You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

920 lines
28KB

  1. /*
  2. * Copyright (C) 2017 Paul B Mahol
  3. * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include <math.h>
  21. #include "libavutil/audio_fifo.h"
  22. #include "libavutil/avstring.h"
  23. #include "libavutil/channel_layout.h"
  24. #include "libavutil/float_dsp.h"
  25. #include "libavutil/intmath.h"
  26. #include "libavutil/opt.h"
  27. #include "libavcodec/avfft.h"
  28. #include "avfilter.h"
  29. #include "internal.h"
  30. #include "audio.h"
  31. #define TIME_DOMAIN 0
  32. #define FREQUENCY_DOMAIN 1
  33. #define HRIR_STEREO 0
  34. #define HRIR_MULTI 1
  35. typedef struct HeadphoneContext {
  36. const AVClass *class;
  37. char *map;
  38. int type;
  39. int lfe_channel;
  40. int have_hrirs;
  41. int eof_hrirs;
  42. int64_t pts;
  43. int ir_len;
  44. int mapping[64];
  45. int nb_inputs;
  46. int nb_irs;
  47. float gain;
  48. float lfe_gain, gain_lfe;
  49. float *ringbuffer[2];
  50. int write[2];
  51. int buffer_length;
  52. int n_fft;
  53. int size;
  54. int hrir_fmt;
  55. int *delay[2];
  56. float *data_ir[2];
  57. float *temp_src[2];
  58. FFTComplex *temp_fft[2];
  59. FFTContext *fft[2], *ifft[2];
  60. FFTComplex *data_hrtf[2];
  61. AVFloatDSPContext *fdsp;
  62. struct headphone_inputs {
  63. AVAudioFifo *fifo;
  64. AVFrame *frame;
  65. int ir_len;
  66. int delay_l;
  67. int delay_r;
  68. int eof;
  69. } *in;
  70. } HeadphoneContext;
  71. static int parse_channel_name(HeadphoneContext *s, int x, char **arg, int *rchannel, char *buf)
  72. {
  73. int len, i, channel_id = 0;
  74. int64_t layout, layout0;
  75. if (sscanf(*arg, "%7[A-Z]%n", buf, &len)) {
  76. layout0 = layout = av_get_channel_layout(buf);
  77. if (layout == AV_CH_LOW_FREQUENCY)
  78. s->lfe_channel = x;
  79. for (i = 32; i > 0; i >>= 1) {
  80. if (layout >= 1LL << i) {
  81. channel_id += i;
  82. layout >>= i;
  83. }
  84. }
  85. if (channel_id >= 64 || layout0 != 1LL << channel_id)
  86. return AVERROR(EINVAL);
  87. *rchannel = channel_id;
  88. *arg += len;
  89. return 0;
  90. }
  91. return AVERROR(EINVAL);
  92. }
  93. static void parse_map(AVFilterContext *ctx)
  94. {
  95. HeadphoneContext *s = ctx->priv;
  96. char *arg, *tokenizer, *p, *args = av_strdup(s->map);
  97. int i;
  98. if (!args)
  99. return;
  100. p = args;
  101. s->lfe_channel = -1;
  102. s->nb_inputs = 1;
  103. for (i = 0; i < 64; i++) {
  104. s->mapping[i] = -1;
  105. }
  106. while ((arg = av_strtok(p, "|", &tokenizer))) {
  107. int out_ch_id;
  108. char buf[8];
  109. p = NULL;
  110. if (parse_channel_name(s, s->nb_irs, &arg, &out_ch_id, buf)) {
  111. av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf);
  112. continue;
  113. }
  114. s->mapping[s->nb_irs] = out_ch_id;
  115. s->nb_irs++;
  116. }
  117. if (s->hrir_fmt == HRIR_MULTI)
  118. s->nb_inputs = 2;
  119. else
  120. s->nb_inputs = s->nb_irs + 1;
  121. av_free(args);
  122. }
  123. typedef struct ThreadData {
  124. AVFrame *in, *out;
  125. int *write;
  126. int **delay;
  127. float **ir;
  128. int *n_clippings;
  129. float **ringbuffer;
  130. float **temp_src;
  131. FFTComplex **temp_fft;
  132. } ThreadData;
  133. static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  134. {
