You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1095 lines
41KB

  1. /*
  2. * AMR narrowband decoder
  3. * Copyright (c) 2006-2007 Robert Swain
  4. * Copyright (c) 2009 Colin McQuillan
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AMR narrowband decoder
  25. *
  26. * This decoder uses floats for simplicity and so is not bit-exact. One
  27. * difference is that differences in phase can accumulate. The test sequences
  28. * in 3GPP TS 26.074 can still be useful.
  29. *
  30. * - Comparing this file's output to the output of the ref decoder gives a
  31. * PSNR of 30 to 80. Plotting the output samples shows a difference in
  32. * phase in some areas.
  33. *
  34. * - Comparing both decoders against their input, this decoder gives a similar
  35. * PSNR. If the test sequence homing frames are removed (this decoder does
  36. * not detect them), the PSNR is at least as good as the reference on 140
  37. * out of 169 tests.
  38. */
  39. #include <string.h>
  40. #include <math.h>
  41. #include "libavutil/channel_layout.h"
  42. #include "libavutil/float_dsp.h"
  43. #include "avcodec.h"
  44. #include "libavutil/common.h"
  45. #include "libavutil/avassert.h"
  46. #include "celp_math.h"
  47. #include "celp_filters.h"
  48. #include "acelp_filters.h"
  49. #include "acelp_vectors.h"
  50. #include "acelp_pitch_delay.h"
  51. #include "lsp.h"
  52. #include "amr.h"
  53. #include "internal.h"
  54. #include "amrnbdata.h"
  55. #define AMR_BLOCK_SIZE 160 ///< samples per frame
  56. #define AMR_SAMPLE_BOUND 32768.0 ///< threshold for synthesis overflow
  57. /**
  58. * Scale from constructed speech to [-1,1]
  59. *
  60. * AMR is designed to produce 16-bit PCM samples (3GPP TS 26.090 4.2) but
  61. * upscales by two (section 6.2.2).
  62. *
  63. * Fundamentally, this scale is determined by energy_mean through
  64. * the fixed vector contribution to the excitation vector.
  65. */
  66. #define AMR_SAMPLE_SCALE (2.0 / 32768.0)
  67. /** Prediction factor for 12.2kbit/s mode */
  68. #define PRED_FAC_MODE_12k2 0.65
  69. #define LSF_R_FAC (8000.0 / 32768.0) ///< LSF residual tables to Hertz
  70. #define MIN_LSF_SPACING (50.0488 / 8000.0) ///< Ensures stability of LPC filter
  71. #define PITCH_LAG_MIN_MODE_12k2 18 ///< Lower bound on decoded lag search in 12.2kbit/s mode
  72. /** Initial energy in dB. Also used for bad frames (unimplemented). */
  73. #define MIN_ENERGY -14.0
  74. /** Maximum sharpening factor
  75. *
  76. * The specification says 0.8, which should be 13107, but the reference C code
  77. * uses 13017 instead. (Amusingly the same applies to SHARP_MAX in g729dec.c.)
  78. */
  79. #define SHARP_MAX 0.79449462890625
  80. /** Number of impulse response coefficients used for tilt factor */
  81. #define AMR_TILT_RESPONSE 22
  82. /** Tilt factor = 1st reflection coefficient * gamma_t */
  83. #define AMR_TILT_GAMMA_T 0.8
  84. /** Adaptive gain control factor used in post-filter */
  85. #define AMR_AGC_ALPHA 0.9
  86. typedef struct AMRContext {
  87. AMRNBFrame frame; ///< decoded AMR parameters (lsf coefficients, codebook indexes, etc)
  88. uint8_t bad_frame_indicator; ///< bad frame ? 1 : 0
  89. enum Mode cur_frame_mode;
  90. int16_t prev_lsf_r[LP_FILTER_ORDER]; ///< residual LSF vector from previous subframe
  91. double lsp[4][LP_FILTER_ORDER]; ///< lsp vectors from current frame
  92. double prev_lsp_sub4[LP_FILTER_ORDER]; ///< lsp vector for the 4th subframe of the previous frame
  93. float lsf_q[4][LP_FILTER_ORDER]; ///< Interpolated LSF vector for fixed gain smoothing
  94. float lsf_avg[LP_FILTER_ORDER]; ///< vector of averaged lsf vector
  95. float lpc[4][LP_FILTER_ORDER]; ///< lpc coefficient vectors for 4 subframes
  96. uint8_t pitch_lag_int; ///< integer part of pitch lag from current subframe
  97. float excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1 + AMR_SUBFRAME_SIZE]; ///< current excitation and all necessary excitation history
  98. float *excitation; ///< pointer to the current excitation vector in excitation_buf
  99. float pitch_vector[AMR_SUBFRAME_SIZE]; ///< adaptive code book (pitch) vector
  100. float fixed_vector[AMR_SUBFRAME_SIZE]; ///< algebraic codebook (fixed) vector (must be kept zero between frames)
  101. float prediction_error[4]; ///< quantified prediction errors {20log10(^gamma_gc)} for previous four subframes
  102. float pitch_gain[5]; ///< quantified pitch gains for the current and previous four subframes
  103. float fixed_gain[5]; ///< quantified fixed gains for the current and previous four subframes
  104. float beta; ///< previous pitch_gain, bounded by [0.0,SHARP_MAX]
  105. uint8_t diff_count; ///< the number of subframes for which diff has been above 0.65
  106. uint8_t hang_count; ///< the number of subframes since a hangover period started
  107. float prev_sparse_fixed_gain; ///< previous fixed gain; used by anti-sparseness processing to determine "onset"
  108. uint8_t prev_ir_filter_nr; ///< previous impulse response filter "impNr": 0 - strong, 1 - medium, 2 - none
  109. uint8_t ir_filter_onset; ///< flag for impulse response filter strength
  110. float postfilter_mem[10]; ///< previous intermediate values in the formant filter
  111. float tilt_mem; ///< previous input to tilt compensation filter
