You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4322 lines
152KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file vc1.c
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1.h"
  31. #include "vc1data.h"
  32. #include "vc1acdata.h"
  33. #include "msmpeg4data.h"
  34. #include "unary.h"
  35. #include "simple_idct.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define MB_INTRA_VLC_BITS 9
  39. #define DC_VLC_BITS 9
  40. #define AC_VLC_BITS 9
  41. static const uint16_t table_mb_intra[64][2];
  42. /**
  43. * Init VC-1 specific tables and VC1Context members
  44. * @param v The VC1Context to initialize
  45. * @return Status
  46. */
  47. static int vc1_init_common(VC1Context *v)
  48. {
  49. static int done = 0;
  50. int i = 0;
  51. v->hrd_rate = v->hrd_buffer = NULL;
  52. /* VLC tables */
  53. if(!done)
  54. {
  55. done = 1;
  56. init_vlc(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  57. ff_vc1_bfraction_bits, 1, 1,
  58. ff_vc1_bfraction_codes, 1, 1, 1);
  59. init_vlc(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  60. ff_vc1_norm2_bits, 1, 1,
  61. ff_vc1_norm2_codes, 1, 1, 1);
  62. init_vlc(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  63. ff_vc1_norm6_bits, 1, 1,
  64. ff_vc1_norm6_codes, 2, 2, 1);
  65. init_vlc(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  66. ff_vc1_imode_bits, 1, 1,
  67. ff_vc1_imode_codes, 1, 1, 1);
  68. for (i=0; i<3; i++)
  69. {
  70. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  71. ff_vc1_ttmb_bits[i], 1, 1,
  72. ff_vc1_ttmb_codes[i], 2, 2, 1);
  73. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  74. ff_vc1_ttblk_bits[i], 1, 1,
  75. ff_vc1_ttblk_codes[i], 1, 1, 1);
  76. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  77. ff_vc1_subblkpat_bits[i], 1, 1,
  78. ff_vc1_subblkpat_codes[i], 1, 1, 1);
  79. }
  80. for(i=0; i<4; i++)
  81. {
  82. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  83. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  84. ff_vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  85. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  86. ff_vc1_cbpcy_p_bits[i], 1, 1,
  87. ff_vc1_cbpcy_p_codes[i], 2, 2, 1);
  88. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  89. ff_vc1_mv_diff_bits[i], 1, 1,
  90. ff_vc1_mv_diff_codes[i], 2, 2, 1);
  91. }
  92. for(i=0; i<8; i++)
  93. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  94. &vc1_ac_tables[i][0][1], 8, 4,
  95. &vc1_ac_tables[i][0][0], 8, 4, 1);
  96. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  97. &ff_msmp4_mb_i_table[0][1], 4, 2,
  98. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  99. }
  100. /* Other defaults */
  101. v->pq = -1;
  102. v->mvrange = 0; /* 7.1.1.18, p80 */
  103. return 0;
  104. }
  105. /***********************************************************************/
  106. /**
  107. * @defgroup bitplane VC9 Bitplane decoding
  108. * @see 8.7, p56
  109. * @{
  110. */
  111. /** @addtogroup bitplane
  112. * Imode types
  113. * @{
  114. */
  115. enum Imode {
  116. IMODE_RAW,
  117. IMODE_NORM2,
  118. IMODE_DIFF2,
  119. IMODE_NORM6,
  120. IMODE_DIFF6,
  121. IMODE_ROWSKIP,
  122. IMODE_COLSKIP
  123. };
  124. /** @} */ //imode defines
  125. /** Decode rows by checking if they are skipped
  126. * @param plane Buffer to store decoded bits
  127. * @param[in] width Width of this buffer
  128. * @param[in] height Height of this buffer
  129. * @param[in] stride of this buffer
  130. */
  131. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  132. int x, y;
  133. for (y=0; y<height; y++){
  134. if (!get_bits1(gb)) //rowskip
  135. memset(plane, 0, width);
  136. else
  137. for (x=0; x<width; x++)
  138. plane[x] = get_bits1(gb);
  139. plane += stride;
  140. }
  141. }
  142. /** Decode columns by checking if they are skipped
  143. * @param plane Buffer to store decoded bits
  144. * @param[in] width Width of this buffer
  145. * @param[in] height Height of this buffer
  146. * @param[in] stride of this buffer
  147. * @todo FIXME: Optimize
  148. */
  149. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  150. int x, y;
  151. for (x=0; x<width; x++){
  152. if (!get_bits1(gb)) //colskip
  153. for (y=0; y<height; y++)
  154. plane[y*stride] = 0;
  155. else
  156. for (y=0; y<height; y++)
  157. plane[y*stride] = get_bits1(gb);
  158. plane ++;
  159. }
  160. }
  161. /** Decode a bitplane's bits
  162. * @param bp Bitplane where to store the decode bits
  163. * @param v VC-1 context for bit reading and logging
  164. * @return Status
  165. * @todo FIXME: Optimize
  166. */
  167. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  168. {
  169. GetBitContext *gb = &v->s.gb;
  170. int imode, x, y, code, offset;
  171. uint8_t invert, *planep = data;
  172. int width, height, stride;
  173. width = v->s.mb_width;
  174. height = v->s.mb_height;
  175. stride = v->s.mb_stride;
  176. invert = get_bits1(gb);
  177. imode = get_vlc2(gb, ff_vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  178. *raw_flag = 0;
  179. switch (imode)
  180. {
  181. case IMODE_RAW:
  182. //Data is actually read in the MB layer (same for all tests == "raw")
  183. *raw_flag = 1; //invert ignored
  184. return invert;
  185. case IMODE_DIFF2:
  186. case IMODE_NORM2:
  187. if ((height * width) & 1)
  188. {
  189. *planep++ = get_bits1(gb);
  190. offset = 1;
  191. }
  192. else offset = 0;
  193. // decode bitplane as one long line
  194. for (y = offset; y < height * width; y += 2) {
  195. code = get_vlc2(gb, ff_vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  196. *planep++ = code & 1;
  197. offset++;
  198. if(offset == width) {
  199. offset = 0;
  200. planep += stride - width;
  201. }
  202. *planep++ = code >> 1;
  203. offset++;
  204. if(offset == width) {
  205. offset = 0;
