You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1068 lines
35KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "avcodec.h"
  28. #include "ratecontrol.h"
  29. #include "mpegutils.h"
  30. #include "mpegvideo.h"
  31. #include "libavutil/eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  39. double rate_factor, int frame_num);
  40. void ff_write_pass1_stats(MpegEncContext *s)
  41. {
  42. snprintf(s->avctx->stats_out, 256,
  43. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  44. "fcode:%d bcode:%d mc-var:%"PRId64" var:%"PRId64" icount:%d skipcount:%d hbits:%d;\n",
  45. s->current_picture_ptr->f->display_picture_number,
  46. s->current_picture_ptr->f->coded_picture_number,
  47. s->pict_type,
  48. s->current_picture.f->quality,
  49. s->i_tex_bits,
  50. s->p_tex_bits,
  51. s->mv_bits,
  52. s->misc_bits,
  53. s->f_code,
  54. s->b_code,
  55. s->current_picture.mc_mb_var_sum,
  56. s->current_picture.mb_var_sum,
  57. s->i_count, s->skip_count,
  58. s->header_bits);
  59. }
  60. static double get_fps(AVCodecContext *avctx)
  61. {
  62. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  63. }
  64. static inline double qp2bits(RateControlEntry *rce, double qp)
  65. {
  66. if (qp <= 0.0) {
  67. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  68. }
  69. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  70. }
  71. static inline double bits2qp(RateControlEntry *rce, double bits)
  72. {
  73. if (bits < 0.9) {
  74. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  75. }
  76. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  77. }
  78. av_cold int ff_rate_control_init(MpegEncContext *s)
  79. {
  80. RateControlContext *rcc = &s->rc_context;
  81. int i, res;
  82. static const char * const const_names[] = {
  83. "PI",
  84. "E",
  85. "iTex",
  86. "pTex",
  87. "tex",
  88. "mv",
  89. "fCode",
  90. "iCount",
  91. "mcVar",
  92. "var",
  93. "isI",
  94. "isP",
  95. "isB",
  96. "avgQP",
  97. "qComp",
  98. #if 0
  99. "lastIQP",
  100. "lastPQP",
  101. "lastBQP",
  102. "nextNonBQP",
  103. #endif
  104. "avgIITex",
  105. "avgPITex",
  106. "avgPPTex",
  107. "avgBPTex",
  108. "avgTex",
  109. NULL
  110. };
  111. static double (* const func1[])(void *, double) = {
  112. (void *)bits2qp,
  113. (void *)qp2bits,
  114. NULL
  115. };
  116. static const char * const func1_names[] = {
  117. "bits2qp",
  118. "qp2bits",
  119. NULL
  120. };
  121. emms_c();
  122. if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
  123. if (s->avctx->rc_max_rate) {
  124. s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
  125. } else
  126. s->avctx->rc_max_available_vbv_use = 1.0;
  127. }
  128. res = av_expr_parse(&rcc->rc_eq_eval,
  129. s->rc_eq ? s->rc_eq : "tex^qComp",
  130. const_names, func1_names, func1,
  131. NULL, NULL, 0, s->avctx);
  132. if (res < 0) {
  133. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
  134. return res;
  135. }
  136. for (i = 0; i < 5; i++) {
  137. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  138. rcc->pred[i].count = 1.0;
  139. rcc->pred[i].decay = 0.4;
  140. rcc->i_cplx_sum [i] =
  141. rcc->p_cplx_sum [i] =
  142. rcc->mv_bits_sum[i] =
  143. rcc->qscale_sum [i] =
  144. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  145. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  146. }
  147. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  148. if (!rcc->buffer_index)
  149. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  150. if (s->flags & CODEC_FLAG_PASS2) {
  151. int i;
  152. char *p;
  153. /* find number of pics */
  154. p = s->avctx->stats_in;
  155. for (i = -1; p; i++)
  156. p = strchr(p + 1, ';');
  157. i += s->max_b_frames;
  158. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  159. return -1;
  160. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  161. rcc->num_entries = i;
  162. /* init all to skipped p frames
  163. * (with b frames we might have a not encoded frame at the end FIXME) */
  164. for (i = 0; i < rcc->num_entries; i++) {
  165. RateControlEntry *rce = &rcc->entry[i];
  166. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  167. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  168. rce->misc_bits = s->mb_num + 10;
  169. rce->mb_var_sum = s->mb_num * 100;
  170. }
  171. /* read stats */
  172. p = s->avctx->stats_in;
