You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2562 lines
96KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "libavutil/avassert.h"
  27. #include "libavutil/imgutils.h"
  28. #include "libavutil/timer.h"
  29. #include "internal.h"
  30. #include "cabac.h"
  31. #include "cabac_functions.h"
  32. #include "dsputil.h"
  33. #include "error_resilience.h"
  34. #include "avcodec.h"
  35. #include "h264.h"
  36. #include "h264data.h"
  37. #include "h264chroma.h"
  38. #include "h264_mvpred.h"
  39. #include "golomb.h"
  40. #include "mathops.h"
  41. #include "mpegutils.h"
  42. #include "rectangle.h"
  43. #include "thread.h"
  44. static const uint8_t rem6[QP_MAX_NUM + 1] = {
  45. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
  46. 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
  47. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
  48. 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
  49. 0, 1, 2, 3,
  50. };
  51. static const uint8_t div6[QP_MAX_NUM + 1] = {
  52. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3,
  53. 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6,
  54. 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10,
  55. 10,10,10,11,11,11,11,11,11,12,12,12,12,12,12,13,13,13, 13, 13, 13,
  56. 14,14,14,14,
  57. };
  58. static const uint8_t field_scan[16+1] = {
  59. 0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
  60. 0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
  61. 2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
  62. 3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
  63. };
  64. static const uint8_t field_scan8x8[64+1] = {
  65. 0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
  66. 1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
  67. 2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
  68. 0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
  69. 2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
  70. 2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
  71. 2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
  72. 3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
  73. 3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
  74. 4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
  75. 4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
  76. 5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
  77. 5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
  78. 7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
  79. 6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
  80. 7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
  81. };
  82. static const uint8_t field_scan8x8_cavlc[64+1] = {
  83. 0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
  84. 2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
  85. 3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
  86. 5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
  87. 0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
  88. 1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
  89. 3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
  90. 5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
  91. 0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
  92. 1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
  93. 3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
  94. 5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
  95. 1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
  96. 1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
  97. 3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
  98. 6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
  99. };
  100. // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
  101. static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
  102. 0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
  103. 4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
  104. 3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
  105. 2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
  106. 1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
  107. 3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
  108. 2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
  109. 3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
  110. 0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
  111. 2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
  112. 1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
  113. 4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
  114. 0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
  115. 1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
  116. 0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
  117. 5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
  118. };
  119. static const uint8_t dequant4_coeff_init[6][3] = {
  120. { 10, 13, 16 },
  121. { 11, 14, 18 },
  122. { 13, 16, 20 },
  123. { 14, 18, 23 },
  124. { 16, 20, 25 },
  125. { 18, 23, 29 },
  126. };
  127. static const uint8_t dequant8_coeff_init_scan[16] = {
  128. 0, 3, 4, 3, 3, 1, 5, 1, 4, 5, 2, 5, 3, 1, 5, 1
  129. };
  130. static const uint8_t dequant8_coeff_init[6][6] = {
  131. { 20, 18, 32, 19, 25, 24 },
  132. { 22, 19, 35, 21, 28, 26 },
  133. { 26, 23, 42, 24, 33, 31 },
  134. { 28, 25, 45, 26, 35, 33 },
  135. { 32, 28, 51, 30, 40, 38 },
  136. { 36, 32, 58, 34, 46, 43 },
  137. };
  138. static const enum AVPixelFormat h264_hwaccel_pixfmt_list_420[] = {
  139. #if CONFIG_H264_DXVA2_HWACCEL
  140. AV_PIX_FMT_DXVA2_VLD,
  141. #endif
  142. #if CONFIG_H264_VAAPI_HWACCEL
  143. AV_PIX_FMT_VAAPI_VLD,
  144. #endif
  145. #if CONFIG_H264_VDA_HWACCEL
  146. AV_PIX_FMT_VDA_VLD,
  147. #endif
  148. #if CONFIG_H264_VDPAU_HWACCEL
  149. AV_PIX_FMT_VDPAU,
  150. #endif
  151. AV_PIX_FMT_YUV420P,
  152. AV_PIX_FMT_NONE
  153. };
  154. static const enum AVPixelFormat h264_hwaccel_pixfmt_list_jpeg_420[] = {
  155. #if CONFIG_H264_DXVA2_HWACCEL
  156. AV_PIX_FMT_DXVA2_VLD,
  157. #endif
  158. #if CONFIG_H264_VAAPI_HWACCEL
  159. AV_PIX_FMT_VAAPI_VLD,
  160. #endif
  161. #if CONFIG_H264_VDA_HWACCEL
  162. AV_PIX_FMT_VDA_VLD,
  163. #endif
  164. #if CONFIG_H264_VDPAU_HWACCEL
  165. AV_PIX_FMT_VDPAU,
  166. #endif
  167. AV_PIX_FMT_YUVJ420P,
  168. AV_PIX_FMT_NONE
  169. };
  170. static void release_unused_pictures(H264Context *h, int remove_current)
  171. {
  172. int i;
  173. /* release non reference frames */
  174. for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
  175. if (h->DPB[i].f.buf[0] && !h->DPB[i].reference &&
  176. (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
  177. ff_h264_unref_picture(h, &h->DPB[i]);
  178. }
  179. }
  180. }
  181. static int alloc_scratch_buffers(H264Context *h, int linesize)
  182. {
  183. int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
  184. if (h->bipred_scratchpad)
  185. return 0;
  186. h->bipred_scratchpad = av_malloc(16 * 6 * alloc_size);
  187. // edge emu needs blocksize + filter length - 1
  188. // (= 21x21 for h264)
  189. h->edge_emu_buffer = av_mallocz(alloc_size * 2 * 21);
  190. if (!h->bipred_scratchpad || !h->edge_emu_buffer) {
  191. av_freep(&h->bipred_scratchpad);
  192. av_freep(&h->edge_emu_buffer);
  193. return AVERROR(ENOMEM);
  194. }
  195. return 0;
  196. }
  197. static int init_table_pools(H264Context *h)
  198. {
  199. const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
  200. const int mb_array_size = h->mb_stride * h->mb_height;
  201. const int b4_stride = h->mb_width * 4 + 1;
  202. const int b4_array_size = b4_stride * h->mb_height * 4;
  203. h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
  204. av_buffer_allocz);
  205. h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
  206. sizeof(uint32_t), av_buffer_allocz);
  207. h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
  208. sizeof(int16_t), av_buffer_allocz);
  209. h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
  210. if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
  211. !h->ref_index_pool) {
  212. av_buffer_pool_uninit(&h->qscale_table_pool);
  213. av_buffer_pool_uninit(&h->mb_type_pool);
  214. av_buffer_pool_uninit(&h->motion_val_pool);
  215. av_buffer_pool_uninit(&h->ref_index_pool);
  216. return AVERROR(ENOMEM);
  217. }
  218. return 0;
  219. }
  220. static int alloc_picture(H264Context *h, H264Picture *pic)
  221. {
  222. int i, ret = 0;
  223. av_assert0(!pic->f.data[0]);
  224. pic->tf.f = &pic->f;
  225. ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
  226. AV_GET_BUFFER_FLAG_REF : 0);
  227. if (ret < 0)
  228. goto fail;
  229. h->linesize = pic->f.linesize[0];
  230. h->uvlinesize = pic->f.linesize[1];
  231. pic->crop = h->sps.crop;
  232. pic->crop_top = h->sps.crop_top;
  233. pic->crop_left= h->sps.crop_left;
  234. if (h->avctx->hwaccel) {
  235. const AVHWAccel *hwaccel = h->avctx->hwaccel;
  236. av_assert0(!pic->hwaccel_picture_private);
  237. if (hwaccel->frame_priv_data_size) {
  238. pic->hwaccel_priv_buf = av_buffer_allocz(hwaccel->frame_priv_data_size);
  239. if (!pic->hwaccel_priv_buf)
  240. return AVERROR(ENOMEM);
  241. pic->hwaccel_picture_private = pic->hwaccel_priv_buf->data;
  242. }
  243. }
  244. if (!h->avctx->hwaccel && CONFIG_GRAY && h->flags & CODEC_FLAG_GRAY && pic->f.data[2]) {
  245. int h_chroma_shift, v_chroma_shift;
  246. av_pix_fmt_get_chroma_sub_sample(pic->f.format,
  247. &h_chroma_shift, &v_chroma_shift);
  248. for(i=0; i<FF_CEIL_RSHIFT(h->avctx->height, v_chroma_shift); i++) {
  249. memset(pic->f.data[1] + pic->f.linesize[1]*i,
  250. 0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift));
  251. memset(pic->f.data[2] + pic->f.linesize[2]*i,
  252. 0x80, FF_CEIL_RSHIFT(h->avctx->width, h_chroma_shift));
  253. }
  254. }
  255. if (!h->qscale_table_pool) {
  256. ret = init_table_pools(h);
  257. if (ret < 0)
  258. goto fail;
  259. }
  260. pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
  261. pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
  262. if (!pic->qscale_table_buf || !pic->mb_type_buf)
  263. goto fail;
  264. pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
  265. pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
  266. for (i = 0; i < 2; i++) {
  267. pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
  268. pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
  269. if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
  270. goto fail;
  271. pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
  272. pic->ref_index[i] = pic->ref_index_buf[i]->data;
  273. }
  274. return 0;
  275. fail:
  276. ff_h264_unref_picture(h, pic);
  277. return (ret < 0) ? ret : AVERROR(ENOMEM);
  278. }
  279. static inline int pic_is_unused(H264Context *h, H264Picture *pic)
  280. {
  281. if (!pic->f.buf[0])
  282. return 1;
  283. if (pic->needs_realloc && !(pic->reference & DELAYED_PIC_REF))
  284. return 1;
  285. return 0;
  286. }
  287. static int find_unused_picture(H264Context *h)
  288. {
  289. int i;
  290. for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
  291. if (pic_is_unused(h, &h->DPB[i]))
  292. break;
  293. }
  294. if (i == H264_MAX_PICTURE_COUNT)
  295. return AVERROR_INVALIDDATA;
  296. if (h->DPB[i].needs_realloc) {
  297. h->DPB[i].needs_realloc = 0;
  298. ff_h264_unref_picture(h, &h->DPB[i]);
  299. }
  300. return i;
  301. }
  302. static void init_dequant8_coeff_table(H264Context *h)
  303. {
  304. int i, j, q, x;
  305. const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
  306. for (i = 0; i < 6; i++) {
  307. h->dequant8_coeff[i] = h->dequant8_buffer[i];
  308. for (j = 0; j < i; j++)
  309. if (!memcmp(h->pps.scaling_matrix8[j], h->pps.scaling_matrix8[i],
  310. 64 * sizeof(uint8_t))) {
  311. h->dequant8_coeff[i] = h->dequant8_buffer[j];
  312. break;
  313. }
  314. if (j < i)
  315. continue;
  316. for (q = 0; q < max_qp + 1; q++) {
  317. int shift = div6[q];
  318. int idx = rem6[q];
  319. for (x = 0; x < 64; x++)
  320. h->dequant8_coeff[i][q][(x >> 3) | ((x & 7) << 3)] =
  321. ((uint32_t)dequant8_coeff_init[idx][dequant8_coeff_init_scan[((x >> 1) & 12) | (x & 3)]] *
  322. h->pps.scaling_matrix8[i][x]) << shift;
  323. }
  324. }
  325. }
  326. static void init_dequant4_coeff_table(H264Context *h)
  327. {
  328. int i, j, q, x;
  329. const int max_qp = 51 + 6 * (h->sps.bit_depth_luma - 8);
  330. for (i = 0; i < 6; i++) {
  331. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  332. for (j = 0; j < i; j++)
  333. if (!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i],
  334. 16 * sizeof(uint8_t))) {
  335. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  336. break;
  337. }
  338. if (j < i)
  339. continue;
  340. for (q = 0; q < max_qp + 1; q++) {
  341. int shift = div6[q] + 2;
  342. int idx = rem6[q];
  343. for (x = 0; x < 16; x++)
  344. h->dequant4_coeff[i][q][(x >> 2) | ((x << 2) & 0xF)] =
  345. ((uint32_t)dequant4_coeff_init[idx][(x & 1) + ((x >> 2) & 1)] *
  346. h->pps.scaling_matrix4[i][x]) << shift;
  347. }
  348. }
  349. }
  350. void h264_init_dequant_tables(H264Context *h)
  351. {
  352. int i, x;
  353. init_dequant4_coeff_table(h);
  354. memset(h->dequant8_coeff, 0, sizeof(h->dequant8_coeff));
  355. if (h->pps.transform_8x8_mode)
  356. init_dequant8_coeff_table(h);
  357. if (h->sps.transform_bypass) {
  358. for (i = 0; i < 6; i++)
  359. for (x = 0; x < 16; x++)
  360. h->dequant4_coeff[i][0][x] = 1 << 6;
  361. if (h->pps.transform_8x8_mode)
  362. for (i = 0; i < 6; i++)
  363. for (x = 0; x < 64; x++)
  364. h->dequant8_coeff[i][0][x] = 1 << 6;
  365. }
  366. }
  367. /**
  368. * Mimic alloc_tables(), but for every context thread.
