You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

952 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The Libav Project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "internal.h"
  36. #include "wma.h"
  37. #undef NDEBUG
  38. #include <assert.h>
  39. #define EXPVLCBITS 8
  40. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  41. #define HGAINVLCBITS 9
  42. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  43. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  44. #ifdef TRACE
  45. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  46. {
  47. int i;
  48. tprintf(s->avctx, "%s[%d]:\n", name, n);
  49. for(i=0;i<n;i++) {
  50. if ((i & 7) == 0)
  51. tprintf(s->avctx, "%4d: ", i);
  52. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  53. if ((i & 7) == 7)
  54. tprintf(s->avctx, "\n");
  55. }
  56. if ((i & 7) != 0)
  57. tprintf(s->avctx, "\n");
  58. }
  59. #endif
  60. static int wma_decode_init(AVCodecContext * avctx)
  61. {
  62. WMACodecContext *s = avctx->priv_data;
  63. int i, flags2;
  64. uint8_t *extradata;
  65. s->avctx = avctx;
  66. /* extract flag infos */
  67. flags2 = 0;
  68. extradata = avctx->extradata;
  69. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  70. flags2 = AV_RL16(extradata+2);
  71. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  72. flags2 = AV_RL16(extradata+4);
  73. }
  74. s->use_exp_vlc = flags2 & 0x0001;
  75. s->use_bit_reservoir = flags2 & 0x0002;
  76. s->use_variable_block_len = flags2 & 0x0004;
  77. if(ff_wma_init(avctx, flags2)<0)
  78. return -1;
  79. /* init MDCT */
  80. for(i = 0; i < s->nb_block_sizes; i++)
  81. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  82. if (s->use_noise_coding) {
  83. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  84. ff_wma_hgain_huffbits, 1, 1,
  85. ff_wma_hgain_huffcodes, 2, 2, 0);
  86. }
  87. if (s->use_exp_vlc) {
  88. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  89. ff_aac_scalefactor_bits, 1, 1,
  90. ff_aac_scalefactor_code, 4, 4, 0);
  91. } else {
  92. wma_lsp_to_curve_init(s, s->frame_len);
  93. }
  94. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  95. return 0;
  96. }
  97. /**
  98. * compute x^-0.25 with an exponent and mantissa table. We use linear
  99. * interpolation to reduce the mantissa table size at a small speed
  100. * expense (linear interpolation approximately doubles the number of
  101. * bits of precision).
  102. */
  103. static inline float pow_m1_4(WMACodecContext *s, float x)
  104. {
  105. union {
  106. float f;
  107. unsigned int v;
  108. } u, t;
  109. unsigned int e, m;
  110. float a, b;
  111. u.f = x;
  112. e = u.v >> 23;
  113. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  114. /* build interpolation scale: 1 <= t < 2. */
  115. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  116. a = s->lsp_pow_m_table1[m];
  117. b = s->lsp_pow_m_table2[m];
  118. return s->lsp_pow_e_table[e] * (a + b * t.f);
  119. }
  120. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  121. {
  122. float wdel, a, b;
  123. int i, e, m;
  124. wdel = M_PI / frame_len;
  125. for(i=0;i<frame_len;i++)
  126. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  127. /* tables for x^-0.25 computation */
  128. for(i=0;i<256;i++) {
  129. e = i - 126;
  130. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  131. }
  132. /* NOTE: these two tables are needed to avoid two operations in
  133. pow_m1_4 */
  134. b = 1.0;
  135. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  136. m = (1 << LSP_POW_BITS) + i;
