You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

497 lines
16KB

  1. /*
  2. * Apple Intermediate Codec decoder
  3. *
  4. * Copyright (c) 2013 Konstantin Shishkov
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include <inttypes.h>
  23. #include "avcodec.h"
  24. #include "bytestream.h"
  25. #include "internal.h"
  26. #include "get_bits.h"
  27. #include "golomb.h"
  28. #include "idctdsp.h"
  29. #include "thread.h"
  30. #include "unary.h"
  31. #define AIC_HDR_SIZE 24
  32. #define AIC_BAND_COEFFS (64 + 32 + 192 + 96)
  33. enum AICBands {
  34. COEFF_LUMA = 0,
  35. COEFF_CHROMA,
  36. COEFF_LUMA_EXT,
  37. COEFF_CHROMA_EXT,
  38. NUM_BANDS
  39. };
  40. static const int aic_num_band_coeffs[NUM_BANDS] = { 64, 32, 192, 96 };
  41. static const int aic_band_off[NUM_BANDS] = { 0, 64, 96, 288 };
  42. static const uint8_t aic_quant_matrix[64] = {
  43. 8, 16, 19, 22, 22, 26, 26, 27,
  44. 16, 16, 22, 22, 26, 27, 27, 29,
  45. 19, 22, 26, 26, 27, 29, 29, 35,
  46. 22, 24, 27, 27, 29, 32, 34, 38,
  47. 26, 27, 29, 29, 32, 35, 38, 46,
  48. 27, 29, 34, 34, 35, 40, 46, 56,
  49. 29, 34, 34, 37, 40, 48, 56, 69,
  50. 34, 37, 38, 40, 48, 58, 69, 83,
  51. };
  52. static const uint8_t aic_y_scan[64] = {
  53. 0, 4, 1, 2, 5, 8, 12, 9,
  54. 6, 3, 7, 10, 13, 14, 11, 15,
  55. 47, 43, 46, 45, 42, 39, 35, 38,
  56. 41, 44, 40, 37, 34, 33, 36, 32,
  57. 16, 20, 17, 18, 21, 24, 28, 25,
  58. 22, 19, 23, 26, 29, 30, 27, 31,
  59. 63, 59, 62, 61, 58, 55, 51, 54,
  60. 57, 60, 56, 53, 50, 49, 52, 48,
  61. };
  62. static const uint8_t aic_y_ext_scan[192] = {
  63. 64, 72, 65, 66, 73, 80, 88, 81,
  64. 74, 67, 75, 82, 89, 90, 83, 91,
  65. 0, 4, 1, 2, 5, 8, 12, 9,
  66. 6, 3, 7, 10, 13, 14, 11, 15,
  67. 16, 20, 17, 18, 21, 24, 28, 25,
  68. 22, 19, 23, 26, 29, 30, 27, 31,
  69. 155, 147, 154, 153, 146, 139, 131, 138,
  70. 145, 152, 144, 137, 130, 129, 136, 128,
  71. 47, 43, 46, 45, 42, 39, 35, 38,
  72. 41, 44, 40, 37, 34, 33, 36, 32,
  73. 63, 59, 62, 61, 58, 55, 51, 54,
  74. 57, 60, 56, 53, 50, 49, 52, 48,
  75. 96, 104, 97, 98, 105, 112, 120, 113,
  76. 106, 99, 107, 114, 121, 122, 115, 123,
  77. 68, 76, 69, 70, 77, 84, 92, 85,
  78. 78, 71, 79, 86, 93, 94, 87, 95,
  79. 100, 108, 101, 102, 109, 116, 124, 117,
  80. 110, 103, 111, 118, 125, 126, 119, 127,
  81. 187, 179, 186, 185, 178, 171, 163, 170,
  82. 177, 184, 176, 169, 162, 161, 168, 160,
  83. 159, 151, 158, 157, 150, 143, 135, 142,
  84. 149, 156, 148, 141, 134, 133, 140, 132,
  85. 191, 183, 190, 189, 182, 175, 167, 174,
  86. 181, 188, 180, 173, 166, 165, 172, 164,
  87. };
  88. static const uint8_t aic_c_scan[64] = {
  89. 0, 4, 1, 2, 5, 8, 12, 9,
  90. 6, 3, 7, 10, 13, 14, 11, 15,
  91. 31, 27, 30, 29, 26, 23, 19, 22,
  92. 25, 28, 24, 21, 18, 17, 20, 16,
  93. 32, 36, 33, 34, 37, 40, 44, 41,
  94. 38, 35, 39, 42, 45, 46, 43, 47,
  95. 63, 59, 62, 61, 58, 55, 51, 54,
  96. 57, 60, 56, 53, 50, 49, 52, 48,
