You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

828 lines
27KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. /**
  21. * @file ratecontrol.c
  22. * Rate control for video encoders.
  23. */
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #include "mpegvideo.h"
  27. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  28. #include <assert.h>
  29. #ifndef M_E
  30. #define M_E 2.718281828
  31. #endif
  32. static int init_pass2(MpegEncContext *s);
  33. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  34. void ff_write_pass1_stats(MpegEncContext *s){
  35. sprintf(s->avctx->stats_out, "in:%d out:%d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
  36. s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type,
  37. s->frame_qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  38. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count);
  39. }
  40. int ff_rate_control_init(MpegEncContext *s)
  41. {
  42. RateControlContext *rcc= &s->rc_context;
  43. int i;
  44. emms_c();
  45. for(i=0; i<5; i++){
  46. rcc->pred[i].coeff= 7.0;
  47. rcc->pred[i].count= 1.0;
  48. rcc->pred[i].decay= 0.4;
  49. rcc->i_cplx_sum [i]=
  50. rcc->p_cplx_sum [i]=
  51. rcc->mv_bits_sum[i]=
  52. rcc->qscale_sum [i]=
  53. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  54. rcc->last_qscale_for[i]=5;
  55. }
  56. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  57. if(s->flags&CODEC_FLAG_PASS2){
  58. int i;
  59. char *p;
  60. /* find number of pics */
  61. p= s->avctx->stats_in;
  62. for(i=-1; p; i++){
  63. p= strchr(p+1, ';');
  64. }
  65. i+= s->max_b_frames;
  66. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  67. rcc->num_entries= i;
  68. /* init all to skiped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  69. for(i=0; i<rcc->num_entries; i++){
  70. RateControlEntry *rce= &rcc->entry[i];
  71. rce->pict_type= rce->new_pict_type=P_TYPE;
  72. rce->qscale= rce->new_qscale=2;
  73. rce->misc_bits= s->mb_num + 10;
  74. rce->mb_var_sum= s->mb_num*100;
  75. }
  76. /* read stats */
  77. p= s->avctx->stats_in;
  78. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  79. RateControlEntry *rce;
  80. int picture_number;
  81. int e;
  82. char *next;
  83. next= strchr(p, ';');
  84. if(next){
  85. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  86. next++;
  87. }
  88. e= sscanf(p, " in:%d ", &picture_number);
  89. assert(picture_number >= 0);
  90. assert(picture_number < rcc->num_entries);
  91. rce= &rcc->entry[picture_number];
  92. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
  93. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  94. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
  95. if(e!=12){
  96. fprintf(stderr, "statistics are damaged at line %d, parser out=%d\n", i, e);
  97. return -1;
  98. }
  99. p= next;
  100. }
  101. if(init_pass2(s) < 0) return -1;
  102. }
  103. if(!(s->flags&CODEC_FLAG_PASS2)){
  104. rcc->short_term_qsum=0.001;
  105. rcc->short_term_qcount=0.001;
  106. rcc->pass1_rc_eq_output_sum= 0.001;
  107. rcc->pass1_wanted_bits=0.001;
  108. /* init stuff with the user specified complexity */
  109. if(s->avctx->rc_initial_cplx){
  110. for(i=0; i<60*30; i++){
  111. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  112. RateControlEntry rce;
  113. double q;
  114. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  115. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  116. else rce.pict_type= P_TYPE;
  117. rce.new_pict_type= rce.pict_type;
  118. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  119. rce.mb_var_sum = s->mb_num;
  120. rce.qscale = 2;
  121. rce.f_code = 2;
  122. rce.b_code = 1;
  123. rce.misc_bits= 1;
  124. if(s->pict_type== I_TYPE){
  125. rce.i_count = s->mb_num;
  126. rce.i_tex_bits= bits;
  127. rce.p_tex_bits= 0;
  128. rce.mv_bits= 0;
  129. }else{
  130. rce.i_count = 0; //FIXME we do know this approx
  131. rce.i_tex_bits= 0;
  132. rce.p_tex_bits= bits*0.9;
  133. rce.mv_bits= bits*0.1;
  134. }