  137. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  138. a = pow(a, -0.25);
  139. s->lsp_pow_m_table1[i] = 2 * a - b;
  140. s->lsp_pow_m_table2[i] = b - a;
  141. b = a;
  142. }
  143. }
  144. /**
  145. * NOTE: We use the same code as Vorbis here
  146. * @todo optimize it further with SSE/3Dnow
  147. */
  148. static void wma_lsp_to_curve(WMACodecContext *s,
  149. float *out, float *val_max_ptr,
  150. int n, float *lsp)
  151. {
  152. int i, j;
  153. float p, q, w, v, val_max;
  154. val_max = 0;
  155. for(i=0;i<n;i++) {
  156. p = 0.5f;
  157. q = 0.5f;
  158. w = s->lsp_cos_table[i];
  159. for(j=1;j<NB_LSP_COEFS;j+=2){
  160. q *= w - lsp[j - 1];
  161. p *= w - lsp[j];
  162. }
  163. p *= p * (2.0f - w);
  164. q *= q * (2.0f + w);
  165. v = p + q;
  166. v = pow_m1_4(s, v);
  167. if (v > val_max)
  168. val_max = v;
  169. out[i] = v;
  170. }
  171. *val_max_ptr = val_max;
  172. }
  173. /**
  174. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  175. */
  176. static void decode_exp_lsp(WMACodecContext *s, int ch)
  177. {
  178. float lsp_coefs[NB_LSP_COEFS];
  179. int val, i;
  180. for(i = 0; i < NB_LSP_COEFS; i++) {
  181. if (i == 0 || i >= 8)
  182. val = get_bits(&s->gb, 3);
  183. else
  184. val = get_bits(&s->gb, 4);
  185. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  186. }
  187. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  188. s->block_len, lsp_coefs);
  189. }
  190. /** pow(10, i / 16.0) for i in -60..95 */
  191. static const float pow_tab[] = {
  192. 1.7782794100389e-04, 2.0535250264571e-04,
  193. 2.3713737056617e-04, 2.7384196342644e-04,
  194. 3.1622776601684e-04, 3.6517412725484e-04,
  195. 4.2169650342858e-04, 4.8696752516586e-04,
  196. 5.6234132519035e-04, 6.4938163157621e-04,
  197. 7.4989420933246e-04, 8.6596432336006e-04,
  198. 1.0000000000000e-03, 1.1547819846895e-03,
  199. 1.3335214321633e-03, 1.5399265260595e-03,
  200. 1.7782794100389e-03, 2.0535250264571e-03,
  201. 2.3713737056617e-03, 2.7384196342644e-03,
  202. 3.1622776601684e-03, 3.6517412725484e-03,
  203. 4.2169650342858e-03, 4.8696752516586e-03,
  204. 5.6234132519035e-03, 6.4938163157621e-03,
  205. 7.4989420933246e-03, 8.6596432336006e-03,
  206. 1.0000000000000e-02, 1.1547819846895e-02,
  207. 1.3335214321633e-02, 1.5399265260595e-02,
  208. 1.7782794100389e-02, 2.0535250264571e-02,
  209. 2.3713737056617e-02, 2.7384196342644e-02,
  210. 3.1622776601684e-02, 3.6517412725484e-02,
  211. 4.2169650342858e-02, 4.8696752516586e-02,
  212. 5.6234132519035e-02, 6.4938163157621e-02,
  213. 7.4989420933246e-02, 8.6596432336007e-02,
  214. 1.0000000000000e-01, 1.1547819846895e-01,
  215. 1.3335214321633e-01, 1.5399265260595e-01,
  216. 1.7782794100389e-01, 2.0535250264571e-01,
  217. 2.3713737056617e-01, 2.7384196342644e-01,
  218. 3.1622776601684e-01, 3.6517412725484e-01,
  219. 4.2169650342858e-01, 4.8696752516586e-01,
  220. 5.6234132519035e-01, 6.4938163157621e-01,
  221. 7.4989420933246e-01, 8.6596432336007e-01,
  222. 1.0000000000000e+00, 1.1547819846895e+00,
  223. 1.3335214321633e+00, 1.5399265260595e+00,
  224. 1.7782794100389e+00, 2.0535250264571e+00,
  225. 2.3713737056617e+00, 2.7384196342644e+00,
  226. 3.1622776601684e+00, 3.6517412725484e+00,
  227. 4.2169650342858e+00, 4.8696752516586e+00,
  228. 5.6234132519035e+00, 6.4938163157621e+00,
  229. 7.4989420933246e+00, 8.6596432336007e+00,
  230. 1.0000000000000e+01, 1.1547819846895e+01,
  231. 1.3335214321633e+01, 1.5399265260595e+01,
  232. 1.7782794100389e+01, 2.0535250264571e+01,