  97. };
  98. static const uint8_t aic_c_ext_scan[192] = {
  99. 16, 24, 17, 18, 25, 32, 40, 33,
  100. 26, 19, 27, 34, 41, 42, 35, 43,
  101. 0, 4, 1, 2, 5, 8, 12, 9,
  102. 6, 3, 7, 10, 13, 14, 11, 15,
  103. 20, 28, 21, 22, 29, 36, 44, 37,
  104. 30, 23, 31, 38, 45, 46, 39, 47,
  105. 95, 87, 94, 93, 86, 79, 71, 78,
  106. 85, 92, 84, 77, 70, 69, 76, 68,
  107. 63, 59, 62, 61, 58, 55, 51, 54,
  108. 57, 60, 56, 53, 50, 49, 52, 48,
  109. 91, 83, 90, 89, 82, 75, 67, 74,
  110. 81, 88, 80, 73, 66, 65, 72, 64,
  111. 112, 120, 113, 114, 121, 128, 136, 129,
  112. 122, 115, 123, 130, 137, 138, 131, 139,
  113. 96, 100, 97, 98, 101, 104, 108, 105,
  114. 102, 99, 103, 106, 109, 110, 107, 111,
  115. 116, 124, 117, 118, 125, 132, 140, 133,
  116. 126, 119, 127, 134, 141, 142, 135, 143,
  117. 191, 183, 190, 189, 182, 175, 167, 174,
  118. 181, 188, 180, 173, 166, 165, 172, 164,
  119. 159, 155, 158, 157, 154, 151, 147, 150,
  120. 153, 156, 152, 149, 146, 145, 148, 144,
  121. 187, 179, 186, 185, 178, 171, 163, 170,
  122. 177, 184, 176, 169, 162, 161, 168, 160,
  123. };
  124. static const uint8_t * const aic_scan[NUM_BANDS] = {
  125. aic_y_scan, aic_c_scan, aic_y_ext_scan, aic_c_ext_scan
  126. };
  127. typedef struct AICContext {
  128. AVCodecContext *avctx;
  129. AVFrame *frame;
  130. IDCTDSPContext idsp;
  131. ScanTable scantable;
  132. int num_x_slices;
  133. int slice_width;
  134. int mb_width, mb_height;
  135. int quant;
  136. int interlaced;
  137. int16_t *slice_data;
  138. int16_t *data_ptr[NUM_BANDS];
  139. DECLARE_ALIGNED(16, int16_t, block)[64];
  140. DECLARE_ALIGNED(16, uint8_t, quant_matrix)[64];
  141. } AICContext;
  142. static int aic_decode_header(AICContext *ctx, const uint8_t *src, int size)
  143. {
  144. uint32_t frame_size;
  145. int width, height;
  146. if (src[0] != 1) {
  147. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid version %d\n", src[0]);
  148. return AVERROR_INVALIDDATA;
  149. }
  150. if (src[1] != AIC_HDR_SIZE - 2) {
  151. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid header size %d\n", src[1]);
  152. return AVERROR_INVALIDDATA;
  153. }
  154. frame_size = AV_RB32(src + 2);
  155. width = AV_RB16(src + 6);
  156. height = AV_RB16(src + 8);
  157. if (frame_size > size) {
  158. av_log(ctx->avctx, AV_LOG_ERROR, "Frame size should be %"PRIu32" got %d\n",
  159. frame_size, size);
  160. return AVERROR_INVALIDDATA;
  161. }
  162. if (width != ctx->avctx->width || height != ctx->avctx->height) {
  163. av_log(ctx->avctx, AV_LOG_ERROR,
  164. "Picture dimension changed: old: %d x %d, new: %d x %d\n",
  165. ctx->avctx->width, ctx->avctx->height, width, height);
  166. return AVERROR_INVALIDDATA;
  167. }
  168. ctx->quant = src[15];
  169. ctx->interlaced = ((src[16] >> 4) == 3);
  170. return 0;
  171. }
  172. #define GET_CODE(val, type, add_bits) \
  173. do { \
  174. if (type) \
  175. val = get_ue_golomb(gb); \
