You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1094 lines
39KB

  1. /*
  2. * Indeo Video v3 compatible decoder
  3. * Copyright (c) 2009 - 2011 Maxim Poliakovski
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * This is a decoder for Intel Indeo Video v3.
  24. * It is based on vector quantization, run-length coding and motion compensation.
  25. * Known container formats: .avi and .mov
  26. * Known FOURCCs: 'IV31', 'IV32'
  27. *
  28. * @see http://wiki.multimedia.cx/index.php?title=Indeo_3
  29. */
  30. #include "libavutil/imgutils.h"
  31. #include "libavutil/intreadwrite.h"
  32. #include "avcodec.h"
  33. #include "dsputil.h"
  34. #include "bytestream.h"
  35. #include "get_bits.h"
  36. #include "indeo3data.h"
  37. /* RLE opcodes. */
  38. enum {
  39. RLE_ESC_F9 = 249, ///< same as RLE_ESC_FA + do the same with next block
  40. RLE_ESC_FA = 250, ///< INTRA: skip block, INTER: copy data from reference
  41. RLE_ESC_FB = 251, ///< apply null delta to N blocks / skip N blocks
  42. RLE_ESC_FC = 252, ///< same as RLE_ESC_FD + do the same with next block
  43. RLE_ESC_FD = 253, ///< apply null delta to all remaining lines of this block
  44. RLE_ESC_FE = 254, ///< apply null delta to all lines up to the 3rd line
  45. RLE_ESC_FF = 255 ///< apply null delta to all lines up to the 2nd line
  46. };
  47. /* Some constants for parsing frame bitstream flags. */
  48. #define BS_8BIT_PEL (1 << 1) ///< 8bit pixel bitdepth indicator
  49. #define BS_KEYFRAME (1 << 2) ///< intra frame indicator
  50. #define BS_MV_Y_HALF (1 << 4) ///< vertical mv halfpel resolution indicator
  51. #define BS_MV_X_HALF (1 << 5) ///< horizontal mv halfpel resolution indicator
  52. #define BS_NONREF (1 << 8) ///< nonref (discardable) frame indicator
  53. #define BS_BUFFER 9 ///< indicates which of two frame buffers should be used
  54. typedef struct Plane {
  55. uint8_t *buffers[2];
  56. uint8_t *pixels[2]; ///< pointer to the actual pixel data of the buffers above
  57. uint32_t width;
  58. uint32_t height;
  59. uint32_t pitch;
  60. } Plane;
  61. #define CELL_STACK_MAX 20
  62. typedef struct Cell {
  63. int16_t xpos; ///< cell coordinates in 4x4 blocks
  64. int16_t ypos;
  65. int16_t width; ///< cell width in 4x4 blocks
  66. int16_t height; ///< cell height in 4x4 blocks
  67. uint8_t tree; ///< tree id: 0- MC tree, 1 - VQ tree
  68. const int8_t *mv_ptr; ///< ptr to the motion vector if any
  69. } Cell;
  70. typedef struct Indeo3DecodeContext {
  71. AVCodecContext *avctx;
  72. AVFrame frame;
  73. DSPContext dsp;
  74. GetBitContext gb;
  75. int need_resync;
  76. int skip_bits;
  77. const uint8_t *next_cell_data;
  78. const uint8_t *last_byte;
  79. const int8_t *mc_vectors;
  80. unsigned num_vectors; ///< number of motion vectors in mc_vectors
  81. int16_t width, height;
  82. uint32_t frame_num; ///< current frame number (zero-based)
  83. uint32_t data_size; ///< size of the frame data in bytes
  84. uint16_t frame_flags; ///< frame properties
  85. uint8_t cb_offset; ///< needed for selecting VQ tables
  86. uint8_t buf_sel; ///< active frame buffer: 0 - primary, 1 -secondary
  87. const uint8_t *y_data_ptr;
  88. const uint8_t *v_data_ptr;
  89. const uint8_t *u_data_ptr;
  90. int32_t y_data_size;
  91. int32_t v_data_size;
  92. int32_t u_data_size;
  93. const uint8_t *alt_quant; ///< secondary VQ table set for the modes 1 and 4
  94. Plane planes[3];
  95. } Indeo3DecodeContext;
  96. static uint8_t requant_tab[8][128];
  97. /*
  98. * Build the static requantization table.
  99. * This table is used to remap pixel values according to a specific
  100. * quant index and thus avoid overflows while adding deltas.