  206. planep += stride - width;
  207. }
  208. }
  209. break;
  210. case IMODE_DIFF6:
  211. case IMODE_NORM6:
  212. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  213. for(y = 0; y < height; y+= 3) {
  214. for(x = width & 1; x < width; x += 2) {
  215. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  216. if(code < 0){
  217. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  218. return -1;
  219. }
  220. planep[x + 0] = (code >> 0) & 1;
  221. planep[x + 1] = (code >> 1) & 1;
  222. planep[x + 0 + stride] = (code >> 2) & 1;
  223. planep[x + 1 + stride] = (code >> 3) & 1;
  224. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  225. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  226. }
  227. planep += stride * 3;
  228. }
  229. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  230. } else { // 3x2
  231. planep += (height & 1) * stride;
  232. for(y = height & 1; y < height; y += 2) {
  233. for(x = width % 3; x < width; x += 3) {
  234. code = get_vlc2(gb, ff_vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  235. if(code < 0){
  236. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  237. return -1;
  238. }
  239. planep[x + 0] = (code >> 0) & 1;
  240. planep[x + 1] = (code >> 1) & 1;
  241. planep[x + 2] = (code >> 2) & 1;
  242. planep[x + 0 + stride] = (code >> 3) & 1;
  243. planep[x + 1 + stride] = (code >> 4) & 1;
  244. planep[x + 2 + stride] = (code >> 5) & 1;
  245. }
  246. planep += stride * 2;
  247. }
  248. x = width % 3;
  249. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  250. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  251. }
  252. break;
  253. case IMODE_ROWSKIP:
  254. decode_rowskip(data, width, height, stride, &v->s.gb);
  255. break;
  256. case IMODE_COLSKIP:
  257. decode_colskip(data, width, height, stride, &v->s.gb);
  258. break;
  259. default: break;
  260. }
  261. /* Applying diff operator */
  262. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  263. {
  264. planep = data;
  265. planep[0] ^= invert;
  266. for (x=1; x<width; x++)
  267. planep[x] ^= planep[x-1];
  268. for (y=1; y<height; y++)
  269. {
  270. planep += stride;
  271. planep[0] ^= planep[-stride];
  272. for (x=1; x<width; x++)
  273. {
  274. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  275. else planep[x] ^= planep[x-1];
  276. }
  277. }
  278. }
  279. else if (invert)
  280. {
  281. planep = data;
  282. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  283. }
  284. return (imode<<1) + invert;
  285. }
  286. /** @} */ //Bitplane group
  287. #define FILTSIGN(a) ((a) >= 0 ? 1 : -1)
  288. /**
  289. * VC-1 in-loop deblocking filter for one line
  290. * @param src source block type
  291. * @param pq block quantizer
  292. * @return whether other 3 pairs should be filtered or not
  293. * @see 8.6
  294. */
  295. static int vc1_filter_line(uint8_t* src, int stride, int pq){
  296. int a0, a1, a2, a3, d, clip, filt3 = 0;
  297. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  298. a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  299. if(FFABS(a0) < pq){
  300. a1 = (2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3;
  301. a2 = (2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3;
  302. a3 = FFMIN(FFABS(a1), FFABS(a2));
  303. if(a3 < FFABS(a0)){
  304. d = 5 * ((a0 >=0 ? a3 : -a3) - a0) / 8;
  305. clip = (src[-1*stride] - src[ 0*stride])/2;
  306. if(clip){
  307. filt3 = 1;
  308. if(clip > 0)
  309. d = av_clip(d, 0, clip);
  310. else
  311. d = av_clip(d, clip, 0);
  312. src[-1*stride] = cm[src[-1*stride] - d];
  313. src[ 0*stride] = cm[src[ 0*stride] + d];
  314. }
  315. }
  316. }
  317. return filt3;
  318. }
  319. /**
  320. * VC-1 in-loop deblocking filter
  321. * @param src source block type
  322. * @param len edge length to filter (4 or 8 pixels)
  323. * @param pq block quantizer
  324. * @see 8.6
  325. */
  326. static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  327. {
  328. int i;
  329. int filt3;
  330. for(i = 0; i < len; i += 4){
  331. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  332. if(filt3){
  333. vc1_filter_line(src + 0*step, stride, pq);
  334. vc1_filter_line(src + 1*step, stride, pq);
  335. vc1_filter_line(src + 3*step, stride, pq);
  336. }
  337. src += step * 4;
  338. }
  339. }
  340. static void vc1_loop_filter_iblk(MpegEncContext *s, int pq)
  341. {
  342. int i, j;
  343. if(!s->first_slice_line)
  344. vc1_loop_filter(s->dest[0], 1, s->linesize, 16, pq);
  345. vc1_loop_filter(s->dest[0] + 8*s->linesize, 1, s->linesize, 16, pq);
  346. for(i = !s->mb_x*8; i < 16; i += 8)
  347. vc1_loop_filter(s->dest[0] + i, s->linesize, 1, 16, pq);
  348. for(j = 0; j < 2; j++){
  349. if(!s->first_slice_line)
  350. vc1_loop_filter(s->dest[j+1], 1, s->uvlinesize, 8, pq);
  351. if(s->mb_x)
  352. vc1_loop_filter(s->dest[j+1], s->uvlinesize, 1, 8, pq);
  353. }
  354. }
  355. /***********************************************************************/
  356. /** VOP Dquant decoding
  357. * @param v VC-1 Context
  358. */
  359. static int vop_dquant_decoding(VC1Context *v)
  360. {
  361. GetBitContext *gb = &v->s.gb;
  362. int pqdiff;
  363. //variable size
  364. if (v->dquant == 2)
  365. {
  366. pqdiff = get_bits(gb, 3);
  367. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  368. else v->altpq = v->pq + pqdiff + 1;
  369. }
  370. else
  371. {
  372. v->dquantfrm = get_bits1(gb);
  373. if ( v->dquantfrm )
  374. {
  375. v->dqprofile = get_bits(gb, 2);
  376. switch (v->dqprofile)
  377. {
  378. case DQPROFILE_SINGLE_EDGE:
  379. case DQPROFILE_DOUBLE_EDGES:
  380. v->dqsbedge = get_bits(gb, 2);
  381. break;
  382. case DQPROFILE_ALL_MBS:
  383. v->dqbilevel = get_bits1(gb);
  384. if(!v->dqbilevel)
  385. v->halfpq = 0;
  386. default: break; //Forbidden ?