  112. float postfilter_agc; ///< previous factor used for adaptive gain control
  113. float high_pass_mem[2]; ///< previous intermediate values in the high-pass filter
  114. float samples_in[LP_FILTER_ORDER + AMR_SUBFRAME_SIZE]; ///< floating point samples
  115. ACELPFContext acelpf_ctx; ///< context for filters for ACELP-based codecs
  116. ACELPVContext acelpv_ctx; ///< context for vector operations for ACELP-based codecs
  117. CELPFContext celpf_ctx; ///< context for filters for CELP-based codecs
  118. CELPMContext celpm_ctx; ///< context for fixed point math operations
  119. } AMRContext;
  120. /** Double version of ff_weighted_vector_sumf() */
  121. static void weighted_vector_sumd(double *out, const double *in_a,
  122. const double *in_b, double weight_coeff_a,
  123. double weight_coeff_b, int length)
  124. {
  125. int i;
  126. for (i = 0; i < length; i++)
  127. out[i] = weight_coeff_a * in_a[i]
  128. + weight_coeff_b * in_b[i];
  129. }
  130. static av_cold int amrnb_decode_init(AVCodecContext *avctx)
  131. {
  132. AMRContext *p = avctx->priv_data;
  133. int i;
  134. if (avctx->channels > 1) {
  135. avpriv_report_missing_feature(avctx, "multi-channel AMR");
  136. return AVERROR_PATCHWELCOME;
  137. }
  138. avctx->channels = 1;
  139. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  140. if (!avctx->sample_rate)
  141. avctx->sample_rate = 8000;
  142. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  143. // p->excitation always points to the same position in p->excitation_buf
  144. p->excitation = &p->excitation_buf[PITCH_DELAY_MAX + LP_FILTER_ORDER + 1];
  145. for (i = 0; i < LP_FILTER_ORDER; i++) {
  146. p->prev_lsp_sub4[i] = lsp_sub4_init[i] * 1000 / (float)(1 << 15);
  147. p->lsf_avg[i] = p->lsf_q[3][i] = lsp_avg_init[i] / (float)(1 << 15);
  148. }
  149. for (i = 0; i < 4; i++)
  150. p->prediction_error[i] = MIN_ENERGY;
  151. ff_acelp_filter_init(&p->acelpf_ctx);
  152. ff_acelp_vectors_init(&p->acelpv_ctx);
  153. ff_celp_filter_init(&p->celpf_ctx);
  154. ff_celp_math_init(&p->celpm_ctx);
  155. return 0;
  156. }
  157. /**
  158. * Unpack an RFC4867 speech frame into the AMR frame mode and parameters.
  159. *
  160. * The order of speech bits is specified by 3GPP TS 26.101.
  161. *
  162. * @param p the context
  163. * @param buf pointer to the input buffer
  164. * @param buf_size size of the input buffer
  165. *
  166. * @return the frame mode
  167. */
  168. static enum Mode unpack_bitstream(AMRContext *p, const uint8_t *buf,
  169. int buf_size)
  170. {
  171. enum Mode mode;
  172. // Decode the first octet.
  173. mode = buf[0] >> 3 & 0x0F; // frame type
  174. p->bad_frame_indicator = (buf[0] & 0x4) != 0x4; // quality bit
  175. if (mode >= N_MODES || buf_size < frame_sizes_nb[mode] + 1) {
  176. return NO_DATA;
  177. }
  178. if (mode < MODE_DTX)
  179. ff_amr_bit_reorder((uint16_t *) &p->frame, sizeof(AMRNBFrame), buf + 1,
  180. amr_unpacking_bitmaps_per_mode[mode]);
  181. return mode;
  182. }
  183. /// @name AMR pitch LPC coefficient decoding functions
  184. /// @{
  185. /**
  186. * Interpolate the LSF vector (used for fixed gain smoothing).
  187. * The interpolation is done over all four subframes even in MODE_12k2.
  188. *
  189. * @param[in] ctx The Context
  190. * @param[in,out] lsf_q LSFs in [0,1] for each subframe
  191. * @param[in] lsf_new New LSFs in [0,1] for subframe 4
  192. */
  193. static void interpolate_lsf(ACELPVContext *ctx, float lsf_q[4][LP_FILTER_ORDER], float *lsf_new)
  194. {
  195. int i;
  196. for (i = 0; i < 4; i++)
  197. ctx->weighted_vector_sumf(lsf_q[i], lsf_q[3], lsf_new,
  198. 0.25 * (3 - i), 0.25 * (i + 1),
  199. LP_FILTER_ORDER);
  200. }
  201. /**
  202. * Decode a set of 5 split-matrix quantized lsf indexes into an lsp vector.
  203. *
  204. * @param p the context
  205. * @param lsp output LSP vector
  206. * @param lsf_no_r LSF vector without the residual vector added
  207. * @param lsf_quantizer pointers to LSF dictionary tables
  208. * @param quantizer_offset offset in tables
  209. * @param sign for the 3 dictionary table
  210. * @param update store data for computing the next frame's LSFs
  211. */
  212. static void lsf2lsp_for_mode12k2(AMRContext *p, double lsp[LP_FILTER_ORDER],
  213. const float lsf_no_r[LP_FILTER_ORDER],
  214. const int16_t *lsf_quantizer[5],
  215. const int quantizer_offset,
  216. const int sign, const int update)
  217. {
  218. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  219. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  220. int i;
  221. for (i = 0; i < LP_FILTER_ORDER >> 1; i++)
  222. memcpy(&lsf_r[i << 1], &lsf_quantizer[i][quantizer_offset],
  223. 2 * sizeof(*lsf_r));
  224. if (sign) {
  225. lsf_r[4] *= -1;
  226. lsf_r[5] *= -1;
  227. }
  228. if (update)
  229. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  230. for (i = 0; i < LP_FILTER_ORDER; i++)
  231. lsf_q[i] = lsf_r[i] * (LSF_R_FAC / 8000.0) + lsf_no_r[i] * (1.0 / 8000.0);
  232. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  233. if (update)
  234. interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  235. ff_acelp_lsf2lspd(lsp, lsf_q, LP_FILTER_ORDER);
  236. }
  237. /**
  238. * Decode a set of 5 split-matrix quantized lsf indexes into 2 lsp vectors.