  369. */
  370. static void clone_tables(H264Context *dst, H264Context *src, int i)
  371. {
  372. dst->intra4x4_pred_mode = src->intra4x4_pred_mode + i * 8 * 2 * src->mb_stride;
  373. dst->non_zero_count = src->non_zero_count;
  374. dst->slice_table = src->slice_table;
  375. dst->cbp_table = src->cbp_table;
  376. dst->mb2b_xy = src->mb2b_xy;
  377. dst->mb2br_xy = src->mb2br_xy;
  378. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  379. dst->mvd_table[0] = src->mvd_table[0] + i * 8 * 2 * src->mb_stride;
  380. dst->mvd_table[1] = src->mvd_table[1] + i * 8 * 2 * src->mb_stride;
  381. dst->direct_table = src->direct_table;
  382. dst->list_counts = src->list_counts;
  383. dst->DPB = src->DPB;
  384. dst->cur_pic_ptr = src->cur_pic_ptr;
  385. dst->cur_pic = src->cur_pic;
  386. dst->bipred_scratchpad = NULL;
  387. dst->edge_emu_buffer = NULL;
  388. ff_h264_pred_init(&dst->hpc, src->avctx->codec_id, src->sps.bit_depth_luma,
  389. src->sps.chroma_format_idc);
  390. }
  391. #define IN_RANGE(a, b, size) (((a) >= (b)) && ((a) < ((b) + (size))))
  392. #undef REBASE_PICTURE
  393. #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
  394. ((pic && pic >= old_ctx->DPB && \
  395. pic < old_ctx->DPB + H264_MAX_PICTURE_COUNT) ? \
  396. &new_ctx->DPB[pic - old_ctx->DPB] : NULL)
  397. static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
  398. H264Context *new_base,
  399. H264Context *old_base)
  400. {
  401. int i;
  402. for (i = 0; i < count; i++) {
  403. assert((IN_RANGE(from[i], old_base, sizeof(*old_base)) ||
  404. IN_RANGE(from[i], old_base->DPB,
  405. sizeof(H264Picture) * H264_MAX_PICTURE_COUNT) ||
  406. !from[i]));
  407. to[i] = REBASE_PICTURE(from[i], new_base, old_base);
  408. }
  409. }
  410. static int copy_parameter_set(void **to, void **from, int count, int size)
  411. {
  412. int i;
  413. for (i = 0; i < count; i++) {
  414. if (to[i] && !from[i]) {
  415. av_freep(&to[i]);
  416. } else if (from[i] && !to[i]) {
  417. to[i] = av_malloc(size);
  418. if (!to[i])
  419. return AVERROR(ENOMEM);
  420. }
  421. if (from[i])
  422. memcpy(to[i], from[i], size);
  423. }
  424. return 0;
  425. }
  426. #define copy_fields(to, from, start_field, end_field) \
  427. memcpy(&to->start_field, &from->start_field, \
  428. (char *)&to->end_field - (char *)&to->start_field)
  429. static int h264_slice_header_init(H264Context *h, int reinit);
  430. int ff_h264_update_thread_context(AVCodecContext *dst,
  431. const AVCodecContext *src)
  432. {
  433. H264Context *h = dst->priv_data, *h1 = src->priv_data;
  434. int inited = h->context_initialized, err = 0;
  435. int context_reinitialized = 0;
  436. int i, ret;
  437. if (dst == src)
  438. return 0;
  439. if (inited &&
  440. (h->width != h1->width ||
  441. h->height != h1->height ||
  442. h->mb_width != h1->mb_width ||
  443. h->mb_height != h1->mb_height ||
  444. h->sps.bit_depth_luma != h1->sps.bit_depth_luma ||
  445. h->sps.chroma_format_idc != h1->sps.chroma_format_idc ||
  446. h->sps.colorspace != h1->sps.colorspace)) {
  447. /* set bits_per_raw_sample to the previous value. the check for changed
  448. * bit depth in h264_set_parameter_from_sps() uses it and sets it to
  449. * the current value */
  450. h->avctx->bits_per_raw_sample = h->sps.bit_depth_luma;
  451. av_freep(&h->bipred_scratchpad);
  452. h->width = h1->width;
  453. h->height = h1->height;
  454. h->mb_height = h1->mb_height;
  455. h->mb_width = h1->mb_width;
  456. h->mb_num = h1->mb_num;
  457. h->mb_stride = h1->mb_stride;
  458. h->b_stride = h1->b_stride;
  459. // SPS/PPS
  460. if ((ret = copy_parameter_set((void **)h->sps_buffers,
  461. (void **)h1->sps_buffers,
  462. MAX_SPS_COUNT, sizeof(SPS))) < 0)
  463. return ret;
  464. h->sps = h1->sps;
  465. if ((ret = copy_parameter_set((void **)h->pps_buffers,
  466. (void **)h1->pps_buffers,
  467. MAX_PPS_COUNT, sizeof(PPS))) < 0)
  468. return ret;
  469. h->pps = h1->pps;
  470. if ((err = h264_slice_header_init(h, 1)) < 0) {
  471. av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
  472. return err;
  473. }
  474. context_reinitialized = 1;
  475. #if 0
  476. h264_set_parameter_from_sps(h);
  477. //Note we set context_reinitialized which will cause h264_set_parameter_from_sps to be reexecuted
  478. h->cur_chroma_format_idc = h1->cur_chroma_format_idc;
  479. #endif
  480. }
  481. /* update linesize on resize for h264. The h264 decoder doesn't
  482. * necessarily call ff_MPV_frame_start in the new thread */
  483. h->linesize = h1->linesize;
  484. h->uvlinesize = h1->uvlinesize;
  485. /* copy block_offset since frame_start may not be called */
  486. memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
  487. if (!inited) {
  488. for (i = 0; i < MAX_SPS_COUNT; i++)
  489. av_freep(h->sps_buffers + i);
  490. for (i = 0; i < MAX_PPS_COUNT; i++)
  491. av_freep(h->pps_buffers + i);
  492. av_freep(&h->rbsp_buffer[0]);
  493. av_freep(&h->rbsp_buffer[1]);
  494. memcpy(h, h1, offsetof(H264Context, intra_pcm_ptr));
  495. memcpy(&h->cabac, &h1->cabac,
  496. sizeof(H264Context) - offsetof(H264Context, cabac));
  497. av_assert0((void*)&h->cabac == &h->mb_padding + 1);
  498. memset(h->sps_buffers, 0, sizeof(h->sps_buffers));
  499. memset(h->pps_buffers, 0, sizeof(h->pps_buffers));
  500. memset(&h->er, 0, sizeof(h->er));
  501. memset(&h->mb, 0, sizeof(h->mb));
  502. memset(&h->mb_luma_dc, 0, sizeof(h->mb_luma_dc));
  503. memset(&h->mb_padding, 0, sizeof(h->mb_padding));
  504. memset(&h->cur_pic, 0, sizeof(h->cur_pic));
  505. h->avctx = dst;
  506. h->DPB = NULL;
  507. h->qscale_table_pool = NULL;
  508. h->mb_type_pool = NULL;
  509. h->ref_index_pool = NULL;
  510. h->motion_val_pool = NULL;
  511. for (i = 0; i < 2; i++) {
  512. h->rbsp_buffer[i] = NULL;
  513. h->rbsp_buffer_size[i] = 0;
  514. }
  515. if (h1->context_initialized) {
  516. h->context_initialized = 0;
  517. memset(&h->cur_pic, 0, sizeof(h->cur_pic));
  518. av_frame_unref(&h->cur_pic.f);
  519. h->cur_pic.tf.f = &h->cur_pic.f;
  520. ret = ff_h264_alloc_tables(h);
  521. if (ret < 0) {
  522. av_log(dst, AV_LOG_ERROR, "Could not allocate memory\n");
  523. return ret;
  524. }
  525. ret = ff_h264_context_init(h);
  526. if (ret < 0) {
  527. av_log(dst, AV_LOG_ERROR, "context_init() failed.\n");
  528. return ret;
  529. }
  530. }
  531. h->bipred_scratchpad = NULL;
  532. h->edge_emu_buffer = NULL;
  533. h->thread_context[0] = h;
  534. h->context_initialized = h1->context_initialized;
  535. }
  536. h->avctx->coded_height = h1->avctx->coded_height;
  537. h->avctx->coded_width = h1->avctx->coded_width;
  538. h->avctx->width = h1->avctx->width;
  539. h->avctx->height = h1->avctx->height;
  540. h->coded_picture_number = h1->coded_picture_number;
  541. h->first_field = h1->first_field;
  542. h->picture_structure = h1->picture_structure;
  543. h->qscale = h1->qscale;
  544. h->droppable = h1->droppable;
  545. h->low_delay = h1->low_delay;
  546. for (i = 0; h->DPB && i < H264_MAX_PICTURE_COUNT; i++) {
  547. ff_h264_unref_picture(h, &h->DPB[i]);
  548. if (h1->DPB && h1->DPB[i].f.buf[0] &&
  549. (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
  550. return ret;
  551. }
  552. h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
  553. ff_h264_unref_picture(h, &h->cur_pic);
  554. if (h1->cur_pic.f.buf[0] && (ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic)) < 0)
  555. return ret;
  556. h->workaround_bugs = h1->workaround_bugs;
  557. h->low_delay = h1->low_delay;
  558. h->droppable = h1->droppable;
  559. // extradata/NAL handling
  560. h->is_avc = h1->is_avc;
  561. // SPS/PPS
  562. if ((ret = copy_parameter_set((void **)h->sps_buffers,
  563. (void **)h1->sps_buffers,
  564. MAX_SPS_COUNT, sizeof(SPS))) < 0)
  565. return ret;
  566. h->sps = h1->sps;
  567. if ((ret = copy_parameter_set((void **)h->pps_buffers,
  568. (void **)h1->pps_buffers,
  569. MAX_PPS_COUNT, sizeof(PPS))) < 0)
  570. return ret;
  571. h->pps = h1->pps;
  572. // Dequantization matrices
  573. // FIXME these are big - can they be only copied when PPS changes?