  173. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  174. RateControlEntry *rce;
  175. int picture_number;
  176. int e;
  177. char *next;
  178. next = strchr(p, ';');
  179. if (next) {
  180. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  181. next++;
  182. }
  183. e = sscanf(p, " in:%d ", &picture_number);
  184. assert(picture_number >= 0);
  185. assert(picture_number < rcc->num_entries);
  186. rce = &rcc->entry[picture_number];
  187. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%"SCNd64" var:%"SCNd64" icount:%d skipcount:%d hbits:%d",
  188. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  189. &rce->mv_bits, &rce->misc_bits,
  190. &rce->f_code, &rce->b_code,
  191. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  192. &rce->i_count, &rce->skip_count, &rce->header_bits);
  193. if (e != 14) {
  194. av_log(s->avctx, AV_LOG_ERROR,
  195. "statistics are damaged at line %d, parser out=%d\n",
  196. i, e);
  197. return -1;
  198. }
  199. p = next;
  200. }
  201. if (init_pass2(s) < 0)
  202. return -1;
  203. // FIXME maybe move to end
  204. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  205. #if CONFIG_LIBXVID
  206. return ff_xvid_rate_control_init(s);
  207. #else
  208. av_log(s->avctx, AV_LOG_ERROR,
  209. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  210. return -1;
  211. #endif
  212. }
  213. }
  214. if (!(s->flags & CODEC_FLAG_PASS2)) {
  215. rcc->short_term_qsum = 0.001;
  216. rcc->short_term_qcount = 0.001;
  217. rcc->pass1_rc_eq_output_sum = 0.001;
  218. rcc->pass1_wanted_bits = 0.001;
  219. if (s->avctx->qblur > 1.0) {
  220. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  221. return -1;
  222. }
  223. /* init stuff with the user specified complexity */
  224. if (s->rc_initial_cplx) {
  225. for (i = 0; i < 60 * 30; i++) {
  226. double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  227. RateControlEntry rce;
  228. if (i % ((s->gop_size + 3) / 4) == 0)
  229. rce.pict_type = AV_PICTURE_TYPE_I;
  230. else if (i % (s->max_b_frames + 1))
  231. rce.pict_type = AV_PICTURE_TYPE_B;
  232. else
  233. rce.pict_type = AV_PICTURE_TYPE_P;
  234. rce.new_pict_type = rce.pict_type;
  235. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  236. rce.mb_var_sum = s->mb_num;
  237. rce.qscale = FF_QP2LAMBDA * 2;
  238. rce.f_code = 2;
  239. rce.b_code = 1;
  240. rce.misc_bits = 1;
  241. if (s->pict_type == AV_PICTURE_TYPE_I) {
  242. rce.i_count = s->mb_num;
  243. rce.i_tex_bits = bits;
  244. rce.p_tex_bits = 0;
  245. rce.mv_bits = 0;
  246. } else {
  247. rce.i_count = 0; // FIXME we do know this approx
  248. rce.i_tex_bits = 0;
  249. rce.p_tex_bits = bits * 0.9;
  250. rce.mv_bits = bits * 0.1;
  251. }
  252. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  253. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  254. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  255. rcc->frame_count[rce.pict_type]++;
  256. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  257. // FIXME misbehaves a little for variable fps
  258. rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx);
  259. }
  260. }
  261. }
  262. return 0;
  263. }
  264. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  265. {
  266. RateControlContext *rcc = &s->rc_context;
  267. emms_c();
  268. av_expr_free(rcc->rc_eq_eval);
  269. av_freep(&rcc->entry);
  270. #if CONFIG_LIBXVID
  271. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  272. ff_xvid_rate_control_uninit(s);
  273. #endif
  274. }
  275. int ff_vbv_update(MpegEncContext *s, int frame_size)
  276. {
  277. RateControlContext *rcc = &s->rc_context;
  278. const double fps = get_fps(s->avctx);
  279. const int buffer_size = s->avctx->rc_buffer_size;
  280. const double min_rate = s->avctx->rc_min_rate / fps;
  281. const double max_rate = s->avctx->rc_max_rate / fps;
  282. av_dlog(s, "%d %f %d %f %f\n",
  283. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  284. if (buffer_size) {
  285. int left;
  286. rcc->buffer_index -= frame_size;
  287. if (rcc->buffer_index < 0) {
  288. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  289. if (frame_size > max_rate && s->qscale == s->avctx->qmax) {
  290. av_log(s->avctx, AV_LOG_ERROR, "max bitrate possibly too small or try trellis with large lmax or increase qmax\n");
  291. }
  292. rcc->buffer_index = 0;