  233. 2.3713737056617e+01, 2.7384196342644e+01,
  234. 3.1622776601684e+01, 3.6517412725484e+01,
  235. 4.2169650342858e+01, 4.8696752516586e+01,
  236. 5.6234132519035e+01, 6.4938163157621e+01,
  237. 7.4989420933246e+01, 8.6596432336007e+01,
  238. 1.0000000000000e+02, 1.1547819846895e+02,
  239. 1.3335214321633e+02, 1.5399265260595e+02,
  240. 1.7782794100389e+02, 2.0535250264571e+02,
  241. 2.3713737056617e+02, 2.7384196342644e+02,
  242. 3.1622776601684e+02, 3.6517412725484e+02,
  243. 4.2169650342858e+02, 4.8696752516586e+02,
  244. 5.6234132519035e+02, 6.4938163157621e+02,
  245. 7.4989420933246e+02, 8.6596432336007e+02,
  246. 1.0000000000000e+03, 1.1547819846895e+03,
  247. 1.3335214321633e+03, 1.5399265260595e+03,
  248. 1.7782794100389e+03, 2.0535250264571e+03,
  249. 2.3713737056617e+03, 2.7384196342644e+03,
  250. 3.1622776601684e+03, 3.6517412725484e+03,
  251. 4.2169650342858e+03, 4.8696752516586e+03,
  252. 5.6234132519035e+03, 6.4938163157621e+03,
  253. 7.4989420933246e+03, 8.6596432336007e+03,
  254. 1.0000000000000e+04, 1.1547819846895e+04,
  255. 1.3335214321633e+04, 1.5399265260595e+04,
  256. 1.7782794100389e+04, 2.0535250264571e+04,
  257. 2.3713737056617e+04, 2.7384196342644e+04,
  258. 3.1622776601684e+04, 3.6517412725484e+04,
  259. 4.2169650342858e+04, 4.8696752516586e+04,
  260. 5.6234132519035e+04, 6.4938163157621e+04,
  261. 7.4989420933246e+04, 8.6596432336007e+04,
  262. 1.0000000000000e+05, 1.1547819846895e+05,
  263. 1.3335214321633e+05, 1.5399265260595e+05,
  264. 1.7782794100389e+05, 2.0535250264571e+05,
  265. 2.3713737056617e+05, 2.7384196342644e+05,
  266. 3.1622776601684e+05, 3.6517412725484e+05,
  267. 4.2169650342858e+05, 4.8696752516586e+05,
  268. 5.6234132519035e+05, 6.4938163157621e+05,
  269. 7.4989420933246e+05, 8.6596432336007e+05,
  270. };
  271. /**
  272. * decode exponents coded with VLC codes
  273. */
  274. static int decode_exp_vlc(WMACodecContext *s, int ch)
  275. {
  276. int last_exp, n, code;
  277. const uint16_t *ptr;
  278. float v, max_scale;
  279. uint32_t *q, *q_end, iv;
  280. const float *ptab = pow_tab + 60;
  281. const uint32_t *iptab = (const uint32_t*)ptab;
  282. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  283. q = (uint32_t *)s->exponents[ch];
  284. q_end = q + s->block_len;
  285. max_scale = 0;
  286. if (s->version == 1) {
  287. last_exp = get_bits(&s->gb, 5) + 10;
  288. v = ptab[last_exp];
  289. iv = iptab[last_exp];
  290. max_scale = v;
  291. n = *ptr++;
  292. switch (n & 3) do {
  293. case 0: *q++ = iv;
  294. case 3: *q++ = iv;
  295. case 2: *q++ = iv;
  296. case 1: *q++ = iv;
  297. } while ((n -= 4) > 0);
  298. }else
  299. last_exp = 36;
  300. while (q < q_end) {
  301. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  302. if (code < 0){
  303. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  304. return -1;
  305. }
  306. /* NOTE: this offset is the same as MPEG4 AAC ! */
  307. last_exp += code - 60;
  308. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  309. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  310. last_exp);
  311. return -1;
  312. }
  313. v = ptab[last_exp];
  314. iv = iptab[last_exp];
  315. if (v > max_scale)
  316. max_scale = v;
  317. n = *ptr++;
  318. switch (n & 3) do {
  319. case 0: *q++ = iv;
  320. case 3: *q++ = iv;
  321. case 2: *q++ = iv;
  322. case 1: *q++ = iv;
  323. } while ((n -= 4) > 0);
  324. }
  325. s->max_exponent[ch] = max_scale;
  326. return 0;
  327. }
  328. /**
  329. * Apply MDCT window and add into output.