  574. copy_fields(h, h1, dequant4_buffer, dequant4_coeff);
  575. for (i = 0; i < 6; i++)
  576. h->dequant4_coeff[i] = h->dequant4_buffer[0] +
  577. (h1->dequant4_coeff[i] - h1->dequant4_buffer[0]);
  578. for (i = 0; i < 6; i++)
  579. h->dequant8_coeff[i] = h->dequant8_buffer[0] +
  580. (h1->dequant8_coeff[i] - h1->dequant8_buffer[0]);
  581. h->dequant_coeff_pps = h1->dequant_coeff_pps;
  582. // POC timing
  583. copy_fields(h, h1, poc_lsb, redundant_pic_count);
  584. // reference lists
  585. copy_fields(h, h1, short_ref, cabac_init_idc);
  586. copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
  587. copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
  588. copy_picture_range(h->delayed_pic, h1->delayed_pic,
  589. MAX_DELAYED_PIC_COUNT + 2, h, h1);
  590. h->frame_recovered = h1->frame_recovered;
  591. if (context_reinitialized)
  592. ff_h264_set_parameter_from_sps(h);
  593. if (!h->cur_pic_ptr)
  594. return 0;
  595. if (!h->droppable) {
  596. err = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  597. h->prev_poc_msb = h->poc_msb;
  598. h->prev_poc_lsb = h->poc_lsb;
  599. }
  600. h->prev_frame_num_offset = h->frame_num_offset;
  601. h->prev_frame_num = h->frame_num;
  602. h->outputed_poc = h->next_outputed_poc;
  603. h->recovery_frame = h1->recovery_frame;
  604. return err;
  605. }
  606. static int h264_frame_start(H264Context *h)
  607. {
  608. H264Picture *pic;
  609. int i, ret;
  610. const int pixel_shift = h->pixel_shift;
  611. int c[4] = {
  612. 1<<(h->sps.bit_depth_luma-1),
  613. 1<<(h->sps.bit_depth_chroma-1),
  614. 1<<(h->sps.bit_depth_chroma-1),
  615. -1
  616. };
  617. if (!ff_thread_can_start_frame(h->avctx)) {
  618. av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
  619. return -1;
  620. }
  621. release_unused_pictures(h, 1);
  622. h->cur_pic_ptr = NULL;
  623. i = find_unused_picture(h);
  624. if (i < 0) {
  625. av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
  626. return i;
  627. }
  628. pic = &h->DPB[i];
  629. pic->reference = h->droppable ? 0 : h->picture_structure;
  630. pic->f.coded_picture_number = h->coded_picture_number++;
  631. pic->field_picture = h->picture_structure != PICT_FRAME;
  632. /*
  633. * Zero key_frame here; IDR markings per slice in frame or fields are ORed
  634. * in later.
  635. * See decode_nal_units().
  636. */
  637. pic->f.key_frame = 0;
  638. pic->mmco_reset = 0;
  639. pic->recovered = 0;
  640. pic->invalid_gap = 0;
  641. pic->sei_recovery_frame_cnt = h->sei_recovery_frame_cnt;
  642. if ((ret = alloc_picture(h, pic)) < 0)
  643. return ret;
  644. if(!h->frame_recovered && !h->avctx->hwaccel &&
  645. !(h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU))
  646. avpriv_color_frame(&pic->f, c);
  647. h->cur_pic_ptr = pic;
  648. ff_h264_unref_picture(h, &h->cur_pic);
  649. if (CONFIG_ERROR_RESILIENCE) {
  650. ff_h264_set_erpic(&h->er.cur_pic, NULL);
  651. }
  652. if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
  653. return ret;
  654. if (CONFIG_ERROR_RESILIENCE) {
  655. ff_er_frame_start(&h->er);
  656. ff_h264_set_erpic(&h->er.last_pic, NULL);
  657. ff_h264_set_erpic(&h->er.next_pic, NULL);
  658. }
  659. assert(h->linesize && h->uvlinesize);
  660. for (i = 0; i < 16; i++) {
  661. h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
  662. h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->linesize * ((scan8[i] - scan8[0]) >> 3);
  663. }
  664. for (i = 0; i < 16; i++) {
  665. h->block_offset[16 + i] =
  666. h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
  667. h->block_offset[48 + 16 + i] =
  668. h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * h->uvlinesize * ((scan8[i] - scan8[0]) >> 3);
  669. }
  670. /* We mark the current picture as non-reference after allocating it, so
  671. * that if we break out due to an error it can be released automatically
  672. * in the next ff_MPV_frame_start().
  673. */
  674. h->cur_pic_ptr->reference = 0;
  675. h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
  676. h->next_output_pic = NULL;
  677. assert(h->cur_pic_ptr->long_ref == 0);
  678. return 0;
  679. }
  680. static av_always_inline void backup_mb_border(H264Context *h, uint8_t *src_y,
  681. uint8_t *src_cb, uint8_t *src_cr,
  682. int linesize, int uvlinesize,
  683. int simple)
  684. {
  685. uint8_t *top_border;
  686. int top_idx = 1;
  687. const int pixel_shift = h->pixel_shift;
  688. int chroma444 = CHROMA444(h);
  689. int chroma422 = CHROMA422(h);
  690. src_y -= linesize;
  691. src_cb -= uvlinesize;
  692. src_cr -= uvlinesize;
  693. if (!simple && FRAME_MBAFF(h)) {
  694. if (h->mb_y & 1) {
  695. if (!MB_MBAFF(h)) {
  696. top_border = h->top_borders[0][h->mb_x];
  697. AV_COPY128(top_border, src_y + 15 * linesize);
  698. if (pixel_shift)
  699. AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
  700. if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
  701. if (chroma444) {
  702. if (pixel_shift) {
  703. AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
  704. AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
  705. AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
  706. AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
  707. } else {
  708. AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
  709. AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
  710. }
  711. } else if (chroma422) {
  712. if (pixel_shift) {
  713. AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
  714. AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
  715. } else {
  716. AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
  717. AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
  718. }
  719. } else {
  720. if (pixel_shift) {
  721. AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
  722. AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
  723. } else {
  724. AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
  725. AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
  726. }
  727. }
  728. }
  729. }
  730. } else if (MB_MBAFF(h)) {
  731. top_idx = 0;
  732. } else
  733. return;
  734. }
  735. top_border = h->top_borders[top_idx][h->mb_x];
  736. /* There are two lines saved, the line above the top macroblock
  737. * of a pair, and the line above the bottom macroblock. */
  738. AV_COPY128(top_border, src_y + 16 * linesize);
  739. if (pixel_shift)
  740. AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
  741. if (simple || !CONFIG_GRAY || !(h->flags & CODEC_FLAG_GRAY)) {
  742. if (chroma444) {
  743. if (pixel_shift) {
  744. AV_COPY128(top_border + 32, src_cb + 16 * linesize);
  745. AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
  746. AV_COPY128(top_border + 64, src_cr + 16 * linesize);
  747. AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
  748. } else {
  749. AV_COPY128(top_border + 16, src_cb + 16 * linesize);
  750. AV_COPY128(top_border + 32, src_cr + 16 * linesize);
  751. }
  752. } else if (chroma422) {
  753. if (pixel_shift) {
  754. AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
  755. AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
  756. } else {
  757. AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
  758. AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
  759. }
  760. } else {
  761. if (pixel_shift) {
  762. AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
  763. AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
  764. } else {
  765. AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
  766. AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
  767. }
  768. }
  769. }
  770. }
  771. /**
  772. * Initialize implicit_weight table.
  773. * @param field 0/1 initialize the weight for interlaced MBAFF
  774. * -1 initializes the rest
  775. */
  776. static void implicit_weight_table(H264Context *h, int field)
  777. {
  778. int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
  779. for (i = 0; i < 2; i++) {
  780. h->luma_weight_flag[i] = 0;
  781. h->chroma_weight_flag[i] = 0;
  782. }
  783. if (field < 0) {
  784. if (h->picture_structure == PICT_FRAME) {
  785. cur_poc = h->cur_pic_ptr->poc;
  786. } else {
  787. cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
  788. }
  789. if (h->ref_count[0] == 1 && h->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
  790. h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2 * cur_poc) {
  791. h->use_weight = 0;
  792. h->use_weight_chroma = 0;
  793. return;
  794. }
  795. ref_start = 0;
  796. ref_count0 = h->ref_count[0];
  797. ref_count1 = h->ref_count[1];
  798. } else {
  799. cur_poc = h->cur_pic_ptr->field_poc[field];
  800. ref_start = 16;
  801. ref_count0 = 16 + 2 * h->ref_count[0];
  802. ref_count1 = 16 + 2 * h->ref_count[1];
  803. }
  804. h->use_weight = 2;
  805. h->use_weight_chroma = 2;
  806. h->luma_log2_weight_denom = 5;
  807. h->chroma_log2_weight_denom = 5;
  808. for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
  809. int poc0 = h->ref_list[0][ref0].poc;
  810. for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
  811. int w = 32;
  812. if (!h->ref_list[0][ref0].long_ref && !h->ref_list[1][ref1].long_ref) {
  813. int poc1 = h->ref_list[1][ref1].poc;
  814. int td = av_clip(poc1 - poc0, -128, 127);
  815. if (td) {
  816. int tb = av_clip(cur_poc - poc0, -128, 127);
  817. int tx = (16384 + (FFABS(td) >> 1)) / td;
  818. int dist_scale_factor = (tb * tx + 32) >> 8;
  819. if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
  820. w = 64 - dist_scale_factor;
  821. }
  822. }
  823. if (field < 0) {
  824. h->implicit_weight[ref0][ref1][0] =
  825. h->implicit_weight[ref0][ref1][1] = w;
  826. } else {
  827. h->implicit_weight[ref0][ref1][field] = w;
  828. }
  829. }
  830. }
  831. }
  832. /**
  833. * initialize scan tables
  834. */
  835. static void init_scan_tables(H264Context *h)
  836. {
  837. int i;
  838. for (i = 0; i < 16; i++) {
  839. #define TRANSPOSE(x) (x >> 2) | ((x << 2) & 0xF)
  840. h->zigzag_scan[i] = TRANSPOSE(zigzag_scan[i]);
  841. h->field_scan[i] = TRANSPOSE(field_scan[i]);
  842. #undef TRANSPOSE
  843. }
  844. for (i = 0; i < 64; i++) {
  845. #define TRANSPOSE(x) (x >> 3) | ((x & 7) << 3)
  846. h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]);
  847. h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]);
  848. h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]);
  849. h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]);
  850. #undef TRANSPOSE
  851. }
  852. if (h->sps.transform_bypass) { // FIXME same ugly
  853. memcpy(h->zigzag_scan_q0 , zigzag_scan , sizeof(h->zigzag_scan_q0 ));
  854. memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
  855. memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
  856. memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
  857. memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
  858. memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
  859. } else {
  860. memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
  861. memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
  862. memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
  863. memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
  864. memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
  865. memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
  866. }
  867. }
  868. /**
  869. * Replicate H264 "master" context to thread contexts.
  870. */
  871. static int clone_slice(H264Context *dst, H264Context *src)
  872. {
  873. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  874. dst->cur_pic_ptr = src->cur_pic_ptr;
  875. dst->cur_pic = src->cur_pic;
  876. dst->linesize = src->linesize;
  877. dst->uvlinesize = src->uvlinesize;
  878. dst->first_field = src->first_field;
  879. dst->prev_poc_msb = src->prev_poc_msb;
  880. dst->prev_poc_lsb = src->prev_poc_lsb;
  881. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  882. dst->prev_frame_num = src->prev_frame_num;
  883. dst->short_ref_count = src->short_ref_count;
  884. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  885. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  886. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  887. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  888. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  889. return 0;
  890. }
  891. static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
  892. {
  893. switch (h->sps.bit_depth_luma) {
  894. case 9:
  895. if (CHROMA444(h)) {
  896. if (h->avctx->colorspace == AVCOL_SPC_RGB) {
  897. return AV_PIX_FMT_GBRP9;
  898. } else
  899. return AV_PIX_FMT_YUV444P9;
  900. } else if (CHROMA422(h))
  901. return AV_PIX_FMT_YUV422P9;
  902. else
  903. return AV_PIX_FMT_YUV420P9;
  904. break;
  905. case 10:
  906. if (CHROMA444(h)) {
  907. if (h->avctx->colorspace == AVCOL_SPC_RGB) {
  908. return AV_PIX_FMT_GBRP10;
  909. } else
  910. return AV_PIX_FMT_YUV444P10;
  911. } else if (CHROMA422(h))
  912. return AV_PIX_FMT_YUV422P10;
  913. else
  914. return AV_PIX_FMT_YUV420P10;
  915. break;
  916. case 12:
  917. if (CHROMA444(h)) {
  918. if (h->avctx->colorspace == AVCOL_SPC_RGB) {
  919. return AV_PIX_FMT_GBRP12;
  920. } else
  921. return AV_PIX_FMT_YUV444P12;
  922. } else if (CHROMA422(h))
  923. return AV_PIX_FMT_YUV422P12;
  924. else
  925. return AV_PIX_FMT_YUV420P12;
  926. break;
  927. case 14:
  928. if (CHROMA444(h)) {
  929. if (h->avctx->colorspace == AVCOL_SPC_RGB) {
  930. return AV_PIX_FMT_GBRP14;
  931. } else
  932. return AV_PIX_FMT_YUV444P14;
  933. } else if (CHROMA422(h))
  934. return AV_PIX_FMT_YUV422P14;
  935. else
  936. return AV_PIX_FMT_YUV420P14;
  937. break;
  938. case 8:
  939. if (CHROMA444(h)) {
  940. if (h->avctx->colorspace == AVCOL_SPC_RGB) {
  941. av_log(h->avctx, AV_LOG_DEBUG, "Detected GBR colorspace.\n");
  942. return AV_PIX_FMT_GBR24P;
  943. } else if (h->avctx->colorspace == AVCOL_SPC_YCGCO) {
  944. av_log(h->avctx, AV_LOG_WARNING, "Detected unsupported YCgCo colorspace.\n");
  945. }
  946. return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ444P
  947. : AV_PIX_FMT_YUV444P;
  948. } else if (CHROMA422(h)) {
  949. return h->avctx->color_range == AVCOL_RANGE_JPEG ? AV_PIX_FMT_YUVJ422P
  950. : AV_PIX_FMT_YUV422P;
  951. } else {
  952. int i;
  953. const enum AVPixelFormat * fmt = h->avctx->codec->pix_fmts ?