  293. }
  294. left = buffer_size - rcc->buffer_index - 1;
  295. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  296. if (rcc->buffer_index > buffer_size) {
  297. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  298. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  299. stuffing = 4;
  300. rcc->buffer_index -= 8 * stuffing;
  301. if (s->avctx->debug & FF_DEBUG_RC)
  302. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  303. return stuffing;
  304. }
  305. }
  306. return 0;
  307. }
  308. /**
  309. * Modify the bitrate curve from pass1 for one frame.
  310. */
  311. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  312. double rate_factor, int frame_num)
  313. {
  314. RateControlContext *rcc = &s->rc_context;
  315. AVCodecContext *a = s->avctx;
  316. const int pict_type = rce->new_pict_type;
  317. const double mb_num = s->mb_num;
  318. double q, bits;
  319. int i;
  320. double const_values[] = {
  321. M_PI,
  322. M_E,
  323. rce->i_tex_bits * rce->qscale,
  324. rce->p_tex_bits * rce->qscale,
  325. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  326. rce->mv_bits / mb_num,
  327. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  328. rce->i_count / mb_num,
  329. rce->mc_mb_var_sum / mb_num,
  330. rce->mb_var_sum / mb_num,
  331. rce->pict_type == AV_PICTURE_TYPE_I,
  332. rce->pict_type == AV_PICTURE_TYPE_P,
  333. rce->pict_type == AV_PICTURE_TYPE_B,
  334. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  335. a->qcompress,
  336. #if 0
  337. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  338. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  339. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  340. rcc->next_non_b_qscale,
  341. #endif
  342. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  343. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  344. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  345. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  346. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  347. 0
  348. };
  349. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  350. if (isnan(bits)) {
  351. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
  352. return -1;
  353. }
  354. rcc->pass1_rc_eq_output_sum += bits;
  355. bits *= rate_factor;
  356. if (bits < 0.0)
  357. bits = 0.0;
  358. bits += 1.0; // avoid 1/0 issues
  359. /* user override */
  360. for (i = 0; i < s->avctx->rc_override_count; i++) {
  361. RcOverride *rco = s->avctx->rc_override;
  362. if (rco[i].start_frame > frame_num)
  363. continue;
  364. if (rco[i].end_frame < frame_num)
  365. continue;
  366. if (rco[i].qscale)
  367. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  368. else
  369. bits *= rco[i].quality_factor;
  370. }
  371. q = bits2qp(rce, bits);
  372. /* I/B difference */
  373. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  374. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  375. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  376. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  377. if (q < 1)
  378. q = 1;
  379. return q;
  380. }
  381. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  382. {
  383. RateControlContext *rcc = &s->rc_context;
  384. AVCodecContext *a = s->avctx;
  385. const int pict_type = rce->new_pict_type;
  386. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  387. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  388. if (pict_type == AV_PICTURE_TYPE_I &&
  389. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  390. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  391. else if (pict_type == AV_PICTURE_TYPE_B &&
  392. a->b_quant_factor > 0.0)
  393. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  394. if (q < 1)
  395. q = 1;
  396. /* last qscale / qdiff stuff */
  397. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  398. double last_q = rcc->last_qscale_for[pict_type];
  399. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  400. if (q > last_q + maxdiff)
  401. q = last_q + maxdiff;
  402. else if (q < last_q - maxdiff)
  403. q = last_q - maxdiff;
  404. }
  405. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  406. if (pict_type != AV_PICTURE_TYPE_B)
  407. rcc->last_non_b_pict_type = pict_type;
  408. return q;
  409. }
  410. /**
  411. * Get the qmin & qmax for pict_type.