  135. HeadphoneContext *s = ctx->priv;
  136. ThreadData *td = arg;
  137. AVFrame *in = td->in, *out = td->out;
  138. int offset = jobnr;
  139. int *write = &td->write[jobnr];
  140. const int *const delay = td->delay[jobnr];
  141. const float *const ir = td->ir[jobnr];
  142. int *n_clippings = &td->n_clippings[jobnr];
  143. float *ringbuffer = td->ringbuffer[jobnr];
  144. float *temp_src = td->temp_src[jobnr];
  145. const int ir_len = s->ir_len;
  146. const float *src = (const float *)in->data[0];
  147. float *dst = (float *)out->data[0];
  148. const int in_channels = in->channels;
  149. const int buffer_length = s->buffer_length;
  150. const uint32_t modulo = (uint32_t)buffer_length - 1;
  151. float *buffer[16];
  152. int wr = *write;
  153. int read;
  154. int i, l;
  155. dst += offset;
  156. for (l = 0; l < in_channels; l++) {
  157. buffer[l] = ringbuffer + l * buffer_length;
  158. }
  159. for (i = 0; i < in->nb_samples; i++) {
  160. const float *temp_ir = ir;
  161. *dst = 0;
  162. for (l = 0; l < in_channels; l++) {
  163. *(buffer[l] + wr) = src[l];
  164. }
  165. for (l = 0; l < in_channels; l++) {
  166. const float *const bptr = buffer[l];
  167. if (l == s->lfe_channel) {
  168. *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe;
  169. temp_ir += FFALIGN(ir_len, 16);
  170. continue;
  171. }
  172. read = (wr - *(delay + l) - (ir_len - 1) + buffer_length) & modulo;
  173. if (read + ir_len < buffer_length) {
  174. memcpy(temp_src, bptr + read, ir_len * sizeof(*temp_src));
  175. } else {
  176. int len = FFMIN(ir_len - (read % ir_len), buffer_length - read);
  177. memcpy(temp_src, bptr + read, len * sizeof(*temp_src));
  178. memcpy(temp_src + len, bptr, (ir_len - len) * sizeof(*temp_src));
  179. }
  180. dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, ir_len);
  181. temp_ir += FFALIGN(ir_len, 16);
  182. }
  183. if (fabs(*dst) > 1)
  184. *n_clippings += 1;
  185. dst += 2;
  186. src += in_channels;
  187. wr = (wr + 1) & modulo;
  188. }
  189. *write = wr;
  190. return 0;
  191. }
  192. static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
  193. {
  194. HeadphoneContext *s = ctx->priv;
  195. ThreadData *td = arg;
  196. AVFrame *in = td->in, *out = td->out;
  197. int offset = jobnr;
  198. int *write = &td->write[jobnr];
  199. FFTComplex *hrtf = s->data_hrtf[jobnr];
  200. int *n_clippings = &td->n_clippings[jobnr];
  201. float *ringbuffer = td->ringbuffer[jobnr];
  202. const int ir_len = s->ir_len;
  203. const float *src = (const float *)in->data[0];
  204. float *dst = (float *)out->data[0];
  205. const int in_channels = in->channels;
  206. const int buffer_length = s->buffer_length;
  207. const uint32_t modulo = (uint32_t)buffer_length - 1;
  208. FFTComplex *fft_in = s->temp_fft[jobnr];
  209. FFTContext *ifft = s->ifft[jobnr];
  210. FFTContext *fft = s->fft[jobnr];
  211. const int n_fft = s->n_fft;
  212. const float fft_scale = 1.0f / s->n_fft;
  213. FFTComplex *hrtf_offset;
  214. int wr = *write;
  215. int n_read;
  216. int i, j;
  217. dst += offset;
  218. n_read = FFMIN(s->ir_len, in->nb_samples);
  219. for (j = 0; j < n_read; j++) {
  220. dst[2 * j] = ringbuffer[wr];
  221. ringbuffer[wr] = 0.0;
  222. wr = (wr + 1) & modulo;
  223. }
  224. for (j = n_read; j < in->nb_samples; j++) {