  135. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  136. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  137. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  138. rcc->frame_count[rce.pict_type] ++;
  139. bits= rce.i_tex_bits + rce.p_tex_bits;
  140. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  141. rcc->pass1_wanted_bits+= s->bit_rate/(s->avctx->frame_rate / (double)s->avctx->frame_rate_base);
  142. }
  143. }
  144. }
  145. return 0;
  146. }
  147. void ff_rate_control_uninit(MpegEncContext *s)
  148. {
  149. RateControlContext *rcc= &s->rc_context;
  150. emms_c();
  151. av_freep(&rcc->entry);
  152. }
  153. static inline double qp2bits(RateControlEntry *rce, double qp){
  154. if(qp<=0.0){
  155. fprintf(stderr, "qp<=0.0\n");
  156. }
  157. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  158. }
  159. static inline double bits2qp(RateControlEntry *rce, double bits){
  160. if(bits<0.9){
  161. fprintf(stderr, "bits<0.9\n");
  162. }
  163. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  164. }
  165. static void update_rc_buffer(MpegEncContext *s, int frame_size){
  166. RateControlContext *rcc= &s->rc_context;
  167. const double fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base;
  168. const double buffer_size= s->avctx->rc_buffer_size;
  169. const double min_rate= s->avctx->rc_min_rate/fps;
  170. const double max_rate= s->avctx->rc_max_rate/fps;
  171. if(buffer_size){
  172. rcc->buffer_index-= frame_size;
  173. if(rcc->buffer_index < buffer_size/2 /*FIXME /2 */ || min_rate==0){
  174. rcc->buffer_index+= max_rate;
  175. if(rcc->buffer_index >= buffer_size)
  176. rcc->buffer_index= buffer_size-1;
  177. }else{
  178. rcc->buffer_index+= min_rate;
  179. }
  180. if(rcc->buffer_index < 0)
  181. fprintf(stderr, "rc buffer underflow\n");
  182. if(rcc->buffer_index >= s->avctx->rc_buffer_size)
  183. fprintf(stderr, "rc buffer overflow\n");
  184. }
  185. }
  186. /**
  187. * modifies the bitrate curve from pass1 for one frame
  188. */
  189. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  190. RateControlContext *rcc= &s->rc_context;
  191. double q, bits;
  192. const int pict_type= rce->new_pict_type;
  193. const double mb_num= s->mb_num;
  194. int i;
  195. double const_values[]={
  196. M_PI,
  197. M_E,
  198. rce->i_tex_bits*rce->qscale,
  199. rce->p_tex_bits*rce->qscale,
  200. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  201. rce->mv_bits/mb_num,
  202. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  203. rce->i_count/mb_num,
  204. rce->mc_mb_var_sum/mb_num,
  205. rce->mb_var_sum/mb_num,
  206. rce->pict_type == I_TYPE,
  207. rce->pict_type == P_TYPE,
  208. rce->pict_type == B_TYPE,
  209. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  210. s->qcompress,
  211. /* rcc->last_qscale_for[I_TYPE],
  212. rcc->last_qscale_for[P_TYPE],
  213. rcc->last_qscale_for[B_TYPE],
  214. rcc->next_non_b_qscale,*/
  215. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  216. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  217. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  218. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  219. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  220. 0
  221. };
  222. static const char *const_names[]={
  223. "PI",
  224. "E",
  225. "iTex",
  226. "pTex",
  227. "tex",
  228. "mv",
  229. "fCode",
  230. "iCount",
  231. "mcVar",
  232. "var",
  233. "isI",
  234. "isP",
  235. "isB",
  236. "avgQP",
  237. "qComp",
  238. /* "lastIQP",
  239. "lastPQP",
  240. "lastBQP",
  241. "nextNonBQP",*/
  242. "avgIITex",
  243. "avgPITex",
  244. "avgPPTex",
  245. "avgBPTex",
  246. "avgTex",
  247. NULL
  248. };
  249. static double (*func1[])(void *, double)={
  250. (void *)bits2qp,
  251. (void *)qp2bits,
  252. NULL
  253. };
  254. static const char *func1_names[]={
  255. "bits2qp",
  256. "qp2bits",
  257. NULL
  258. };
  259. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  260. rcc->pass1_rc_eq_output_sum+= bits;