  412. */
  413. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  414. {
  415. int qmin = s->avctx->lmin;
  416. int qmax = s->avctx->lmax;
  417. assert(qmin <= qmax);
  418. switch (pict_type) {
  419. case AV_PICTURE_TYPE_B:
  420. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  421. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  422. break;
  423. case AV_PICTURE_TYPE_I:
  424. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  425. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  426. break;
  427. }
  428. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  429. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  430. if (qmax < qmin)
  431. qmax = qmin;
  432. *qmin_ret = qmin;
  433. *qmax_ret = qmax;
  434. }
  435. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  436. double q, int frame_num)
  437. {
  438. RateControlContext *rcc = &s->rc_context;
  439. const double buffer_size = s->avctx->rc_buffer_size;
  440. const double fps = get_fps(s->avctx);
  441. const double min_rate = s->avctx->rc_min_rate / fps;
  442. const double max_rate = s->avctx->rc_max_rate / fps;
  443. const int pict_type = rce->new_pict_type;
  444. int qmin, qmax;
  445. get_qminmax(&qmin, &qmax, s, pict_type);
  446. /* modulation */
  447. if (s->rc_qmod_freq &&
  448. frame_num % s->rc_qmod_freq == 0 &&
  449. pict_type == AV_PICTURE_TYPE_P)
  450. q *= s->rc_qmod_amp;
  451. /* buffer overflow/underflow protection */
  452. if (buffer_size) {
  453. double expected_size = rcc->buffer_index;
  454. double q_limit;
  455. if (min_rate) {
  456. double d = 2 * (buffer_size - expected_size) / buffer_size;
  457. if (d > 1.0)
  458. d = 1.0;
  459. else if (d < 0.0001)
  460. d = 0.0001;
  461. q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
  462. q_limit = bits2qp(rce,
  463. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  464. s->avctx->rc_min_vbv_overflow_use, 1));
  465. if (q > q_limit) {
  466. if (s->avctx->debug & FF_DEBUG_RC)
  467. av_log(s->avctx, AV_LOG_DEBUG,
  468. "limiting QP %f -> %f\n", q, q_limit);
  469. q = q_limit;
  470. }
  471. }
  472. if (max_rate) {
  473. double d = 2 * expected_size / buffer_size;
  474. if (d > 1.0)
  475. d = 1.0;
  476. else if (d < 0.0001)
  477. d = 0.0001;
  478. q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
  479. q_limit = bits2qp(rce,
  480. FFMAX(rcc->buffer_index *
  481. s->avctx->rc_max_available_vbv_use,
  482. 1));
  483. if (q < q_limit) {
  484. if (s->avctx->debug & FF_DEBUG_RC)
  485. av_log(s->avctx, AV_LOG_DEBUG,
  486. "limiting QP %f -> %f\n", q, q_limit);
  487. q = q_limit;
  488. }
  489. }
  490. }
  491. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  492. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  493. s->rc_buffer_aggressivity);
  494. if (s->rc_qsquish == 0.0 || qmin == qmax) {
  495. if (q < qmin)
  496. q = qmin;
  497. else if (q > qmax)
  498. q = qmax;
  499. } else {
  500. double min2 = log(qmin);
  501. double max2 = log(qmax);
  502. q = log(q);
  503. q = (q - min2) / (max2 - min2) - 0.5;
  504. q *= -4.0;
  505. q = 1.0 / (1.0 + exp(q));
  506. q = q * (max2 - min2) + min2;
  507. q = exp(q);
  508. }
  509. return q;
  510. }
  511. // ----------------------------------
  512. // 1 Pass Code
  513. static double predict_size(Predictor *p, double q, double var)
  514. {
  515. return p->coeff * var / (q * p->count);
  516. }
  517. static void update_predictor(Predictor *p, double q, double var, double size)
  518. {
  519. double new_coeff = size * q / (var + 1);
  520. if (var < 10)
  521. return;
  522. p->count *= p->decay;
  523. p->coeff *= p->decay;