  330. *
  331. * We ensure that when the windows overlap their squared sum
  332. * is always 1 (MDCT reconstruction rule).
  333. */
  334. static void wma_window(WMACodecContext *s, float *out)
  335. {
  336. float *in = s->output;
  337. int block_len, bsize, n;
  338. /* left part */
  339. if (s->block_len_bits <= s->prev_block_len_bits) {
  340. block_len = s->block_len;
  341. bsize = s->frame_len_bits - s->block_len_bits;
  342. s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
  343. out, block_len);
  344. } else {
  345. block_len = 1 << s->prev_block_len_bits;
  346. n = (s->block_len - block_len) / 2;
  347. bsize = s->frame_len_bits - s->prev_block_len_bits;
  348. s->fdsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  349. out+n, block_len);
  350. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  351. }
  352. out += s->block_len;
  353. in += s->block_len;
  354. /* right part */
  355. if (s->block_len_bits <= s->next_block_len_bits) {
  356. block_len = s->block_len;
  357. bsize = s->frame_len_bits - s->block_len_bits;
  358. s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  359. } else {
  360. block_len = 1 << s->next_block_len_bits;
  361. n = (s->block_len - block_len) / 2;
  362. bsize = s->frame_len_bits - s->next_block_len_bits;
  363. memcpy(out, in, n*sizeof(float));
  364. s->fdsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  365. memset(out+n+block_len, 0, n*sizeof(float));
  366. }
  367. }
  368. /**
  369. * @return 0 if OK. 1 if last block of frame. return -1 if
  370. * unrecorrable error.
  371. */
  372. static int wma_decode_block(WMACodecContext *s)
  373. {
  374. int n, v, a, ch, bsize;
  375. int coef_nb_bits, total_gain;
  376. int nb_coefs[MAX_CHANNELS];
  377. float mdct_norm;
  378. FFTContext *mdct;
  379. #ifdef TRACE
  380. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  381. #endif
  382. /* compute current block length */
  383. if (s->use_variable_block_len) {
  384. n = av_log2(s->nb_block_sizes - 1) + 1;
  385. if (s->reset_block_lengths) {
  386. s->reset_block_lengths = 0;
  387. v = get_bits(&s->gb, n);
  388. if (v >= s->nb_block_sizes){
  389. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  390. return -1;
  391. }
  392. s->prev_block_len_bits = s->frame_len_bits - v;
  393. v = get_bits(&s->gb, n);
  394. if (v >= s->nb_block_sizes){
  395. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  396. return -1;
  397. }
  398. s->block_len_bits = s->frame_len_bits - v;
  399. } else {
  400. /* update block lengths */
  401. s->prev_block_len_bits = s->block_len_bits;
  402. s->block_len_bits = s->next_block_len_bits;
  403. }
  404. v = get_bits(&s->gb, n);
  405. if (v >= s->nb_block_sizes){
  406. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  407. return -1;
  408. }
  409. s->next_block_len_bits = s->frame_len_bits - v;
  410. } else {
  411. /* fixed block len */
  412. s->next_block_len_bits = s->frame_len_bits;
  413. s->prev_block_len_bits = s->frame_len_bits;
  414. s->block_len_bits = s->frame_len_bits;
  415. }
  416. /* now check if the block length is coherent with the frame length */
  417. s->block_len = 1 << s->block_len_bits;
  418. if ((s->block_pos + s->block_len) > s->frame_len){
  419. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  420. return -1;
  421. }
  422. if (s->avctx->channels == 2) {
  423. s->ms_stereo = get_bits1(&s->gb);
  424. }
  425. v = 0;
  426. for(ch = 0; ch < s->avctx->channels; ch++) {
  427. a = get_bits1(&s->gb);
  428. s->channel_coded[ch] = a;