  239. *
  240. * @param p pointer to the AMRContext
  241. */
  242. static void lsf2lsp_5(AMRContext *p)
  243. {
  244. const uint16_t *lsf_param = p->frame.lsf;
  245. float lsf_no_r[LP_FILTER_ORDER]; // LSFs without the residual vector
  246. const int16_t *lsf_quantizer[5];
  247. int i;
  248. lsf_quantizer[0] = lsf_5_1[lsf_param[0]];
  249. lsf_quantizer[1] = lsf_5_2[lsf_param[1]];
  250. lsf_quantizer[2] = lsf_5_3[lsf_param[2] >> 1];
  251. lsf_quantizer[3] = lsf_5_4[lsf_param[3]];
  252. lsf_quantizer[4] = lsf_5_5[lsf_param[4]];
  253. for (i = 0; i < LP_FILTER_ORDER; i++)
  254. lsf_no_r[i] = p->prev_lsf_r[i] * LSF_R_FAC * PRED_FAC_MODE_12k2 + lsf_5_mean[i];
  255. lsf2lsp_for_mode12k2(p, p->lsp[1], lsf_no_r, lsf_quantizer, 0, lsf_param[2] & 1, 0);
  256. lsf2lsp_for_mode12k2(p, p->lsp[3], lsf_no_r, lsf_quantizer, 2, lsf_param[2] & 1, 1);
  257. // interpolate LSP vectors at subframes 1 and 3
  258. weighted_vector_sumd(p->lsp[0], p->prev_lsp_sub4, p->lsp[1], 0.5, 0.5, LP_FILTER_ORDER);
  259. weighted_vector_sumd(p->lsp[2], p->lsp[1] , p->lsp[3], 0.5, 0.5, LP_FILTER_ORDER);
  260. }
  261. /**
  262. * Decode a set of 3 split-matrix quantized lsf indexes into an lsp vector.
  263. *
  264. * @param p pointer to the AMRContext
  265. */
  266. static void lsf2lsp_3(AMRContext *p)
  267. {
  268. const uint16_t *lsf_param = p->frame.lsf;
  269. int16_t lsf_r[LP_FILTER_ORDER]; // residual LSF vector
  270. float lsf_q[LP_FILTER_ORDER]; // quantified LSF vector
  271. const int16_t *lsf_quantizer;
  272. int i, j;
  273. lsf_quantizer = (p->cur_frame_mode == MODE_7k95 ? lsf_3_1_MODE_7k95 : lsf_3_1)[lsf_param[0]];
  274. memcpy(lsf_r, lsf_quantizer, 3 * sizeof(*lsf_r));
  275. lsf_quantizer = lsf_3_2[lsf_param[1] << (p->cur_frame_mode <= MODE_5k15)];
  276. memcpy(lsf_r + 3, lsf_quantizer, 3 * sizeof(*lsf_r));
  277. lsf_quantizer = (p->cur_frame_mode <= MODE_5k15 ? lsf_3_3_MODE_5k15 : lsf_3_3)[lsf_param[2]];
  278. memcpy(lsf_r + 6, lsf_quantizer, 4 * sizeof(*lsf_r));
  279. // calculate mean-removed LSF vector and add mean
  280. for (i = 0; i < LP_FILTER_ORDER; i++)
  281. lsf_q[i] = (lsf_r[i] + p->prev_lsf_r[i] * pred_fac[i]) * (LSF_R_FAC / 8000.0) + lsf_3_mean[i] * (1.0 / 8000.0);
  282. ff_set_min_dist_lsf(lsf_q, MIN_LSF_SPACING, LP_FILTER_ORDER);
  283. // store data for computing the next frame's LSFs
  284. interpolate_lsf(&p->acelpv_ctx, p->lsf_q, lsf_q);
  285. memcpy(p->prev_lsf_r, lsf_r, LP_FILTER_ORDER * sizeof(*lsf_r));
  286. ff_acelp_lsf2lspd(p->lsp[3], lsf_q, LP_FILTER_ORDER);
  287. // interpolate LSP vectors at subframes 1, 2 and 3
  288. for (i = 1; i <= 3; i++)
  289. for(j = 0; j < LP_FILTER_ORDER; j++)
  290. p->lsp[i-1][j] = p->prev_lsp_sub4[j] +
  291. (p->lsp[3][j] - p->prev_lsp_sub4[j]) * 0.25 * i;
  292. }
  293. /// @}
  294. /// @name AMR pitch vector decoding functions
  295. /// @{
  296. /**
  297. * Like ff_decode_pitch_lag(), but with 1/6 resolution
  298. */
  299. static void decode_pitch_lag_1_6(int *lag_int, int *lag_frac, int pitch_index,
  300. const int prev_lag_int, const int subframe)
  301. {
  302. if (subframe == 0 || subframe == 2) {
  303. if (pitch_index < 463) {
  304. *lag_int = (pitch_index + 107) * 10923 >> 16;
  305. *lag_frac = pitch_index - *lag_int * 6 + 105;
  306. } else {
  307. *lag_int = pitch_index - 368;
  308. *lag_frac = 0;
  309. }
  310. } else {
  311. *lag_int = ((pitch_index + 5) * 10923 >> 16) - 1;
  312. *lag_frac = pitch_index - *lag_int * 6 - 3;
  313. *lag_int += av_clip(prev_lag_int - 5, PITCH_LAG_MIN_MODE_12k2,
  314. PITCH_DELAY_MAX - 9);
  315. }
  316. }
  317. static void decode_pitch_vector(AMRContext *p,
  318. const AMRNBSubframe *amr_subframe,
  319. const int subframe)
  320. {
  321. int pitch_lag_int, pitch_lag_frac;
  322. enum Mode mode = p->cur_frame_mode;
  323. if (p->cur_frame_mode == MODE_12k2) {
  324. decode_pitch_lag_1_6(&pitch_lag_int, &pitch_lag_frac,
  325. amr_subframe->p_lag, p->pitch_lag_int,
  326. subframe);
  327. } else
  328. ff_decode_pitch_lag(&pitch_lag_int, &pitch_lag_frac,
  329. amr_subframe->p_lag,
  330. p->pitch_lag_int, subframe,
  331. mode != MODE_4k75 && mode != MODE_5k15,
  332. mode <= MODE_6k7 ? 4 : (mode == MODE_7k95 ? 5 : 6));
  333. p->pitch_lag_int = pitch_lag_int; // store previous lag in a uint8_t
  334. pitch_lag_frac <<= (p->cur_frame_mode != MODE_12k2);
  335. pitch_lag_int += pitch_lag_frac > 0;
  336. /* Calculate the pitch vector by interpolating the past excitation at the
  337. pitch lag using a b60 hamming windowed sinc function. */
  338. p->acelpf_ctx.acelp_interpolatef(p->excitation,
  339. p->excitation + 1 - pitch_lag_int,
  340. ff_b60_sinc, 6,
  341. pitch_lag_frac + 6 - 6*(pitch_lag_frac > 0),
  342. 10, AMR_SUBFRAME_SIZE);
  343. memcpy(p->pitch_vector, p->excitation, AMR_SUBFRAME_SIZE * sizeof(float));
  344. }
  345. /// @}
  346. /// @name AMR algebraic code book (fixed) vector decoding functions
  347. /// @{
  348. /**
  349. * Decode a 10-bit algebraic codebook index from a 10.2 kbit/s frame.
