_filter(st);
-
- st->d->block_energy_histogram =
- av_mallocz(1000 * sizeof(unsigned long));
- CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data)
- st->d->short_term_block_energy_histogram =
- av_mallocz(1000 * sizeof(unsigned long));
- CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0,
- free_block_energy_histogram)
- st->d->short_term_frame_counter = 0;
-
- /* the first block needs 400ms of audio data */
- st->d->needed_frames = st->d->samples_in_100ms * 4;
- /* start at the beginning of the buffer */
- st->d->audio_data_index = 0;
-
- if (ff_thread_once(&histogram_init, &init_histogram) != 0)
- goto free_short_term_block_energy_histogram;
-
- st->d->data_ptrs = av_malloc_array(channels, sizeof(void *));
- CHECK_ERROR(!st->d->data_ptrs, 0,
- free_short_term_block_energy_histogram);
-
- return st;
-
- free_short_term_block_energy_histogram:
- av_free(st->d->short_term_block_energy_histogram);
- free_block_energy_histogram:
- av_free(st->d->block_energy_histogram);
- free_audio_data:
- av_free(st->d->audio_data);
- free_sample_peak:
- av_free(st->d->sample_peak);
- free_channel_map:
- av_free(st->d->channel_map);
- free_internal:
- av_free(st->d);
- free_state:
- av_free(st);
- exit:
- return NULL;
- }
-
- void ff_ebur128_destroy(FFEBUR128State ** st)
- {
- av_free((*st)->d->block_energy_histogram);
- av_free((*st)->d->short_term_block_energy_histogram);
- av_free((*st)->d->audio_data);
- av_free((*st)->d->channel_map);
- av_free((*st)->d->sample_peak);
- av_free((*st)->d->data_ptrs);
- av_free((*st)->d);
- av_free(*st);
- *st = NULL;
- }
-
- #define EBUR128_FILTER(type, scaling_factor) \
- static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs, \
- size_t src_index, size_t frames, \
- int stride) { \
- double* audio_data = st->d->audio_data + st->d->audio_data_index; \
- size_t i, c; \
- \
- if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
- for (c = 0; c < st->channels; ++c) { \
- double max = 0.0; \
- for (i = 0; i < frames; ++i) { \
- type v = srcs[c][src_index + i * stride]; \
- if (v > max) { \
- max = v; \
- } else if (-v > max) { \
- max = -1.0 * v; \
- } \
- } \
- max /= scaling_factor; \
- if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max; \
- } \
- } \
- for (c = 0; c < st->channels; ++c) { \
- int ci = st->d->channel_map[c] - 1; \
- if (ci < 0) continue; \
- else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */ \
- for (i = 0; i < frames; ++i) { \
- st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
- - st->d->a[1] * st->d->v[ci][1] \
- - st->d->a[2] * st->d->v[ci][2] \
- - st->d->a[3] * st->d->v[ci][3] \
- - st->d->a[4] * st->d->v[ci][4]; \
- audio_data[i * st->channels + c] = \
- st->d->b[0] * st->d->v[ci][0] \
- + st->d->b[1] * st->d->v[ci][1] \
- + st->d->b[2] * st->d->v[ci][2] \
- + st->d->b[3] * st->d->v[ci][3] \
- + st->d->b[4] * st->d->v[ci][4]; \
- st->d->v[ci][4] = st->d->v[ci][3]; \
- st->d->v[ci][3] = st->d->v[ci][2]; \
- st->d->v[ci][2] = st->d->v[ci][1]; \
- st->d->v[ci][1] = st->d->v[ci][0]; \
- } \
- st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
- st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
- st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
- st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
- } \
- }
- EBUR128_FILTER(short, -((double)SHRT_MIN))
- EBUR128_FILTER(int, -((double)INT_MIN))
- EBUR128_FILTER(float, 1.0)
- EBUR128_FILTER(double, 1.0)
-
- static double ebur128_energy_to_loudness(double energy)
- {
- return 10 * (log(energy) / log(10.0)) - 0.691;
- }
-
- static size_t find_histogram_index(double energy)