  225. dst[2 * j] = 0;
  226. }
  227. for (i = 0; i < in_channels; i++) {
  228. if (i == s->lfe_channel) {
  229. for (j = 0; j < in->nb_samples; j++) {
  230. dst[2 * j] += src[i + j * in_channels] * s->gain_lfe;
  231. }
  232. continue;
  233. }
  234. offset = i * n_fft;
  235. hrtf_offset = hrtf + offset;
  236. memset(fft_in, 0, sizeof(FFTComplex) * n_fft);
  237. for (j = 0; j < in->nb_samples; j++) {
  238. fft_in[j].re = src[j * in_channels + i];
  239. }
  240. av_fft_permute(fft, fft_in);
  241. av_fft_calc(fft, fft_in);
  242. for (j = 0; j < n_fft; j++) {
  243. const FFTComplex *hcomplex = hrtf_offset + j;
  244. const float re = fft_in[j].re;
  245. const float im = fft_in[j].im;
  246. fft_in[j].re = re * hcomplex->re - im * hcomplex->im;
  247. fft_in[j].im = re * hcomplex->im + im * hcomplex->re;
  248. }
  249. av_fft_permute(ifft, fft_in);
  250. av_fft_calc(ifft, fft_in);
  251. for (j = 0; j < in->nb_samples; j++) {
  252. dst[2 * j] += fft_in[j].re * fft_scale;
  253. }
  254. for (j = 0; j < ir_len - 1; j++) {
  255. int write_pos = (wr + j) & modulo;
  256. *(ringbuffer + write_pos) += fft_in[in->nb_samples + j].re * fft_scale;
  257. }
  258. }
  259. for (i = 0; i < out->nb_samples; i++) {
  260. if (fabs(*dst) > 1) {
  261. n_clippings[0]++;
  262. }
  263. dst += 2;
  264. }
  265. *write = wr;
  266. return 0;
  267. }
  268. static int read_ir(AVFilterLink *inlink, AVFrame *frame)
  269. {
  270. AVFilterContext *ctx = inlink->dst;
  271. HeadphoneContext *s = ctx->priv;
  272. int ir_len, max_ir_len, input_number, ret;
  273. for (input_number = 0; input_number < s->nb_inputs; input_number++)
  274. if (inlink == ctx->inputs[input_number])
  275. break;
  276. ret = av_audio_fifo_write(s->in[input_number].fifo, (void **)frame->extended_data,
  277. frame->nb_samples);
  278. av_frame_free(&frame);
  279. if (ret < 0)
  280. return ret;
  281. ir_len = av_audio_fifo_size(s->in[input_number].fifo);
  282. max_ir_len = 65536;
  283. if (ir_len > max_ir_len) {
  284. av_log(ctx, AV_LOG_ERROR, "Too big length of IRs: %d > %d.\n", ir_len, max_ir_len);
  285. return AVERROR(EINVAL);
  286. }
  287. s->in[input_number].ir_len = ir_len;
  288. s->ir_len = FFMAX(ir_len, s->ir_len);
  289. return 0;
  290. }
  291. static int headphone_frame(HeadphoneContext *s, AVFilterLink *outlink, int max_nb_samples)
  292. {
  293. AVFilterContext *ctx = outlink->src;
  294. AVFrame *in = s->in[0].frame;
  295. int n_clippings[2] = { 0 };
  296. ThreadData td;
  297. AVFrame *out;
  298. av_audio_fifo_read(s->in[0].fifo, (void **)in->extended_data, s->size);
  299. out = ff_get_audio_buffer(outlink, in->nb_samples);
  300. if (!out)
  301. return AVERROR(ENOMEM);
  302. out->pts = s->pts;
  303. if (s->pts != AV_NOPTS_VALUE)
  304. s->pts += av_rescale_q(out->nb_samples, (AVRational){1, outlink->sample_rate}, outlink->time_base);
  305. td.in = in; td.out = out; td.write = s->write;
  306. td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings;
  307. td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src;
  308. td.temp_fft = s->temp_fft;
  309. if (s->type == TIME_DOMAIN) {
  310. ctx->internal->execute(ctx, headphone_convolute, &td, NULL, 2);
  311. } else {
  312. ctx->internal->execute(ctx, headphone_fast_convolute, &td, NULL, 2);
  313. }