  524. p->count++;
  525. p->coeff += new_coeff;
  526. }
  527. static void adaptive_quantization(MpegEncContext *s, double q)
  528. {
  529. int i;
  530. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  531. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  532. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  533. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  534. const float p_masking = s->avctx->p_masking;
  535. const float border_masking = s->avctx->border_masking;
  536. float bits_sum = 0.0;
  537. float cplx_sum = 0.0;
  538. float *cplx_tab = s->cplx_tab;
  539. float *bits_tab = s->bits_tab;
  540. const int qmin = s->avctx->mb_lmin;
  541. const int qmax = s->avctx->mb_lmax;
  542. Picture *const pic = &s->current_picture;
  543. const int mb_width = s->mb_width;
  544. const int mb_height = s->mb_height;
  545. for (i = 0; i < s->mb_num; i++) {
  546. const int mb_xy = s->mb_index2xy[i];
  547. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  548. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  549. const int lumi = pic->mb_mean[mb_xy];
  550. float bits, cplx, factor;
  551. int mb_x = mb_xy % s->mb_stride;
  552. int mb_y = mb_xy / s->mb_stride;
  553. int mb_distance;
  554. float mb_factor = 0.0;
  555. if (spat_cplx < 4)
  556. spat_cplx = 4; // FIXME finetune
  557. if (temp_cplx < 4)
  558. temp_cplx = 4; // FIXME finetune
  559. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  560. cplx = spat_cplx;
  561. factor = 1.0 + p_masking;
  562. } else {
  563. cplx = temp_cplx;
  564. factor = pow(temp_cplx, -temp_cplx_masking);
  565. }
  566. factor *= pow(spat_cplx, -spatial_cplx_masking);
  567. if (lumi > 127)
  568. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  569. else
  570. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  571. if (mb_x < mb_width / 5) {
  572. mb_distance = mb_width / 5 - mb_x;
  573. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  574. } else if (mb_x > 4 * mb_width / 5) {
  575. mb_distance = mb_x - 4 * mb_width / 5;
  576. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  577. }
  578. if (mb_y < mb_height / 5) {
  579. mb_distance = mb_height / 5 - mb_y;
  580. mb_factor = FFMAX(mb_factor,
  581. (float)mb_distance / (float)(mb_height / 5));
  582. } else if (mb_y > 4 * mb_height / 5) {
  583. mb_distance = mb_y - 4 * mb_height / 5;
  584. mb_factor = FFMAX(mb_factor,
  585. (float)mb_distance / (float)(mb_height / 5));
  586. }
  587. factor *= 1.0 - border_masking * mb_factor;
  588. if (factor < 0.00001)
  589. factor = 0.00001;
  590. bits = cplx * factor;
  591. cplx_sum += cplx;
  592. bits_sum += bits;
  593. cplx_tab[i] = cplx;
  594. bits_tab[i] = bits;
  595. }
  596. /* handle qmin/qmax clipping */
  597. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  598. float factor = bits_sum / cplx_sum;
  599. for (i = 0; i < s->mb_num; i++) {
  600. float newq = q * cplx_tab[i] / bits_tab[i];
  601. newq *= factor;
  602. if (newq > qmax) {
  603. bits_sum -= bits_tab[i];
  604. cplx_sum -= cplx_tab[i] * q / qmax;
  605. } else if (newq < qmin) {
  606. bits_sum -= bits_tab[i];
  607. cplx_sum -= cplx_tab[i] * q / qmin;
  608. }
  609. }
  610. if (bits_sum < 0.001)
  611. bits_sum = 0.001;
  612. if (cplx_sum < 0.001)
  613. cplx_sum = 0.001;
  614. }
  615. for (i = 0; i < s->mb_num; i++) {
  616. const int mb_xy = s->mb_index2xy[i];
  617. float newq = q * cplx_tab[i] / bits_tab[i];
  618. int intq;
  619. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  620. newq *= bits_sum / cplx_sum;
  621. }
  622. intq = (int)(newq + 0.5);
  623. if (intq > qmax)
  624. intq = qmax;