  176. else \
  177. val = get_unary(gb, 1, 31); \
  178. if (add_bits) \
  179. val = (val << add_bits) + get_bits(gb, add_bits); \
  180. } while (0)
  181. static int aic_decode_coeffs(GetBitContext *gb, int16_t *dst,
  182. int band, int slice_width, int force_chroma)
  183. {
  184. int has_skips, coeff_type, coeff_bits, skip_type, skip_bits;
  185. const int num_coeffs = aic_num_band_coeffs[band];
  186. const uint8_t *scan = aic_scan[band | force_chroma];
  187. int mb, idx;
  188. unsigned val;
  189. has_skips = get_bits1(gb);
  190. coeff_type = get_bits1(gb);
  191. coeff_bits = get_bits(gb, 3);
  192. if (has_skips) {
  193. skip_type = get_bits1(gb);
  194. skip_bits = get_bits(gb, 3);
  195. for (mb = 0; mb < slice_width; mb++) {
  196. idx = -1;
  197. do {
  198. GET_CODE(val, skip_type, skip_bits);
  199. if (val >= 0x10000)
  200. return AVERROR_INVALIDDATA;
  201. idx += val + 1;
  202. if (idx >= num_coeffs)
  203. break;
  204. GET_CODE(val, coeff_type, coeff_bits);
  205. val++;
  206. if (val >= 0x10000)
  207. return AVERROR_INVALIDDATA;
  208. dst[scan[idx]] = val;
  209. } while (idx < num_coeffs - 1);
  210. dst += num_coeffs;
  211. }
  212. } else {
  213. for (mb = 0; mb < slice_width; mb++) {
  214. for (idx = 0; idx < num_coeffs; idx++) {
  215. GET_CODE(val, coeff_type, coeff_bits);
  216. if (val >= 0x10000)
  217. return AVERROR_INVALIDDATA;
  218. dst[scan[idx]] = val;
  219. }
  220. dst += num_coeffs;
  221. }
  222. }
  223. return 0;
  224. }
  225. static void recombine_block(int16_t *dst, const uint8_t *scan,
  226. int16_t **base, int16_t **ext)
  227. {
  228. int i, j;
  229. for (i = 0; i < 4; i++) {
  230. for (j = 0; j < 4; j++)
  231. dst[scan[i * 8 + j]] = (*base)[j];
  232. for (j = 0; j < 4; j++)
  233. dst[scan[i * 8 + j + 4]] = (*ext)[j];
  234. *base += 4;
  235. *ext += 4;
  236. }
  237. for (; i < 8; i++) {
  238. for (j = 0; j < 8; j++)
  239. dst[scan[i * 8 + j]] = (*ext)[j];
  240. *ext += 8;
  241. }
  242. }
  243. static void recombine_block_il(int16_t *dst, const uint8_t *scan,
  244. int16_t **base, int16_t **ext,
  245. int block_no)
  246. {
  247. int i, j;
  248. if (block_no < 2) {
  249. for (i = 0; i < 8; i++) {
  250. for (j = 0; j < 4; j++)
  251. dst[scan[i * 8 + j]] = (*base)[j];
  252. for (j = 0; j < 4; j++)
  253. dst[scan[i * 8 + j + 4]] = (*ext)[j];
  254. *base += 4;
  255. *ext += 4;
  256. }
  257. } else {
  258. for (i = 0; i < 64; i++)
  259. dst[scan[i]] = (*ext)[i];
  260. *ext += 64;
  261. }
  262. }
  263. static void unquant_block(int16_t *block, int q, uint8_t *quant_matrix)
  264. {
  265. int i;
  266. for (i = 0; i < 64; i++) {
  267. int val = (uint16_t)block[i];
  268. int sign = val & 1;
  269. block[i] = (((val >> 1) ^ -sign) * q * quant_matrix[i] >> 4)
  270. + sign;
  271. }
  272. }
  273. static int aic_decode_slice(AICContext *ctx, int mb_x, int mb_y,