  314. emms_c();
  315. if (n_clippings[0] + n_clippings[1] > 0) {
  316. av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n",
  317. n_clippings[0] + n_clippings[1], out->nb_samples * 2);
  318. }
  319. out->nb_samples = max_nb_samples;
  320. return ff_filter_frame(outlink, out);
  321. }
  322. static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink)
  323. {
  324. struct HeadphoneContext *s = ctx->priv;
  325. const int ir_len = s->ir_len;
  326. int nb_irs = s->nb_irs;
  327. int nb_input_channels = ctx->inputs[0]->channels;
  328. float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10);
  329. FFTComplex *data_hrtf_l = NULL;
  330. FFTComplex *data_hrtf_r = NULL;
  331. FFTComplex *fft_in_l = NULL;
  332. FFTComplex *fft_in_r = NULL;
  333. float *data_ir_l = NULL;
  334. float *data_ir_r = NULL;
  335. int offset = 0, ret = 0;
  336. int n_fft;
  337. int i, j, k;
  338. s->buffer_length = 1 << (32 - ff_clz(s->ir_len));
  339. s->n_fft = n_fft = 1 << (32 - ff_clz(s->ir_len + s->size));
  340. if (s->type == FREQUENCY_DOMAIN) {
  341. fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l));
  342. fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r));
  343. if (!fft_in_l || !fft_in_r) {
  344. ret = AVERROR(ENOMEM);
  345. goto fail;
  346. }
  347. av_fft_end(s->fft[0]);
  348. av_fft_end(s->fft[1]);
  349. s->fft[0] = av_fft_init(log2(s->n_fft), 0);
  350. s->fft[1] = av_fft_init(log2(s->n_fft), 0);
  351. av_fft_end(s->ifft[0]);
  352. av_fft_end(s->ifft[1]);
  353. s->ifft[0] = av_fft_init(log2(s->n_fft), 1);
  354. s->ifft[1] = av_fft_init(log2(s->n_fft), 1);
  355. if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) {
  356. av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft);
  357. ret = AVERROR(ENOMEM);
  358. goto fail;
  359. }
  360. }
  361. s->data_ir[0] = av_calloc(FFALIGN(s->ir_len, 16), sizeof(float) * s->nb_irs);
  362. s->data_ir[1] = av_calloc(FFALIGN(s->ir_len, 16), sizeof(float) * s->nb_irs);
  363. s->delay[0] = av_calloc(s->nb_irs, sizeof(float));
  364. s->delay[1] = av_calloc(s->nb_irs, sizeof(float));
  365. if (s->type == TIME_DOMAIN) {
  366. s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
  367. s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels);
  368. } else {
  369. s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float));
  370. s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float));
  371. s->temp_fft[0] = av_calloc(s->n_fft, sizeof(FFTComplex));
  372. s->temp_fft[1] = av_calloc(s->n_fft, sizeof(FFTComplex));
  373. if (!s->temp_fft[0] || !s->temp_fft[1]) {
  374. ret = AVERROR(ENOMEM);
  375. goto fail;
  376. }
  377. }
  378. if (!s->data_ir[0] || !s->data_ir[1] ||
  379. !s->ringbuffer[0] || !s->ringbuffer[1]) {
  380. ret = AVERROR(ENOMEM);
  381. goto fail;
  382. }
  383. s->in[0].frame = ff_get_audio_buffer(ctx->inputs[0], s->size);
  384. if (!s->in[0].frame) {
  385. ret = AVERROR(ENOMEM);
  386. goto fail;
  387. }
  388. for (i = 0; i < s->nb_inputs - 1; i++) {
  389. s->in[i + 1].frame = ff_get_audio_buffer(ctx->inputs[i + 1], s->ir_len);
  390. if (!s->in[i + 1].frame) {
  391. ret = AVERROR(ENOMEM);
  392. goto fail;
  393. }
  394. }
  395. if (s->type == TIME_DOMAIN) {
  396. s->temp_src[0] = av_calloc(FFALIGN(ir_len, 16), sizeof(float));