  429. v |= a;
  430. }
  431. bsize = s->frame_len_bits - s->block_len_bits;
  432. /* if no channel coded, no need to go further */
  433. /* XXX: fix potential framing problems */
  434. if (!v)
  435. goto next;
  436. /* read total gain and extract corresponding number of bits for
  437. coef escape coding */
  438. total_gain = 1;
  439. for(;;) {
  440. a = get_bits(&s->gb, 7);
  441. total_gain += a;
  442. if (a != 127)
  443. break;
  444. }
  445. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  446. /* compute number of coefficients */
  447. n = s->coefs_end[bsize] - s->coefs_start;
  448. for(ch = 0; ch < s->avctx->channels; ch++)
  449. nb_coefs[ch] = n;
  450. /* complex coding */
  451. if (s->use_noise_coding) {
  452. for(ch = 0; ch < s->avctx->channels; ch++) {
  453. if (s->channel_coded[ch]) {
  454. int i, n, a;
  455. n = s->exponent_high_sizes[bsize];
  456. for(i=0;i<n;i++) {
  457. a = get_bits1(&s->gb);
  458. s->high_band_coded[ch][i] = a;
  459. /* if noise coding, the coefficients are not transmitted */
  460. if (a)
  461. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  462. }
  463. }
  464. }
  465. for(ch = 0; ch < s->avctx->channels; ch++) {
  466. if (s->channel_coded[ch]) {
  467. int i, n, val, code;
  468. n = s->exponent_high_sizes[bsize];
  469. val = (int)0x80000000;
  470. for(i=0;i<n;i++) {
  471. if (s->high_band_coded[ch][i]) {
  472. if (val == (int)0x80000000) {
  473. val = get_bits(&s->gb, 7) - 19;
  474. } else {
  475. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  476. if (code < 0){
  477. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  478. return -1;
  479. }
  480. val += code - 18;
  481. }
  482. s->high_band_values[ch][i] = val;
  483. }
  484. }
  485. }
  486. }
  487. }
  488. /* exponents can be reused in short blocks. */
  489. if ((s->block_len_bits == s->frame_len_bits) ||
  490. get_bits1(&s->gb)) {
  491. for(ch = 0; ch < s->avctx->channels; ch++) {
  492. if (s->channel_coded[ch]) {
  493. if (s->use_exp_vlc) {
  494. if (decode_exp_vlc(s, ch) < 0)
  495. return -1;
  496. } else {
  497. decode_exp_lsp(s, ch);
  498. }
  499. s->exponents_bsize[ch] = bsize;
  500. }
  501. }
  502. }
  503. /* parse spectral coefficients : just RLE encoding */
  504. for (ch = 0; ch < s->avctx->channels; ch++) {
  505. if (s->channel_coded[ch]) {
  506. int tindex;
  507. WMACoef* ptr = &s->coefs1[ch][0];
  508. /* special VLC tables are used for ms stereo because
  509. there is potentially less energy there */
  510. tindex = (ch == 1 && s->ms_stereo);
  511. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  512. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  513. s->level_table[tindex], s->run_table[tindex],
  514. 0, ptr, 0, nb_coefs[ch],
  515. s->block_len, s->frame_len_bits, coef_nb_bits);
  516. }
  517. if (s->version == 1 && s->avctx->channels >= 2) {
  518. align_get_bits(&s->gb);
  519. }
  520. }
  521. /* normalize */
  522. {
  523. int n4 = s->block_len / 2;
  524. mdct_norm = 1.0 / (float)n4;
  525. if (s->version == 1) {
  526. mdct_norm *= sqrt(n4);
  527. }
  528. }
  529. /* finally compute the MDCT coefficients */
  530. for (ch = 0; ch < s->avctx->channels; ch++) {
  531. if (s->channel_coded[ch]) {
  532. WMACoef *coefs1;
  533. float *coefs, *exponents, mult, mult1, noise;
  534. int i, j, n, n1, last_high_band, esize;
  535. float exp_power[HIGH_BAND_MAX_SIZE];
  536. coefs1 = s->coefs1[ch];
  537. exponents = s->exponents[ch];
  538. esize = s->exponents_bsize[ch];