  954. h->avctx->codec->pix_fmts :
  955. h->avctx->color_range == AVCOL_RANGE_JPEG ?
  956. h264_hwaccel_pixfmt_list_jpeg_420 :
  957. h264_hwaccel_pixfmt_list_420;
  958. for (i=0; fmt[i] != AV_PIX_FMT_NONE; i++)
  959. if (fmt[i] == h->avctx->pix_fmt && !force_callback)
  960. return fmt[i];
  961. return ff_thread_get_format(h->avctx, fmt);
  962. }
  963. break;
  964. default:
  965. av_log(h->avctx, AV_LOG_ERROR,
  966. "Unsupported bit depth %d\n", h->sps.bit_depth_luma);
  967. return AVERROR_INVALIDDATA;
  968. }
  969. }
  970. /* export coded and cropped frame dimensions to AVCodecContext */
  971. static int init_dimensions(H264Context *h)
  972. {
  973. int width = h->width - (h->sps.crop_right + h->sps.crop_left);
  974. int height = h->height - (h->sps.crop_top + h->sps.crop_bottom);
  975. av_assert0(h->sps.crop_right + h->sps.crop_left < (unsigned)h->width);
  976. av_assert0(h->sps.crop_top + h->sps.crop_bottom < (unsigned)h->height);
  977. /* handle container cropping */
  978. if (!h->sps.crop &&
  979. FFALIGN(h->avctx->width, 16) == h->width &&
  980. FFALIGN(h->avctx->height, 16) == h->height) {
  981. width = h->avctx->width;
  982. height = h->avctx->height;
  983. }
  984. if (width <= 0 || height <= 0) {
  985. av_log(h->avctx, AV_LOG_ERROR, "Invalid cropped dimensions: %dx%d.\n",
  986. width, height);
  987. if (h->avctx->err_recognition & AV_EF_EXPLODE)
  988. return AVERROR_INVALIDDATA;
  989. av_log(h->avctx, AV_LOG_WARNING, "Ignoring cropping information.\n");
  990. h->sps.crop_bottom = h->sps.crop_top = h->sps.crop_right = h->sps.crop_left = 0;
  991. h->sps.crop = 0;
  992. width = h->width;
  993. height = h->height;
  994. }
  995. h->avctx->coded_width = h->width;
  996. h->avctx->coded_height = h->height;
  997. h->avctx->width = width;
  998. h->avctx->height = height;
  999. return 0;
  1000. }
  1001. static int h264_slice_header_init(H264Context *h, int reinit)
  1002. {
  1003. int nb_slices = (HAVE_THREADS &&
  1004. h->avctx->active_thread_type & FF_THREAD_SLICE) ?
  1005. h->avctx->thread_count : 1;
  1006. int i, ret;
  1007. h->avctx->sample_aspect_ratio = h->sps.sar;
  1008. av_assert0(h->avctx->sample_aspect_ratio.den);
  1009. av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
  1010. &h->chroma_x_shift, &h->chroma_y_shift);
  1011. if (h->sps.timing_info_present_flag) {
  1012. int64_t den = h->sps.time_scale;
  1013. if (h->x264_build < 44U)
  1014. den *= 2;
  1015. av_reduce(&h->avctx->time_base.num, &h->avctx->time_base.den,
  1016. h->sps.num_units_in_tick, den, 1 << 30);
  1017. }
  1018. if (reinit)
  1019. ff_h264_free_tables(h, 0);
  1020. h->first_field = 0;
  1021. h->prev_interlaced_frame = 1;
  1022. init_scan_tables(h);
  1023. ret = ff_h264_alloc_tables(h);
  1024. if (ret < 0) {
  1025. av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
  1026. return ret;
  1027. }
  1028. if (nb_slices > H264_MAX_THREADS || (nb_slices > h->mb_height && h->mb_height)) {
  1029. int max_slices;
  1030. if (h->mb_height)
  1031. max_slices = FFMIN(H264_MAX_THREADS, h->mb_height);
  1032. else
  1033. max_slices = H264_MAX_THREADS;
  1034. av_log(h->avctx, AV_LOG_WARNING, "too many threads/slices %d,"
  1035. " reducing to %d\n", nb_slices, max_slices);
  1036. nb_slices = max_slices;
  1037. }
  1038. h->slice_context_count = nb_slices;
  1039. if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
  1040. ret = ff_h264_context_init(h);
  1041. if (ret < 0) {
  1042. av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
  1043. return ret;
  1044. }
  1045. } else {
  1046. for (i = 1; i < h->slice_context_count; i++) {
  1047. H264Context *c;
  1048. c = h->thread_context[i] = av_mallocz(sizeof(H264Context));
  1049. if (!c)
  1050. return AVERROR(ENOMEM);
  1051. c->avctx = h->avctx;
  1052. if (CONFIG_ERROR_RESILIENCE) {
  1053. c->dsp = h->dsp;
  1054. }
  1055. c->vdsp = h->vdsp;
  1056. c->h264dsp = h->h264dsp;
  1057. c->h264qpel = h->h264qpel;
  1058. c->h264chroma = h->h264chroma;
  1059. c->sps = h->sps;
  1060. c->pps = h->pps;
  1061. c->pixel_shift = h->pixel_shift;
  1062. c->cur_chroma_format_idc = h->cur_chroma_format_idc;
  1063. c->width = h->width;
  1064. c->height = h->height;
  1065. c->linesize = h->linesize;
  1066. c->uvlinesize = h->uvlinesize;
  1067. c->chroma_x_shift = h->chroma_x_shift;
  1068. c->chroma_y_shift = h->chroma_y_shift;
  1069. c->qscale = h->qscale;
  1070. c->droppable = h->droppable;
  1071. c->data_partitioning = h->data_partitioning;
  1072. c->low_delay = h->low_delay;
  1073. c->mb_width = h->mb_width;
  1074. c->mb_height = h->mb_height;
  1075. c->mb_stride = h->mb_stride;
  1076. c->mb_num = h->mb_num;
  1077. c->flags = h->flags;
  1078. c->workaround_bugs = h->workaround_bugs;
  1079. c->pict_type = h->pict_type;
  1080. init_scan_tables(c);
  1081. clone_tables(c, h, i);
  1082. c->context_initialized = 1;
  1083. }
  1084. for (i = 0; i < h->slice_context_count; i++)
  1085. if ((ret = ff_h264_context_init(h->thread_context[i])) < 0) {
  1086. av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
  1087. return ret;
  1088. }
  1089. }
  1090. h->context_initialized = 1;
  1091. return 0;
  1092. }
  1093. static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
  1094. {
  1095. switch (a) {
  1096. case AV_PIX_FMT_YUVJ420P: return AV_PIX_FMT_YUV420P;
  1097. case AV_PIX_FMT_YUVJ422P: return AV_PIX_FMT_YUV422P;
  1098. case AV_PIX_FMT_YUVJ444P: return AV_PIX_FMT_YUV444P;
  1099. default:
  1100. return a;
  1101. }
  1102. }
  1103. /**
  1104. * Decode a slice header.
  1105. * This will (re)intialize the decoder and call h264_frame_start() as needed.