  397. s->temp_src[1] = av_calloc(FFALIGN(ir_len, 16), sizeof(float));
  398. data_ir_l = av_calloc(nb_irs * FFALIGN(ir_len, 16), sizeof(*data_ir_l));
  399. data_ir_r = av_calloc(nb_irs * FFALIGN(ir_len, 16), sizeof(*data_ir_r));
  400. if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) {
  401. ret = AVERROR(ENOMEM);
  402. goto fail;
  403. }
  404. } else {
  405. data_hrtf_l = av_calloc(n_fft, sizeof(*data_hrtf_l) * nb_irs);
  406. data_hrtf_r = av_calloc(n_fft, sizeof(*data_hrtf_r) * nb_irs);
  407. if (!data_hrtf_r || !data_hrtf_l) {
  408. ret = AVERROR(ENOMEM);
  409. goto fail;
  410. }
  411. }
  412. for (i = 0; i < s->nb_inputs - 1; i++) {
  413. int len = s->in[i + 1].ir_len;
  414. int delay_l = s->in[i + 1].delay_l;
  415. int delay_r = s->in[i + 1].delay_r;
  416. float *ptr;
  417. av_audio_fifo_read(s->in[i + 1].fifo, (void **)s->in[i + 1].frame->extended_data, len);
  418. ptr = (float *)s->in[i + 1].frame->extended_data[0];
  419. if (s->hrir_fmt == HRIR_STEREO) {
  420. int idx = -1;
  421. for (j = 0; j < inlink->channels; j++) {
  422. if (s->mapping[i] < 0) {
  423. continue;
  424. }
  425. if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[i])) {
  426. idx = i;
  427. break;
  428. }
  429. }
  430. if (idx == -1)
  431. continue;
  432. if (s->type == TIME_DOMAIN) {
  433. offset = idx * FFALIGN(len, 16);
  434. for (j = 0; j < len; j++) {
  435. data_ir_l[offset + j] = ptr[len * 2 - j * 2 - 2] * gain_lin;
  436. data_ir_r[offset + j] = ptr[len * 2 - j * 2 - 1] * gain_lin;
  437. }
  438. } else {
  439. memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
  440. memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
  441. offset = idx * n_fft;
  442. for (j = 0; j < len; j++) {
  443. fft_in_l[delay_l + j].re = ptr[j * 2 ] * gain_lin;
  444. fft_in_r[delay_r + j].re = ptr[j * 2 + 1] * gain_lin;
  445. }
  446. av_fft_permute(s->fft[0], fft_in_l);
  447. av_fft_calc(s->fft[0], fft_in_l);
  448. memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
  449. av_fft_permute(s->fft[0], fft_in_r);
  450. av_fft_calc(s->fft[0], fft_in_r);
  451. memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
  452. }
  453. } else {
  454. int I, N = ctx->inputs[1]->channels;
  455. for (k = 0; k < N / 2; k++) {
  456. int idx = -1;
  457. for (j = 0; j < inlink->channels; j++) {
  458. if (s->mapping[k] < 0) {
  459. continue;
  460. }
  461. if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[k])) {
  462. idx = k;
  463. break;
  464. }
  465. }
  466. if (idx == -1)
  467. continue;
  468. I = idx * 2;
  469. if (s->type == TIME_DOMAIN) {
  470. offset = idx * FFALIGN(len, 16);
  471. for (j = 0; j < len; j++) {
  472. data_ir_l[offset + j] = ptr[len * N - j * N - N + I ] * gain_lin;
  473. data_ir_r[offset + j] = ptr[len * N - j * N - N + I + 1] * gain_lin;
  474. }
  475. } else {
  476. memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l));
  477. memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r));
  478. offset = idx * n_fft;
  479. for (j = 0; j < len; j++) {
  480. fft_in_l[delay_l + j].re = ptr[j * N + I ] * gain_lin;
  481. fft_in_r[delay_r + j].re = ptr[j * N + I + 1] * gain_lin;
  482. }
  483. av_fft_permute(s->fft[0], fft_in_l);
  484. av_fft_calc(s->fft[0], fft_in_l);
  485. memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l));