  625. else if (intq < qmin)
  626. intq = qmin;
  627. s->lambda_table[mb_xy] = intq;
  628. }
  629. }
  630. void ff_get_2pass_fcode(MpegEncContext *s)
  631. {
  632. RateControlContext *rcc = &s->rc_context;
  633. RateControlEntry *rce = &rcc->entry[s->picture_number];
  634. s->f_code = rce->f_code;
  635. s->b_code = rce->b_code;
  636. }
  637. // FIXME rd or at least approx for dquant
  638. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  639. {
  640. float q;
  641. int qmin, qmax;
  642. float br_compensation;
  643. double diff;
  644. double short_term_q;
  645. double fps;
  646. int picture_number = s->picture_number;
  647. int64_t wanted_bits;
  648. RateControlContext *rcc = &s->rc_context;
  649. AVCodecContext *a = s->avctx;
  650. RateControlEntry local_rce, *rce;
  651. double bits;
  652. double rate_factor;
  653. int64_t var;
  654. const int pict_type = s->pict_type;
  655. Picture * const pic = &s->current_picture;
  656. emms_c();
  657. #if CONFIG_LIBXVID
  658. if ((s->flags & CODEC_FLAG_PASS2) &&
  659. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  660. return ff_xvid_rate_estimate_qscale(s, dry_run);
  661. #endif
  662. get_qminmax(&qmin, &qmax, s, pict_type);
  663. fps = get_fps(s->avctx);
  664. /* update predictors */
  665. if (picture_number > 2 && !dry_run) {
  666. const int64_t last_var =
  667. s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  668. : rcc->last_mc_mb_var_sum;
  669. av_assert1(s->frame_bits >= s->stuffing_bits);
  670. update_predictor(&rcc->pred[s->last_pict_type],
  671. rcc->last_qscale,
  672. sqrt(last_var),
  673. s->frame_bits - s->stuffing_bits);
  674. }
  675. if (s->flags & CODEC_FLAG_PASS2) {
  676. assert(picture_number >= 0);
  677. if (picture_number >= rcc->num_entries) {
  678. av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
  679. return -1;
  680. }
  681. rce = &rcc->entry[picture_number];
  682. wanted_bits = rce->expected_bits;
  683. } else {
  684. Picture *dts_pic;
  685. rce = &local_rce;
  686. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  687. * here instead of reordering but the reordering is simpler for now
  688. * until H.264 B-pyramid must be handled. */
  689. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  690. dts_pic = s->current_picture_ptr;
  691. else
  692. dts_pic = s->last_picture_ptr;
  693. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  694. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  695. else
  696. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  697. }
  698. diff = s->total_bits - wanted_bits;
  699. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  700. if (br_compensation <= 0.0)
  701. br_compensation = 0.001;
  702. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  703. short_term_q = 0; /* avoid warning */
  704. if (s->flags & CODEC_FLAG_PASS2) {
  705. if (pict_type != AV_PICTURE_TYPE_I)
  706. assert(pict_type == rce->new_pict_type);
  707. q = rce->new_qscale / br_compensation;
  708. av_dlog(s, "%f %f %f last:%d var:%"PRId64" type:%d//\n", q, rce->new_qscale,
  709. br_compensation, s->frame_bits, var, pict_type);
  710. } else {
  711. rce->pict_type =
  712. rce->new_pict_type = pict_type;
  713. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  714. rce->mb_var_sum = pic->mb_var_sum;
  715. rce->qscale = FF_QP2LAMBDA * 2;
  716. rce->f_code = s->f_code;
  717. rce->b_code = s->b_code;
  718. rce->misc_bits = 1;
  719. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  720. if (pict_type == AV_PICTURE_TYPE_I) {
  721. rce->i_count = s->mb_num;
  722. rce->i_tex_bits = bits;
  723. rce->p_tex_bits = 0;