  350. */
  351. static void decode_10bit_pulse(int code, int pulse_position[8],
  352. int i1, int i2, int i3)
  353. {
  354. // coded using 7+3 bits with the 3 LSBs being, individually, the LSB of 1 of
  355. // the 3 pulses and the upper 7 bits being coded in base 5
  356. const uint8_t *positions = base_five_table[code >> 3];
  357. pulse_position[i1] = (positions[2] << 1) + ( code & 1);
  358. pulse_position[i2] = (positions[1] << 1) + ((code >> 1) & 1);
  359. pulse_position[i3] = (positions[0] << 1) + ((code >> 2) & 1);
  360. }
  361. /**
  362. * Decode the algebraic codebook index to pulse positions and signs and
  363. * construct the algebraic codebook vector for MODE_10k2.
  364. *
  365. * @param fixed_index positions of the eight pulses
  366. * @param fixed_sparse pointer to the algebraic codebook vector
  367. */
  368. static void decode_8_pulses_31bits(const int16_t *fixed_index,
  369. AMRFixed *fixed_sparse)
  370. {
  371. int pulse_position[8];
  372. int i, temp;
  373. decode_10bit_pulse(fixed_index[4], pulse_position, 0, 4, 1);
  374. decode_10bit_pulse(fixed_index[5], pulse_position, 2, 6, 5);
  375. // coded using 5+2 bits with the 2 LSBs being, individually, the LSB of 1 of
  376. // the 2 pulses and the upper 5 bits being coded in base 5
  377. temp = ((fixed_index[6] >> 2) * 25 + 12) >> 5;
  378. pulse_position[3] = temp % 5;
  379. pulse_position[7] = temp / 5;
  380. if (pulse_position[7] & 1)
  381. pulse_position[3] = 4 - pulse_position[3];
  382. pulse_position[3] = (pulse_position[3] << 1) + ( fixed_index[6] & 1);
  383. pulse_position[7] = (pulse_position[7] << 1) + ((fixed_index[6] >> 1) & 1);
  384. fixed_sparse->n = 8;
  385. for (i = 0; i < 4; i++) {
  386. const int pos1 = (pulse_position[i] << 2) + i;
  387. const int pos2 = (pulse_position[i + 4] << 2) + i;
  388. const float sign = fixed_index[i] ? -1.0 : 1.0;
  389. fixed_sparse->x[i ] = pos1;
  390. fixed_sparse->x[i + 4] = pos2;
  391. fixed_sparse->y[i ] = sign;
  392. fixed_sparse->y[i + 4] = pos2 < pos1 ? -sign : sign;
  393. }
  394. }
  395. /**
  396. * Decode the algebraic codebook index to pulse positions and signs,
  397. * then construct the algebraic codebook vector.
  398. *
  399. * nb of pulses | bits encoding pulses
  400. * For MODE_4k75 or MODE_5k15, 2 | 1-3, 4-6, 7
  401. * MODE_5k9, 2 | 1, 2-4, 5-6, 7-9
  402. * MODE_6k7, 3 | 1-3, 4, 5-7, 8, 9-11
  403. * MODE_7k4 or MODE_7k95, 4 | 1-3, 4-6, 7-9, 10, 11-13
  404. *
  405. * @param fixed_sparse pointer to the algebraic codebook vector
  406. * @param pulses algebraic codebook indexes
  407. * @param mode mode of the current frame
  408. * @param subframe current subframe number
  409. */
  410. static void decode_fixed_sparse(AMRFixed *fixed_sparse, const uint16_t *pulses,
  411. const enum Mode mode, const int subframe)
  412. {
  413. av_assert1(MODE_4k75 <= (signed)mode && mode <= MODE_12k2);
  414. if (mode == MODE_12k2) {
  415. ff_decode_10_pulses_35bits(pulses, fixed_sparse, gray_decode, 5, 3);
  416. } else if (mode == MODE_10k2) {
  417. decode_8_pulses_31bits(pulses, fixed_sparse);
  418. } else {
  419. int *pulse_position = fixed_sparse->x;
  420. int i, pulse_subset;
  421. const int fixed_index = pulses[0];
  422. if (mode <= MODE_5k15) {
  423. pulse_subset = ((fixed_index >> 3) & 8) + (subframe << 1);
  424. pulse_position[0] = ( fixed_index & 7) * 5 + track_position[pulse_subset];
  425. pulse_position[1] = ((fixed_index >> 3) & 7) * 5 + track_position[pulse_subset + 1];
  426. fixed_sparse->n = 2;
  427. } else if (mode == MODE_5k9) {
  428. pulse_subset = ((fixed_index & 1) << 1) + 1;
  429. pulse_position[0] = ((fixed_index >> 1) & 7) * 5 + pulse_subset;
  430. pulse_subset = (fixed_index >> 4) & 3;
  431. pulse_position[1] = ((fixed_index >> 6) & 7) * 5 + pulse_subset + (pulse_subset == 3 ? 1 : 0);
  432. fixed_sparse->n = pulse_position[0] == pulse_position[1] ? 1 : 2;
  433. } else if (mode == MODE_6k7) {
  434. pulse_position[0] = (fixed_index & 7) * 5;
  435. pulse_subset = (fixed_index >> 2) & 2;
  436. pulse_position[1] = ((fixed_index >> 4) & 7) * 5 + pulse_subset + 1;
  437. pulse_subset = (fixed_index >> 6) & 2;
  438. pulse_position[2] = ((fixed_index >> 8) & 7) * 5 + pulse_subset + 2;
  439. fixed_sparse->n = 3;
  440. } else { // mode <= MODE_7k95
  441. pulse_position[0] = gray_decode[ fixed_index & 7];
  442. pulse_position[1] = gray_decode[(fixed_index >> 3) & 7] + 1;
  443. pulse_position[2] = gray_decode[(fixed_index >> 6) & 7] + 2;
  444. pulse_subset = (fixed_index >> 9) & 1;
  445. pulse_position[3] = gray_decode[(fixed_index >> 10) & 7] + pulse_subset + 3;
  446. fixed_sparse->n = 4;
  447. }
  448. for (i = 0; i < fixed_sparse->n; i++)
  449. fixed_sparse->y[i] = (pulses[1] >> i) & 1 ? 1.0 : -1.0;
  450. }
  451. }
  452. /**
  453. * Apply pitch lag to obtain the sharpened fixed vector (section 6.1.2)
  454. *
  455. * @param p the context
  456. * @param subframe unpacked amr subframe
  457. * @param mode mode of the current frame
  458. * @param fixed_sparse sparse respresentation of the fixed vector
  459. */
  460. static void pitch_sharpening(AMRContext *p, int subframe, enum Mode mode,
  461. AMRFixed *fixed_sparse)
  462. {
  463. // The spec suggests the current pitch gain is always used, but in other
  464. // modes the pitch and codebook gains are joinly quantized (sec 5.8.2)
  465. // so the codebook gain cannot depend on the quantized pitch gain.