- {
- size_t index_min = 0;
- size_t index_max = 1000;
- size_t index_mid;
-
- do {
- index_mid = (index_min + index_max) / 2;
- if (energy >= histogram_energy_boundaries[index_mid]) {
- index_min = index_mid;
- } else {
- index_max = index_mid;
- }
- } while (index_max - index_min != 1);
-
- return index_min;
- }
-
- static void ebur128_calc_gating_block(FFEBUR128State * st,
- size_t frames_per_block,
- double *optional_output)
- {
- size_t i, c;
- double sum = 0.0;
- double channel_sum;
- for (c = 0; c < st->channels; ++c) {
- if (st->d->channel_map[c] == FF_EBUR128_UNUSED)
- continue;
- channel_sum = 0.0;
- if (st->d->audio_data_index < frames_per_block * st->channels) {
- for (i = 0; i < st->d->audio_data_index / st->channels; ++i) {
- channel_sum += st->d->audio_data[i * st->channels + c] *
- st->d->audio_data[i * st->channels + c];
- }
- for (i = st->d->audio_data_frames -
- (frames_per_block -
- st->d->audio_data_index / st->channels);
- i < st->d->audio_data_frames; ++i) {
- channel_sum += st->d->audio_data[i * st->channels + c] *
- st->d->audio_data[i * st->channels + c];
- }
- } else {
- for (i =
- st->d->audio_data_index / st->channels - frames_per_block;
- i < st->d->audio_data_index / st->channels; ++i) {
- channel_sum +=
- st->d->audio_data[i * st->channels +
- c] * st->d->audio_data[i *
- st->channels +
- c];
- }
- }
- if (st->d->channel_map[c] == FF_EBUR128_Mp110 ||
- st->d->channel_map[c] == FF_EBUR128_Mm110 ||
- st->d->channel_map[c] == FF_EBUR128_Mp060 ||
- st->d->channel_map[c] == FF_EBUR128_Mm060 ||
- st->d->channel_map[c] == FF_EBUR128_Mp090 ||
- st->d->channel_map[c] == FF_EBUR128_Mm090) {
- channel_sum *= 1.41;
- } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) {
- channel_sum *= 2.0;
- }
- sum += channel_sum;
- }
- sum /= (double) frames_per_block;
- if (optional_output) {
- *optional_output = sum;
- } else if (sum >= histogram_energy_boundaries[0]) {
- ++st->d->block_energy_histogram[find_histogram_index(sum)];
- }
- }
-
- int ff_ebur128_set_channel(FFEBUR128State * st,
- unsigned int channel_number, int value)
- {
- if (channel_number >= st->channels) {
- return 1;
- }
- if (value == FF_EBUR128_DUAL_MONO &&
- (st->channels != 1 || channel_number != 0)) {
- return 1;
- }
- st->d->channel_map[channel_number] = value;
- return 0;
- }
-
- static int ebur128_energy_shortterm(FFEBUR128State * st, double *out);
- #define FF_EBUR128_ADD_FRAMES_PLANAR(type) \
- void ff_ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs, \
- size_t frames, int stride) { \
- size_t src_index = 0; \
- while (frames > 0) { \
- if (frames >= st->d->needed_frames) { \
- ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride); \
- src_index += st->d->needed_frames * stride; \
- frames -= st->d->needed_frames; \
- st->d->audio_data_index += st->d->needed_frames * st->channels; \
- /* calculate the new gating block */ \
- if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) { \
- ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL); \
- } \
- if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \
- st->d->short_term_frame_counter += st->d->needed_frames; \
- if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
- double st_energy; \
- ebur128_energy_shortterm(st, &st_energy); \
- if (st_energy >= histogram_energy_boundaries[0]) { \
- ++st->d->short_term_block_energy_histogram[ \
- find_histogram_index(st_energy)]; \
- } \
- st->d->short_term_frame_counter = st->d->samples_in_100ms * 20; \
- } \
- } \
- /* 100ms are needed for all blocks besides the first one */ \