  724. rce->mv_bits = 0;
  725. } else {
  726. rce->i_count = 0; // FIXME we do know this approx
  727. rce->i_tex_bits = 0;
  728. rce->p_tex_bits = bits * 0.9;
  729. rce->mv_bits = bits * 0.1;
  730. }
  731. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  732. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  733. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  734. rcc->frame_count[pict_type]++;
  735. rate_factor = rcc->pass1_wanted_bits /
  736. rcc->pass1_rc_eq_output_sum * br_compensation;
  737. q = get_qscale(s, rce, rate_factor, picture_number);
  738. if (q < 0)
  739. return -1;
  740. assert(q > 0.0);
  741. q = get_diff_limited_q(s, rce, q);
  742. assert(q > 0.0);
  743. // FIXME type dependent blur like in 2-pass
  744. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  745. rcc->short_term_qsum *= a->qblur;
  746. rcc->short_term_qcount *= a->qblur;
  747. rcc->short_term_qsum += q;
  748. rcc->short_term_qcount++;
  749. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  750. }
  751. assert(q > 0.0);
  752. q = modify_qscale(s, rce, q, picture_number);
  753. rcc->pass1_wanted_bits += s->bit_rate / fps;
  754. assert(q > 0.0);
  755. }
  756. if (s->avctx->debug & FF_DEBUG_RC) {
  757. av_log(s->avctx, AV_LOG_DEBUG,
  758. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  759. "size:%d var:%"PRId64"/%"PRId64" br:%d fps:%d\n",
  760. av_get_picture_type_char(pict_type),
  761. qmin, q, qmax, picture_number,
  762. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  763. br_compensation, short_term_q, s->frame_bits,
  764. pic->mb_var_sum, pic->mc_mb_var_sum,
  765. s->bit_rate / 1000, (int)fps);
  766. }
  767. if (q < qmin)
  768. q = qmin;
  769. else if (q > qmax)
  770. q = qmax;
  771. if (s->adaptive_quant)
  772. adaptive_quantization(s, q);
  773. else
  774. q = (int)(q + 0.5);
  775. if (!dry_run) {
  776. rcc->last_qscale = q;
  777. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  778. rcc->last_mb_var_sum = pic->mb_var_sum;
  779. }
  780. return q;
  781. }
  782. // ----------------------------------------------
  783. // 2-Pass code
  784. static int init_pass2(MpegEncContext *s)
  785. {
  786. RateControlContext *rcc = &s->rc_context;
  787. AVCodecContext *a = s->avctx;
  788. int i, toobig;
  789. double fps = get_fps(s->avctx);
  790. double complexity[5] = { 0 }; // approximate bits at quant=1
  791. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  792. uint64_t all_const_bits;
  793. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  794. (double)rcc->num_entries / fps);
  795. double rate_factor = 0;
  796. double step;
  797. const int filter_size = (int)(a->qblur * 4) | 1;
  798. double expected_bits = 0; // init to silence gcc warning
  799. double *qscale, *blurred_qscale, qscale_sum;
  800. /* find complexity & const_bits & decide the pict_types */
  801. for (i = 0; i < rcc->num_entries; i++) {
  802. RateControlEntry *rce = &rcc->entry[i];
  803. rce->new_pict_type = rce->pict_type;
  804. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  805. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  806. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  807. rcc->frame_count[rce->pict_type]++;
  808. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  809. (double)rce->qscale;
  810. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  811. }
  812. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  813. const_bits[AV_PICTURE_TYPE_P] +
  814. const_bits[AV_PICTURE_TYPE_B];
  815. if (all_available_bits < all_const_bits) {
  816. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  817. return -1;
  818. }