  101. */
  102. static av_cold void build_requant_tab(void)
  103. {
  104. static int8_t offsets[8] = { 1, 1, 2, -3, -3, 3, 4, 4 };
  105. static int8_t deltas [8] = { 0, 1, 0, 4, 4, 1, 0, 1 };
  106. int i, j, step;
  107. for (i = 0; i < 8; i++) {
  108. step = i + 2;
  109. for (j = 0; j < 128; j++)
  110. requant_tab[i][j] = (j + offsets[i]) / step * step + deltas[i];
  111. }
  112. /* some last elements calculated above will have values >= 128 */
  113. /* pixel values shall never exceed 127 so set them to non-overflowing values */
  114. /* according with the quantization step of the respective section */
  115. requant_tab[0][127] = 126;
  116. requant_tab[1][119] = 118;
  117. requant_tab[1][120] = 118;
  118. requant_tab[2][126] = 124;
  119. requant_tab[2][127] = 124;
  120. requant_tab[6][124] = 120;
  121. requant_tab[6][125] = 120;
  122. requant_tab[6][126] = 120;
  123. requant_tab[6][127] = 120;
  124. /* Patch for compatibility with the Intel's binary decoders */
  125. requant_tab[1][7] = 10;
  126. requant_tab[4][8] = 10;
  127. }
  128. static av_cold int allocate_frame_buffers(Indeo3DecodeContext *ctx,
  129. AVCodecContext *avctx)
  130. {
  131. int p, luma_width, luma_height, chroma_width, chroma_height;
  132. int luma_pitch, chroma_pitch, luma_size, chroma_size;
  133. luma_width = ctx->width;
  134. luma_height = ctx->height;
  135. if (luma_width < 16 || luma_width > 640 ||
  136. luma_height < 16 || luma_height > 480 ||
  137. luma_width & 3 || luma_height & 3) {
  138. av_log(avctx, AV_LOG_ERROR, "Invalid picture dimensions: %d x %d!\n",
  139. luma_width, luma_height);
  140. return AVERROR_INVALIDDATA;
  141. }
  142. chroma_width = FFALIGN(luma_width >> 2, 4);
  143. chroma_height = FFALIGN(luma_height >> 2, 4);
  144. luma_pitch = FFALIGN(luma_width, 16);
  145. chroma_pitch = FFALIGN(chroma_width, 16);
  146. /* Calculate size of the luminance plane. */
  147. /* Add one line more for INTRA prediction. */
  148. luma_size = luma_pitch * (luma_height + 1);
  149. /* Calculate size of a chrominance planes. */
  150. /* Add one line more for INTRA prediction. */
  151. chroma_size = chroma_pitch * (chroma_height + 1);
  152. /* allocate frame buffers */
  153. for (p = 0; p < 3; p++) {
  154. ctx->planes[p].pitch = !p ? luma_pitch : chroma_pitch;
  155. ctx->planes[p].width = !p ? luma_width : chroma_width;
  156. ctx->planes[p].height = !p ? luma_height : chroma_height;
  157. ctx->planes[p].buffers[0] = av_malloc(!p ? luma_size : chroma_size);
  158. ctx->planes[p].buffers[1] = av_malloc(!p ? luma_size : chroma_size);
  159. /* fill the INTRA prediction lines with the middle pixel value = 64 */
  160. memset(ctx->planes[p].buffers[0], 0x40, ctx->planes[p].pitch);
  161. memset(ctx->planes[p].buffers[1], 0x40, ctx->planes[p].pitch);
  162. /* set buffer pointers = buf_ptr + pitch and thus skip the INTRA prediction line */
  163. ctx->planes[p].pixels[0] = ctx->planes[p].buffers[0] + ctx->planes[p].pitch;
  164. ctx->planes[p].pixels[1] = ctx->planes[p].buffers[1] + ctx->planes[p].pitch;
  165. }
  166. return 0;
  167. }
  168. static av_cold void free_frame_buffers(Indeo3DecodeContext *ctx)
  169. {
  170. int p;
  171. for (p = 0; p < 3; p++) {
  172. av_freep(&ctx->planes[p].buffers[0]);
  173. av_freep(&ctx->planes[p].buffers[1]);
  174. }
  175. }
  176. /**
  177. * Copy pixels of the cell(x + mv_x, y + mv_y) from the previous frame into
  178. * the cell(x, y) in the current frame.
  179. *
  180. * @param ctx pointer to the decoder context
  181. * @param plane pointer to the plane descriptor
  182. * @param cell pointer to the cell descriptor
  183. */
  184. static void copy_cell(Indeo3DecodeContext *ctx, Plane *plane, Cell *cell)
  185. {
  186. int h, w, mv_x, mv_y, offset, offset_dst;
  187. uint8_t *src, *dst;
  188. /* setup output and reference pointers */
  189. offset_dst = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  190. dst = plane->pixels[ctx->buf_sel] + offset_dst;
  191. mv_y = cell->mv_ptr[0];
  192. mv_x = cell->mv_ptr[1];
  193. offset = offset_dst + mv_y * plane->pitch + mv_x;
  194. src = plane->pixels[ctx->buf_sel ^ 1] + offset;
  195. h = cell->height << 2;
  196. for (w = cell->width; w > 0;) {
  197. /* copy using 16xH blocks */
  198. if (!((cell->xpos << 2) & 15) && w >= 4) {
  199. for (; w >= 4; src += 16, dst += 16, w -= 4)
  200. ctx->dsp.put_no_rnd_pixels_tab[0][0](dst, src, plane->pitch, h);
  201. }
  202. /* copy using 8xH blocks */
  203. if (!((cell->xpos << 2) & 7) && w >= 2) {