  539. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  540. mult *= mdct_norm;
  541. coefs = s->coefs[ch];
  542. if (s->use_noise_coding) {
  543. mult1 = mult;
  544. /* very low freqs : noise */
  545. for(i = 0;i < s->coefs_start; i++) {
  546. *coefs++ = s->noise_table[s->noise_index] *
  547. exponents[i<<bsize>>esize] * mult1;
  548. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  549. }
  550. n1 = s->exponent_high_sizes[bsize];
  551. /* compute power of high bands */
  552. exponents = s->exponents[ch] +
  553. (s->high_band_start[bsize]<<bsize>>esize);
  554. last_high_band = 0; /* avoid warning */
  555. for(j=0;j<n1;j++) {
  556. n = s->exponent_high_bands[s->frame_len_bits -
  557. s->block_len_bits][j];
  558. if (s->high_band_coded[ch][j]) {
  559. float e2, v;
  560. e2 = 0;
  561. for(i = 0;i < n; i++) {
  562. v = exponents[i<<bsize>>esize];
  563. e2 += v * v;
  564. }
  565. exp_power[j] = e2 / n;
  566. last_high_band = j;
  567. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  568. }
  569. exponents += n<<bsize>>esize;
  570. }
  571. /* main freqs and high freqs */
  572. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  573. for(j=-1;j<n1;j++) {
  574. if (j < 0) {
  575. n = s->high_band_start[bsize] -
  576. s->coefs_start;
  577. } else {
  578. n = s->exponent_high_bands[s->frame_len_bits -
  579. s->block_len_bits][j];
  580. }
  581. if (j >= 0 && s->high_band_coded[ch][j]) {
  582. /* use noise with specified power */
  583. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  584. /* XXX: use a table */
  585. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  586. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  587. mult1 *= mdct_norm;
  588. for(i = 0;i < n; i++) {
  589. noise = s->noise_table[s->noise_index];
  590. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  591. *coefs++ = noise *
  592. exponents[i<<bsize>>esize] * mult1;
  593. }
  594. exponents += n<<bsize>>esize;
  595. } else {
  596. /* coded values + small noise */
  597. for(i = 0;i < n; i++) {
  598. noise = s->noise_table[s->noise_index];
  599. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  600. *coefs++ = ((*coefs1++) + noise) *
  601. exponents[i<<bsize>>esize] * mult;
  602. }
  603. exponents += n<<bsize>>esize;
  604. }
  605. }
  606. /* very high freqs : noise */
  607. n = s->block_len - s->coefs_end[bsize];
  608. mult1 = mult * exponents[((-1<<bsize))>>esize];
  609. for(i = 0; i < n; i++) {
  610. *coefs++ = s->noise_table[s->noise_index] * mult1;
  611. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  612. }
  613. } else {
  614. /* XXX: optimize more */
  615. for(i = 0;i < s->coefs_start; i++)
  616. *coefs++ = 0.0;
  617. n = nb_coefs[ch];
  618. for(i = 0;i < n; i++) {
  619. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  620. }
  621. n = s->block_len - s->coefs_end[bsize];
  622. for(i = 0;i < n; i++)
  623. *coefs++ = 0.0;
  624. }
  625. }
  626. }
  627. #ifdef TRACE
  628. for (ch = 0; ch < s->avctx->channels; ch++) {
  629. if (s->channel_coded[ch]) {
  630. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  631. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  632. }
  633. }
  634. #endif
  635. if (s->ms_stereo && s->channel_coded[1]) {
  636. /* nominal case for ms stereo: we do it before mdct */
  637. /* no need to optimize this case because it should almost
  638. never happen */
  639. if (!s->channel_coded[0]) {
  640. tprintf(s->avctx, "rare ms-stereo case happened\n");