  486. av_fft_permute(s->fft[0], fft_in_r);
  487. av_fft_calc(s->fft[0], fft_in_r);
  488. memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r));
  489. }
  490. }
  491. }
  492. }
  493. if (s->type == TIME_DOMAIN) {
  494. memcpy(s->data_ir[0], data_ir_l, sizeof(float) * nb_irs * FFALIGN(ir_len, 16));
  495. memcpy(s->data_ir[1], data_ir_r, sizeof(float) * nb_irs * FFALIGN(ir_len, 16));
  496. } else {
  497. s->data_hrtf[0] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
  498. s->data_hrtf[1] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex));
  499. if (!s->data_hrtf[0] || !s->data_hrtf[1]) {
  500. ret = AVERROR(ENOMEM);
  501. goto fail;
  502. }
  503. memcpy(s->data_hrtf[0], data_hrtf_l,
  504. sizeof(FFTComplex) * nb_irs * n_fft);
  505. memcpy(s->data_hrtf[1], data_hrtf_r,
  506. sizeof(FFTComplex) * nb_irs * n_fft);
  507. }
  508. s->have_hrirs = 1;
  509. fail:
  510. av_freep(&data_ir_l);
  511. av_freep(&data_ir_r);
  512. av_freep(&data_hrtf_l);
  513. av_freep(&data_hrtf_r);
  514. av_freep(&fft_in_l);
  515. av_freep(&fft_in_r);
  516. return ret;
  517. }
  518. static int filter_frame(AVFilterLink *inlink, AVFrame *in)
  519. {
  520. AVFilterContext *ctx = inlink->dst;
  521. HeadphoneContext *s = ctx->priv;
  522. AVFilterLink *outlink = ctx->outputs[0];
  523. int ret = 0;
  524. ret = av_audio_fifo_write(s->in[0].fifo, (void **)in->extended_data,
  525. in->nb_samples);
  526. if (s->pts == AV_NOPTS_VALUE)
  527. s->pts = in->pts;
  528. av_frame_free(&in);
  529. if (ret < 0)
  530. return ret;
  531. if (!s->have_hrirs && s->eof_hrirs) {
  532. ret = convert_coeffs(ctx, inlink);
  533. if (ret < 0)
  534. return ret;
  535. }
  536. if (s->have_hrirs) {
  537. while (av_audio_fifo_size(s->in[0].fifo) >= s->size) {
  538. ret = headphone_frame(s, outlink, s->size);
  539. if (ret < 0)
  540. return ret;
  541. }
  542. }
  543. return 0;
  544. }
  545. static int query_formats(AVFilterContext *ctx)
  546. {
  547. struct HeadphoneContext *s = ctx->priv;
  548. AVFilterFormats *formats = NULL;
  549. AVFilterChannelLayouts *layouts = NULL;
  550. AVFilterChannelLayouts *stereo_layout = NULL;
  551. AVFilterChannelLayouts *hrir_layouts = NULL;
  552. int ret, i;
  553. ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
  554. if (ret)
  555. return ret;
  556. ret = ff_set_common_formats(ctx, formats);
  557. if (ret)
  558. return ret;
  559. layouts = ff_all_channel_layouts();
  560. if (!layouts)
  561. return AVERROR(ENOMEM);
  562. ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts);
  563. if (ret)
  564. return ret;
  565. ret = ff_add_channel_layout(&stereo_layout, AV_CH_LAYOUT_STEREO);
  566. if (ret)
  567. return ret;
  568. if (s->hrir_fmt == HRIR_MULTI) {
  569. hrir_layouts = ff_all_channel_counts();
  570. if (!hrir_layouts)
  571. ret = AVERROR(ENOMEM);
  572. ret = ff_channel_layouts_ref(hrir_layouts, &ctx->inputs[1]->out_channel_layouts);
  573. if (ret)
  574. return ret;
  575. } else {
  576. for (i = 1; i < s->nb_inputs; i++) {
  577. ret = ff_channel_layouts_ref(stereo_layout, &ctx->inputs[i]->out_channel_layouts);
  578. if (ret)
  579. return ret;
  580. }
  581. }
  582. ret = ff_channel_layouts_ref(stereo_layout, &ctx->outputs[0]->in_channel_layouts);
  583. if (ret)