  204. ctx->dsp.put_no_rnd_pixels_tab[1][0](dst, src, plane->pitch, h);
  205. w -= 2;
  206. src += 8;
  207. dst += 8;
  208. }
  209. if (w >= 1) {
  210. copy_block4(dst, src, plane->pitch, plane->pitch, h);
  211. w--;
  212. src += 4;
  213. dst += 4;
  214. }
  215. }
  216. }
  217. /* Average 4/8 pixels at once without rounding using SWAR */
  218. #define AVG_32(dst, src, ref) \
  219. AV_WN32A(dst, ((AV_RN32A(src) + AV_RN32A(ref)) >> 1) & 0x7F7F7F7FUL)
  220. #define AVG_64(dst, src, ref) \
  221. AV_WN64A(dst, ((AV_RN64A(src) + AV_RN64A(ref)) >> 1) & 0x7F7F7F7F7F7F7F7FULL)
  222. /*
  223. * Replicate each even pixel as follows:
  224. * ABCDEFGH -> AACCEEGG
  225. */
  226. static inline uint64_t replicate64(uint64_t a) {
  227. #if HAVE_BIGENDIAN
  228. a &= 0xFF00FF00FF00FF00ULL;
  229. a |= a >> 8;
  230. #else
  231. a &= 0x00FF00FF00FF00FFULL;
  232. a |= a << 8;
  233. #endif
  234. return a;
  235. }
  236. static inline uint32_t replicate32(uint32_t a) {
  237. #if HAVE_BIGENDIAN
  238. a &= 0xFF00FF00UL;
  239. a |= a >> 8;
  240. #else
  241. a &= 0x00FF00FFUL;
  242. a |= a << 8;
  243. #endif
  244. return a;
  245. }
  246. /* Fill n lines with 64bit pixel value pix */
  247. static inline void fill_64(uint8_t *dst, const uint64_t pix, int32_t n,
  248. int32_t row_offset)
  249. {
  250. for (; n > 0; dst += row_offset, n--)
  251. AV_WN64A(dst, pix);
  252. }
  253. /* Error codes for cell decoding. */
  254. enum {
  255. IV3_NOERR = 0,
  256. IV3_BAD_RLE = 1,
  257. IV3_BAD_DATA = 2,
  258. IV3_BAD_COUNTER = 3,
  259. IV3_UNSUPPORTED = 4,
  260. IV3_OUT_OF_DATA = 5
  261. };
  262. #define BUFFER_PRECHECK \
  263. if (*data_ptr >= last_ptr) \
  264. return IV3_OUT_OF_DATA; \
  265. #define RLE_BLOCK_COPY \
  266. if (cell->mv_ptr || !skip_flag) \
  267. copy_block4(dst, ref, row_offset, row_offset, 4 << v_zoom)
  268. #define RLE_BLOCK_COPY_8 \
  269. pix64 = AV_RN64A(ref);\
  270. if (is_first_row) {/* special prediction case: top line of a cell */\
  271. pix64 = replicate64(pix64);\
  272. fill_64(dst + row_offset, pix64, 7, row_offset);\
  273. AVG_64(dst, ref, dst + row_offset);\
  274. } else \
  275. fill_64(dst, pix64, 8, row_offset)
  276. #define RLE_LINES_COPY \
  277. copy_block4(dst, ref, row_offset, row_offset, num_lines << v_zoom)
  278. #define RLE_LINES_COPY_M10 \
  279. pix64 = AV_RN64A(ref);\
  280. if (is_top_of_cell) {\
  281. pix64 = replicate64(pix64);\
  282. fill_64(dst + row_offset, pix64, (num_lines << 1) - 1, row_offset);\
  283. AVG_64(dst, ref, dst + row_offset);\
  284. } else \
  285. fill_64(dst, pix64, num_lines << 1, row_offset)
  286. #define APPLY_DELTA_4 \
  287. AV_WN16A(dst + line_offset ,\
  288. (AV_RN16A(ref ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  289. AV_WN16A(dst + line_offset + 2,\
  290. (AV_RN16A(ref + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  291. if (mode >= 3) {\
  292. if (is_top_of_cell && !cell->ypos) {\
  293. AV_COPY32(dst, dst + row_offset);\
  294. } else {\
  295. AVG_32(dst, ref, dst + row_offset);\
  296. }\
  297. }
  298. #define APPLY_DELTA_8 \
  299. /* apply two 32-bit VQ deltas to next even line */\
  300. if (is_top_of_cell) { \
  301. AV_WN32A(dst + row_offset , \
  302. (replicate32(AV_RN32A(ref )) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  303. AV_WN32A(dst + row_offset + 4, \
  304. (replicate32(AV_RN32A(ref + 4)) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  305. } else { \
  306. AV_WN32A(dst + row_offset , \
  307. (AV_RN32A(ref ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  308. AV_WN32A(dst + row_offset + 4, \
  309. (AV_RN32A(ref + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  310. } \
  311. /* odd lines are not coded but rather interpolated/replicated */\
  312. /* first line of the cell on the top of image? - replicate */\
  313. /* otherwise - interpolate */\
  314. if (is_top_of_cell && !cell->ypos) {\
  315. AV_COPY64(dst, dst + row_offset);\
  316. } else \
  317. AVG_64(dst, ref, dst + row_offset);
  318. #define APPLY_DELTA_1011_INTER \
  319. if (mode == 10) { \
  320. AV_WN32A(dst , \
  321. (AV_RN32A(dst ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  322. AV_WN32A(dst + 4 , \
  323. (AV_RN32A(dst + 4 ) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  324. AV_WN32A(dst + row_offset , \
  325. (AV_RN32A(dst + row_offset ) + delta_tab->deltas_m10[dyad1]) & 0x7F7F7F7F);\
  326. AV_WN32A(dst + row_offset + 4, \
  327. (AV_RN32A(dst + row_offset + 4) + delta_tab->deltas_m10[dyad2]) & 0x7F7F7F7F);\
  328. } else { \
  329. AV_WN16A(dst , \