  641. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  642. s->channel_coded[0] = 1;
  643. }
  644. s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  645. }
  646. next:
  647. mdct = &s->mdct_ctx[bsize];
  648. for (ch = 0; ch < s->avctx->channels; ch++) {
  649. int n4, index;
  650. n4 = s->block_len / 2;
  651. if(s->channel_coded[ch]){
  652. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  653. }else if(!(s->ms_stereo && ch==1))
  654. memset(s->output, 0, sizeof(s->output));
  655. /* multiply by the window and add in the frame */
  656. index = (s->frame_len / 2) + s->block_pos - n4;
  657. wma_window(s, &s->frame_out[ch][index]);
  658. }
  659. /* update block number */
  660. s->block_num++;
  661. s->block_pos += s->block_len;
  662. if (s->block_pos >= s->frame_len)
  663. return 1;
  664. else
  665. return 0;
  666. }
  667. /* decode a frame of frame_len samples */
  668. static int wma_decode_frame(WMACodecContext *s, float **samples,
  669. int samples_offset)
  670. {
  671. int ret, ch;
  672. #ifdef TRACE
  673. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  674. #endif
  675. /* read each block */
  676. s->block_num = 0;
  677. s->block_pos = 0;
  678. for(;;) {
  679. ret = wma_decode_block(s);
  680. if (ret < 0)
  681. return -1;
  682. if (ret)
  683. break;
  684. }
  685. for (ch = 0; ch < s->avctx->channels; ch++) {
  686. /* copy current block to output */
  687. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  688. s->frame_len * sizeof(*s->frame_out[ch]));
  689. /* prepare for next block */
  690. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  691. s->frame_len * sizeof(*s->frame_out[ch]));
  692. #ifdef TRACE
  693. dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
  694. #endif
  695. }
  696. return 0;
  697. }
  698. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  699. int *got_frame_ptr, AVPacket *avpkt)
  700. {
  701. AVFrame *frame = data;
  702. const uint8_t *buf = avpkt->data;
  703. int buf_size = avpkt->size;
  704. WMACodecContext *s = avctx->priv_data;
  705. int nb_frames, bit_offset, i, pos, len, ret;
  706. uint8_t *q;
  707. float **samples;
  708. int samples_offset;
  709. tprintf(avctx, "***decode_superframe:\n");
  710. if(buf_size==0){
  711. s->last_superframe_len = 0;
  712. return 0;
  713. }
  714. if (buf_size < avctx->block_align) {
  715. av_log(avctx, AV_LOG_ERROR,
  716. "Input packet size too small (%d < %d)\n",
  717. buf_size, avctx->block_align);
  718. return AVERROR_INVALIDDATA;
  719. }
  720. buf_size = avctx->block_align;
  721. init_get_bits(&s->gb, buf, buf_size*8);
  722. if (s->use_bit_reservoir) {
  723. /* read super frame header */
  724. skip_bits(&s->gb, 4); /* super frame index */
  725. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  726. } else {
  727. nb_frames = 1;
  728. }
  729. /* get output buffer */
  730. frame->nb_samples = nb_frames * s->frame_len;
  731. if ((ret = ff_get_buffer(avctx, frame)) < 0) {
  732. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  733. return ret;
  734. }
  735. samples = (float **)frame->extended_data;
  736. samples_offset = 0;
  737. if (s->use_bit_reservoir) {
  738. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  739. if (bit_offset > get_bits_left(&s->gb)) {
  740. av_log(avctx, AV_LOG_ERROR,
  741. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  742. bit_offset, get_bits_left(&s->gb), buf_size);
  743. goto fail;
  744. }
  745. if (s->last_superframe_len > 0) {
  746. /* add bit_offset bits to last frame */