- st->d->needed_frames = st->d->samples_in_100ms; \
- /* reset audio_data_index when buffer full */ \
- if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) { \
- st->d->audio_data_index = 0; \
- } \
- } else { \
- ebur128_filter_##type(st, srcs, src_index, frames, stride); \
- st->d->audio_data_index += frames * st->channels; \
- if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) { \
- st->d->short_term_frame_counter += frames; \
- } \
- st->d->needed_frames -= frames; \
- frames = 0; \
- } \
- } \
- }
- FF_EBUR128_ADD_FRAMES_PLANAR(short)
- FF_EBUR128_ADD_FRAMES_PLANAR(int)
- FF_EBUR128_ADD_FRAMES_PLANAR(float)
- FF_EBUR128_ADD_FRAMES_PLANAR(double)
- #define FF_EBUR128_ADD_FRAMES(type) \
- void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src, \
- size_t frames) { \
- int i; \
- const type **buf = (const type**)st->d->data_ptrs; \
- for (i = 0; i < st->channels; i++) \
- buf[i] = src + i; \
- ff_ebur128_add_frames_planar_##type(st, buf, frames, st->channels); \
- }
- FF_EBUR128_ADD_FRAMES(short)
- FF_EBUR128_ADD_FRAMES(int)
- FF_EBUR128_ADD_FRAMES(float)
- FF_EBUR128_ADD_FRAMES(double)
-
- static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size,
- double *relative_threshold)
- {
- size_t i, j;
- int above_thresh_counter = 0;
- *relative_threshold = 0.0;
-
- for (i = 0; i < size; i++) {
- unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram;
- for (j = 0; j < 1000; ++j) {
- *relative_threshold += block_energy_histogram[j] * histogram_energies[j];
- above_thresh_counter += block_energy_histogram[j];
- }
- }
-
- if (above_thresh_counter != 0) {
- *relative_threshold /= (double)above_thresh_counter;
- *relative_threshold *= RELATIVE_GATE_FACTOR;
- }
-
- return above_thresh_counter;
- }
-
- static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size,
- double *out)
- {
- double gated_loudness = 0.0;
- double relative_threshold;
- size_t above_thresh_counter;
- size_t i, j, start_index;
-
- for (i = 0; i < size; i++)
- if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
- return AVERROR(EINVAL);
-
- if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) {
- *out = -HUGE_VAL;
- return 0;
- }
-
- above_thresh_counter = 0;
- if (relative_threshold < histogram_energy_boundaries[0]) {
- start_index = 0;
- } else {
- start_index = find_histogram_index(relative_threshold);
- if (relative_threshold > histogram_energies[start_index]) {
- ++start_index;
- }
- }
- for (i = 0; i < size; i++) {
- for (j = start_index; j < 1000; ++j) {
- gated_loudness += sts[i]->d->block_energy_histogram[j] *
- histogram_energies[j];
- above_thresh_counter += sts[i]->d->block_energy_histogram[j];
- }
- }
- if (!above_thresh_counter) {
- *out = -HUGE_VAL;
- return 0;
- }
- gated_loudness /= (double) above_thresh_counter;
- *out = ebur128_energy_to_loudness(gated_loudness);
- return 0;
- }
-
- int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out)
- {
- double relative_threshold;
-
- if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
- return AVERROR(EINVAL);
-
- if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) {
- *out = -70.0;
- return 0;
- }
-
- *out = ebur128_energy_to_loudness(relative_threshold);
- return 0;
- }
-
- int ff_ebur128_loudness_global(FFEBUR128State * st, double *out)
- {
- return ebur128_gated_loudness(&st, 1, out);
- }
-
- int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, size_t size,
- double *out)
- {
- return ebur128_gated_loudness(sts, size, out);
- }
-
- static int ebur128_energy_in_interval(FFEBUR128State * st,
- size_t interval_frames, double *out)
- {