  330. (AV_RN16A(dst ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  331. AV_WN16A(dst + 2 , \
  332. (AV_RN16A(dst + 2 ) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  333. AV_WN16A(dst + row_offset , \
  334. (AV_RN16A(dst + row_offset ) + delta_tab->deltas[dyad1]) & 0x7F7F);\
  335. AV_WN16A(dst + row_offset + 2, \
  336. (AV_RN16A(dst + row_offset + 2) + delta_tab->deltas[dyad2]) & 0x7F7F);\
  337. }
  338. static int decode_cell_data(Cell *cell, uint8_t *block, uint8_t *ref_block,
  339. int pitch, int h_zoom, int v_zoom, int mode,
  340. const vqEntry *delta[2], int swap_quads[2],
  341. const uint8_t **data_ptr, const uint8_t *last_ptr)
  342. {
  343. int x, y, line, num_lines;
  344. int rle_blocks = 0;
  345. uint8_t code, *dst, *ref;
  346. const vqEntry *delta_tab;
  347. unsigned int dyad1, dyad2;
  348. uint64_t pix64;
  349. int skip_flag = 0, is_top_of_cell, is_first_row = 1;
  350. int row_offset, blk_row_offset, line_offset;
  351. row_offset = pitch;
  352. blk_row_offset = (row_offset << (2 + v_zoom)) - (cell->width << 2);
  353. line_offset = v_zoom ? row_offset : 0;
  354. for (y = 0; y < cell->height; is_first_row = 0, y += 1 + v_zoom) {
  355. for (x = 0; x < cell->width; x += 1 + h_zoom) {
  356. ref = ref_block;
  357. dst = block;
  358. if (rle_blocks > 0) {
  359. if (mode <= 4) {
  360. RLE_BLOCK_COPY;
  361. } else if (mode == 10 && !cell->mv_ptr) {
  362. RLE_BLOCK_COPY_8;
  363. }
  364. rle_blocks--;
  365. } else {
  366. for (line = 0; line < 4;) {
  367. num_lines = 1;
  368. is_top_of_cell = is_first_row && !line;
  369. /* select primary VQ table for odd, secondary for even lines */
  370. if (mode <= 4)
  371. delta_tab = delta[line & 1];
  372. else
  373. delta_tab = delta[1];
  374. BUFFER_PRECHECK;
  375. code = bytestream_get_byte(data_ptr);
  376. if (code < 248) {
  377. if (code < delta_tab->num_dyads) {
  378. BUFFER_PRECHECK;
  379. dyad1 = bytestream_get_byte(data_ptr);
  380. dyad2 = code;
  381. if (dyad1 >= delta_tab->num_dyads || dyad1 >= 248)
  382. return IV3_BAD_DATA;
  383. } else {
  384. /* process QUADS */
  385. code -= delta_tab->num_dyads;
  386. dyad1 = code / delta_tab->quad_exp;
  387. dyad2 = code % delta_tab->quad_exp;
  388. if (swap_quads[line & 1])
  389. FFSWAP(unsigned int, dyad1, dyad2);
  390. }
  391. if (mode <= 4) {
  392. APPLY_DELTA_4;
  393. } else if (mode == 10 && !cell->mv_ptr) {
  394. APPLY_DELTA_8;
  395. } else {
  396. APPLY_DELTA_1011_INTER;
  397. }
  398. } else {
  399. /* process RLE codes */
  400. switch (code) {
  401. case RLE_ESC_FC:
  402. skip_flag = 0;
  403. rle_blocks = 1;
  404. code = 253;
  405. /* FALLTHROUGH */
  406. case RLE_ESC_FF:
  407. case RLE_ESC_FE:
  408. case RLE_ESC_FD:
  409. num_lines = 257 - code - line;
  410. if (num_lines <= 0)
  411. return IV3_BAD_RLE;
  412. if (mode <= 4) {
  413. RLE_LINES_COPY;
  414. } else if (mode == 10 && !cell->mv_ptr) {
  415. RLE_LINES_COPY_M10;
  416. }
  417. break;
  418. case RLE_ESC_FB:
  419. BUFFER_PRECHECK;
  420. code = bytestream_get_byte(data_ptr);
  421. rle_blocks = (code & 0x1F) - 1; /* set block counter */
  422. if (code >= 64 || rle_blocks < 0)
  423. return IV3_BAD_COUNTER;
  424. skip_flag = code & 0x20;
  425. num_lines = 4 - line; /* enforce next block processing */
  426. if (mode >= 10 || (cell->mv_ptr || !skip_flag)) {
  427. if (mode <= 4) {
  428. RLE_LINES_COPY;
  429. } else if (mode == 10 && !cell->mv_ptr) {
  430. RLE_LINES_COPY_M10;
  431. }
  432. }
  433. break;
  434. case RLE_ESC_F9:
  435. skip_flag = 1;
  436. rle_blocks = 1;
  437. /* FALLTHROUGH */
  438. case RLE_ESC_FA:
  439. if (line)
  440. return IV3_BAD_RLE;
  441. num_lines = 4; /* enforce next block processing */
  442. if (cell->mv_ptr) {
  443. if (mode <= 4) {
  444. RLE_LINES_COPY;
  445. } else if (mode == 10 && !cell->mv_ptr) {
  446. RLE_LINES_COPY_M10;
  447. }
  448. }
  449. break;
  450. default:
  451. return IV3_UNSUPPORTED;
  452. }
  453. }
  454. line += num_lines;
  455. ref += row_offset * (num_lines << v_zoom);
  456. dst += row_offset * (num_lines << v_zoom);
  457. }
  458. }
  459. /* move to next horizontal block */
  460. block += 4 << h_zoom;
  461. ref_block += 4 << h_zoom;
  462. }
  463. /* move to next line of blocks */
  464. ref_block += blk_row_offset;
  465. block += blk_row_offset;
  466. }
  467. return IV3_NOERR;
  468. }
  469. /**
  470. * Decode a vector-quantized cell.
  471. * It consists of several routines, each of which handles one or more "modes"
  472. * with which a cell can be encoded.