  261. bits*=rate_factor;
  262. if(bits<0.0) bits=0.0;
  263. bits+= 1.0; //avoid 1/0 issues
  264. /* user override */
  265. for(i=0; i<s->avctx->rc_override_count; i++){
  266. RcOverride *rco= s->avctx->rc_override;
  267. if(rco[i].start_frame > frame_num) continue;
  268. if(rco[i].end_frame < frame_num) continue;
  269. if(rco[i].qscale)
  270. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  271. else
  272. bits*= rco[i].quality_factor;
  273. }
  274. q= bits2qp(rce, bits);
  275. /* I/B difference */
  276. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  277. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  278. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  279. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  280. return q;
  281. }
  282. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  283. RateControlContext *rcc= &s->rc_context;
  284. AVCodecContext *a= s->avctx;
  285. const int pict_type= rce->new_pict_type;
  286. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  287. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  288. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  289. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  290. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  291. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  292. /* last qscale / qdiff stuff */
  293. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  294. double last_q= rcc->last_qscale_for[pict_type];
  295. if (q > last_q + a->max_qdiff) q= last_q + a->max_qdiff;
  296. else if(q < last_q - a->max_qdiff) q= last_q - a->max_qdiff;
  297. }
  298. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  299. if(pict_type!=B_TYPE)
  300. rcc->last_non_b_pict_type= pict_type;
  301. return q;
  302. }
  303. /**
  304. * gets the qmin & qmax for pict_type
  305. */
  306. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  307. int qmin= s->qmin;
  308. int qmax= s->qmax;
  309. if(pict_type==B_TYPE){
  310. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  311. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  312. }else if(pict_type==I_TYPE){
  313. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  314. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  315. }
  316. if(qmin<1) qmin=1;
  317. if(qmin==1 && s->qmin>1) qmin=2; //avoid qmin=1 unless the user wants qmin=1
  318. if(qmin<3 && s->max_qcoeff<=128 && pict_type==I_TYPE) qmin=3; //reduce cliping problems
  319. if(qmax>31) qmax=31;
  320. if(qmax<=qmin) qmax= qmin= (qmax+qmin+1)>>1;
  321. *qmin_ret= qmin;
  322. *qmax_ret= qmax;
  323. }
  324. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  325. RateControlContext *rcc= &s->rc_context;
  326. int qmin, qmax;
  327. double bits;
  328. const int pict_type= rce->new_pict_type;
  329. const double buffer_size= s->avctx->rc_buffer_size;
  330. const double min_rate= s->avctx->rc_min_rate;
  331. const double max_rate= s->avctx->rc_max_rate;
  332. get_qminmax(&qmin, &qmax, s, pict_type);
  333. /* modulation */
  334. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  335. q*= s->avctx->rc_qmod_amp;
  336. bits= qp2bits(rce, q);
  337. //printf("q:%f\n", q);
  338. /* buffer overflow/underflow protection */
  339. if(buffer_size){
  340. double expected_size= rcc->buffer_index;
  341. if(min_rate){
  342. double d= 2*(buffer_size - expected_size)/buffer_size;
  343. if(d>1.0) d=1.0;
  344. else if(d<0.0001) d=0.0001;
  345. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  346. q= FFMIN(q, bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*2, 1)));
  347. }
  348. if(max_rate){
  349. double d= 2*expected_size/buffer_size;
  350. if(d>1.0) d=1.0;
  351. else if(d<0.0001) d=0.0001;
  352. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  353. q= FFMAX(q, bits2qp(rce, FFMAX(rcc->buffer_index/2, 1)));
  354. }
  355. }
  356. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  357. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  358. if (q<qmin) q=qmin;