  387. }
  388. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  389. {
  390. pqdiff = get_bits(gb, 3);
  391. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  392. else v->altpq = v->pq + pqdiff + 1;
  393. }
  394. }
  395. }
  396. return 0;
  397. }
  398. /** Put block onto picture
  399. */
  400. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  401. {
  402. uint8_t *Y;
  403. int ys, us, vs;
  404. DSPContext *dsp = &v->s.dsp;
  405. if(v->rangeredfrm) {
  406. int i, j, k;
  407. for(k = 0; k < 6; k++)
  408. for(j = 0; j < 8; j++)
  409. for(i = 0; i < 8; i++)
  410. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  411. }
  412. ys = v->s.current_picture.linesize[0];
  413. us = v->s.current_picture.linesize[1];
  414. vs = v->s.current_picture.linesize[2];
  415. Y = v->s.dest[0];
  416. dsp->put_pixels_clamped(block[0], Y, ys);
  417. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  418. Y += ys * 8;
  419. dsp->put_pixels_clamped(block[2], Y, ys);
  420. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  421. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  422. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  423. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  424. }
  425. }
  426. /** Do motion compensation over 1 macroblock
  427. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  428. */
  429. static void vc1_mc_1mv(VC1Context *v, int dir)
  430. {
  431. MpegEncContext *s = &v->s;
  432. DSPContext *dsp = &v->s.dsp;
  433. uint8_t *srcY, *srcU, *srcV;
  434. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  435. if(!v->s.last_picture.data[0])return;
  436. mx = s->mv[dir][0][0];
  437. my = s->mv[dir][0][1];
  438. // store motion vectors for further use in B frames
  439. if(s->pict_type == FF_P_TYPE) {
  440. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  441. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  442. }
  443. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  444. uvmy = (my + ((my & 3) == 3)) >> 1;
  445. if(v->fastuvmc) {
  446. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  447. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  448. }
  449. if(!dir) {
  450. srcY = s->last_picture.data[0];
  451. srcU = s->last_picture.data[1];
  452. srcV = s->last_picture.data[2];
  453. } else {
  454. srcY = s->next_picture.data[0];
  455. srcU = s->next_picture.data[1];
  456. srcV = s->next_picture.data[2];
  457. }
  458. src_x = s->mb_x * 16 + (mx >> 2);
  459. src_y = s->mb_y * 16 + (my >> 2);
  460. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  461. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  462. if(v->profile != PROFILE_ADVANCED){
  463. src_x = av_clip( src_x, -16, s->mb_width * 16);
  464. src_y = av_clip( src_y, -16, s->mb_height * 16);
  465. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  466. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  467. }else{
  468. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  469. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  470. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  471. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  472. }
  473. srcY += src_y * s->linesize + src_x;
  474. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  475. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  476. /* for grayscale we should not try to read from unknown area */
  477. if(s->flags & CODEC_FLAG_GRAY) {
  478. srcU = s->edge_emu_buffer + 18 * s->linesize;
  479. srcV = s->edge_emu_buffer + 18 * s->linesize;
  480. }
  481. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  482. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  483. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  484. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  485. srcY -= s->mspel * (1 + s->linesize);
  486. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  487. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  488. srcY = s->edge_emu_buffer;
  489. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  490. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  491. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  492. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  493. srcU = uvbuf;
  494. srcV = uvbuf + 16;
  495. /* if we deal with range reduction we need to scale source blocks */
  496. if(v->rangeredfrm) {
  497. int i, j;
  498. uint8_t *src, *src2;
  499. src = srcY;
  500. for(j = 0; j < 17 + s->mspel*2; j++) {
  501. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  502. src += s->linesize;
  503. }
  504. src = srcU; src2 = srcV;
  505. for(j = 0; j < 9; j++) {
  506. for(i = 0; i < 9; i++) {
  507. src[i] = ((src[i] - 128) >> 1) + 128;
  508. src2[i] = ((src2[i] - 128) >> 1) + 128;
  509. }
  510. src += s->uvlinesize;
  511. src2 += s->uvlinesize;
  512. }
  513. }
  514. /* if we deal with intensity compensation we need to scale source blocks */
  515. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  516. int i, j;
  517. uint8_t *src, *src2;
  518. src = srcY;
  519. for(j = 0; j < 17 + s->mspel*2; j++) {
  520. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  521. src += s->linesize;
  522. }
  523. src = srcU; src2 = srcV;
  524. for(j = 0; j < 9; j++) {
  525. for(i = 0; i < 9; i++) {
  526. src[i] = v->lutuv[src[i]];
  527. src2[i] = v->lutuv[src2[i]];
  528. }
  529. src += s->uvlinesize;
  530. src2 += s->uvlinesize;
  531. }
  532. }
  533. srcY += s->mspel * (1 + s->linesize);
  534. }
  535. if(s->mspel) {
  536. dxy = ((my & 3) << 2) | (mx & 3);
  537. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  538. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  539. srcY += s->linesize * 8;
  540. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  541. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  542. } else { // hpel mc - always used for luma
  543. dxy = (my & 2) | ((mx & 2) >> 1);
  544. if(!v->rnd)
  545. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  546. else
  547. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  548. }
  549. if(s->flags & CODEC_FLAG_GRAY) return;
  550. /* Chroma MC always uses qpel bilinear */
  551. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  552. uvmx = (uvmx&3)<<1;
  553. uvmy = (uvmy&3)<<1;
  554. if(!v->rnd){
  555. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  556. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  557. }else{
  558. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  559. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  560. }
  561. }
  562. /** Do motion compensation for 4-MV macroblock - luminance block
  563. */
  564. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  565. {
  566. MpegEncContext *s = &v->s;
  567. DSPContext *dsp = &v->s.dsp;
  568. uint8_t *srcY;
  569. int dxy, mx, my, src_x, src_y;
  570. int off;
  571. if(!v->s.last_picture.data[0])return;
  572. mx = s->mv[0][n][0];
  573. my = s->mv[0][n][1];
  574. srcY = s->last_picture.data[0];
  575. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  576. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  577. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  578. if(v->profile != PROFILE_ADVANCED){
  579. src_x = av_clip( src_x, -16, s->mb_width * 16);
  580. src_y = av_clip( src_y, -16, s->mb_height * 16);
  581. }else{
  582. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  583. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  584. }
  585. srcY += src_y * s->linesize + src_x;
  586. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  587. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  588. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  589. srcY -= s->mspel * (1 + s->linesize);
  590. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  591. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  592. srcY = s->edge_emu_buffer;