  473. *
  474. * @param ctx pointer to the decoder context
  475. * @param avctx ptr to the AVCodecContext
  476. * @param plane pointer to the plane descriptor
  477. * @param cell pointer to the cell descriptor
  478. * @param data_ptr pointer to the compressed data
  479. * @param last_ptr pointer to the last byte to catch reads past end of buffer
  480. * @return number of consumed bytes or negative number in case of error
  481. */
  482. static int decode_cell(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  483. Plane *plane, Cell *cell, const uint8_t *data_ptr,
  484. const uint8_t *last_ptr)
  485. {
  486. int x, mv_x, mv_y, mode, vq_index, prim_indx, second_indx;
  487. int zoom_fac;
  488. int offset, error = 0, swap_quads[2];
  489. uint8_t code, *block, *ref_block = 0;
  490. const vqEntry *delta[2];
  491. const uint8_t *data_start = data_ptr;
  492. /* get coding mode and VQ table index from the VQ descriptor byte */
  493. code = *data_ptr++;
  494. mode = code >> 4;
  495. vq_index = code & 0xF;
  496. /* setup output and reference pointers */
  497. offset = (cell->ypos << 2) * plane->pitch + (cell->xpos << 2);
  498. block = plane->pixels[ctx->buf_sel] + offset;
  499. if (!cell->mv_ptr) {
  500. /* use previous line as reference for INTRA cells */
  501. ref_block = block - plane->pitch;
  502. } else if (mode >= 10) {
  503. /* for mode 10 and 11 INTER first copy the predicted cell into the current one */
  504. /* so we don't need to do data copying for each RLE code later */
  505. copy_cell(ctx, plane, cell);
  506. } else {
  507. /* set the pointer to the reference pixels for modes 0-4 INTER */
  508. mv_y = cell->mv_ptr[0];
  509. mv_x = cell->mv_ptr[1];
  510. offset += mv_y * plane->pitch + mv_x;
  511. ref_block = plane->pixels[ctx->buf_sel ^ 1] + offset;
  512. }
  513. /* select VQ tables as follows: */
  514. /* modes 0 and 3 use only the primary table for all lines in a block */
  515. /* while modes 1 and 4 switch between primary and secondary tables on alternate lines */
  516. if (mode == 1 || mode == 4) {
  517. code = ctx->alt_quant[vq_index];
  518. prim_indx = (code >> 4) + ctx->cb_offset;
  519. second_indx = (code & 0xF) + ctx->cb_offset;
  520. } else {
  521. vq_index += ctx->cb_offset;
  522. prim_indx = second_indx = vq_index;
  523. }
  524. if (prim_indx >= 24 || second_indx >= 24) {
  525. av_log(avctx, AV_LOG_ERROR, "Invalid VQ table indexes! Primary: %d, secondary: %d!\n",
  526. prim_indx, second_indx);
  527. return AVERROR_INVALIDDATA;
  528. }
  529. delta[0] = &vq_tab[second_indx];
  530. delta[1] = &vq_tab[prim_indx];
  531. swap_quads[0] = second_indx >= 16;
  532. swap_quads[1] = prim_indx >= 16;
  533. /* requantize the prediction if VQ index of this cell differs from VQ index */
  534. /* of the predicted cell in order to avoid overflows. */
  535. if (vq_index >= 8 && ref_block) {
  536. for (x = 0; x < cell->width << 2; x++)
  537. ref_block[x] = requant_tab[vq_index & 7][ref_block[x]];
  538. }
  539. error = IV3_NOERR;
  540. switch (mode) {
  541. case 0: /*------------------ MODES 0 & 1 (4x4 block processing) --------------------*/
  542. case 1:
  543. case 3: /*------------------ MODES 3 & 4 (4x8 block processing) --------------------*/
  544. case 4:
  545. if (mode >= 3 && cell->mv_ptr) {
  546. av_log(avctx, AV_LOG_ERROR, "Attempt to apply Mode 3/4 to an INTER cell!\n");
  547. return AVERROR_INVALIDDATA;
  548. }
  549. zoom_fac = mode >= 3;
  550. error = decode_cell_data(cell, block, ref_block, plane->pitch, 0, zoom_fac,
  551. mode, delta, swap_quads, &data_ptr, last_ptr);
  552. break;
  553. case 10: /*-------------------- MODE 10 (8x8 block processing) ---------------------*/
  554. case 11: /*----------------- MODE 11 (4x8 INTER block processing) ------------------*/
  555. if (mode == 10 && !cell->mv_ptr) { /* MODE 10 INTRA processing */
  556. error = decode_cell_data(cell, block, ref_block, plane->pitch, 1, 1,
  557. mode, delta, swap_quads, &data_ptr, last_ptr);
  558. } else { /* mode 10 and 11 INTER processing */
  559. if (mode == 11 && !cell->mv_ptr) {
  560. av_log(avctx, AV_LOG_ERROR, "Attempt to use Mode 11 for an INTRA cell!\n");
  561. return AVERROR_INVALIDDATA;
  562. }
  563. zoom_fac = mode == 10;
  564. error = decode_cell_data(cell, block, ref_block, plane->pitch,
  565. zoom_fac, 1, mode, delta, swap_quads,
  566. &data_ptr, last_ptr);
  567. }
  568. break;
  569. default:
  570. av_log(avctx, AV_LOG_ERROR, "Unsupported coding mode: %d\n", mode);
  571. return AVERROR_INVALIDDATA;
  572. }//switch mode
  573. switch (error) {
  574. case IV3_BAD_RLE:
  575. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE code %X is not allowed at the current line\n",
  576. mode, data_ptr[-1]);
  577. return AVERROR_INVALIDDATA;
  578. case IV3_BAD_DATA:
  579. av_log(avctx, AV_LOG_ERROR, "Mode %d: invalid VQ data\n", mode);
  580. return AVERROR_INVALIDDATA;
  581. case IV3_BAD_COUNTER:
  582. av_log(avctx, AV_LOG_ERROR, "Mode %d: RLE-FB invalid counter: %d\n", mode, code);
  583. return AVERROR_INVALIDDATA;
  584. case IV3_UNSUPPORTED:
  585. av_log(avctx, AV_LOG_ERROR, "Mode %d: unsupported RLE code: %X\n", mode, data_ptr[-1]);
  586. return AVERROR_INVALIDDATA;
  587. case IV3_OUT_OF_DATA:
  588. av_log(avctx, AV_LOG_ERROR, "Mode %d: attempt to read past end of buffer\n", mode);
  589. return AVERROR_INVALIDDATA;
  590. }
  591. return data_ptr - data_start; /* report number of bytes consumed from the input buffer */
  592. }
  593. /* Binary tree codes. */
  594. enum {
  595. H_SPLIT = 0,
  596. V_SPLIT = 1,
  597. INTRA_NULL = 2,
  598. INTER_DATA = 3
  599. };
  600. #define SPLIT_CELL(size, new_size) (new_size) = ((size) > 2) ? ((((size) + 2) >> 2) << 1) : 1
  601. #define UPDATE_BITPOS(n) \
  602. ctx->skip_bits += (n); \
  603. ctx->need_resync = 1
  604. #define RESYNC_BITSTREAM \
  605. if (ctx->need_resync && !(get_bits_count(&ctx->gb) & 7)) { \
  606. skip_bits_long(&ctx->gb, ctx->skip_bits); \
  607. ctx->skip_bits = 0; \
  608. ctx->need_resync = 0; \
  609. }
  610. #define CHECK_CELL \
  611. if (curr_cell.xpos + curr_cell.width > (plane->width >> 2) || \
  612. curr_cell.ypos + curr_cell.height > (plane->height >> 2)) { \
  613. av_log(avctx, AV_LOG_ERROR, "Invalid cell: x=%d, y=%d, w=%d, h=%d\n", \
  614. curr_cell.xpos, curr_cell.ypos, curr_cell.width, curr_cell.height); \
  615. return AVERROR_INVALIDDATA; \
  616. }
  617. static int parse_bintree(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  618. Plane *plane, int code, Cell *ref_cell,
  619. const int depth, const int strip_width)
  620. {
  621. Cell curr_cell;
  622. int bytes_used;
  623. if (depth <= 0) {
  624. av_log(avctx, AV_LOG_ERROR, "Stack overflow (corrupted binary tree)!\n");
  625. return AVERROR_INVALIDDATA; // unwind recursion
  626. }
  627. curr_cell = *ref_cell; // clone parent cell
  628. if (code == H_SPLIT) {
  629. SPLIT_CELL(ref_cell->height, curr_cell.height);
  630. ref_cell->ypos += curr_cell.height;
  631. ref_cell->height -= curr_cell.height;
  632. if (ref_cell->height <= 0 || curr_cell.height <= 0)
  633. return AVERROR_INVALIDDATA;
  634. } else if (code == V_SPLIT) {
  635. if (curr_cell.width > strip_width) {
  636. /* split strip */
  637. curr_cell.width = (curr_cell.width <= (strip_width << 1) ? 1 : 2) * strip_width;
  638. } else
  639. SPLIT_CELL(ref_cell->width, curr_cell.width);
  640. ref_cell->xpos += curr_cell.width;
  641. ref_cell->width -= curr_cell.width;
  642. if (ref_cell->width <= 0 || curr_cell.width <= 0)
  643. return AVERROR_INVALIDDATA;
  644. }
  645. while (1) { /* loop until return */
  646. RESYNC_BITSTREAM;
  647. switch (code = get_bits(&ctx->gb, 2)) {
  648. case H_SPLIT:
  649. case V_SPLIT:
  650. if (parse_bintree(ctx, avctx, plane, code, &curr_cell, depth - 1, strip_width))
  651. return AVERROR_INVALIDDATA;
  652. break;
  653. case INTRA_NULL:
  654. if (!curr_cell.tree) { /* MC tree INTRA code */
  655. curr_cell.mv_ptr = 0; /* mark the current strip as INTRA */
  656. curr_cell.tree = 1; /* enter the VQ tree */
  657. } else { /* VQ tree NULL code */
  658. RESYNC_BITSTREAM;
  659. code = get_bits(&ctx->gb, 2);
  660. if (code >= 2) {
  661. av_log(avctx, AV_LOG_ERROR, "Invalid VQ_NULL code: %d\n", code);
  662. return AVERROR_INVALIDDATA;
  663. }
  664. if (code == 1)
  665. av_log(avctx, AV_LOG_ERROR, "SkipCell procedure not implemented yet!\n");
  666. CHECK_CELL
  667. if (!curr_cell.mv_ptr)
  668. return AVERROR_INVALIDDATA;
  669. copy_cell(ctx, plane, &curr_cell);
  670. return 0;
  671. }
  672. break;
  673. case INTER_DATA:
  674. if (!curr_cell.tree) { /* MC tree INTER code */
  675. unsigned mv_idx;
  676. /* get motion vector index and setup the pointer to the mv set */
  677. if (!ctx->need_resync)
  678. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  679. mv_idx = *(ctx->next_cell_data++);
  680. if (mv_idx >= ctx->num_vectors) {
  681. av_log(avctx, AV_LOG_ERROR, "motion vector index out of range\n");
  682. return AVERROR_INVALIDDATA;
  683. }
  684. curr_cell.mv_ptr = &ctx->mc_vectors[mv_idx << 1];
  685. curr_cell.tree = 1; /* enter the VQ tree */
  686. UPDATE_BITPOS(8);
  687. } else { /* VQ tree DATA code */
  688. if (!ctx->need_resync)
  689. ctx->next_cell_data = &ctx->gb.buffer[(get_bits_count(&ctx->gb) + 7) >> 3];
  690. CHECK_CELL
  691. bytes_used = decode_cell(ctx, avctx, plane, &curr_cell,
  692. ctx->next_cell_data, ctx->last_byte);
  693. if (bytes_used < 0)
  694. return AVERROR_INVALIDDATA;
  695. UPDATE_BITPOS(bytes_used << 3);
  696. ctx->next_cell_data += bytes_used;
  697. return 0;
  698. }
  699. break;
  700. }
  701. }//while
  702. return 0;
  703. }
  704. static int decode_plane(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  705. Plane *plane, const uint8_t *data, int32_t data_size,
  706. int32_t strip_width)
  707. {
  708. Cell curr_cell;