  359. else if(q>qmax) q=qmax;
  360. }else{
  361. double min2= log(qmin);
  362. double max2= log(qmax);
  363. q= log(q);
  364. q= (q - min2)/(max2-min2) - 0.5;
  365. q*= -4.0;
  366. q= 1.0/(1.0 + exp(q));
  367. q= q*(max2-min2) + min2;
  368. q= exp(q);
  369. }
  370. return q;
  371. }
  372. //----------------------------------
  373. // 1 Pass Code
  374. static double predict_size(Predictor *p, double q, double var)
  375. {
  376. return p->coeff*var / (q*p->count);
  377. }
  378. /*
  379. static double predict_qp(Predictor *p, double size, double var)
  380. {
  381. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  382. return p->coeff*var / (size*p->count);
  383. }
  384. */
  385. static void update_predictor(Predictor *p, double q, double var, double size)
  386. {
  387. double new_coeff= size*q / (var + 1);
  388. if(var<10) return;
  389. p->count*= p->decay;
  390. p->coeff*= p->decay;
  391. p->count++;
  392. p->coeff+= new_coeff;
  393. }
  394. static void adaptive_quantization(MpegEncContext *s, double q){
  395. int i;
  396. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  397. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  398. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  399. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  400. const float p_masking = s->avctx->p_masking;
  401. float bits_sum= 0.0;
  402. float cplx_sum= 0.0;
  403. float cplx_tab[s->mb_num];
  404. float bits_tab[s->mb_num];
  405. const int qmin= s->avctx->mb_qmin;
  406. const int qmax= s->avctx->mb_qmax;
  407. Picture * const pic= &s->current_picture;
  408. for(i=0; i<s->mb_num; i++){
  409. float temp_cplx= sqrt(pic->mc_mb_var[i]);
  410. float spat_cplx= sqrt(pic->mb_var[i]);
  411. const int lumi= pic->mb_mean[i];
  412. float bits, cplx, factor;
  413. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  414. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  415. if((s->mb_type[i]&MB_TYPE_INTRA)){//FIXME hq mode
  416. cplx= spat_cplx;
  417. factor= 1.0 + p_masking;
  418. }else{
  419. cplx= temp_cplx;
  420. factor= pow(temp_cplx, - temp_cplx_masking);
  421. }
  422. factor*=pow(spat_cplx, - spatial_cplx_masking);
  423. if(lumi>127)
  424. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  425. else
  426. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  427. if(factor<0.00001) factor= 0.00001;
  428. bits= cplx*factor;
  429. cplx_sum+= cplx;
  430. bits_sum+= bits;
  431. cplx_tab[i]= cplx;
  432. bits_tab[i]= bits;
  433. }
  434. /* handle qmin/qmax cliping */
  435. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  436. for(i=0; i<s->mb_num; i++){
  437. float newq= q*cplx_tab[i]/bits_tab[i];
  438. newq*= bits_sum/cplx_sum;
  439. if (newq > qmax){
  440. bits_sum -= bits_tab[i];
  441. cplx_sum -= cplx_tab[i]*q/qmax;
  442. }
  443. else if(newq < qmin){
  444. bits_sum -= bits_tab[i];
  445. cplx_sum -= cplx_tab[i]*q/qmin;
  446. }
  447. }
  448. }
  449. for(i=0; i<s->mb_num; i++){
  450. float newq= q*cplx_tab[i]/bits_tab[i];
  451. int intq;
  452. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  453. newq*= bits_sum/cplx_sum;
  454. }
  455. if(i && ABS(pic->qscale_table[i-1] - newq)<0.75)
  456. intq= pic->qscale_table[i-1];
  457. else
  458. intq= (int)(newq + 0.5);
  459. if (intq > qmax) intq= qmax;
  460. else if(intq < qmin) intq= qmin;
  461. //if(i%s->mb_width==0) printf("\n");
  462. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  463. pic->qscale_table[i]= intq;
  464. }
  465. }
  466. float ff_rate_estimate_qscale(MpegEncContext *s)
  467. {
  468. float q;
  469. int qmin, qmax;
  470. float br_compensation;
  471. double diff;
  472. double short_term_q;
  473. double fps;
  474. int picture_number= s->picture_number;
  475. int64_t wanted_bits;
  476. RateControlContext *rcc= &s->rc_context;
  477. RateControlEntry local_rce, *rce;
  478. double bits;
  479. double rate_factor;
  480. int var;
  481. const int pict_type= s->pict_type;
  482. Picture * const pic= &s->current_picture;