  274. const uint8_t *src, int src_size)
  275. {
  276. GetBitContext gb;
  277. int ret, i, mb, blk;
  278. int slice_width = FFMIN(ctx->slice_width, ctx->mb_width - mb_x);
  279. uint8_t *Y, *C[2];
  280. uint8_t *dst;
  281. int16_t *base_y = ctx->data_ptr[COEFF_LUMA];
  282. int16_t *base_c = ctx->data_ptr[COEFF_CHROMA];
  283. int16_t *ext_y = ctx->data_ptr[COEFF_LUMA_EXT];
  284. int16_t *ext_c = ctx->data_ptr[COEFF_CHROMA_EXT];
  285. const int ystride = ctx->frame->linesize[0];
  286. Y = ctx->frame->data[0] + mb_x * 16 + mb_y * 16 * ystride;
  287. for (i = 0; i < 2; i++)
  288. C[i] = ctx->frame->data[i + 1] + mb_x * 8
  289. + mb_y * 8 * ctx->frame->linesize[i + 1];
  290. init_get_bits(&gb, src, src_size * 8);
  291. memset(ctx->slice_data, 0,
  292. sizeof(*ctx->slice_data) * slice_width * AIC_BAND_COEFFS);
  293. for (i = 0; i < NUM_BANDS; i++)
  294. if ((ret = aic_decode_coeffs(&gb, ctx->data_ptr[i],
  295. i, slice_width,
  296. !ctx->interlaced)) < 0)
  297. return ret;
  298. for (mb = 0; mb < slice_width; mb++) {
  299. for (blk = 0; blk < 4; blk++) {
  300. if (!ctx->interlaced)
  301. recombine_block(ctx->block, ctx->scantable.permutated,
  302. &base_y, &ext_y);
  303. else
  304. recombine_block_il(ctx->block, ctx->scantable.permutated,
  305. &base_y, &ext_y, blk);
  306. unquant_block(ctx->block, ctx->quant, ctx->quant_matrix);
  307. ctx->idsp.idct(ctx->block);
  308. if (!ctx->interlaced) {
  309. dst = Y + (blk >> 1) * 8 * ystride + (blk & 1) * 8;
  310. ctx->idsp.put_signed_pixels_clamped(ctx->block, dst, ystride);
  311. } else {
  312. dst = Y + (blk & 1) * 8 + (blk >> 1) * ystride;
  313. ctx->idsp.put_signed_pixels_clamped(ctx->block, dst,
  314. ystride * 2);
  315. }
  316. }
  317. Y += 16;
  318. for (blk = 0; blk < 2; blk++) {
  319. recombine_block(ctx->block, ctx->scantable.permutated,
  320. &base_c, &ext_c);
  321. unquant_block(ctx->block, ctx->quant, ctx->quant_matrix);
  322. ctx->idsp.idct(ctx->block);
  323. ctx->idsp.put_signed_pixels_clamped(ctx->block, C[blk],
  324. ctx->frame->linesize[blk + 1]);
  325. C[blk] += 8;
  326. }
  327. }
  328. return 0;
  329. }
  330. static int aic_decode_frame(AVCodecContext *avctx, void *data, int *got_frame,
  331. AVPacket *avpkt)
  332. {
  333. AICContext *ctx = avctx->priv_data;
  334. const uint8_t *buf = avpkt->data;
  335. int buf_size = avpkt->size;
  336. GetByteContext gb;
  337. uint32_t off;
  338. int x, y, ret;
  339. int slice_size;
  340. ThreadFrame frame = { .f = data };
  341. ctx->frame = data;
  342. ctx->frame->pict_type = AV_PICTURE_TYPE_I;
  343. ctx->frame->key_frame = 1;
  344. off = FFALIGN(AIC_HDR_SIZE + ctx->num_x_slices * ctx->mb_height * 2, 4);
  345. if (buf_size < off) {
  346. av_log(avctx, AV_LOG_ERROR, "Too small frame\n");
  347. return AVERROR_INVALIDDATA;
  348. }
  349. ret = aic_decode_header(ctx, buf, buf_size);
  350. if (ret < 0) {
  351. av_log(avctx, AV_LOG_ERROR, "Invalid header\n");