  747. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  748. MAX_CODED_SUPERFRAME_SIZE)
  749. goto fail;
  750. q = s->last_superframe + s->last_superframe_len;
  751. len = bit_offset;
  752. while (len > 7) {
  753. *q++ = (get_bits)(&s->gb, 8);
  754. len -= 8;
  755. }
  756. if (len > 0) {
  757. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  758. }
  759. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  760. /* XXX: bit_offset bits into last frame */
  761. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  762. /* skip unused bits */
  763. if (s->last_bitoffset > 0)
  764. skip_bits(&s->gb, s->last_bitoffset);
  765. /* this frame is stored in the last superframe and in the
  766. current one */
  767. if (wma_decode_frame(s, samples, samples_offset) < 0)
  768. goto fail;
  769. samples_offset += s->frame_len;
  770. nb_frames--;
  771. }
  772. /* read each frame starting from bit_offset */
  773. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  774. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  775. return AVERROR_INVALIDDATA;
  776. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  777. len = pos & 7;
  778. if (len > 0)
  779. skip_bits(&s->gb, len);
  780. s->reset_block_lengths = 1;
  781. for(i=0;i<nb_frames;i++) {
  782. if (wma_decode_frame(s, samples, samples_offset) < 0)
  783. goto fail;
  784. samples_offset += s->frame_len;
  785. }
  786. /* we copy the end of the frame in the last frame buffer */
  787. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  788. s->last_bitoffset = pos & 7;
  789. pos >>= 3;
  790. len = buf_size - pos;
  791. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  792. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  793. goto fail;
  794. }
  795. s->last_superframe_len = len;
  796. memcpy(s->last_superframe, buf + pos, len);
  797. } else {
  798. /* single frame decode */
  799. if (wma_decode_frame(s, samples, samples_offset) < 0)
  800. goto fail;
  801. samples_offset += s->frame_len;
  802. }
  803. av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  804. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  805. (int8_t *)samples - (int8_t *)data, avctx->block_align);
  806. *got_frame_ptr = 1;
  807. return avctx->block_align;
  808. fail:
  809. /* when error, we reset the bit reservoir */
  810. s->last_superframe_len = 0;
  811. return -1;
  812. }
  813. static av_cold void flush(AVCodecContext *avctx)
  814. {
  815. WMACodecContext *s = avctx->priv_data;
  816. s->last_bitoffset=
  817. s->last_superframe_len= 0;
  818. }
  819. AVCodec ff_wmav1_decoder = {
  820. .name = "wmav1",
  821. .type = AVMEDIA_TYPE_AUDIO,
  822. .id = AV_CODEC_ID_WMAV1,
  823. .priv_data_size = sizeof(WMACodecContext),
  824. .init = wma_decode_init,
  825. .close = ff_wma_end,
  826. .decode = wma_decode_superframe,
  827. .flush = flush,
  828. .capabilities = CODEC_CAP_DR1,
  829. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  830. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  831. AV_SAMPLE_FMT_NONE },
  832. };
  833. AVCodec ff_wmav2_decoder = {
  834. .name = "wmav2",
  835. .type = AVMEDIA_TYPE_AUDIO,
  836. .id = AV_CODEC_ID_WMAV2,
  837. .priv_data_size = sizeof(WMACodecContext),
  838. .init = wma_decode_init,
  839. .close = ff_wma_end,
  840. .decode = wma_decode_superframe,
  841. .flush = flush,
  842. .capabilities = CODEC_CAP_DR1,
  843. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  844. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  845. AV_SAMPLE_FMT_NONE },
  846. };