  819. qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  820. blurred_qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  821. toobig = 0;
  822. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  823. expected_bits = 0;
  824. rate_factor += step;
  825. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  826. /* find qscale */
  827. for (i = 0; i < rcc->num_entries; i++) {
  828. RateControlEntry *rce = &rcc->entry[i];
  829. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  830. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  831. }
  832. assert(filter_size % 2 == 1);
  833. /* fixed I/B QP relative to P mode */
  834. for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) {
  835. RateControlEntry *rce = &rcc->entry[i];
  836. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  837. }
  838. for (i = rcc->num_entries - 1; i >= 0; i--) {
  839. RateControlEntry *rce = &rcc->entry[i];
  840. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  841. }
  842. /* smooth curve */
  843. for (i = 0; i < rcc->num_entries; i++) {
  844. RateControlEntry *rce = &rcc->entry[i];
  845. const int pict_type = rce->new_pict_type;
  846. int j;
  847. double q = 0.0, sum = 0.0;
  848. for (j = 0; j < filter_size; j++) {
  849. int index = i + j - filter_size / 2;
  850. double d = index - i;
  851. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  852. if (index < 0 || index >= rcc->num_entries)
  853. continue;
  854. if (pict_type != rcc->entry[index].new_pict_type)
  855. continue;
  856. q += qscale[index] * coeff;
  857. sum += coeff;
  858. }
  859. blurred_qscale[i] = q / sum;
  860. }
  861. /* find expected bits */
  862. for (i = 0; i < rcc->num_entries; i++) {
  863. RateControlEntry *rce = &rcc->entry[i];
  864. double bits;
  865. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  866. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  867. bits += 8 * ff_vbv_update(s, bits);
  868. rce->expected_bits = expected_bits;
  869. expected_bits += bits;
  870. }
  871. av_dlog(s->avctx,
  872. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  873. expected_bits, (int)all_available_bits, rate_factor);
  874. if (expected_bits > all_available_bits) {
  875. rate_factor -= step;
  876. ++toobig;
  877. }
  878. }
  879. av_free(qscale);
  880. av_free(blurred_qscale);
  881. /* check bitrate calculations and print info */
  882. qscale_sum = 0.0;
  883. for (i = 0; i < rcc->num_entries; i++) {
  884. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  885. i,
  886. rcc->entry[i].new_qscale,
  887. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  888. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  889. s->avctx->qmin, s->avctx->qmax);
  890. }
  891. assert(toobig <= 40);
  892. av_log(s->avctx, AV_LOG_DEBUG,
  893. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  894. s->bit_rate,
  895. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  896. av_log(s->avctx, AV_LOG_DEBUG,
  897. "[lavc rc] estimated target average qp: %.3f\n",
  898. (float)qscale_sum / rcc->num_entries);
  899. if (toobig == 0) {
  900. av_log(s->avctx, AV_LOG_INFO,
  901. "[lavc rc] Using all of requested bitrate is not "
  902. "necessary for this video with these parameters.\n");
  903. } else if (toobig == 40) {
  904. av_log(s->avctx, AV_LOG_ERROR,
  905. "[lavc rc] Error: bitrate too low for this video "
  906. "with these parameters.\n");
  907. return -1;
  908. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  909. av_log(s->avctx, AV_LOG_ERROR,
  910. "[lavc rc] Error: 2pass curve failed to converge\n");
  911. return -1;
  912. }
  913. return 0;
  914. }