  584. return ret;
  585. formats = ff_all_samplerates();
  586. if (!formats)
  587. return AVERROR(ENOMEM);
  588. return ff_set_common_samplerates(ctx, formats);
  589. }
  590. static int config_input(AVFilterLink *inlink)
  591. {
  592. AVFilterContext *ctx = inlink->dst;
  593. HeadphoneContext *s = ctx->priv;
  594. if (s->nb_irs < inlink->channels) {
  595. av_log(ctx, AV_LOG_ERROR, "Number of HRIRs must be >= %d.\n", inlink->channels);
  596. return AVERROR(EINVAL);
  597. }
  598. return 0;
  599. }
  600. static av_cold int init(AVFilterContext *ctx)
  601. {
  602. HeadphoneContext *s = ctx->priv;
  603. int i, ret;
  604. AVFilterPad pad = {
  605. .name = "in0",
  606. .type = AVMEDIA_TYPE_AUDIO,
  607. .config_props = config_input,
  608. .filter_frame = filter_frame,
  609. };
  610. if ((ret = ff_insert_inpad(ctx, 0, &pad)) < 0)
  611. return ret;
  612. if (!s->map) {
  613. av_log(ctx, AV_LOG_ERROR, "Valid mapping must be set.\n");
  614. return AVERROR(EINVAL);
  615. }
  616. parse_map(ctx);
  617. s->in = av_calloc(s->nb_inputs, sizeof(*s->in));
  618. if (!s->in)
  619. return AVERROR(ENOMEM);
  620. for (i = 1; i < s->nb_inputs; i++) {
  621. char *name = av_asprintf("hrir%d", i - 1);
  622. AVFilterPad pad = {
  623. .name = name,
  624. .type = AVMEDIA_TYPE_AUDIO,
  625. .filter_frame = read_ir,
  626. };
  627. if (!name)
  628. return AVERROR(ENOMEM);
  629. if ((ret = ff_insert_inpad(ctx, i, &pad)) < 0) {
  630. av_freep(&pad.name);
  631. return ret;
  632. }
  633. }
  634. s->fdsp = avpriv_float_dsp_alloc(0);
  635. if (!s->fdsp)
  636. return AVERROR(ENOMEM);
  637. s->pts = AV_NOPTS_VALUE;
  638. return 0;
  639. }
  640. static int config_output(AVFilterLink *outlink)
  641. {
  642. AVFilterContext *ctx = outlink->src;
  643. HeadphoneContext *s = ctx->priv;
  644. AVFilterLink *inlink = ctx->inputs[0];
  645. int i;
  646. if (s->hrir_fmt == HRIR_MULTI) {
  647. AVFilterLink *hrir_link = ctx->inputs[1];
  648. if (hrir_link->channels < inlink->channels * 2) {
  649. av_log(ctx, AV_LOG_ERROR, "Number of channels in HRIR stream must be >= %d.\n", inlink->channels * 2);
  650. return AVERROR(EINVAL);
  651. }
  652. }
  653. for (i = 0; i < s->nb_inputs; i++) {
  654. s->in[i].fifo = av_audio_fifo_alloc(ctx->inputs[i]->format, ctx->inputs[i]->channels, 1024);
  655. if (!s->in[i].fifo)
  656. return AVERROR(ENOMEM);
  657. }
  658. s->gain_lfe = expf((s->gain - 3 * inlink->channels - 6 + s->lfe_gain) / 20 * M_LN10);
  659. return 0;
  660. }
  661. static int request_frame(AVFilterLink *outlink)
  662. {
  663. AVFilterContext *ctx = outlink->src;
  664. HeadphoneContext *s = ctx->priv;
  665. int i, ret;
  666. for (i = 1; !s->eof_hrirs && i < s->nb_inputs; i++) {
  667. if (!s->in[i].eof) {
  668. ret = ff_request_frame(ctx->inputs[i]);
  669. if (ret == AVERROR_EOF) {
  670. s->in[i].eof = 1;
  671. ret = 0;
  672. }
  673. return ret;
  674. } else {
  675. if (i == s->nb_inputs - 1)
  676. s->eof_hrirs = 1;
  677. }
  678. }
  679. ret = ff_request_frame(ctx->inputs[0]);
  680. if (ret == AVERROR_EOF && av_audio_fifo_size(s->in[0].fifo) > 0 && s->have_hrirs) {
  681. int nb_samples = av_audio_fifo_size(s->in[0].fifo);
  682. AVFrame *in = ff_get_audio_buffer(ctx->inputs[0], s->size - nb_samples);
  683. if (!in)