  466. if (mode == MODE_12k2)
  467. p->beta = FFMIN(p->pitch_gain[4], 1.0);
  468. fixed_sparse->pitch_lag = p->pitch_lag_int;
  469. fixed_sparse->pitch_fac = p->beta;
  470. // Save pitch sharpening factor for the next subframe
  471. // MODE_4k75 only updates on the 2nd and 4th subframes - this follows from
  472. // the fact that the gains for two subframes are jointly quantized.
  473. if (mode != MODE_4k75 || subframe & 1)
  474. p->beta = av_clipf(p->pitch_gain[4], 0.0, SHARP_MAX);
  475. }
  476. /// @}
  477. /// @name AMR gain decoding functions
  478. /// @{
  479. /**
  480. * fixed gain smoothing
  481. * Note that where the spec specifies the "spectrum in the q domain"
  482. * in section 6.1.4, in fact frequencies should be used.
  483. *
  484. * @param p the context
  485. * @param lsf LSFs for the current subframe, in the range [0,1]
  486. * @param lsf_avg averaged LSFs
  487. * @param mode mode of the current frame
  488. *
  489. * @return fixed gain smoothed
  490. */
  491. static float fixed_gain_smooth(AMRContext *p , const float *lsf,
  492. const float *lsf_avg, const enum Mode mode)
  493. {
  494. float diff = 0.0;
  495. int i;
  496. for (i = 0; i < LP_FILTER_ORDER; i++)
  497. diff += fabs(lsf_avg[i] - lsf[i]) / lsf_avg[i];
  498. // If diff is large for ten subframes, disable smoothing for a 40-subframe
  499. // hangover period.
  500. p->diff_count++;
  501. if (diff <= 0.65)
  502. p->diff_count = 0;
  503. if (p->diff_count > 10) {
  504. p->hang_count = 0;
  505. p->diff_count--; // don't let diff_count overflow
  506. }
  507. if (p->hang_count < 40) {
  508. p->hang_count++;
  509. } else if (mode < MODE_7k4 || mode == MODE_10k2) {
  510. const float smoothing_factor = av_clipf(4.0 * diff - 1.6, 0.0, 1.0);
  511. const float fixed_gain_mean = (p->fixed_gain[0] + p->fixed_gain[1] +
  512. p->fixed_gain[2] + p->fixed_gain[3] +
  513. p->fixed_gain[4]) * 0.2;
  514. return smoothing_factor * p->fixed_gain[4] +
  515. (1.0 - smoothing_factor) * fixed_gain_mean;
  516. }
  517. return p->fixed_gain[4];
  518. }
  519. /**
  520. * Decode pitch gain and fixed gain factor (part of section 6.1.3).
  521. *
  522. * @param p the context
  523. * @param amr_subframe unpacked amr subframe
  524. * @param mode mode of the current frame
  525. * @param subframe current subframe number
  526. * @param fixed_gain_factor decoded gain correction factor
  527. */
  528. static void decode_gains(AMRContext *p, const AMRNBSubframe *amr_subframe,
  529. const enum Mode mode, const int subframe,
  530. float *fixed_gain_factor)
  531. {
  532. if (mode == MODE_12k2 || mode == MODE_7k95) {
  533. p->pitch_gain[4] = qua_gain_pit [amr_subframe->p_gain ]
  534. * (1.0 / 16384.0);
  535. *fixed_gain_factor = qua_gain_code[amr_subframe->fixed_gain]
  536. * (1.0 / 2048.0);
  537. } else {
  538. const uint16_t *gains;
  539. if (mode >= MODE_6k7) {
  540. gains = gains_high[amr_subframe->p_gain];
  541. } else if (mode >= MODE_5k15) {
  542. gains = gains_low [amr_subframe->p_gain];
  543. } else {
  544. // gain index is only coded in subframes 0,2 for MODE_4k75
  545. gains = gains_MODE_4k75[(p->frame.subframe[subframe & 2].p_gain << 1) + (subframe & 1)];
  546. }
  547. p->pitch_gain[4] = gains[0] * (1.0 / 16384.0);
  548. *fixed_gain_factor = gains[1] * (1.0 / 4096.0);
  549. }
  550. }
  551. /// @}
  552. /// @name AMR preprocessing functions
  553. /// @{
  554. /**
  555. * Circularly convolve a sparse fixed vector with a phase dispersion impulse
  556. * response filter (D.6.2 of G.729 and 6.1.5 of AMR).