  709. unsigned num_vectors;
  710. /* each plane data starts with mc_vector_count field, */
  711. /* an optional array of motion vectors followed by the vq data */
  712. num_vectors = bytestream_get_le32(&data);
  713. if (num_vectors > 256) {
  714. av_log(ctx->avctx, AV_LOG_ERROR,
  715. "Read invalid number of motion vectors %d\n", num_vectors);
  716. return AVERROR_INVALIDDATA;
  717. }
  718. if (num_vectors * 2 >= data_size)
  719. return AVERROR_INVALIDDATA;
  720. ctx->num_vectors = num_vectors;
  721. ctx->mc_vectors = num_vectors ? data : 0;
  722. /* init the bitreader */
  723. init_get_bits(&ctx->gb, &data[num_vectors * 2], (data_size - num_vectors * 2) << 3);
  724. ctx->skip_bits = 0;
  725. ctx->need_resync = 0;
  726. ctx->last_byte = data + data_size - 1;
  727. /* initialize the 1st cell and set its dimensions to whole plane */
  728. curr_cell.xpos = curr_cell.ypos = 0;
  729. curr_cell.width = plane->width >> 2;
  730. curr_cell.height = plane->height >> 2;
  731. curr_cell.tree = 0; // we are in the MC tree now
  732. curr_cell.mv_ptr = 0; // no motion vector = INTRA cell
  733. return parse_bintree(ctx, avctx, plane, INTRA_NULL, &curr_cell, CELL_STACK_MAX, strip_width);
  734. }
  735. #define OS_HDR_ID MKBETAG('F', 'R', 'M', 'H')
  736. static int decode_frame_headers(Indeo3DecodeContext *ctx, AVCodecContext *avctx,
  737. const uint8_t *buf, int buf_size)
  738. {
  739. const uint8_t *buf_ptr = buf, *bs_hdr;
  740. uint32_t frame_num, word2, check_sum, data_size;
  741. uint32_t y_offset, u_offset, v_offset, starts[3], ends[3];
  742. uint16_t height, width;
  743. int i, j;
  744. /* parse and check the OS header */
  745. frame_num = bytestream_get_le32(&buf_ptr);
  746. word2 = bytestream_get_le32(&buf_ptr);
  747. check_sum = bytestream_get_le32(&buf_ptr);
  748. data_size = bytestream_get_le32(&buf_ptr);
  749. if ((frame_num ^ word2 ^ data_size ^ OS_HDR_ID) != check_sum) {
  750. av_log(avctx, AV_LOG_ERROR, "OS header checksum mismatch!\n");
  751. return AVERROR_INVALIDDATA;
  752. }
  753. /* parse the bitstream header */
  754. bs_hdr = buf_ptr;
  755. if (bytestream_get_le16(&buf_ptr) != 32) {
  756. av_log(avctx, AV_LOG_ERROR, "Unsupported codec version!\n");
  757. return AVERROR_INVALIDDATA;
  758. }
  759. ctx->frame_num = frame_num;
  760. ctx->frame_flags = bytestream_get_le16(&buf_ptr);
  761. ctx->data_size = (bytestream_get_le32(&buf_ptr) + 7) >> 3;
  762. ctx->cb_offset = *buf_ptr++;
  763. if (ctx->data_size == 16)
  764. return 4;
  765. if (ctx->data_size > buf_size)
  766. ctx->data_size = buf_size;
  767. buf_ptr += 3; // skip reserved byte and checksum
  768. /* check frame dimensions */
  769. height = bytestream_get_le16(&buf_ptr);
  770. width = bytestream_get_le16(&buf_ptr);
  771. if (av_image_check_size(width, height, 0, avctx))
  772. return AVERROR_INVALIDDATA;
  773. if (width != ctx->width || height != ctx->height) {
  774. int res;
  775. av_dlog(avctx, "Frame dimensions changed!\n");
  776. ctx->width = width;
  777. ctx->height = height;
  778. free_frame_buffers(ctx);
  779. if ((res = allocate_frame_buffers(ctx, avctx)) < 0)
  780. return res;
  781. avcodec_set_dimensions(avctx, width, height);
  782. }
  783. y_offset = bytestream_get_le32(&buf_ptr);
  784. v_offset = bytestream_get_le32(&buf_ptr);
  785. u_offset = bytestream_get_le32(&buf_ptr);
  786. /* unfortunately there is no common order of planes in the buffer */
  787. /* so we use that sorting algo for determining planes data sizes */
  788. starts[0] = y_offset;
  789. starts[1] = v_offset;
  790. starts[2] = u_offset;
  791. for (j = 0; j < 3; j++) {
  792. ends[j] = ctx->data_size;
  793. for (i = 2; i >= 0; i--)
  794. if (starts[i] < ends[j] && starts[i] > starts[j])
  795. ends[j] = starts[i];
  796. }
  797. ctx->y_data_size = ends[0] - starts[0];
  798. ctx->v_data_size = ends[1] - starts[1];
  799. ctx->u_data_size = ends[2] - starts[2];
  800. if (FFMAX3(y_offset, v_offset, u_offset) >= ctx->data_size - 16 ||
  801. FFMIN3(ctx->y_data_size, ctx->v_data_size, ctx->u_data_size) <= 0) {
  802. av_log(avctx, AV_LOG_ERROR, "One of the y/u/v offsets is invalid\n");
  803. return AVERROR_INVALIDDATA;
  804. }
  805. ctx->y_data_ptr = bs_hdr + y_offset;
  806. ctx->v_data_ptr = bs_hdr + v_offset;
  807. ctx->u_data_ptr = bs_hdr + u_offset;
  808. ctx->alt_quant = buf_ptr + sizeof(uint32_t);
  809. if (ctx->data_size == 16) {
  810. av_log(avctx, AV_LOG_DEBUG, "Sync frame encountered!\n");
  811. return 16;
  812. }
  813. if (ctx->frame_flags & BS_8BIT_PEL) {
  814. av_log_ask_for_sample(avctx, "8-bit pixel format\n");
  815. return AVERROR_PATCHWELCOME;
  816. }
  817. if (ctx->frame_flags & BS_MV_X_HALF || ctx->frame_flags & BS_MV_Y_HALF) {
  818. av_log_ask_for_sample(avctx, "halfpel motion vectors\n");
  819. return AVERROR_PATCHWELCOME;
  820. }
  821. return 0;
  822. }
  823. /**
  824. * Convert and output the current plane.