  1106. *
  1107. * @param h h264context
  1108. * @param h0 h264 master context (differs from 'h' when doing sliced based
  1109. * parallel decoding)
  1110. *
  1111. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  1112. */
  1113. int ff_h264_decode_slice_header(H264Context *h, H264Context *h0)
  1114. {
  1115. unsigned int first_mb_in_slice;
  1116. unsigned int pps_id;
  1117. int ret;
  1118. unsigned int slice_type, tmp, i, j;
  1119. int last_pic_structure, last_pic_droppable;
  1120. int must_reinit;
  1121. int needs_reinit = 0;
  1122. int field_pic_flag, bottom_field_flag;
  1123. h->qpel_put = h->h264qpel.put_h264_qpel_pixels_tab;
  1124. h->qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab;
  1125. first_mb_in_slice = get_ue_golomb_long(&h->gb);
  1126. if (first_mb_in_slice == 0) { // FIXME better field boundary detection
  1127. if (h0->current_slice && h->cur_pic_ptr && FIELD_PICTURE(h)) {
  1128. ff_h264_field_end(h, 1);
  1129. }
  1130. h0->current_slice = 0;
  1131. if (!h0->first_field) {
  1132. if (h->cur_pic_ptr && !h->droppable) {
  1133. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
  1134. h->picture_structure == PICT_BOTTOM_FIELD);
  1135. }
  1136. h->cur_pic_ptr = NULL;
  1137. }
  1138. }
  1139. slice_type = get_ue_golomb_31(&h->gb);
  1140. if (slice_type > 9) {
  1141. av_log(h->avctx, AV_LOG_ERROR,
  1142. "slice type %d too large at %d %d\n",
  1143. slice_type, h->mb_x, h->mb_y);
  1144. return AVERROR_INVALIDDATA;
  1145. }
  1146. if (slice_type > 4) {
  1147. slice_type -= 5;
  1148. h->slice_type_fixed = 1;
  1149. } else
  1150. h->slice_type_fixed = 0;
  1151. slice_type = golomb_to_pict_type[slice_type];
  1152. h->slice_type = slice_type;
  1153. h->slice_type_nos = slice_type & 3;
  1154. if (h->nal_unit_type == NAL_IDR_SLICE &&
  1155. h->slice_type_nos != AV_PICTURE_TYPE_I) {
  1156. av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
  1157. return AVERROR_INVALIDDATA;
  1158. }
  1159. // to make a few old functions happy, it's wrong though
  1160. h->pict_type = h->slice_type;
  1161. pps_id = get_ue_golomb(&h->gb);
  1162. if (pps_id >= MAX_PPS_COUNT) {
  1163. av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id);
  1164. return AVERROR_INVALIDDATA;
  1165. }
  1166. if (!h0->pps_buffers[pps_id]) {
  1167. av_log(h->avctx, AV_LOG_ERROR,
  1168. "non-existing PPS %u referenced\n",
  1169. pps_id);
  1170. return AVERROR_INVALIDDATA;
  1171. }
  1172. if (h0->au_pps_id >= 0 && pps_id != h0->au_pps_id) {
  1173. av_log(h->avctx, AV_LOG_ERROR,
  1174. "PPS change from %d to %d forbidden\n",
  1175. h0->au_pps_id, pps_id);
  1176. return AVERROR_INVALIDDATA;
  1177. }
  1178. h->pps = *h0->pps_buffers[pps_id];
  1179. if (!h0->sps_buffers[h->pps.sps_id]) {
  1180. av_log(h->avctx, AV_LOG_ERROR,
  1181. "non-existing SPS %u referenced\n",
  1182. h->pps.sps_id);
  1183. return AVERROR_INVALIDDATA;
  1184. }
  1185. if (h->pps.sps_id != h->sps.sps_id ||
  1186. h->pps.sps_id != h->current_sps_id ||
  1187. h0->sps_buffers[h->pps.sps_id]->new) {
  1188. h->sps = *h0->sps_buffers[h->pps.sps_id];
  1189. if (h->mb_width != h->sps.mb_width ||
  1190. h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) ||
  1191. h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma ||
  1192. h->cur_chroma_format_idc != h->sps.chroma_format_idc
  1193. )
  1194. needs_reinit = 1;
  1195. if (h->bit_depth_luma != h->sps.bit_depth_luma ||
  1196. h->chroma_format_idc != h->sps.chroma_format_idc) {
  1197. h->bit_depth_luma = h->sps.bit_depth_luma;
  1198. h->chroma_format_idc = h->sps.chroma_format_idc;
  1199. needs_reinit = 1;
  1200. }
  1201. if ((ret = ff_h264_set_parameter_from_sps(h)) < 0)
  1202. return ret;
  1203. }
  1204. h->avctx->profile = ff_h264_get_profile(&h->sps);
  1205. h->avctx->level = h->sps.level_idc;
  1206. h->avctx->refs = h->sps.ref_frame_count;
  1207. must_reinit = (h->context_initialized &&
  1208. ( 16*h->sps.mb_width != h->avctx->coded_width
  1209. || 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height
  1210. || h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma
  1211. || h->cur_chroma_format_idc != h->sps.chroma_format_idc
  1212. || av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio)
  1213. || h->mb_width != h->sps.mb_width
  1214. || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag)
  1215. ));
  1216. if (non_j_pixfmt(h0->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h0, 0)))
  1217. must_reinit = 1;
  1218. h->mb_width = h->sps.mb_width;
  1219. h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  1220. h->mb_num = h->mb_width * h->mb_height;
  1221. h->mb_stride = h->mb_width + 1;
  1222. h->b_stride = h->mb_width * 4;
  1223. h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p
  1224. h->width = 16 * h->mb_width;
  1225. h->height = 16 * h->mb_height;
  1226. ret = init_dimensions(h);
  1227. if (ret < 0)
  1228. return ret;
  1229. if (h->sps.video_signal_type_present_flag) {
  1230. h->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG
  1231. : AVCOL_RANGE_MPEG;
  1232. if (h->sps.colour_description_present_flag) {
  1233. if (h->avctx->colorspace != h->sps.colorspace)
  1234. needs_reinit = 1;
  1235. h->avctx->color_primaries = h->sps.color_primaries;
  1236. h->avctx->color_trc = h->sps.color_trc;
  1237. h->avctx->colorspace = h->sps.colorspace;
  1238. }
  1239. }
  1240. if (h->context_initialized &&
  1241. (must_reinit || needs_reinit)) {
  1242. if (h != h0) {
  1243. av_log(h->avctx, AV_LOG_ERROR,
  1244. "changing width %d -> %d / height %d -> %d on "
  1245. "slice %d\n",
  1246. h->width, h->avctx->coded_width,
  1247. h->height, h->avctx->coded_height,
  1248. h0->current_slice + 1);
  1249. return AVERROR_INVALIDDATA;
  1250. }
  1251. ff_h264_flush_change(h);
  1252. if ((ret = get_pixel_format(h, 1)) < 0)
  1253. return ret;
  1254. h->avctx->pix_fmt = ret;
  1255. av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, "
  1256. "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
  1257. if ((ret = h264_slice_header_init(h, 1)) < 0) {
  1258. av_log(h->avctx, AV_LOG_ERROR,
  1259. "h264_slice_header_init() failed\n");
  1260. return ret;
  1261. }
  1262. }
  1263. if (!h->context_initialized) {
  1264. if (h != h0) {
  1265. av_log(h->avctx, AV_LOG_ERROR,
  1266. "Cannot (re-)initialize context during parallel decoding.\n");
  1267. return AVERROR_PATCHWELCOME;
  1268. }
  1269. if ((ret = get_pixel_format(h, 1)) < 0)
  1270. return ret;
  1271. h->avctx->pix_fmt = ret;
  1272. if ((ret = h264_slice_header_init(h, 0)) < 0) {
  1273. av_log(h->avctx, AV_LOG_ERROR,
  1274. "h264_slice_header_init() failed\n");
  1275. return ret;
  1276. }
  1277. }
  1278. if (h == h0 && h->dequant_coeff_pps != pps_id) {
  1279. h->dequant_coeff_pps = pps_id;
  1280. h264_init_dequant_tables(h);
  1281. }
  1282. h->frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num);
  1283. h->mb_mbaff = 0;
  1284. h->mb_aff_frame = 0;
  1285. last_pic_structure = h0->picture_structure;
  1286. last_pic_droppable = h0->droppable;
  1287. h->droppable = h->nal_ref_idc == 0;
  1288. if (h->sps.frame_mbs_only_flag) {
  1289. h->picture_structure = PICT_FRAME;
  1290. } else {
  1291. if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
  1292. av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
  1293. return -1;
  1294. }
  1295. field_pic_flag = get_bits1(&h->gb);
  1296. if (field_pic_flag) {
  1297. bottom_field_flag = get_bits1(&h->gb);
  1298. h->picture_structure = PICT_TOP_FIELD + bottom_field_flag;
  1299. } else {
  1300. h->picture_structure = PICT_FRAME;
  1301. h->mb_aff_frame = h->sps.mb_aff;
  1302. }
  1303. }
  1304. h->mb_field_decoding_flag = h->picture_structure != PICT_FRAME;
  1305. if (h0->current_slice != 0) {
  1306. if (last_pic_structure != h->picture_structure ||
  1307. last_pic_droppable != h->droppable) {
  1308. av_log(h->avctx, AV_LOG_ERROR,
  1309. "Changing field mode (%d -> %d) between slices is not allowed\n",
  1310. last_pic_structure, h->picture_structure);
  1311. h->picture_structure = last_pic_structure;
  1312. h->droppable = last_pic_droppable;
  1313. return AVERROR_INVALIDDATA;
  1314. } else if (!h0->cur_pic_ptr) {
  1315. av_log(h->avctx, AV_LOG_ERROR,
  1316. "unset cur_pic_ptr on slice %d\n",
  1317. h0->current_slice + 1);
  1318. return AVERROR_INVALIDDATA;
  1319. }
  1320. } else {
  1321. /* Shorten frame num gaps so we don't have to allocate reference
  1322. * frames just to throw them away */
  1323. if (h->frame_num != h->prev_frame_num) {
  1324. int unwrap_prev_frame_num = h->prev_frame_num;
  1325. int max_frame_num = 1 << h->sps.log2_max_frame_num;
  1326. if (unwrap_prev_frame_num > h->frame_num)
  1327. unwrap_prev_frame_num -= max_frame_num;
  1328. if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) {
  1329. unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1;
  1330. if (unwrap_prev_frame_num < 0)
  1331. unwrap_prev_frame_num += max_frame_num;
  1332. h->prev_frame_num = unwrap_prev_frame_num;
  1333. }
  1334. }
  1335. /* See if we have a decoded first field looking for a pair...
  1336. * Here, we're using that to see if we should mark previously
  1337. * decode frames as "finished".
  1338. * We have to do that before the "dummy" in-between frame allocation,
  1339. * since that can modify h->cur_pic_ptr. */
  1340. if (h0->first_field) {
  1341. assert(h0->cur_pic_ptr);
  1342. assert(h0->cur_pic_ptr->f.buf[0]);
  1343. assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
  1344. /* Mark old field/frame as completed */
  1345. if (h0->cur_pic_ptr->tf.owner == h0->avctx) {
  1346. ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
  1347. last_pic_structure == PICT_BOTTOM_FIELD);
  1348. }
  1349. /* figure out if we have a complementary field pair */
  1350. if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
  1351. /* Previous field is unmatched. Don't display it, but let it
  1352. * remain for reference if marked as such. */
  1353. if (last_pic_structure != PICT_FRAME) {
  1354. ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
  1355. last_pic_structure == PICT_TOP_FIELD);
  1356. }
  1357. } else {
  1358. if (h0->cur_pic_ptr->frame_num != h->frame_num) {
  1359. /* This and previous field were reference, but had
  1360. * different frame_nums. Consider this field first in
  1361. * pair. Throw away previous field except for reference
  1362. * purposes. */
  1363. if (last_pic_structure != PICT_FRAME) {
  1364. ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
  1365. last_pic_structure == PICT_TOP_FIELD);
  1366. }
  1367. } else {
  1368. /* Second field in complementary pair */
  1369. if (!((last_pic_structure == PICT_TOP_FIELD &&
  1370. h->picture_structure == PICT_BOTTOM_FIELD) ||
  1371. (last_pic_structure == PICT_BOTTOM_FIELD &&
  1372. h->picture_structure == PICT_TOP_FIELD))) {
  1373. av_log(h->avctx, AV_LOG_ERROR,
  1374. "Invalid field mode combination %d/%d\n",
  1375. last_pic_structure, h->picture_structure);
  1376. h->picture_structure = last_pic_structure;
  1377. h->droppable = last_pic_droppable;
  1378. return AVERROR_INVALIDDATA;
  1379. } else if (last_pic_droppable != h->droppable) {
  1380. avpriv_request_sample(h->avctx,
  1381. "Found reference and non-reference fields in the same frame, which");
  1382. h->picture_structure = last_pic_structure;
  1383. h->droppable = last_pic_droppable;
  1384. return AVERROR_PATCHWELCOME;
  1385. }
  1386. }
  1387. }
  1388. }
  1389. while (h->frame_num != h->prev_frame_num && !h0->first_field &&
  1390. h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) {
  1391. H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
  1392. av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
  1393. h->frame_num, h->prev_frame_num);
  1394. if (!h->sps.gaps_in_frame_num_allowed_flag)
  1395. for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
  1396. h->last_pocs[i] = INT_MIN;
  1397. ret = h264_frame_start(h);
  1398. if (ret < 0) {
  1399. h0->first_field = 0;
  1400. return ret;
  1401. }
  1402. h->prev_frame_num++;
  1403. h->prev_frame_num %= 1 << h->sps.log2_max_frame_num;
  1404. h->cur_pic_ptr->frame_num = h->prev_frame_num;
  1405. h->cur_pic_ptr->invalid_gap = !h->sps.gaps_in_frame_num_allowed_flag;
  1406. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
  1407. ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
  1408. ret = ff_generate_sliding_window_mmcos(h, 1);
  1409. if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
  1410. return ret;
  1411. ret = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1412. if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
  1413. return ret;
  1414. /* Error concealment: If a ref is missing, copy the previous ref
  1415. * in its place.
  1416. * FIXME: Avoiding a memcpy would be nice, but ref handling makes
  1417. * many assumptions about there being no actual duplicates.
  1418. * FIXME: This does not copy padding for out-of-frame motion
  1419. * vectors. Given we are concealing a lost frame, this probably
  1420. * is not noticeable by comparison, but it should be fixed. */
  1421. if (h->short_ref_count) {
  1422. if (prev) {
  1423. av_image_copy(h->short_ref[0]->f.data,
  1424. h->short_ref[0]->f.linesize,
  1425. (const uint8_t **)prev->f.data,
  1426. prev->f.linesize,
  1427. h->avctx->pix_fmt,
  1428. h->mb_width * 16,
  1429. h->mb_height * 16);
  1430. h->short_ref[0]->poc = prev->poc + 2;
  1431. }
  1432. h->short_ref[0]->frame_num = h->prev_frame_num;
  1433. }
  1434. }
  1435. /* See if we have a decoded first field looking for a pair...