  557. *
  558. * @param out vector with filter applied
  559. * @param in source vector
  560. * @param filter phase filter coefficients
  561. *
  562. * out[n] = sum(i,0,len-1){ in[i] * filter[(len + n - i)%len] }
  563. */
  564. static void apply_ir_filter(float *out, const AMRFixed *in,
  565. const float *filter)
  566. {
  567. float filter1[AMR_SUBFRAME_SIZE], ///< filters at pitch lag*1 and *2
  568. filter2[AMR_SUBFRAME_SIZE];
  569. int lag = in->pitch_lag;
  570. float fac = in->pitch_fac;
  571. int i;
  572. if (lag < AMR_SUBFRAME_SIZE) {
  573. ff_celp_circ_addf(filter1, filter, filter, lag, fac,
  574. AMR_SUBFRAME_SIZE);
  575. if (lag < AMR_SUBFRAME_SIZE >> 1)
  576. ff_celp_circ_addf(filter2, filter, filter1, lag, fac,
  577. AMR_SUBFRAME_SIZE);
  578. }
  579. memset(out, 0, sizeof(float) * AMR_SUBFRAME_SIZE);
  580. for (i = 0; i < in->n; i++) {
  581. int x = in->x[i];
  582. float y = in->y[i];
  583. const float *filterp;
  584. if (x >= AMR_SUBFRAME_SIZE - lag) {
  585. filterp = filter;
  586. } else if (x >= AMR_SUBFRAME_SIZE - (lag << 1)) {
  587. filterp = filter1;
  588. } else
  589. filterp = filter2;
  590. ff_celp_circ_addf(out, out, filterp, x, y, AMR_SUBFRAME_SIZE);
  591. }
  592. }
  593. /**
  594. * Reduce fixed vector sparseness by smoothing with one of three IR filters.
  595. * Also know as "adaptive phase dispersion".
  596. *
  597. * This implements 3GPP TS 26.090 section 6.1(5).
  598. *
  599. * @param p the context
  600. * @param fixed_sparse algebraic codebook vector
  601. * @param fixed_vector unfiltered fixed vector
  602. * @param fixed_gain smoothed gain
  603. * @param out space for modified vector if necessary
  604. */
  605. static const float *anti_sparseness(AMRContext *p, AMRFixed *fixed_sparse,
  606. const float *fixed_vector,
  607. float fixed_gain, float *out)
  608. {
  609. int ir_filter_nr;
  610. if (p->pitch_gain[4] < 0.6) {
  611. ir_filter_nr = 0; // strong filtering
  612. } else if (p->pitch_gain[4] < 0.9) {
  613. ir_filter_nr = 1; // medium filtering
  614. } else
  615. ir_filter_nr = 2; // no filtering
  616. // detect 'onset'
  617. if (fixed_gain > 2.0 * p->prev_sparse_fixed_gain) {
  618. p->ir_filter_onset = 2;
  619. } else if (p->ir_filter_onset)
  620. p->ir_filter_onset--;
  621. if (!p->ir_filter_onset) {
  622. int i, count = 0;
  623. for (i = 0; i < 5; i++)
  624. if (p->pitch_gain[i] < 0.6)
  625. count++;
  626. if (count > 2)
  627. ir_filter_nr = 0;
  628. if (ir_filter_nr > p->prev_ir_filter_nr + 1)
  629. ir_filter_nr--;
  630. } else if (ir_filter_nr < 2)
  631. ir_filter_nr++;
  632. // Disable filtering for very low level of fixed_gain.
  633. // Note this step is not specified in the technical description but is in
  634. // the reference source in the function Ph_disp.
  635. if (fixed_gain < 5.0)
  636. ir_filter_nr = 2;
  637. if (p->cur_frame_mode != MODE_7k4 && p->cur_frame_mode < MODE_10k2
  638. && ir_filter_nr < 2) {
  639. apply_ir_filter(out, fixed_sparse,
  640. (p->cur_frame_mode == MODE_7k95 ?
  641. ir_filters_lookup_MODE_7k95 :
  642. ir_filters_lookup)[ir_filter_nr]);
  643. fixed_vector = out;
  644. }
  645. // update ir filter strength history
  646. p->prev_ir_filter_nr = ir_filter_nr;
  647. p->prev_sparse_fixed_gain = fixed_gain;
  648. return fixed_vector;
  649. }
  650. /// @}
  651. /// @name AMR synthesis functions
  652. /// @{
  653. /**
  654. * Conduct 10th order linear predictive coding synthesis.
  655. *
  656. * @param p pointer to the AMRContext
  657. * @param lpc pointer to the LPC coefficients
  658. * @param fixed_gain fixed codebook gain for synthesis
  659. * @param fixed_vector algebraic codebook vector
  660. * @param samples pointer to the output speech samples
  661. * @param overflow 16-bit overflow flag
  662. */
  663. static int synthesis(AMRContext *p, float *lpc,
  664. float fixed_gain, const float *fixed_vector,
  665. float *samples, uint8_t overflow)
  666. {
  667. int i;
  668. float excitation[AMR_SUBFRAME_SIZE];
  669. // if an overflow has been detected, the pitch vector is scaled down by a
  670. // factor of 4
  671. if (overflow)
  672. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  673. p->pitch_vector[i] *= 0.25;
  674. p->acelpv_ctx.weighted_vector_sumf(excitation, p->pitch_vector, fixed_vector,
  675. p->pitch_gain[4], fixed_gain, AMR_SUBFRAME_SIZE);
  676. // emphasize pitch vector contribution
  677. if (p->pitch_gain[4] > 0.5 && !overflow) {
  678. float energy = p->celpm_ctx.dot_productf(excitation, excitation,
  679. AMR_SUBFRAME_SIZE);
  680. float pitch_factor =
  681. p->pitch_gain[4] *
  682. (p->cur_frame_mode == MODE_12k2 ?
  683. 0.25 * FFMIN(p->pitch_gain[4], 1.0) :
  684. 0.5 * FFMIN(p->pitch_gain[4], SHARP_MAX));
  685. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  686. excitation[i] += pitch_factor * p->pitch_vector[i];
  687. ff_scale_vector_to_given_sum_of_squares(excitation, excitation, energy,
  688. AMR_SUBFRAME_SIZE);
  689. }
  690. p->celpf_ctx.celp_lp_synthesis_filterf(samples, lpc, excitation,
  691. AMR_SUBFRAME_SIZE,
  692. LP_FILTER_ORDER);
  693. // detect overflow
  694. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  695. if (fabsf(samples[i]) > AMR_SAMPLE_BOUND) {
  696. return 1;
  697. }
  698. return 0;
  699. }
  700. /// @}
  701. /// @name AMR update functions
  702. /// @{
  703. /**
  704. * Update buffers and history at the end of decoding a subframe.