  483. emms_c();
  484. get_qminmax(&qmin, &qmax, s, pict_type);
  485. fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base;
  486. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  487. /* update predictors */
  488. if(picture_number>2){
  489. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  490. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  491. }
  492. if(s->flags&CODEC_FLAG_PASS2){
  493. assert(picture_number>=0);
  494. assert(picture_number<rcc->num_entries);
  495. rce= &rcc->entry[picture_number];
  496. wanted_bits= rce->expected_bits;
  497. }else{
  498. rce= &local_rce;
  499. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  500. }
  501. diff= s->total_bits - wanted_bits;
  502. br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  503. if(br_compensation<=0.0) br_compensation=0.001;
  504. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  505. if(s->flags&CODEC_FLAG_PASS2){
  506. if(pict_type!=I_TYPE)
  507. assert(pict_type == rce->new_pict_type);
  508. q= rce->new_qscale / br_compensation;
  509. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  510. }else{
  511. rce->pict_type=
  512. rce->new_pict_type= pict_type;
  513. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  514. rce->mb_var_sum = pic-> mb_var_sum;
  515. rce->qscale = 2;
  516. rce->f_code = s->f_code;
  517. rce->b_code = s->b_code;
  518. rce->misc_bits= 1;
  519. if(picture_number>0)
  520. update_rc_buffer(s, s->frame_bits);
  521. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  522. if(pict_type== I_TYPE){
  523. rce->i_count = s->mb_num;
  524. rce->i_tex_bits= bits;
  525. rce->p_tex_bits= 0;
  526. rce->mv_bits= 0;
  527. }else{
  528. rce->i_count = 0; //FIXME we do know this approx
  529. rce->i_tex_bits= 0;
  530. rce->p_tex_bits= bits*0.9;
  531. rce->mv_bits= bits*0.1;
  532. }
  533. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  534. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  535. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  536. rcc->frame_count[pict_type] ++;
  537. bits= rce->i_tex_bits + rce->p_tex_bits;
  538. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  539. q= get_qscale(s, rce, rate_factor, picture_number);
  540. assert(q>0.0);
  541. //printf("%f ", q);
  542. q= get_diff_limited_q(s, rce, q);
  543. //printf("%f ", q);
  544. assert(q>0.0);
  545. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  546. rcc->short_term_qsum*=s->qblur;
  547. rcc->short_term_qcount*=s->qblur;
  548. rcc->short_term_qsum+= q;
  549. rcc->short_term_qcount++;
  550. //printf("%f ", q);
  551. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  552. //printf("%f ", q);
  553. }
  554. assert(q>0.0);
  555. q= modify_qscale(s, rce, q, picture_number);
  556. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  557. assert(q>0.0);
  558. }
  559. if(s->avctx->debug&FF_DEBUG_RC){
  560. printf("%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  561. ff_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  562. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  563. );
  564. }
  565. if (q<qmin) q=qmin;
  566. else if(q>qmax) q=qmax;
  567. if(s->adaptive_quant)
  568. adaptive_quantization(s, q);
  569. else
  570. q= (int)(q + 0.5);
  571. rcc->last_qscale= q;
  572. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  573. rcc->last_mb_var_sum= pic->mb_var_sum;
  574. #if 0
  575. {
  576. static int mvsum=0, texsum=0;
  577. mvsum += s->mv_bits;
  578. texsum += s->i_tex_bits + s->p_tex_bits;
  579. printf("%d %d//\n\n", mvsum, texsum);
  580. }
  581. #endif
  582. return q;
  583. }
  584. //----------------------------------------------
  585. // 2-Pass code
  586. static int init_pass2(MpegEncContext *s)
  587. {
  588. RateControlContext *rcc= &s->rc_context;
  589. int i;
  590. double fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base;
  591. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  592. double avg_quantizer[5];