  1436. * We're using that to see whether to continue decoding in that
  1437. * frame, or to allocate a new one. */
  1438. if (h0->first_field) {
  1439. assert(h0->cur_pic_ptr);
  1440. assert(h0->cur_pic_ptr->f.buf[0]);
  1441. assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF);
  1442. /* figure out if we have a complementary field pair */
  1443. if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
  1444. /* Previous field is unmatched. Don't display it, but let it
  1445. * remain for reference if marked as such. */
  1446. h0->cur_pic_ptr = NULL;
  1447. h0->first_field = FIELD_PICTURE(h);
  1448. } else {
  1449. if (h0->cur_pic_ptr->frame_num != h->frame_num) {
  1450. ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX,
  1451. h0->picture_structure==PICT_BOTTOM_FIELD);
  1452. /* This and the previous field had different frame_nums.
  1453. * Consider this field first in pair. Throw away previous
  1454. * one except for reference purposes. */
  1455. h0->first_field = 1;
  1456. h0->cur_pic_ptr = NULL;
  1457. } else {
  1458. /* Second field in complementary pair */
  1459. h0->first_field = 0;
  1460. }
  1461. }
  1462. } else {
  1463. /* Frame or first field in a potentially complementary pair */
  1464. h0->first_field = FIELD_PICTURE(h);
  1465. }
  1466. if (!FIELD_PICTURE(h) || h0->first_field) {
  1467. if (h264_frame_start(h) < 0) {
  1468. h0->first_field = 0;
  1469. return AVERROR_INVALIDDATA;
  1470. }
  1471. } else {
  1472. release_unused_pictures(h, 0);
  1473. }
  1474. /* Some macroblocks can be accessed before they're available in case
  1475. * of lost slices, MBAFF or threading. */
  1476. if (FIELD_PICTURE(h)) {
  1477. for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
  1478. memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
  1479. } else {
  1480. memset(h->slice_table, -1,
  1481. (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
  1482. }
  1483. h0->last_slice_type = -1;
  1484. }
  1485. if (h != h0 && (ret = clone_slice(h, h0)) < 0)
  1486. return ret;
  1487. /* can't be in alloc_tables because linesize isn't known there.
  1488. * FIXME: redo bipred weight to not require extra buffer? */
  1489. for (i = 0; i < h->slice_context_count; i++)
  1490. if (h->thread_context[i]) {
  1491. ret = alloc_scratch_buffers(h->thread_context[i], h->linesize);
  1492. if (ret < 0)
  1493. return ret;
  1494. }
  1495. h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup
  1496. av_assert1(h->mb_num == h->mb_width * h->mb_height);
  1497. if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
  1498. first_mb_in_slice >= h->mb_num) {
  1499. av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  1500. return AVERROR_INVALIDDATA;
  1501. }
  1502. h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width;
  1503. h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) <<
  1504. FIELD_OR_MBAFF_PICTURE(h);
  1505. if (h->picture_structure == PICT_BOTTOM_FIELD)
  1506. h->resync_mb_y = h->mb_y = h->mb_y + 1;
  1507. av_assert1(h->mb_y < h->mb_height);
  1508. if (h->picture_structure == PICT_FRAME) {
  1509. h->curr_pic_num = h->frame_num;
  1510. h->max_pic_num = 1 << h->sps.log2_max_frame_num;
  1511. } else {
  1512. h->curr_pic_num = 2 * h->frame_num + 1;
  1513. h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1);
  1514. }
  1515. if (h->nal_unit_type == NAL_IDR_SLICE)
  1516. get_ue_golomb(&h->gb); /* idr_pic_id */
  1517. if (h->sps.poc_type == 0) {
  1518. h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb);
  1519. if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
  1520. h->delta_poc_bottom = get_se_golomb(&h->gb);
  1521. }
  1522. if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) {
  1523. h->delta_poc[0] = get_se_golomb(&h->gb);
  1524. if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME)
  1525. h->delta_poc[1] = get_se_golomb(&h->gb);
  1526. }
  1527. ff_init_poc(h, h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc);
  1528. if (h->pps.redundant_pic_cnt_present)
  1529. h->redundant_pic_count = get_ue_golomb(&h->gb);
  1530. ret = ff_set_ref_count(h);
  1531. if (ret < 0)
  1532. return ret;
  1533. if (slice_type != AV_PICTURE_TYPE_I &&
  1534. (h0->current_slice == 0 ||
  1535. slice_type != h0->last_slice_type ||
  1536. memcmp(h0->last_ref_count, h0->ref_count, sizeof(h0->ref_count)))) {
  1537. ff_h264_fill_default_ref_list(h);
  1538. }
  1539. if (h->slice_type_nos != AV_PICTURE_TYPE_I) {
  1540. ret = ff_h264_decode_ref_pic_list_reordering(h);
  1541. if (ret < 0) {
  1542. h->ref_count[1] = h->ref_count[0] = 0;
  1543. return ret;
  1544. }
  1545. }
  1546. if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) ||
  1547. (h->pps.weighted_bipred_idc == 1 &&
  1548. h->slice_type_nos == AV_PICTURE_TYPE_B))
  1549. ff_pred_weight_table(h);
  1550. else if (h->pps.weighted_bipred_idc == 2 &&
  1551. h->slice_type_nos == AV_PICTURE_TYPE_B) {
  1552. implicit_weight_table(h, -1);
  1553. } else {
  1554. h->use_weight = 0;
  1555. for (i = 0; i < 2; i++) {
  1556. h->luma_weight_flag[i] = 0;
  1557. h->chroma_weight_flag[i] = 0;
  1558. }
  1559. }
  1560. // If frame-mt is enabled, only update mmco tables for the first slice
  1561. // in a field. Subsequent slices can temporarily clobber h->mmco_index
  1562. // or h->mmco, which will cause ref list mix-ups and decoding errors
  1563. // further down the line. This may break decoding if the first slice is
  1564. // corrupt, thus we only do this if frame-mt is enabled.
  1565. if (h->nal_ref_idc) {
  1566. ret = ff_h264_decode_ref_pic_marking(h0, &h->gb,
  1567. !(h->avctx->active_thread_type & FF_THREAD_FRAME) ||
  1568. h0->current_slice == 0);
  1569. if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
  1570. return AVERROR_INVALIDDATA;
  1571. }
  1572. if (FRAME_MBAFF(h)) {
  1573. ff_h264_fill_mbaff_ref_list(h);
  1574. if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) {
  1575. implicit_weight_table(h, 0);
  1576. implicit_weight_table(h, 1);
  1577. }
  1578. }
  1579. if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred)
  1580. ff_h264_direct_dist_scale_factor(h);
  1581. ff_h264_direct_ref_list_init(h);
  1582. if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) {
  1583. tmp = get_ue_golomb_31(&h->gb);
  1584. if (tmp > 2) {
  1585. av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
  1586. return AVERROR_INVALIDDATA;
  1587. }
  1588. h->cabac_init_idc = tmp;
  1589. }
  1590. h->last_qscale_diff = 0;
  1591. tmp = h->pps.init_qp + get_se_golomb(&h->gb);
  1592. if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) {
  1593. av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  1594. return AVERROR_INVALIDDATA;
  1595. }
  1596. h->qscale = tmp;
  1597. h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
  1598. h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
  1599. // FIXME qscale / qp ... stuff
  1600. if (h->slice_type == AV_PICTURE_TYPE_SP)
  1601. get_bits1(&h->gb); /* sp_for_switch_flag */
  1602. if (h->slice_type == AV_PICTURE_TYPE_SP ||
  1603. h->slice_type == AV_PICTURE_TYPE_SI)
  1604. get_se_golomb(&h->gb); /* slice_qs_delta */
  1605. h->deblocking_filter = 1;
  1606. h->slice_alpha_c0_offset = 0;
  1607. h->slice_beta_offset = 0;
  1608. if (h->pps.deblocking_filter_parameters_present) {
  1609. tmp = get_ue_golomb_31(&h->gb);
  1610. if (tmp > 2) {
  1611. av_log(h->avctx, AV_LOG_ERROR,
  1612. "deblocking_filter_idc %u out of range\n", tmp);
  1613. return AVERROR_INVALIDDATA;
  1614. }
  1615. h->deblocking_filter = tmp;
  1616. if (h->deblocking_filter < 2)
  1617. h->deblocking_filter ^= 1; // 1<->0
  1618. if (h->deblocking_filter) {
  1619. h->slice_alpha_c0_offset = get_se_golomb(&h->gb) * 2;
  1620. h->slice_beta_offset = get_se_golomb(&h->gb) * 2;
  1621. if (h->slice_alpha_c0_offset > 12 ||
  1622. h->slice_alpha_c0_offset < -12 ||
  1623. h->slice_beta_offset > 12 ||
  1624. h->slice_beta_offset < -12) {
  1625. av_log(h->avctx, AV_LOG_ERROR,
  1626. "deblocking filter parameters %d %d out of range\n",
  1627. h->slice_alpha_c0_offset, h->slice_beta_offset);
  1628. return AVERROR_INVALIDDATA;
  1629. }
  1630. }
  1631. }
  1632. if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
  1633. (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
  1634. h->slice_type_nos != AV_PICTURE_TYPE_I) ||
  1635. (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
  1636. h->slice_type_nos == AV_PICTURE_TYPE_B) ||
  1637. (h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
  1638. h->nal_ref_idc == 0))
  1639. h->deblocking_filter = 0;
  1640. if (h->deblocking_filter == 1 && h0->max_contexts > 1) {
  1641. if (h->avctx->flags2 & CODEC_FLAG2_FAST) {
  1642. /* Cheat slightly for speed:
  1643. * Do not bother to deblock across slices. */
  1644. h->deblocking_filter = 2;
  1645. } else {
  1646. h0->max_contexts = 1;
  1647. if (!h0->single_decode_warning) {
  1648. av_log(h->avctx, AV_LOG_INFO,
  1649. "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  1650. h0->single_decode_warning = 1;
  1651. }
  1652. if (h != h0) {
  1653. av_log(h->avctx, AV_LOG_ERROR,
  1654. "Deblocking switched inside frame.\n");
  1655. return 1;
  1656. }
  1657. }
  1658. }
  1659. h->qp_thresh = 15 -
  1660. FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) -
  1661. FFMAX3(0,
  1662. h->pps.chroma_qp_index_offset[0],
  1663. h->pps.chroma_qp_index_offset[1]) +
  1664. 6 * (h->sps.bit_depth_luma - 8);
  1665. h0->last_slice_type = slice_type;
  1666. memcpy(h0->last_ref_count, h0->ref_count, sizeof(h0->last_ref_count));
  1667. h->slice_num = ++h0->current_slice;
  1668. if (h->slice_num)
  1669. h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= h->resync_mb_y;
  1670. if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= h->resync_mb_y
  1671. && h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= h->resync_mb_y
  1672. && h->slice_num >= MAX_SLICES) {
  1673. //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
  1674. av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES);
  1675. }
  1676. for (j = 0; j < 2; j++) {
  1677. int id_list[16];
  1678. int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j];
  1679. for (i = 0; i < 16; i++) {
  1680. id_list[i] = 60;
  1681. if (j < h->list_count && i < h->ref_count[j] &&
  1682. h->ref_list[j][i].f.buf[0]) {
  1683. int k;
  1684. AVBuffer *buf = h->ref_list[j][i].f.buf[0]->buffer;
  1685. for (k = 0; k < h->short_ref_count; k++)
  1686. if (h->short_ref[k]->f.buf[0]->buffer == buf) {
  1687. id_list[i] = k;
  1688. break;
  1689. }
  1690. for (k = 0; k < h->long_ref_count; k++)
  1691. if (h->long_ref[k] && h->long_ref[k]->f.buf[0]->buffer == buf) {
  1692. id_list[i] = h->short_ref_count + k;
  1693. break;
  1694. }
  1695. }
  1696. }
  1697. ref2frm[0] =
  1698. ref2frm[1] = -1;
  1699. for (i = 0; i < 16; i++)
  1700. ref2frm[i + 2] = 4 * id_list[i] + (h->ref_list[j][i].reference & 3);
  1701. ref2frm[18 + 0] =
  1702. ref2frm[18 + 1] = -1;
  1703. for (i = 16; i < 48; i++)
  1704. ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
  1705. (h->ref_list[j][i].reference & 3);
  1706. }
  1707. if (h->ref_count[0]) ff_h264_set_erpic(&h->er.last_pic, &h->ref_list[0][0]);
  1708. if (h->ref_count[1]) ff_h264_set_erpic(&h->er.next_pic, &h->ref_list[1][0]);
  1709. h->er.ref_count = h->ref_count[0];
  1710. h0->au_pps_id = pps_id;
  1711. h->sps.new =
  1712. h0->sps_buffers[h->pps.sps_id]->new = 0;
  1713. h->current_sps_id = h->pps.sps_id;
  1714. if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