  593. /* if we deal with range reduction we need to scale source blocks */
  594. if(v->rangeredfrm) {
  595. int i, j;
  596. uint8_t *src;
  597. src = srcY;
  598. for(j = 0; j < 9 + s->mspel*2; j++) {
  599. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  600. src += s->linesize;
  601. }
  602. }
  603. /* if we deal with intensity compensation we need to scale source blocks */
  604. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  605. int i, j;
  606. uint8_t *src;
  607. src = srcY;
  608. for(j = 0; j < 9 + s->mspel*2; j++) {
  609. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  610. src += s->linesize;
  611. }
  612. }
  613. srcY += s->mspel * (1 + s->linesize);
  614. }
  615. if(s->mspel) {
  616. dxy = ((my & 3) << 2) | (mx & 3);
  617. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  618. } else { // hpel mc - always used for luma
  619. dxy = (my & 2) | ((mx & 2) >> 1);
  620. if(!v->rnd)
  621. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  622. else
  623. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  624. }
  625. }
  626. static inline int median4(int a, int b, int c, int d)
  627. {
  628. if(a < b) {
  629. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  630. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  631. } else {
  632. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  633. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  634. }
  635. }
  636. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  637. */
  638. static void vc1_mc_4mv_chroma(VC1Context *v)
  639. {
  640. MpegEncContext *s = &v->s;
  641. DSPContext *dsp = &v->s.dsp;
  642. uint8_t *srcU, *srcV;
  643. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  644. int i, idx, tx = 0, ty = 0;
  645. int mvx[4], mvy[4], intra[4];
  646. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  647. if(!v->s.last_picture.data[0])return;
  648. if(s->flags & CODEC_FLAG_GRAY) return;
  649. for(i = 0; i < 4; i++) {
  650. mvx[i] = s->mv[0][i][0];
  651. mvy[i] = s->mv[0][i][1];
  652. intra[i] = v->mb_type[0][s->block_index[i]];
  653. }
  654. /* calculate chroma MV vector from four luma MVs */
  655. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  656. if(!idx) { // all blocks are inter
  657. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  658. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  659. } else if(count[idx] == 1) { // 3 inter blocks
  660. switch(idx) {
  661. case 0x1:
  662. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  663. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  664. break;
  665. case 0x2:
  666. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  667. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  668. break;
  669. case 0x4:
  670. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  671. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  672. break;
  673. case 0x8:
  674. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  675. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  676. break;
  677. }
  678. } else if(count[idx] == 2) {
  679. int t1 = 0, t2 = 0;
  680. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  681. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  682. tx = (mvx[t1] + mvx[t2]) / 2;
  683. ty = (mvy[t1] + mvy[t2]) / 2;
  684. } else {
  685. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  686. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  687. return; //no need to do MC for inter blocks
  688. }
  689. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  690. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  691. uvmx = (tx + ((tx&3) == 3)) >> 1;
  692. uvmy = (ty + ((ty&3) == 3)) >> 1;
  693. if(v->fastuvmc) {
  694. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  695. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  696. }
  697. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  698. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  699. if(v->profile != PROFILE_ADVANCED){
  700. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  701. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  702. }else{
  703. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  704. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  705. }
  706. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  707. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  708. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  709. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  710. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  711. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  712. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  713. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  714. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  715. srcU = s->edge_emu_buffer;
  716. srcV = s->edge_emu_buffer + 16;
  717. /* if we deal with range reduction we need to scale source blocks */
  718. if(v->rangeredfrm) {
  719. int i, j;
  720. uint8_t *src, *src2;
  721. src = srcU; src2 = srcV;
  722. for(j = 0; j < 9; j++) {
  723. for(i = 0; i < 9; i++) {
  724. src[i] = ((src[i] - 128) >> 1) + 128;
  725. src2[i] = ((src2[i] - 128) >> 1) + 128;
  726. }
  727. src += s->uvlinesize;
  728. src2 += s->uvlinesize;
  729. }
  730. }
  731. /* if we deal with intensity compensation we need to scale source blocks */
  732. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  733. int i, j;
  734. uint8_t *src, *src2;
  735. src = srcU; src2 = srcV;
  736. for(j = 0; j < 9; j++) {
  737. for(i = 0; i < 9; i++) {
  738. src[i] = v->lutuv[src[i]];
  739. src2[i] = v->lutuv[src2[i]];
  740. }
  741. src += s->uvlinesize;
  742. src2 += s->uvlinesize;
  743. }
  744. }
  745. }
  746. /* Chroma MC always uses qpel bilinear */
  747. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  748. uvmx = (uvmx&3)<<1;
  749. uvmy = (uvmy&3)<<1;
  750. if(!v->rnd){
  751. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  752. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  753. }else{
  754. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  755. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  756. }
  757. }
  758. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  759. /**
  760. * Decode Simple/Main Profiles sequence header
  761. * @see Figure 7-8, p16-17
  762. * @param avctx Codec context
  763. * @param gb GetBit context initialized from Codec context extra_data
  764. * @return Status
  765. */
  766. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  767. {
  768. VC1Context *v = avctx->priv_data;
  769. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  770. v->profile = get_bits(gb, 2);
  771. if (v->profile == PROFILE_COMPLEX)
  772. {
  773. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  774. }
  775. if (v->profile == PROFILE_ADVANCED)
  776. {
  777. v->zz_8x4 = ff_vc1_adv_progressive_8x4_zz;
  778. v->zz_4x8 = ff_vc1_adv_progressive_4x8_zz;
  779. return decode_sequence_header_adv(v, gb);
  780. }
  781. else
  782. {
  783. v->zz_8x4 = wmv2_scantableA;
  784. v->zz_4x8 = wmv2_scantableB;
  785. v->res_sm = get_bits(gb, 2); //reserved
  786. if (v->res_sm)
  787. {
  788. av_log(avctx, AV_LOG_ERROR,
  789. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  790. return -1;
  791. }
  792. }
  793. // (fps-2)/4 (->30)
  794. v->frmrtq_postproc = get_bits(gb, 3); //common
  795. // (bitrate-32kbps)/64kbps
  796. v->bitrtq_postproc = get_bits(gb, 5); //common
  797. v->s.loop_filter = get_bits1(gb); //common
  798. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  799. {
  800. av_log(avctx, AV_LOG_ERROR,
  801. "LOOPFILTER shell not be enabled in simple profile\n");
  802. }
  803. if(v->s.avctx->skip_loop_filter >= AVDISCARD_ALL)
  804. v->s.loop_filter = 0;
  805. v->res_x8 = get_bits1(gb); //reserved