  593. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  594. uint64_t available_bits[5];
  595. uint64_t all_const_bits;
  596. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  597. double rate_factor=0;
  598. double step;
  599. //int last_i_frame=-10000000;
  600. const int filter_size= (int)(s->qblur*4) | 1;
  601. double expected_bits;
  602. double *qscale, *blured_qscale;
  603. /* find complexity & const_bits & decide the pict_types */
  604. for(i=0; i<rcc->num_entries; i++){
  605. RateControlEntry *rce= &rcc->entry[i];
  606. rce->new_pict_type= rce->pict_type;
  607. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  608. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  609. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  610. rcc->frame_count[rce->pict_type] ++;
  611. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  612. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  613. }
  614. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  615. if(all_available_bits < all_const_bits){
  616. fprintf(stderr, "requested bitrate is to low\n");
  617. return -1;
  618. }
  619. /* find average quantizers */
  620. avg_quantizer[P_TYPE]=0;
  621. for(step=256*256; step>0.0000001; step*=0.5){
  622. double expected_bits=0;
  623. avg_quantizer[P_TYPE]+= step;
  624. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  625. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  626. expected_bits=
  627. + all_const_bits
  628. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  629. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  630. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  631. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  632. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  633. }
  634. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  635. for(i=0; i<5; i++){
  636. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  637. }
  638. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  639. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  640. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  641. for(step=256*256; step>0.0000001; step*=0.5){
  642. expected_bits=0;
  643. rate_factor+= step;
  644. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  645. /* find qscale */
  646. for(i=0; i<rcc->num_entries; i++){
  647. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  648. }
  649. assert(filter_size%2==1);
  650. /* fixed I/B QP relative to P mode */
  651. for(i=rcc->num_entries-1; i>=0; i--){
  652. RateControlEntry *rce= &rcc->entry[i];
  653. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  654. }
  655. /* smooth curve */
  656. for(i=0; i<rcc->num_entries; i++){
  657. RateControlEntry *rce= &rcc->entry[i];
  658. const int pict_type= rce->new_pict_type;
  659. int j;
  660. double q=0.0, sum=0.0;
  661. for(j=0; j<filter_size; j++){
  662. int index= i+j-filter_size/2;
  663. double d= index-i;
  664. double coeff= s->qblur==0 ? 1.0 : exp(-d*d/(s->qblur * s->qblur));
  665. if(index < 0 || index >= rcc->num_entries) continue;
  666. if(pict_type != rcc->entry[index].new_pict_type) continue;
  667. q+= qscale[index] * coeff;
  668. sum+= coeff;
  669. }
  670. blured_qscale[i]= q/sum;
  671. }
  672. /* find expected bits */
  673. for(i=0; i<rcc->num_entries; i++){
  674. RateControlEntry *rce= &rcc->entry[i];
  675. double bits;
  676. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  677. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  678. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  679. update_rc_buffer(s, bits);
  680. rce->expected_bits= expected_bits;
  681. expected_bits += bits;
  682. }
  683. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  684. if(expected_bits > all_available_bits) rate_factor-= step;
  685. }
  686. av_free(qscale);
  687. av_free(blured_qscale);
  688. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  689. fprintf(stderr, "Error: 2pass curve failed to converge\n");
  690. return -1;
  691. }
  692. return 0;
  693. }