- if (interval_frames > st->d->audio_data_frames) {
- return AVERROR(EINVAL);
- }
- ebur128_calc_gating_block(st, interval_frames, out);
- return 0;
- }
-
- static int ebur128_energy_shortterm(FFEBUR128State * st, double *out)
- {
- return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30,
- out);
- }
-
- int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out)
- {
- double energy;
- int error = ebur128_energy_in_interval(st, st->d->samples_in_100ms * 4,
- &energy);
- if (error) {
- return error;
- } else if (energy <= 0.0) {
- *out = -HUGE_VAL;
- return 0;
- }
- *out = ebur128_energy_to_loudness(energy);
- return 0;
- }
-
- int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out)
- {
- double energy;
- int error = ebur128_energy_shortterm(st, &energy);
- if (error) {
- return error;
- } else if (energy <= 0.0) {
- *out = -HUGE_VAL;
- return 0;
- }
- *out = ebur128_energy_to_loudness(energy);
- return 0;
- }
-
- int ff_ebur128_loudness_window(FFEBUR128State * st,
- unsigned long window, double *out)
- {
- double energy;
- size_t interval_frames = st->samplerate * window / 1000;
- int error = ebur128_energy_in_interval(st, interval_frames, &energy);
- if (error) {
- return error;
- } else if (energy <= 0.0) {
- *out = -HUGE_VAL;
- return 0;
- }
- *out = ebur128_energy_to_loudness(energy);
- return 0;
- }
-
- /* EBU - TECH 3342 */
- int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size,
- double *out)
- {
- size_t i, j;
- size_t stl_size;
- double stl_power, stl_integrated;
- /* High and low percentile energy */
- double h_en, l_en;
- unsigned long hist[1000] = { 0 };
- size_t percentile_low, percentile_high;
- size_t index;
-
- for (i = 0; i < size; ++i) {
- if (sts[i]) {
- if ((sts[i]->mode & FF_EBUR128_MODE_LRA) !=
- FF_EBUR128_MODE_LRA) {
- return AVERROR(EINVAL);
- }
- }
- }
-
- stl_size = 0;
- stl_power = 0.0;
- for (i = 0; i < size; ++i) {
- if (!sts[i])
- continue;
- for (j = 0; j < 1000; ++j) {
- hist[j] += sts[i]->d->short_term_block_energy_histogram[j];
- stl_size += sts[i]->d->short_term_block_energy_histogram[j];
- stl_power += sts[i]->d->short_term_block_energy_histogram[j]
- * histogram_energies[j];
- }
- }
- if (!stl_size) {
- *out = 0.0;
- return 0;
- }
-
- stl_power /= stl_size;
- stl_integrated = MINUS_20DB * stl_power;
-
- if (stl_integrated < histogram_energy_boundaries[0]) {
- index = 0;
- } else {
- index = find_histogram_index(stl_integrated);
- if (stl_integrated > histogram_energies[index]) {
- ++index;
- }
- }
- stl_size = 0;
- for (j = index; j < 1000; ++j) {
- stl_size += hist[j];
- }
- if (!stl_size) {
- *out = 0.0;
- return 0;
- }
-
- percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5);
- percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5);
-
- stl_size = 0;
- j = index;
- while (stl_size <= percentile_low) {
- stl_size += hist[j++];
- }
- l_en = histogram_energies[j - 1];
- while (stl_size <= percentile_high) {
- stl_size += hist[j++];
- }
- h_en = histogram_energies[j - 1];
- *out =
- ebur128_energy_to_loudness(h_en) -
- ebur128_energy_to_loudness(l_en);
- return 0;
- }
-
- int ff_ebur128_loudness_range(FFEBUR128State * st, double *out)
- {
- return ff_ebur128_loudness_range_multiple(&st, 1, out);
- }
-
- int ff_ebur128_sample_peak(FFEBUR128State * st,
- unsigned int channel_number, double *out)
- {
- if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) !=
- FF_EBUR128_MODE_SAMPLE_PEAK) {
- return AVERROR(EINVAL);
- } else if (channel_number >= st->channels) {
- return AVERROR(EINVAL);
- }
- *out = st->d->sample_peak[channel_number];
- return 0;
- }
|