  806. v->multires = get_bits1(gb);
  807. v->res_fasttx = get_bits1(gb);
  808. if (!v->res_fasttx)
  809. {
  810. v->s.dsp.vc1_inv_trans_8x8 = ff_simple_idct;
  811. v->s.dsp.vc1_inv_trans_8x4 = ff_simple_idct84_add;
  812. v->s.dsp.vc1_inv_trans_4x8 = ff_simple_idct48_add;
  813. v->s.dsp.vc1_inv_trans_4x4 = ff_simple_idct44_add;
  814. }
  815. v->fastuvmc = get_bits1(gb); //common
  816. if (!v->profile && !v->fastuvmc)
  817. {
  818. av_log(avctx, AV_LOG_ERROR,
  819. "FASTUVMC unavailable in Simple Profile\n");
  820. return -1;
  821. }
  822. v->extended_mv = get_bits1(gb); //common
  823. if (!v->profile && v->extended_mv)
  824. {
  825. av_log(avctx, AV_LOG_ERROR,
  826. "Extended MVs unavailable in Simple Profile\n");
  827. return -1;
  828. }
  829. v->dquant = get_bits(gb, 2); //common
  830. v->vstransform = get_bits1(gb); //common
  831. v->res_transtab = get_bits1(gb);
  832. if (v->res_transtab)
  833. {
  834. av_log(avctx, AV_LOG_ERROR,
  835. "1 for reserved RES_TRANSTAB is forbidden\n");
  836. return -1;
  837. }
  838. v->overlap = get_bits1(gb); //common
  839. v->s.resync_marker = get_bits1(gb);
  840. v->rangered = get_bits1(gb);
  841. if (v->rangered && v->profile == PROFILE_SIMPLE)
  842. {
  843. av_log(avctx, AV_LOG_INFO,
  844. "RANGERED should be set to 0 in simple profile\n");
  845. }
  846. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  847. v->quantizer_mode = get_bits(gb, 2); //common
  848. v->finterpflag = get_bits1(gb); //common
  849. v->res_rtm_flag = get_bits1(gb); //reserved
  850. if (!v->res_rtm_flag)
  851. {
  852. // av_log(avctx, AV_LOG_ERROR,
  853. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  854. av_log(avctx, AV_LOG_ERROR,
  855. "Old WMV3 version detected, only I-frames will be decoded\n");
  856. //return -1;
  857. }
  858. //TODO: figure out what they mean (always 0x402F)
  859. if(!v->res_fasttx) skip_bits(gb, 16);
  860. av_log(avctx, AV_LOG_DEBUG,
  861. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  862. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  863. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  864. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  865. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  866. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  867. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  868. v->dquant, v->quantizer_mode, avctx->max_b_frames
  869. );
  870. return 0;
  871. }
  872. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  873. {
  874. v->res_rtm_flag = 1;
  875. v->level = get_bits(gb, 3);
  876. if(v->level >= 5)
  877. {
  878. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  879. }
  880. v->chromaformat = get_bits(gb, 2);
  881. if (v->chromaformat != 1)
  882. {
  883. av_log(v->s.avctx, AV_LOG_ERROR,
  884. "Only 4:2:0 chroma format supported\n");
  885. return -1;
  886. }
  887. // (fps-2)/4 (->30)
  888. v->frmrtq_postproc = get_bits(gb, 3); //common
  889. // (bitrate-32kbps)/64kbps
  890. v->bitrtq_postproc = get_bits(gb, 5); //common
  891. v->postprocflag = get_bits1(gb); //common
  892. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  893. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  894. v->s.avctx->width = v->s.avctx->coded_width;
  895. v->s.avctx->height = v->s.avctx->coded_height;
  896. v->broadcast = get_bits1(gb);
  897. v->interlace = get_bits1(gb);
  898. v->tfcntrflag = get_bits1(gb);
  899. v->finterpflag = get_bits1(gb);
  900. skip_bits1(gb); // reserved
  901. v->s.h_edge_pos = v->s.avctx->coded_width;
  902. v->s.v_edge_pos = v->s.avctx->coded_height;
  903. av_log(v->s.avctx, AV_LOG_DEBUG,
  904. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  905. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  906. "TFCTRflag=%i, FINTERPflag=%i\n",
  907. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  908. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  909. v->tfcntrflag, v->finterpflag
  910. );
  911. v->psf = get_bits1(gb);
  912. if(v->psf) { //PsF, 6.1.13
  913. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  914. return -1;
  915. }
  916. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  917. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  918. int w, h, ar = 0;
  919. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  920. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  921. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  922. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  923. if(get_bits1(gb))
  924. ar = get_bits(gb, 4);
  925. if(ar && ar < 14){
  926. v->s.avctx->sample_aspect_ratio = ff_vc1_pixel_aspect[ar];
  927. }else if(ar == 15){
  928. w = get_bits(gb, 8);
  929. h = get_bits(gb, 8);
  930. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  931. }
  932. if(get_bits1(gb)){ //framerate stuff
  933. if(get_bits1(gb)) {
  934. v->s.avctx->time_base.num = 32;
  935. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  936. } else {
  937. int nr, dr;
  938. nr = get_bits(gb, 8);
  939. dr = get_bits(gb, 4);
  940. if(nr && nr < 8 && dr && dr < 3){
  941. v->s.avctx->time_base.num = ff_vc1_fps_dr[dr - 1];
  942. v->s.avctx->time_base.den = ff_vc1_fps_nr[nr - 1] * 1000;
  943. }
  944. }
  945. }
  946. if(get_bits1(gb)){
  947. v->color_prim = get_bits(gb, 8);
  948. v->transfer_char = get_bits(gb, 8);
  949. v->matrix_coef = get_bits(gb, 8);
  950. }
  951. }
  952. v->hrd_param_flag = get_bits1(gb);
  953. if(v->hrd_param_flag) {
  954. int i;
  955. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  956. skip_bits(gb, 4); //bitrate exponent
  957. skip_bits(gb, 4); //buffer size exponent
  958. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  959. skip_bits(gb, 16); //hrd_rate[n]
  960. skip_bits(gb, 16); //hrd_buffer[n]
  961. }
  962. }
  963. return 0;
  964. }
  965. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  966. {
  967. VC1Context *v = avctx->priv_data;
  968. int i, blink, clentry, refdist;
  969. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  970. blink = get_bits1(gb); // broken link
  971. clentry = get_bits1(gb); // closed entry
  972. v->panscanflag = get_bits1(gb);
  973. refdist = get_bits1(gb); // refdist flag
  974. v->s.loop_filter = get_bits1(gb);
  975. v->fastuvmc = get_bits1(gb);
  976. v->extended_mv = get_bits1(gb);
  977. v->dquant = get_bits(gb, 2);
  978. v->vstransform = get_bits1(gb);
  979. v->overlap = get_bits1(gb);
  980. v->quantizer_mode = get_bits(gb, 2);
  981. if(v->hrd_param_flag){
  982. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  983. skip_bits(gb, 8); //hrd_full[n]
  984. }
  985. }
  986. if(get_bits1(gb)){
  987. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  988. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  989. }
  990. if(v->extended_mv)
  991. v->extended_dmv = get_bits1(gb);
  992. if(get_bits1(gb)) {
  993. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  994. skip_bits(gb, 3); // Y range, ignored for now
  995. }
  996. if(get_bits1(gb)) {
  997. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  998. skip_bits(gb, 3); // UV range, ignored for now
  999. }
  1000. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  1001. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  1002. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  1003. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  1004. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  1005. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  1006. return 0;
  1007. }
  1008. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1009. {
  1010. int pqindex, lowquant, status;
  1011. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1012. skip_bits(gb, 2); //framecnt unused
  1013. v->rangeredfrm = 0;
  1014. if (v->rangered) v->rangeredfrm = get_bits1(gb);
  1015. v->s.pict_type = get_bits1(gb);
  1016. if (v->s.avctx->max_b_frames) {