  1715. av_log(h->avctx, AV_LOG_DEBUG,
  1716. "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  1717. h->slice_num,
  1718. (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
  1719. first_mb_in_slice,
  1720. av_get_picture_type_char(h->slice_type),
  1721. h->slice_type_fixed ? " fix" : "",
  1722. h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  1723. pps_id, h->frame_num,
  1724. h->cur_pic_ptr->field_poc[0],
  1725. h->cur_pic_ptr->field_poc[1],
  1726. h->ref_count[0], h->ref_count[1],
  1727. h->qscale,
  1728. h->deblocking_filter,
  1729. h->slice_alpha_c0_offset, h->slice_beta_offset,
  1730. h->use_weight,
  1731. h->use_weight == 1 && h->use_weight_chroma ? "c" : "",
  1732. h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
  1733. }
  1734. return 0;
  1735. }
  1736. int ff_h264_get_slice_type(const H264Context *h)
  1737. {
  1738. switch (h->slice_type) {
  1739. case AV_PICTURE_TYPE_P:
  1740. return 0;
  1741. case AV_PICTURE_TYPE_B:
  1742. return 1;
  1743. case AV_PICTURE_TYPE_I:
  1744. return 2;
  1745. case AV_PICTURE_TYPE_SP:
  1746. return 3;
  1747. case AV_PICTURE_TYPE_SI:
  1748. return 4;
  1749. default:
  1750. return AVERROR_INVALIDDATA;
  1751. }
  1752. }
  1753. static av_always_inline void fill_filter_caches_inter(H264Context *h,
  1754. int mb_type, int top_xy,
  1755. int left_xy[LEFT_MBS],
  1756. int top_type,
  1757. int left_type[LEFT_MBS],
  1758. int mb_xy, int list)
  1759. {
  1760. int b_stride = h->b_stride;
  1761. int16_t(*mv_dst)[2] = &h->mv_cache[list][scan8[0]];
  1762. int8_t *ref_cache = &h->ref_cache[list][scan8[0]];
  1763. if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
  1764. if (USES_LIST(top_type, list)) {
  1765. const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
  1766. const int b8_xy = 4 * top_xy + 2;
  1767. int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
  1768. AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
  1769. ref_cache[0 - 1 * 8] =
  1770. ref_cache[1 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 0]];
  1771. ref_cache[2 - 1 * 8] =
  1772. ref_cache[3 - 1 * 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 1]];
  1773. } else {
  1774. AV_ZERO128(mv_dst - 1 * 8);
  1775. AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1776. }
  1777. if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
  1778. if (USES_LIST(left_type[LTOP], list)) {
  1779. const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
  1780. const int b8_xy = 4 * left_xy[LTOP] + 1;
  1781. int (*ref2frm)[64] =(void*)( h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
  1782. AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
  1783. AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
  1784. AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
  1785. AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
  1786. ref_cache[-1 + 0] =
  1787. ref_cache[-1 + 8] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
  1788. ref_cache[-1 + 16] =
  1789. ref_cache[-1 + 24] = ref2frm[list][h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
  1790. } else {
  1791. AV_ZERO32(mv_dst - 1 + 0);
  1792. AV_ZERO32(mv_dst - 1 + 8);
  1793. AV_ZERO32(mv_dst - 1 + 16);
  1794. AV_ZERO32(mv_dst - 1 + 24);
  1795. ref_cache[-1 + 0] =
  1796. ref_cache[-1 + 8] =
  1797. ref_cache[-1 + 16] =
  1798. ref_cache[-1 + 24] = LIST_NOT_USED;
  1799. }
  1800. }
  1801. }
  1802. if (!USES_LIST(mb_type, list)) {
  1803. fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
  1804. AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1805. AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1806. AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1807. AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
  1808. return;
  1809. }
  1810. {
  1811. int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
  1812. int (*ref2frm)[64] = (void*)(h->ref2frm[h->slice_num & (MAX_SLICES - 1)][0] + (MB_MBAFF(h) ? 20 : 2));
  1813. uint32_t ref01 = (pack16to32(ref2frm[list][ref[0]], ref2frm[list][ref[1]]) & 0x00FF00FF) * 0x0101;
  1814. uint32_t ref23 = (pack16to32(ref2frm[list][ref[2]], ref2frm[list][ref[3]]) & 0x00FF00FF) * 0x0101;
  1815. AV_WN32A(&ref_cache[0 * 8], ref01);
  1816. AV_WN32A(&ref_cache[1 * 8], ref01);
  1817. AV_WN32A(&ref_cache[2 * 8], ref23);
  1818. AV_WN32A(&ref_cache[3 * 8], ref23);
  1819. }
  1820. {
  1821. int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * h->mb_x + 4 * h->mb_y * b_stride];
  1822. AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
  1823. AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
  1824. AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
  1825. AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
  1826. }
  1827. }
  1828. /**
  1829. *
  1830. * @return non zero if the loop filter can be skipped
  1831. */
  1832. static int fill_filter_caches(H264Context *h, int mb_type)
  1833. {
  1834. const int mb_xy = h->mb_xy;
  1835. int top_xy, left_xy[LEFT_MBS];
  1836. int top_type, left_type[LEFT_MBS];
  1837. uint8_t *nnz;
  1838. uint8_t *nnz_cache;
  1839. top_xy = mb_xy - (h->mb_stride << MB_FIELD(h));
  1840. /* Wow, what a mess, why didn't they simplify the interlacing & intra
  1841. * stuff, I can't imagine that these complex rules are worth it. */
  1842. left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
  1843. if (FRAME_MBAFF(h)) {
  1844. const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
  1845. const int curr_mb_field_flag = IS_INTERLACED(mb_type);
  1846. if (h->mb_y & 1) {
  1847. if (left_mb_field_flag != curr_mb_field_flag)
  1848. left_xy[LTOP] -= h->mb_stride;
  1849. } else {
  1850. if (curr_mb_field_flag)
  1851. top_xy += h->mb_stride &
  1852. (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
  1853. if (left_mb_field_flag != curr_mb_field_flag)
  1854. left_xy[LBOT] += h->mb_stride;
  1855. }
  1856. }
  1857. h->top_mb_xy = top_xy;
  1858. h->left_mb_xy[LTOP] = left_xy[LTOP];
  1859. h->left_mb_xy[LBOT] = left_xy[LBOT];
  1860. {
  1861. /* For sufficiently low qp, filtering wouldn't do anything.
  1862. * This is a conservative estimate: could also check beta_offset
  1863. * and more accurate chroma_qp. */
  1864. int qp_thresh = h->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
  1865. int qp = h->cur_pic.qscale_table[mb_xy];
  1866. if (qp <= qp_thresh &&
  1867. (left_xy[LTOP] < 0 ||
  1868. ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
  1869. (top_xy < 0 ||
  1870. ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
  1871. if (!FRAME_MBAFF(h))
  1872. return 1;
  1873. if ((left_xy[LTOP] < 0 ||
  1874. ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
  1875. (top_xy < h->mb_stride ||
  1876. ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
  1877. return 1;
  1878. }
  1879. }
  1880. top_type = h->cur_pic.mb_type[top_xy];
  1881. left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
  1882. left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
  1883. if (h->deblocking_filter == 2) {
  1884. if (h->slice_table[top_xy] != h->slice_num)
  1885. top_type = 0;
  1886. if (h->slice_table[left_xy[LBOT]] != h->slice_num)
  1887. left_type[LTOP] = left_type[LBOT] = 0;
  1888. } else {
  1889. if (h->slice_table[top_xy] == 0xFFFF)
  1890. top_type = 0;
  1891. if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
  1892. left_type[LTOP] = left_type[LBOT] = 0;
  1893. }
  1894. h->top_type = top_type;
  1895. h->left_type[LTOP] = left_type[LTOP];
  1896. h->left_type[LBOT] = left_type[LBOT];
  1897. if (IS_INTRA(mb_type))
  1898. return 0;
  1899. fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
  1900. top_type, left_type, mb_xy, 0);
  1901. if (h->list_count == 2)
  1902. fill_filter_caches_inter(h, mb_type, top_xy, left_xy,
  1903. top_type, left_type, mb_xy, 1);
  1904. nnz = h->non_zero_count[mb_xy];
  1905. nnz_cache = h->non_zero_count_cache;
  1906. AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
  1907. AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
  1908. AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
  1909. AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
  1910. h->cbp = h->cbp_table[mb_xy];
  1911. if (top_type) {
  1912. nnz = h->non_zero_count[top_xy];
  1913. AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
  1914. }
  1915. if (left_type[LTOP]) {
  1916. nnz = h->non_zero_count[left_xy[LTOP]];
  1917. nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
  1918. nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
  1919. nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
  1920. nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
  1921. }
  1922. /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
  1923. * from what the loop filter needs */
  1924. if (!CABAC(h) && h->pps.transform_8x8_mode) {
  1925. if (IS_8x8DCT(top_type)) {
  1926. nnz_cache[4 + 8 * 0] =
  1927. nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
  1928. nnz_cache[6 + 8 * 0] =
  1929. nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
  1930. }
  1931. if (IS_8x8DCT(left_type[LTOP])) {
  1932. nnz_cache[3 + 8 * 1] =
  1933. nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
  1934. }
  1935. if (IS_8x8DCT(left_type[LBOT])) {
  1936. nnz_cache[3 + 8 * 3] =
  1937. nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
  1938. }
  1939. if (IS_8x8DCT(mb_type)) {
  1940. nnz_cache[scan8[0]] =
  1941. nnz_cache[scan8[1]] =
  1942. nnz_cache[scan8[2]] =
  1943. nnz_cache[scan8[3]] = (h->cbp & 0x1000) >> 12;
  1944. nnz_cache[scan8[0 + 4]] =
  1945. nnz_cache[scan8[1 + 4]] =
  1946. nnz_cache[scan8[2 + 4]] =
  1947. nnz_cache[scan8[3 + 4]] = (h->cbp & 0x2000) >> 12;
  1948. nnz_cache[scan8[0 + 8]] =
  1949. nnz_cache[scan8[1 + 8]] =
  1950. nnz_cache[scan8[2 + 8]] =
  1951. nnz_cache[scan8[3 + 8]] = (h->cbp & 0x4000) >> 12;
  1952. nnz_cache[scan8[0 + 12]] =
  1953. nnz_cache[scan8[1 + 12]] =
  1954. nnz_cache[scan8[2 + 12]] =
  1955. nnz_cache[scan8[3 + 12]] = (h->cbp & 0x8000) >> 12;
  1956. }
  1957. }
  1958. return 0;
  1959. }
  1960. static void loop_filter(H264Context *h, int start_x, int end_x)
  1961. {
  1962. uint8_t *dest_y, *dest_cb, *dest_cr;
  1963. int linesize, uvlinesize, mb_x, mb_y;
  1964. const int end_mb_y = h->mb_y + FRAME_MBAFF(h);
  1965. const int old_slice_type = h->slice_type;
  1966. const int pixel_shift = h->pixel_shift;
  1967. const int block_h = 16 >> h->chroma_y_shift;
  1968. if (h->deblocking_filter) {
  1969. for (mb_x = start_x; mb_x < end_x; mb_x++)
  1970. for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
  1971. int mb_xy, mb_type;
  1972. mb_xy = h->mb_xy = mb_x + mb_y * h->mb_stride;
  1973. h->slice_num = h->slice_table[mb_xy];
  1974. mb_type = h->cur_pic.mb_type[mb_xy];
  1975. h->list_count = h->list_counts[mb_xy];
  1976. if (FRAME_MBAFF(h))
  1977. h->mb_mbaff =
  1978. h->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
  1979. h->mb_x = mb_x;
  1980. h->mb_y = mb_y;
  1981. dest_y = h->cur_pic.f.data[0] +
  1982. ((mb_x << pixel_shift) + mb_y * h->linesize) * 16;
  1983. dest_cb = h->cur_pic.f.data[1] +
  1984. (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
  1985. mb_y * h->uvlinesize * block_h;
  1986. dest_cr = h->cur_pic.f.data[2] +
  1987. (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
  1988. mb_y * h->uvlinesize * block_h;
  1989. // FIXME simplify above
  1990. if (MB_FIELD(h)) {
  1991. linesize = h->mb_linesize = h->linesize * 2;
  1992. uvlinesize = h->mb_uvlinesize = h->uvlinesize * 2;
  1993. if (mb_y & 1) { // FIXME move out of this function?