  825. * All pixel values will be upsampled by shifting right by one bit.
  826. *
  827. * @param[in] plane pointer to the descriptor of the plane being processed
  828. * @param[in] buf_sel indicates which frame buffer the input data stored in
  829. * @param[out] dst pointer to the buffer receiving converted pixels
  830. * @param[in] dst_pitch pitch for moving to the next y line
  831. */
  832. static void output_plane(const Plane *plane, int buf_sel, uint8_t *dst, int dst_pitch)
  833. {
  834. int x,y;
  835. const uint8_t *src = plane->pixels[buf_sel];
  836. uint32_t pitch = plane->pitch;
  837. for (y = 0; y < plane->height; y++) {
  838. /* convert four pixels at once using SWAR */
  839. for (x = 0; x < plane->width >> 2; x++) {
  840. AV_WN32A(dst, (AV_RN32A(src) & 0x7F7F7F7F) << 1);
  841. src += 4;
  842. dst += 4;
  843. }
  844. for (x <<= 2; x < plane->width; x++)
  845. *dst++ = *src++ << 1;
  846. src += pitch - plane->width;
  847. dst += dst_pitch - plane->width;
  848. }
  849. }
  850. static av_cold int decode_init(AVCodecContext *avctx)
  851. {
  852. Indeo3DecodeContext *ctx = avctx->priv_data;
  853. ctx->avctx = avctx;
  854. ctx->width = avctx->width;
  855. ctx->height = avctx->height;
  856. avctx->pix_fmt = PIX_FMT_YUV410P;
  857. build_requant_tab();
  858. ff_dsputil_init(&ctx->dsp, avctx);
  859. allocate_frame_buffers(ctx, avctx);
  860. return 0;
  861. }
  862. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  863. AVPacket *avpkt)
  864. {
  865. Indeo3DecodeContext *ctx = avctx->priv_data;
  866. const uint8_t *buf = avpkt->data;
  867. int buf_size = avpkt->size;
  868. int res;
  869. res = decode_frame_headers(ctx, avctx, buf, buf_size);
  870. if (res < 0)
  871. return res;
  872. /* skip sync(null) frames */
  873. if (res) {
  874. // we have processed 16 bytes but no data was decoded
  875. *data_size = 0;
  876. return buf_size;
  877. }
  878. /* skip droppable INTER frames if requested */
  879. if (ctx->frame_flags & BS_NONREF &&
  880. (avctx->skip_frame >= AVDISCARD_NONREF))
  881. return 0;
  882. /* skip INTER frames if requested */
  883. if (!(ctx->frame_flags & BS_KEYFRAME) && avctx->skip_frame >= AVDISCARD_NONKEY)
  884. return 0;
  885. /* use BS_BUFFER flag for buffer switching */
  886. ctx->buf_sel = (ctx->frame_flags >> BS_BUFFER) & 1;
  887. /* decode luma plane */
  888. if ((res = decode_plane(ctx, avctx, ctx->planes, ctx->y_data_ptr, ctx->y_data_size, 40)))
  889. return res;
  890. /* decode chroma planes */
  891. if ((res = decode_plane(ctx, avctx, &ctx->planes[1], ctx->u_data_ptr, ctx->u_data_size, 10)))
  892. return res;
  893. if ((res = decode_plane(ctx, avctx, &ctx->planes[2], ctx->v_data_ptr, ctx->v_data_size, 10)))
  894. return res;
  895. if (ctx->frame.data[0])
  896. avctx->release_buffer(avctx, &ctx->frame);
  897. ctx->frame.reference = 0;
  898. if ((res = avctx->get_buffer(avctx, &ctx->frame)) < 0) {
  899. av_log(ctx->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  900. return res;
  901. }
  902. output_plane(&ctx->planes[0], ctx->buf_sel, ctx->frame.data[0], ctx->frame.linesize[0]);
  903. output_plane(&ctx->planes[1], ctx->buf_sel, ctx->frame.data[1], ctx->frame.linesize[1]);
  904. output_plane(&ctx->planes[2], ctx->buf_sel, ctx->frame.data[2], ctx->frame.linesize[2]);
  905. *data_size = sizeof(AVFrame);
  906. *(AVFrame*)data = ctx->frame;
  907. return buf_size;
  908. }
  909. static av_cold int decode_close(AVCodecContext *avctx)
  910. {
  911. Indeo3DecodeContext *ctx = avctx->priv_data;
  912. free_frame_buffers(avctx->priv_data);
  913. if (ctx->frame.data[0])
  914. avctx->release_buffer(avctx, &ctx->frame);
  915. return 0;
  916. }
  917. AVCodec ff_indeo3_decoder = {
  918. .name = "indeo3",
  919. .type = AVMEDIA_TYPE_VIDEO,
  920. .id = CODEC_ID_INDEO3,
  921. .priv_data_size = sizeof(Indeo3DecodeContext),
  922. .init = decode_init,
  923. .close = decode_close,
  924. .decode = decode_frame,
  925. .long_name = NULL_IF_CONFIG_SMALL("Intel Indeo 3"),
  926. };