  1017. if (!v->s.pict_type) {
  1018. if (get_bits1(gb)) v->s.pict_type = FF_I_TYPE;
  1019. else v->s.pict_type = FF_B_TYPE;
  1020. } else v->s.pict_type = FF_P_TYPE;
  1021. } else v->s.pict_type = v->s.pict_type ? FF_P_TYPE : FF_I_TYPE;
  1022. v->bi_type = 0;
  1023. if(v->s.pict_type == FF_B_TYPE) {
  1024. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1025. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1026. if(v->bfraction == 0) {
  1027. v->s.pict_type = FF_BI_TYPE;
  1028. }
  1029. }
  1030. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1031. skip_bits(gb, 7); // skip buffer fullness
  1032. /* calculate RND */
  1033. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1034. v->rnd = 1;
  1035. if(v->s.pict_type == FF_P_TYPE)
  1036. v->rnd ^= 1;
  1037. /* Quantizer stuff */
  1038. pqindex = get_bits(gb, 5);
  1039. if(!pqindex) return -1;
  1040. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1041. v->pq = ff_vc1_pquant_table[0][pqindex];
  1042. else
  1043. v->pq = ff_vc1_pquant_table[1][pqindex];
  1044. v->pquantizer = 1;
  1045. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1046. v->pquantizer = pqindex < 9;
  1047. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1048. v->pquantizer = 0;
  1049. v->pqindex = pqindex;
  1050. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1051. else v->halfpq = 0;
  1052. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1053. v->pquantizer = get_bits1(gb);
  1054. v->dquantfrm = 0;
  1055. if (v->extended_mv == 1) v->mvrange = get_unary(gb, 0, 3);
  1056. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1057. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1058. v->range_x = 1 << (v->k_x - 1);
  1059. v->range_y = 1 << (v->k_y - 1);
  1060. if (v->profile == PROFILE_ADVANCED)
  1061. {
  1062. if (v->postprocflag) v->postproc = get_bits1(gb);
  1063. }
  1064. else
  1065. if (v->multires && v->s.pict_type != FF_B_TYPE) v->respic = get_bits(gb, 2);
  1066. if(v->res_x8 && (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)){
  1067. v->x8_type = get_bits1(gb);
  1068. }else v->x8_type = 0;
  1069. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1070. // (v->s.pict_type == FF_P_TYPE) ? 'P' : ((v->s.pict_type == FF_I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1071. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1072. switch(v->s.pict_type) {
  1073. case FF_P_TYPE:
  1074. if (v->pq < 5) v->tt_index = 0;
  1075. else if(v->pq < 13) v->tt_index = 1;
  1076. else v->tt_index = 2;
  1077. lowquant = (v->pq > 12) ? 0 : 1;
  1078. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1079. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1080. {
  1081. int scale, shift, i;
  1082. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1083. v->lumscale = get_bits(gb, 6);
  1084. v->lumshift = get_bits(gb, 6);
  1085. v->use_ic = 1;
  1086. /* fill lookup tables for intensity compensation */
  1087. if(!v->lumscale) {
  1088. scale = -64;
  1089. shift = (255 - v->lumshift * 2) << 6;
  1090. if(v->lumshift > 31)
  1091. shift += 128 << 6;
  1092. } else {
  1093. scale = v->lumscale + 32;
  1094. if(v->lumshift > 31)
  1095. shift = (v->lumshift - 64) << 6;
  1096. else
  1097. shift = v->lumshift << 6;
  1098. }
  1099. for(i = 0; i < 256; i++) {
  1100. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1101. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1102. }
  1103. }
  1104. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1105. v->s.quarter_sample = 0;
  1106. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1107. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1108. v->s.quarter_sample = 0;
  1109. else
  1110. v->s.quarter_sample = 1;
  1111. } else
  1112. v->s.quarter_sample = 1;
  1113. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1114. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1115. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1116. || v->mv_mode == MV_PMODE_MIXED_MV)
  1117. {
  1118. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1119. if (status < 0) return -1;
  1120. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1121. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1122. } else {
  1123. v->mv_type_is_raw = 0;
  1124. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1125. }
  1126. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1127. if (status < 0) return -1;
  1128. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1129. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1130. /* Hopefully this is correct for P frames */
  1131. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1132. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1133. if (v->dquant)
  1134. {
  1135. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1136. vop_dquant_decoding(v);
  1137. }
  1138. v->ttfrm = 0; //FIXME Is that so ?
  1139. if (v->vstransform)
  1140. {
  1141. v->ttmbf = get_bits1(gb);
  1142. if (v->ttmbf)
  1143. {
  1144. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1145. }
  1146. } else {
  1147. v->ttmbf = 1;
  1148. v->ttfrm = TT_8X8;
  1149. }
  1150. break;
  1151. case FF_B_TYPE:
  1152. if (v->pq < 5) v->tt_index = 0;
  1153. else if(v->pq < 13) v->tt_index = 1;
  1154. else v->tt_index = 2;
  1155. lowquant = (v->pq > 12) ? 0 : 1;
  1156. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1157. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1158. v->s.mspel = v->s.quarter_sample;
  1159. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1160. if (status < 0) return -1;
  1161. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1162. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1163. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1164. if (status < 0) return -1;
  1165. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1166. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1167. v->s.mv_table_index = get_bits(gb, 2);
  1168. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1169. if (v->dquant)
  1170. {
  1171. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1172. vop_dquant_decoding(v);
  1173. }
  1174. v->ttfrm = 0;
  1175. if (v->vstransform)
  1176. {
  1177. v->ttmbf = get_bits1(gb);
  1178. if (v->ttmbf)
  1179. {
  1180. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1181. }
  1182. } else {
  1183. v->ttmbf = 1;
  1184. v->ttfrm = TT_8X8;
  1185. }
  1186. break;
  1187. }
  1188. if(!v->x8_type)
  1189. {
  1190. /* AC Syntax */
  1191. v->c_ac_table_index = decode012(gb);
  1192. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1193. {
  1194. v->y_ac_table_index = decode012(gb);
  1195. }
  1196. /* DC Syntax */
  1197. v->s.dc_table_index = get_bits1(gb);
  1198. }
  1199. if(v->s.pict_type == FF_BI_TYPE) {
  1200. v->s.pict_type = FF_B_TYPE;
  1201. v->bi_type = 1;
  1202. }
  1203. return 0;
  1204. }
  1205. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1206. {
  1207. int pqindex, lowquant;
  1208. int status;
  1209. v->p_frame_skipped = 0;
  1210. if(v->interlace){
  1211. v->fcm = decode012(gb);
  1212. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1213. }
  1214. switch(get_unary(gb, 0, 4)) {
  1215. case 0:
  1216. v->s.pict_type = FF_P_TYPE;
  1217. break;
  1218. case 1:
  1219. v->s.pict_type = FF_B_TYPE;
  1220. break;
  1221. case 2:
  1222. v->s.pict_type = FF_I_TYPE;
  1223. break;
  1224. case 3:
  1225. v->s.pict_type = FF_BI_TYPE;
  1226. break;
  1227. case 4:
  1228. v->s.pict_type = FF_P_TYPE; // skipped pic
  1229. v->p_frame_skipped = 1;
  1230. return 0;
  1231. }
  1232. if(v->tfcntrflag)
  1233. skip_bits(gb, 8);
  1234. if(v->broadcast) {
  1235. if(!v->interlace || v->psf) {
  1236. v->rptfrm = get_bits(gb, 2);
  1237. } else {
  1238. v->tff = get_bits1(gb);
  1239. v->rptfrm = get_bits1(gb);
  1240. }
  1241. }
  1242. if(v->panscanflag) {
  1243. //...