  352. return ret;
  353. }
  354. if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
  355. return ret;
  356. bytestream2_init(&gb, buf + AIC_HDR_SIZE,
  357. ctx->num_x_slices * ctx->mb_height * 2);
  358. for (y = 0; y < ctx->mb_height; y++) {
  359. for (x = 0; x < ctx->mb_width; x += ctx->slice_width) {
  360. slice_size = bytestream2_get_le16(&gb) * 4;
  361. if (slice_size + off > buf_size || !slice_size) {
  362. av_log(avctx, AV_LOG_ERROR,
  363. "Incorrect slice size %d at %d.%d\n", slice_size, x, y);
  364. return AVERROR_INVALIDDATA;
  365. }
  366. ret = aic_decode_slice(ctx, x, y, buf + off, slice_size);
  367. if (ret < 0) {
  368. av_log(avctx, AV_LOG_ERROR,
  369. "Error decoding slice at %d.%d\n", x, y);
  370. return ret;
  371. }
  372. off += slice_size;
  373. }
  374. }
  375. *got_frame = 1;
  376. return avpkt->size;
  377. }
  378. static av_cold int aic_decode_init(AVCodecContext *avctx)
  379. {
  380. AICContext *ctx = avctx->priv_data;
  381. int i;
  382. uint8_t scan[64];
  383. ctx->avctx = avctx;
  384. avctx->pix_fmt = AV_PIX_FMT_YUV420P;
  385. ff_idctdsp_init(&ctx->idsp, avctx);
  386. for (i = 0; i < 64; i++)
  387. scan[i] = i;
  388. ff_init_scantable(ctx->idsp.idct_permutation, &ctx->scantable, scan);
  389. for (i = 0; i < 64; i++)
  390. ctx->quant_matrix[ctx->idsp.idct_permutation[i]] = aic_quant_matrix[i];
  391. ctx->mb_width = FFALIGN(avctx->width, 16) >> 4;
  392. ctx->mb_height = FFALIGN(avctx->height, 16) >> 4;
  393. ctx->num_x_slices = (ctx->mb_width + 15) >> 4;
  394. ctx->slice_width = 16;
  395. for (i = 1; i < ctx->mb_width; i++) {
  396. if (!(ctx->mb_width % i) && (ctx->mb_width / i <= 32)) {
  397. ctx->slice_width = ctx->mb_width / i;
  398. ctx->num_x_slices = i;
  399. break;
  400. }
  401. }
  402. ctx->slice_data = av_malloc_array(ctx->slice_width, AIC_BAND_COEFFS
  403. * sizeof(*ctx->slice_data));
  404. if (!ctx->slice_data) {
  405. av_log(avctx, AV_LOG_ERROR, "Error allocating slice buffer\n");
  406. return AVERROR(ENOMEM);
  407. }
  408. for (i = 0; i < NUM_BANDS; i++)
  409. ctx->data_ptr[i] = ctx->slice_data + ctx->slice_width
  410. * aic_band_off[i];
  411. return 0;
  412. }
  413. static av_cold int aic_decode_close(AVCodecContext *avctx)
  414. {
  415. AICContext *ctx = avctx->priv_data;
  416. av_freep(&ctx->slice_data);
  417. return 0;
  418. }
  419. AVCodec ff_aic_decoder = {
  420. .name = "aic",
  421. .long_name = NULL_IF_CONFIG_SMALL("Apple Intermediate Codec"),
  422. .type = AVMEDIA_TYPE_VIDEO,
  423. .id = AV_CODEC_ID_AIC,
  424. .priv_data_size = sizeof(AICContext),
  425. .init = aic_decode_init,
  426. .close = aic_decode_close,
  427. .decode = aic_decode_frame,
  428. .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS,
  429. .init_thread_copy = ONLY_IF_THREADS_ENABLED(aic_decode_init),
  430. .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
  431. };