  705. *
  706. * @param p pointer to the AMRContext
  707. */
  708. static void update_state(AMRContext *p)
  709. {
  710. memcpy(p->prev_lsp_sub4, p->lsp[3], LP_FILTER_ORDER * sizeof(p->lsp[3][0]));
  711. memmove(&p->excitation_buf[0], &p->excitation_buf[AMR_SUBFRAME_SIZE],
  712. (PITCH_DELAY_MAX + LP_FILTER_ORDER + 1) * sizeof(float));
  713. memmove(&p->pitch_gain[0], &p->pitch_gain[1], 4 * sizeof(float));
  714. memmove(&p->fixed_gain[0], &p->fixed_gain[1], 4 * sizeof(float));
  715. memmove(&p->samples_in[0], &p->samples_in[AMR_SUBFRAME_SIZE],
  716. LP_FILTER_ORDER * sizeof(float));
  717. }
  718. /// @}
  719. /// @name AMR Postprocessing functions
  720. /// @{
  721. /**
  722. * Get the tilt factor of a formant filter from its transfer function
  723. *
  724. * @param p The Context
  725. * @param lpc_n LP_FILTER_ORDER coefficients of the numerator
  726. * @param lpc_d LP_FILTER_ORDER coefficients of the denominator
  727. */
  728. static float tilt_factor(AMRContext *p, float *lpc_n, float *lpc_d)
  729. {
  730. float rh0, rh1; // autocorrelation at lag 0 and 1
  731. // LP_FILTER_ORDER prior zeros are needed for ff_celp_lp_synthesis_filterf
  732. float impulse_buffer[LP_FILTER_ORDER + AMR_TILT_RESPONSE] = { 0 };
  733. float *hf = impulse_buffer + LP_FILTER_ORDER; // start of impulse response
  734. hf[0] = 1.0;
  735. memcpy(hf + 1, lpc_n, sizeof(float) * LP_FILTER_ORDER);
  736. p->celpf_ctx.celp_lp_synthesis_filterf(hf, lpc_d, hf,
  737. AMR_TILT_RESPONSE,
  738. LP_FILTER_ORDER);
  739. rh0 = p->celpm_ctx.dot_productf(hf, hf, AMR_TILT_RESPONSE);
  740. rh1 = p->celpm_ctx.dot_productf(hf, hf + 1, AMR_TILT_RESPONSE - 1);
  741. // The spec only specifies this check for 12.2 and 10.2 kbit/s
  742. // modes. But in the ref source the tilt is always non-negative.
  743. return rh1 >= 0.0 ? rh1 / rh0 * AMR_TILT_GAMMA_T : 0.0;
  744. }
  745. /**
  746. * Perform adaptive post-filtering to enhance the quality of the speech.
  747. * See section 6.2.1.
  748. *
  749. * @param p pointer to the AMRContext
  750. * @param lpc interpolated LP coefficients for this subframe
  751. * @param buf_out output of the filter
  752. */
  753. static void postfilter(AMRContext *p, float *lpc, float *buf_out)
  754. {
  755. int i;
  756. float *samples = p->samples_in + LP_FILTER_ORDER; // Start of input
  757. float speech_gain = p->celpm_ctx.dot_productf(samples, samples,
  758. AMR_SUBFRAME_SIZE);
  759. float pole_out[AMR_SUBFRAME_SIZE + LP_FILTER_ORDER]; // Output of pole filter
  760. const float *gamma_n, *gamma_d; // Formant filter factor table
  761. float lpc_n[LP_FILTER_ORDER], lpc_d[LP_FILTER_ORDER]; // Transfer function coefficients
  762. if (p->cur_frame_mode == MODE_12k2 || p->cur_frame_mode == MODE_10k2) {
  763. gamma_n = ff_pow_0_7;
  764. gamma_d = ff_pow_0_75;
  765. } else {
  766. gamma_n = ff_pow_0_55;
  767. gamma_d = ff_pow_0_7;
  768. }
  769. for (i = 0; i < LP_FILTER_ORDER; i++) {
  770. lpc_n[i] = lpc[i] * gamma_n[i];
  771. lpc_d[i] = lpc[i] * gamma_d[i];
  772. }
  773. memcpy(pole_out, p->postfilter_mem, sizeof(float) * LP_FILTER_ORDER);
  774. p->celpf_ctx.celp_lp_synthesis_filterf(pole_out + LP_FILTER_ORDER, lpc_d, samples,
  775. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  776. memcpy(p->postfilter_mem, pole_out + AMR_SUBFRAME_SIZE,
  777. sizeof(float) * LP_FILTER_ORDER);
  778. p->celpf_ctx.celp_lp_zero_synthesis_filterf(buf_out, lpc_n,
  779. pole_out + LP_FILTER_ORDER,
  780. AMR_SUBFRAME_SIZE, LP_FILTER_ORDER);
  781. ff_tilt_compensation(&p->tilt_mem, tilt_factor(p, lpc_n, lpc_d), buf_out,
  782. AMR_SUBFRAME_SIZE);
  783. ff_adaptive_gain_control(buf_out, buf_out, speech_gain, AMR_SUBFRAME_SIZE,
  784. AMR_AGC_ALPHA, &p->postfilter_agc);
  785. }
  786. /// @}
  787. static int amrnb_decode_frame(AVCodecContext *avctx, void *data,
  788. int *got_frame_ptr, AVPacket *avpkt)
  789. {
  790. AMRContext *p = avctx->priv_data; // pointer to private data
  791. AVFrame *frame = data;
  792. const uint8_t *buf = avpkt->data;
  793. int buf_size = avpkt->size;
  794. float *buf_out; // pointer to the output data buffer
  795. int i, subframe, ret;
  796. float fixed_gain_factor;
  797. AMRFixed fixed_sparse = {0}; // fixed vector up to anti-sparseness processing
  798. float spare_vector[AMR_SUBFRAME_SIZE]; // extra stack space to hold result from anti-sparseness processing
  799. float synth_fixed_gain; // the fixed gain that synthesis should use
  800. const float *synth_fixed_vector; // pointer to the fixed vector that synthesis should use
  801. /* get output buffer */
  802. frame->nb_samples = AMR_BLOCK_SIZE;
  803. if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
  804. return ret;
  805. buf_out = (float *)frame->data[0];
  806. p->cur_frame_mode = unpack_bitstream(p, buf, buf_size);
  807. if (p->cur_frame_mode == NO_DATA) {
  808. av_log(avctx, AV_LOG_ERROR, "Corrupt bitstream\n");
  809. return AVERROR_INVALIDDATA;
  810. }
  811. if (p->cur_frame_mode == MODE_DTX) {
  812. av_log_missing_feature(avctx, "dtx mode", 0);
  813. av_log(avctx, AV_LOG_INFO, "Note: libopencore_amrnb supports dtx\n");
  814. return AVERROR_PATCHWELCOME;
  815. }
  816. if (p->cur_frame_mode == MODE_12k2) {
  817. lsf2lsp_5(p);
  818. } else
  819. lsf2lsp_3(p);
  820. for (i = 0; i < 4; i++)
  821. ff_acelp_lspd2lpc(p->lsp[i], p->lpc[i], 5);
  822. for (subframe = 0; subframe < 4; subframe++) {
  823. const AMRNBSubframe *amr_subframe = &p->frame.subframe[subframe];
  824. decode_pitch_vector(p, amr_subframe, subframe);
  825. decode_fixed_sparse(&fixed_sparse, amr_subframe->pulses,
  826. p->cur_frame_mode, subframe);
  827. // The fixed gain (section 6.1.3) depends on the fixed vector
  828. // (section 6.1.2), but the fixed vector calculation uses
  829. // pitch sharpening based on the on the pitch gain (section 6.1.3).