  1244. }
  1245. v->rnd = get_bits1(gb);
  1246. if(v->interlace)
  1247. v->uvsamp = get_bits1(gb);
  1248. if(v->finterpflag) v->interpfrm = get_bits1(gb);
  1249. if(v->s.pict_type == FF_B_TYPE) {
  1250. v->bfraction = get_vlc2(gb, ff_vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1251. v->bfraction = ff_vc1_bfraction_lut[v->bfraction];
  1252. if(v->bfraction == 0) {
  1253. v->s.pict_type = FF_BI_TYPE; /* XXX: should not happen here */
  1254. }
  1255. }
  1256. pqindex = get_bits(gb, 5);
  1257. if(!pqindex) return -1;
  1258. v->pqindex = pqindex;
  1259. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1260. v->pq = ff_vc1_pquant_table[0][pqindex];
  1261. else
  1262. v->pq = ff_vc1_pquant_table[1][pqindex];
  1263. v->pquantizer = 1;
  1264. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1265. v->pquantizer = pqindex < 9;
  1266. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1267. v->pquantizer = 0;
  1268. v->pqindex = pqindex;
  1269. if (pqindex < 9) v->halfpq = get_bits1(gb);
  1270. else v->halfpq = 0;
  1271. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1272. v->pquantizer = get_bits1(gb);
  1273. if(v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_P_TYPE) v->use_ic = 0;
  1274. switch(v->s.pict_type) {
  1275. case FF_I_TYPE:
  1276. case FF_BI_TYPE:
  1277. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1278. if (status < 0) return -1;
  1279. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1280. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1281. v->condover = CONDOVER_NONE;
  1282. if(v->overlap && v->pq <= 8) {
  1283. v->condover = decode012(gb);
  1284. if(v->condover == CONDOVER_SELECT) {
  1285. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1286. if (status < 0) return -1;
  1287. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1288. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1289. }
  1290. }
  1291. break;
  1292. case FF_P_TYPE:
  1293. if(v->postprocflag)
  1294. v->postproc = get_bits1(gb);
  1295. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1296. else v->mvrange = 0;
  1297. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1298. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1299. v->range_x = 1 << (v->k_x - 1);
  1300. v->range_y = 1 << (v->k_y - 1);
  1301. if (v->pq < 5) v->tt_index = 0;
  1302. else if(v->pq < 13) v->tt_index = 1;
  1303. else v->tt_index = 2;
  1304. lowquant = (v->pq > 12) ? 0 : 1;
  1305. v->mv_mode = ff_vc1_mv_pmode_table[lowquant][get_unary(gb, 1, 4)];
  1306. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1307. {
  1308. int scale, shift, i;
  1309. v->mv_mode2 = ff_vc1_mv_pmode_table2[lowquant][get_unary(gb, 1, 3)];
  1310. v->lumscale = get_bits(gb, 6);
  1311. v->lumshift = get_bits(gb, 6);
  1312. /* fill lookup tables for intensity compensation */
  1313. if(!v->lumscale) {
  1314. scale = -64;
  1315. shift = (255 - v->lumshift * 2) << 6;
  1316. if(v->lumshift > 31)
  1317. shift += 128 << 6;
  1318. } else {
  1319. scale = v->lumscale + 32;
  1320. if(v->lumshift > 31)
  1321. shift = (v->lumshift - 64) << 6;
  1322. else
  1323. shift = v->lumshift << 6;
  1324. }
  1325. for(i = 0; i < 256; i++) {
  1326. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1327. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1328. }
  1329. v->use_ic = 1;
  1330. }
  1331. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1332. v->s.quarter_sample = 0;
  1333. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1334. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1335. v->s.quarter_sample = 0;
  1336. else
  1337. v->s.quarter_sample = 1;
  1338. } else
  1339. v->s.quarter_sample = 1;
  1340. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1341. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1342. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1343. || v->mv_mode == MV_PMODE_MIXED_MV)
  1344. {
  1345. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1346. if (status < 0) return -1;
  1347. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1348. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1349. } else {
  1350. v->mv_type_is_raw = 0;
  1351. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1352. }
  1353. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1354. if (status < 0) return -1;
  1355. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1356. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1357. /* Hopefully this is correct for P frames */
  1358. v->s.mv_table_index = get_bits(gb, 2); //but using ff_vc1_ tables
  1359. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1360. if (v->dquant)
  1361. {
  1362. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1363. vop_dquant_decoding(v);
  1364. }
  1365. v->ttfrm = 0; //FIXME Is that so ?
  1366. if (v->vstransform)
  1367. {
  1368. v->ttmbf = get_bits1(gb);
  1369. if (v->ttmbf)
  1370. {
  1371. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1372. }
  1373. } else {
  1374. v->ttmbf = 1;
  1375. v->ttfrm = TT_8X8;
  1376. }
  1377. break;
  1378. case FF_B_TYPE:
  1379. if(v->postprocflag)
  1380. v->postproc = get_bits1(gb);
  1381. if (v->extended_mv) v->mvrange = get_unary(gb, 0, 3);
  1382. else v->mvrange = 0;
  1383. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1384. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1385. v->range_x = 1 << (v->k_x - 1);
  1386. v->range_y = 1 << (v->k_y - 1);
  1387. if (v->pq < 5) v->tt_index = 0;
  1388. else if(v->pq < 13) v->tt_index = 1;
  1389. else v->tt_index = 2;
  1390. lowquant = (v->pq > 12) ? 0 : 1;
  1391. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1392. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1393. v->s.mspel = v->s.quarter_sample;
  1394. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1395. if (status < 0) return -1;
  1396. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1397. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1398. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1399. if (status < 0) return -1;
  1400. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1401. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1402. v->s.mv_table_index = get_bits(gb, 2);
  1403. v->cbpcy_vlc = &ff_vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1404. if (v->dquant)
  1405. {
  1406. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1407. vop_dquant_decoding(v);
  1408. }
  1409. v->ttfrm = 0;
  1410. if (v->vstransform)
  1411. {
  1412. v->ttmbf = get_bits1(gb);
  1413. if (v->ttmbf)
  1414. {
  1415. v->ttfrm = ff_vc1_ttfrm_to_tt[get_bits(gb, 2)];
  1416. }
  1417. } else {
  1418. v->ttmbf = 1;
  1419. v->ttfrm = TT_8X8;
  1420. }
  1421. break;
  1422. }
  1423. /* AC Syntax */
  1424. v->c_ac_table_index = decode012(gb);
  1425. if (v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE)
  1426. {
  1427. v->y_ac_table_index = decode012(gb);
  1428. }
  1429. /* DC Syntax */
  1430. v->s.dc_table_index = get_bits1(gb);
  1431. if ((v->s.pict_type == FF_I_TYPE || v->s.pict_type == FF_BI_TYPE) && v->dquant) {