  684. return AVERROR(ENOMEM);
  685. av_samples_set_silence(in->extended_data, 0,
  686. in->nb_samples,
  687. in->channels,
  688. in->format);
  689. ret = av_audio_fifo_write(s->in[0].fifo, (void **)in->extended_data,
  690. in->nb_samples);
  691. av_frame_free(&in);
  692. if (ret < 0)
  693. return ret;
  694. ret = headphone_frame(s, outlink, nb_samples);
  695. av_audio_fifo_drain(s->in[0].fifo, av_audio_fifo_size(s->in[0].fifo));
  696. }
  697. return ret;
  698. }
  699. static av_cold void uninit(AVFilterContext *ctx)
  700. {
  701. HeadphoneContext *s = ctx->priv;
  702. int i;
  703. av_fft_end(s->ifft[0]);
  704. av_fft_end(s->ifft[1]);
  705. av_fft_end(s->fft[0]);
  706. av_fft_end(s->fft[1]);
  707. av_freep(&s->delay[0]);
  708. av_freep(&s->delay[1]);
  709. av_freep(&s->data_ir[0]);
  710. av_freep(&s->data_ir[1]);
  711. av_freep(&s->ringbuffer[0]);
  712. av_freep(&s->ringbuffer[1]);
  713. av_freep(&s->temp_src[0]);
  714. av_freep(&s->temp_src[1]);
  715. av_freep(&s->temp_fft[0]);
  716. av_freep(&s->temp_fft[1]);
  717. av_freep(&s->data_hrtf[0]);
  718. av_freep(&s->data_hrtf[1]);
  719. av_freep(&s->fdsp);
  720. for (i = 0; i < s->nb_inputs; i++) {
  721. av_frame_free(&s->in[i].frame);
  722. av_audio_fifo_free(s->in[i].fifo);
  723. if (ctx->input_pads && i)
  724. av_freep(&ctx->input_pads[i].name);
  725. }
  726. av_freep(&s->in);
  727. }
  728. #define OFFSET(x) offsetof(HeadphoneContext, x)
  729. #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
  730. static const AVOption headphone_options[] = {
  731. { "map", "set channels convolution mappings", OFFSET(map), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
  732. { "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
  733. { "lfe", "set lfe gain in dB", OFFSET(lfe_gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS },
  734. { "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" },
  735. { "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" },
  736. { "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" },
  737. { "size", "set frame size", OFFSET(size), AV_OPT_TYPE_INT, {.i64=1024},1024,96000, .flags = FLAGS },
  738. { "hrir", "set hrir format", OFFSET(hrir_fmt), AV_OPT_TYPE_INT, {.i64=HRIR_STEREO}, 0, 1, .flags = FLAGS, "hrir" },
  739. { "stereo", "hrir files have exactly 2 channels", 0, AV_OPT_TYPE_CONST, {.i64=HRIR_STEREO}, 0, 0, .flags = FLAGS, "hrir" },
  740. { "multich", "single multichannel hrir file", 0, AV_OPT_TYPE_CONST, {.i64=HRIR_MULTI}, 0, 0, .flags = FLAGS, "hrir" },
  741. { NULL }
  742. };
  743. AVFILTER_DEFINE_CLASS(headphone);
  744. static const AVFilterPad outputs[] = {
  745. {
  746. .name = "default",
  747. .type = AVMEDIA_TYPE_AUDIO,
  748. .config_props = config_output,
  749. .request_frame = request_frame,
  750. },
  751. { NULL }
  752. };
  753. AVFilter ff_af_headphone = {
  754. .name = "headphone",
  755. .description = NULL_IF_CONFIG_SMALL("Apply headphone binaural spatialization with HRTFs in additional streams."),
  756. .priv_size = sizeof(HeadphoneContext),
  757. .priv_class = &headphone_class,
  758. .init = init,
  759. .uninit = uninit,
  760. .query_formats = query_formats,
  761. .inputs = NULL,
  762. .outputs = outputs,
  763. .flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_DYNAMIC_INPUTS,
  764. };