  830. // So the correct order is: pitch gain, pitch sharpening, fixed gain.
  831. decode_gains(p, amr_subframe, p->cur_frame_mode, subframe,
  832. &fixed_gain_factor);
  833. pitch_sharpening(p, subframe, p->cur_frame_mode, &fixed_sparse);
  834. if (fixed_sparse.pitch_lag == 0) {
  835. av_log(avctx, AV_LOG_ERROR, "The file is corrupted, pitch_lag = 0 is not allowed\n");
  836. return AVERROR_INVALIDDATA;
  837. }
  838. ff_set_fixed_vector(p->fixed_vector, &fixed_sparse, 1.0,
  839. AMR_SUBFRAME_SIZE);
  840. p->fixed_gain[4] =
  841. ff_amr_set_fixed_gain(fixed_gain_factor,
  842. p->celpm_ctx.dot_productf(p->fixed_vector,
  843. p->fixed_vector,
  844. AMR_SUBFRAME_SIZE) /
  845. AMR_SUBFRAME_SIZE,
  846. p->prediction_error,
  847. energy_mean[p->cur_frame_mode], energy_pred_fac);
  848. // The excitation feedback is calculated without any processing such
  849. // as fixed gain smoothing. This isn't mentioned in the specification.
  850. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  851. p->excitation[i] *= p->pitch_gain[4];
  852. ff_set_fixed_vector(p->excitation, &fixed_sparse, p->fixed_gain[4],
  853. AMR_SUBFRAME_SIZE);
  854. // In the ref decoder, excitation is stored with no fractional bits.
  855. // This step prevents buzz in silent periods. The ref encoder can
  856. // emit long sequences with pitch factor greater than one. This
  857. // creates unwanted feedback if the excitation vector is nonzero.
  858. // (e.g. test sequence T19_795.COD in 3GPP TS 26.074)
  859. for (i = 0; i < AMR_SUBFRAME_SIZE; i++)
  860. p->excitation[i] = truncf(p->excitation[i]);
  861. // Smooth fixed gain.
  862. // The specification is ambiguous, but in the reference source, the
  863. // smoothed value is NOT fed back into later fixed gain smoothing.
  864. synth_fixed_gain = fixed_gain_smooth(p, p->lsf_q[subframe],
  865. p->lsf_avg, p->cur_frame_mode);
  866. synth_fixed_vector = anti_sparseness(p, &fixed_sparse, p->fixed_vector,
  867. synth_fixed_gain, spare_vector);
  868. if (synthesis(p, p->lpc[subframe], synth_fixed_gain,
  869. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 0))
  870. // overflow detected -> rerun synthesis scaling pitch vector down
  871. // by a factor of 4, skipping pitch vector contribution emphasis
  872. // and adaptive gain control
  873. synthesis(p, p->lpc[subframe], synth_fixed_gain,
  874. synth_fixed_vector, &p->samples_in[LP_FILTER_ORDER], 1);
  875. postfilter(p, p->lpc[subframe], buf_out + subframe * AMR_SUBFRAME_SIZE);
  876. // update buffers and history
  877. ff_clear_fixed_vector(p->fixed_vector, &fixed_sparse, AMR_SUBFRAME_SIZE);
  878. update_state(p);
  879. }
  880. p->acelpf_ctx.acelp_apply_order_2_transfer_function(buf_out,
  881. buf_out, highpass_zeros,
  882. highpass_poles,
  883. highpass_gain * AMR_SAMPLE_SCALE,
  884. p->high_pass_mem, AMR_BLOCK_SIZE);
  885. /* Update averaged lsf vector (used for fixed gain smoothing).
  886. *
  887. * Note that lsf_avg should not incorporate the current frame's LSFs
  888. * for fixed_gain_smooth.
  889. * The specification has an incorrect formula: the reference decoder uses
  890. * qbar(n-1) rather than qbar(n) in section 6.1(4) equation 71. */
  891. p->acelpv_ctx.weighted_vector_sumf(p->lsf_avg, p->lsf_avg, p->lsf_q[3],
  892. 0.84, 0.16, LP_FILTER_ORDER);
  893. *got_frame_ptr = 1;
  894. /* return the amount of bytes consumed if everything was OK */
  895. return frame_sizes_nb[p->cur_frame_mode] + 1; // +7 for rounding and +8 for TOC
  896. }
  897. AVCodec ff_amrnb_decoder = {
  898. .name = "amrnb",
  899. .type = AVMEDIA_TYPE_AUDIO,
  900. .id = AV_CODEC_ID_AMR_NB,
  901. .priv_data_size = sizeof(AMRContext),
  902. .init = amrnb_decode_init,
  903. .decode = amrnb_decode_frame,
  904. .capabilities = CODEC_CAP_DR1,
  905. .long_name = NULL_IF_CONFIG_SMALL("AMR-NB (Adaptive Multi-Rate NarrowBand)"),
  906. .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_FLT,
  907. AV_SAMPLE_FMT_NONE },
  908. };