  1994. dest_y -= h->linesize * 15;
  1995. dest_cb -= h->uvlinesize * (block_h - 1);
  1996. dest_cr -= h->uvlinesize * (block_h - 1);
  1997. }
  1998. } else {
  1999. linesize = h->mb_linesize = h->linesize;
  2000. uvlinesize = h->mb_uvlinesize = h->uvlinesize;
  2001. }
  2002. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize,
  2003. uvlinesize, 0);
  2004. if (fill_filter_caches(h, mb_type))
  2005. continue;
  2006. h->chroma_qp[0] = get_chroma_qp(h, 0, h->cur_pic.qscale_table[mb_xy]);
  2007. h->chroma_qp[1] = get_chroma_qp(h, 1, h->cur_pic.qscale_table[mb_xy]);
  2008. if (FRAME_MBAFF(h)) {
  2009. ff_h264_filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr,
  2010. linesize, uvlinesize);
  2011. } else {
  2012. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb,
  2013. dest_cr, linesize, uvlinesize);
  2014. }
  2015. }
  2016. }
  2017. h->slice_type = old_slice_type;
  2018. h->mb_x = end_x;
  2019. h->mb_y = end_mb_y - FRAME_MBAFF(h);
  2020. h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale);
  2021. h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale);
  2022. }
  2023. static void predict_field_decoding_flag(H264Context *h)
  2024. {
  2025. const int mb_xy = h->mb_x + h->mb_y * h->mb_stride;
  2026. int mb_type = (h->slice_table[mb_xy - 1] == h->slice_num) ?
  2027. h->cur_pic.mb_type[mb_xy - 1] :
  2028. (h->slice_table[mb_xy - h->mb_stride] == h->slice_num) ?
  2029. h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
  2030. h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
  2031. }
  2032. /**
  2033. * Draw edges and report progress for the last MB row.
  2034. */
  2035. static void decode_finish_row(H264Context *h)
  2036. {
  2037. int top = 16 * (h->mb_y >> FIELD_PICTURE(h));
  2038. int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
  2039. int height = 16 << FRAME_MBAFF(h);
  2040. int deblock_border = (16 + 4) << FRAME_MBAFF(h);
  2041. if (h->deblocking_filter) {
  2042. if ((top + height) >= pic_height)
  2043. height += deblock_border;
  2044. top -= deblock_border;
  2045. }
  2046. if (top >= pic_height || (top + height) < 0)
  2047. return;
  2048. height = FFMIN(height, pic_height - top);
  2049. if (top < 0) {
  2050. height = top + height;
  2051. top = 0;
  2052. }
  2053. ff_h264_draw_horiz_band(h, top, height);
  2054. if (h->droppable || h->er.error_occurred)
  2055. return;
  2056. ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
  2057. h->picture_structure == PICT_BOTTOM_FIELD);
  2058. }
  2059. static void er_add_slice(H264Context *h, int startx, int starty,
  2060. int endx, int endy, int status)
  2061. {
  2062. if (CONFIG_ERROR_RESILIENCE) {
  2063. ERContext *er = &h->er;
  2064. ff_er_add_slice(er, startx, starty, endx, endy, status);
  2065. }
  2066. }
  2067. static int decode_slice(struct AVCodecContext *avctx, void *arg)
  2068. {
  2069. H264Context *h = *(void **)arg;
  2070. int lf_x_start = h->mb_x;
  2071. h->mb_skip_run = -1;
  2072. av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * h->linesize * ((scan8[15] - scan8[0]) >> 3));
  2073. h->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
  2074. avctx->codec_id != AV_CODEC_ID_H264 ||
  2075. (CONFIG_GRAY && (h->flags & CODEC_FLAG_GRAY));
  2076. if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->er.error_status_table) {
  2077. const int start_i = av_clip(h->resync_mb_x + h->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
  2078. if (start_i) {
  2079. int prev_status = h->er.error_status_table[h->er.mb_index2xy[start_i - 1]];
  2080. prev_status &= ~ VP_START;
  2081. if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
  2082. h->er.error_occurred = 1;
  2083. }
  2084. }
  2085. if (h->pps.cabac) {
  2086. /* realign */
  2087. align_get_bits(&h->gb);
  2088. /* init cabac */
  2089. ff_init_cabac_decoder(&h->cabac,
  2090. h->gb.buffer + get_bits_count(&h->gb) / 8,
  2091. (get_bits_left(&h->gb) + 7) / 8);
  2092. ff_h264_init_cabac_states(h);
  2093. for (;;) {
  2094. // START_TIMER
  2095. int ret = ff_h264_decode_mb_cabac(h);
  2096. int eos;
  2097. // STOP_TIMER("decode_mb_cabac")
  2098. if (ret >= 0)
  2099. ff_h264_hl_decode_mb(h);
  2100. // FIXME optimal? or let mb_decode decode 16x32 ?
  2101. if (ret >= 0 && FRAME_MBAFF(h)) {
  2102. h->mb_y++;
  2103. ret = ff_h264_decode_mb_cabac(h);
  2104. if (ret >= 0)
  2105. ff_h264_hl_decode_mb(h);
  2106. h->mb_y--;
  2107. }
  2108. eos = get_cabac_terminate(&h->cabac);
  2109. if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
  2110. h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  2111. er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
  2112. h->mb_y, ER_MB_END);
  2113. if (h->mb_x >= lf_x_start)
  2114. loop_filter(h, lf_x_start, h->mb_x + 1);
  2115. return 0;
  2116. }
  2117. if (h->cabac.bytestream > h->cabac.bytestream_end + 2 )
  2118. av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", h->cabac.bytestream_end - h->cabac.bytestream);
  2119. if (ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 4) {
  2120. av_log(h->avctx, AV_LOG_ERROR,
  2121. "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
  2122. h->mb_x, h->mb_y,
  2123. h->cabac.bytestream_end - h->cabac.bytestream);
  2124. er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
  2125. h->mb_y, ER_MB_ERROR);
  2126. return AVERROR_INVALIDDATA;
  2127. }
  2128. if (++h->mb_x >= h->mb_width) {
  2129. loop_filter(h, lf_x_start, h->mb_x);
  2130. h->mb_x = lf_x_start = 0;
  2131. decode_finish_row(h);
  2132. ++h->mb_y;
  2133. if (FIELD_OR_MBAFF_PICTURE(h)) {
  2134. ++h->mb_y;
  2135. if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
  2136. predict_field_decoding_flag(h);
  2137. }
  2138. }
  2139. if (eos || h->mb_y >= h->mb_height) {
  2140. tprintf(h->avctx, "slice end %d %d\n",
  2141. get_bits_count(&h->gb), h->gb.size_in_bits);
  2142. er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x - 1,
  2143. h->mb_y, ER_MB_END);
  2144. if (h->mb_x > lf_x_start)
  2145. loop_filter(h, lf_x_start, h->mb_x);
  2146. return 0;
  2147. }
  2148. }
  2149. } else {
  2150. for (;;) {
  2151. int ret = ff_h264_decode_mb_cavlc(h);
  2152. if (ret >= 0)
  2153. ff_h264_hl_decode_mb(h);
  2154. // FIXME optimal? or let mb_decode decode 16x32 ?
  2155. if (ret >= 0 && FRAME_MBAFF(h)) {
  2156. h->mb_y++;
  2157. ret = ff_h264_decode_mb_cavlc(h);
  2158. if (ret >= 0)
  2159. ff_h264_hl_decode_mb(h);
  2160. h->mb_y--;
  2161. }
  2162. if (ret < 0) {
  2163. av_log(h->avctx, AV_LOG_ERROR,
  2164. "error while decoding MB %d %d\n", h->mb_x, h->mb_y);
  2165. er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
  2166. h->mb_y, ER_MB_ERROR);
  2167. return ret;
  2168. }
  2169. if (++h->mb_x >= h->mb_width) {
  2170. loop_filter(h, lf_x_start, h->mb_x);
  2171. h->mb_x = lf_x_start = 0;
  2172. decode_finish_row(h);
  2173. ++h->mb_y;
  2174. if (FIELD_OR_MBAFF_PICTURE(h)) {
  2175. ++h->mb_y;
  2176. if (FRAME_MBAFF(h) && h->mb_y < h->mb_height)
  2177. predict_field_decoding_flag(h);
  2178. }
  2179. if (h->mb_y >= h->mb_height) {
  2180. tprintf(h->avctx, "slice end %d %d\n",
  2181. get_bits_count(&h->gb), h->gb.size_in_bits);
  2182. if ( get_bits_left(&h->gb) == 0
  2183. || get_bits_left(&h->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
  2184. er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
  2185. h->mb_x - 1, h->mb_y,
  2186. ER_MB_END);
  2187. return 0;
  2188. } else {
  2189. er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
  2190. h->mb_x, h->mb_y,
  2191. ER_MB_END);
  2192. return AVERROR_INVALIDDATA;
  2193. }
  2194. }
  2195. }
  2196. if (get_bits_left(&h->gb) <= 0 && h->mb_skip_run <= 0) {
  2197. tprintf(h->avctx, "slice end %d %d\n",
  2198. get_bits_count(&h->gb), h->gb.size_in_bits);
  2199. if (get_bits_left(&h->gb) == 0) {
  2200. er_add_slice(h, h->resync_mb_x, h->resync_mb_y,
  2201. h->mb_x - 1, h->mb_y,
  2202. ER_MB_END);
  2203. if (h->mb_x > lf_x_start)
  2204. loop_filter(h, lf_x_start, h->mb_x);
  2205. return 0;
  2206. } else {
  2207. er_add_slice(h, h->resync_mb_x, h->resync_mb_y, h->mb_x,
  2208. h->mb_y, ER_MB_ERROR);
  2209. return AVERROR_INVALIDDATA;
  2210. }
  2211. }
  2212. }
  2213. }
  2214. }
  2215. /**
  2216. * Call decode_slice() for each context.
  2217. *
  2218. * @param h h264 master context
  2219. * @param context_count number of contexts to execute
  2220. */
  2221. int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count)
  2222. {
  2223. AVCodecContext *const avctx = h->avctx;
  2224. H264Context *hx;
  2225. int i;
  2226. av_assert0(h->mb_y < h->mb_height);
  2227. if (h->avctx->hwaccel ||
  2228. h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU)
  2229. return 0;
  2230. if (context_count == 1) {
  2231. return decode_slice(avctx, &h);
  2232. } else {
  2233. av_assert0(context_count > 0);
  2234. for (i = 1; i < context_count; i++) {
  2235. hx = h->thread_context[i];
  2236. if (CONFIG_ERROR_RESILIENCE) {
  2237. hx->er.error_count = 0;
  2238. }
  2239. hx->x264_build = h->x264_build;
  2240. }
  2241. avctx->execute(avctx, decode_slice, h->thread_context,
  2242. NULL, context_count, sizeof(void *));
  2243. /* pull back stuff from slices to master context */
  2244. hx = h->thread_context[context_count - 1];
  2245. h->mb_x = hx->mb_x;
  2246. h->mb_y = hx->mb_y;
  2247. h->droppable = hx->droppable;
  2248. h->picture_structure = hx->picture_structure;
  2249. if (CONFIG_ERROR_RESILIENCE) {
  2250. for (i = 1; i < context_count; i++)
  2251. h->er.error_count += h->thread_context[i]->er.error_count;
  2252. }
  2253. }
  2254. return 0;
  2255. }