  1432. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1433. vop_dquant_decoding(v);
  1434. }
  1435. v->bi_type = 0;
  1436. if(v->s.pict_type == FF_BI_TYPE) {
  1437. v->s.pict_type = FF_B_TYPE;
  1438. v->bi_type = 1;
  1439. }
  1440. return 0;
  1441. }
  1442. /***********************************************************************/
  1443. /**
  1444. * @defgroup block VC-1 Block-level functions
  1445. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1446. * @{
  1447. */
  1448. /**
  1449. * @def GET_MQUANT
  1450. * @brief Get macroblock-level quantizer scale
  1451. */
  1452. #define GET_MQUANT() \
  1453. if (v->dquantfrm) \
  1454. { \
  1455. int edges = 0; \
  1456. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1457. { \
  1458. if (v->dqbilevel) \
  1459. { \
  1460. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  1461. } \
  1462. else \
  1463. { \
  1464. mqdiff = get_bits(gb, 3); \
  1465. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1466. else mquant = get_bits(gb, 5); \
  1467. } \
  1468. } \
  1469. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1470. edges = 1 << v->dqsbedge; \
  1471. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1472. edges = (3 << v->dqsbedge) % 15; \
  1473. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1474. edges = 15; \
  1475. if((edges&1) && !s->mb_x) \
  1476. mquant = v->altpq; \
  1477. if((edges&2) && s->first_slice_line) \
  1478. mquant = v->altpq; \
  1479. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1480. mquant = v->altpq; \
  1481. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1482. mquant = v->altpq; \
  1483. }
  1484. /**
  1485. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1486. * @brief Get MV differentials
  1487. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1488. * @param _dmv_x Horizontal differential for decoded MV
  1489. * @param _dmv_y Vertical differential for decoded MV
  1490. */
  1491. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1492. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  1493. VC1_MV_DIFF_VLC_BITS, 2); \
  1494. if (index > 36) \
  1495. { \
  1496. mb_has_coeffs = 1; \
  1497. index -= 37; \
  1498. } \
  1499. else mb_has_coeffs = 0; \
  1500. s->mb_intra = 0; \
  1501. if (!index) { _dmv_x = _dmv_y = 0; } \
  1502. else if (index == 35) \
  1503. { \
  1504. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1505. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1506. } \
  1507. else if (index == 36) \
  1508. { \
  1509. _dmv_x = 0; \
  1510. _dmv_y = 0; \
  1511. s->mb_intra = 1; \
  1512. } \
  1513. else \
  1514. { \
  1515. index1 = index%6; \
  1516. if (!s->quarter_sample && index1 == 5) val = 1; \
  1517. else val = 0; \
  1518. if(size_table[index1] - val > 0) \
  1519. val = get_bits(gb, size_table[index1] - val); \
  1520. else val = 0; \
  1521. sign = 0 - (val&1); \
  1522. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1523. \
  1524. index1 = index/6; \
  1525. if (!s->quarter_sample && index1 == 5) val = 1; \
  1526. else val = 0; \
  1527. if(size_table[index1] - val > 0) \
  1528. val = get_bits(gb, size_table[index1] - val); \
  1529. else val = 0; \
  1530. sign = 0 - (val&1); \
  1531. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1532. }
  1533. /** Predict and set motion vector
  1534. */
  1535. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1536. {
  1537. int xy, wrap, off = 0;
  1538. int16_t *A, *B, *C;
  1539. int px, py;
  1540. int sum;
  1541. /* scale MV difference to be quad-pel */
  1542. dmv_x <<= 1 - s->quarter_sample;
  1543. dmv_y <<= 1 - s->quarter_sample;
  1544. wrap = s->b8_stride;
  1545. xy = s->block_index[n];
  1546. if(s->mb_intra){
  1547. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1548. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1549. s->current_picture.motion_val[1][xy][0] = 0;
  1550. s->current_picture.motion_val[1][xy][1] = 0;
  1551. if(mv1) { /* duplicate motion data for 1-MV block */
  1552. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1553. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1554. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1555. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1556. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1557. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1558. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1559. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1560. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1561. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1562. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1563. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1564. }
  1565. return;
  1566. }
  1567. C = s->current_picture.motion_val[0][xy - 1];
  1568. A = s->current_picture.motion_val[0][xy - wrap];
  1569. if(mv1)
  1570. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1571. else {
  1572. //in 4-MV mode different blocks have different B predictor position
  1573. switch(n){
  1574. case 0:
  1575. off = (s->mb_x > 0) ? -1 : 1;
  1576. break;
  1577. case 1:
  1578. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1579. break;
  1580. case 2:
  1581. off = 1;
  1582. break;
  1583. case 3:
  1584. off = -1;
  1585. }
  1586. }
  1587. B = s->current_picture.motion_val[0][xy - wrap + off];
  1588. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1589. if(s->mb_width == 1) {
  1590. px = A[0];
  1591. py = A[1];
  1592. } else {
  1593. px = mid_pred(A[0], B[0], C[0]);
  1594. py = mid_pred(A[1], B[1], C[1]);
  1595. }
  1596. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1597. px = C[0];
  1598. py = C[1];
  1599. } else {
  1600. px = py = 0;
  1601. }
  1602. /* Pullback MV as specified in 8.3.5.3.4 */
  1603. {
  1604. int qx, qy, X, Y;
  1605. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1606. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1607. X = (s->mb_width << 6) - 4;
  1608. Y = (s->mb_height << 6) - 4;
  1609. if(mv1) {
  1610. if(qx + px < -60) px = -60 - qx;
  1611. if(qy + py < -60) py = -60 - qy;
  1612. } else {
  1613. if(qx + px < -28) px = -28 - qx;
  1614. if(qy + py < -28) py = -28 - qy;
  1615. }
  1616. if(qx + px > X) px = X - qx;
  1617. if(qy + py > Y) py = Y - qy;
  1618. }
  1619. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1620. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1621. if(is_intra[xy - wrap])
  1622. sum = FFABS(px) + FFABS(py);
  1623. else
  1624. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1625. if(sum > 32) {
  1626. if(get_bits1(&s->gb)) {
  1627. px = A[0];
  1628. py = A[1];
  1629. } else {
  1630. px = C[0];
  1631. py = C[1];
  1632. }
  1633. } else {
  1634. if(is_intra[xy - 1])
  1635. sum = FFABS(px) + FFABS(py);
  1636. else
  1637. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1638. if(sum > 32) {
  1639. if(get_bits1(&s->gb)) {
  1640. px = A[0];
  1641. py = A[1];
  1642. } else {
  1643. px = C[0];
  1644. py = C[1];
  1645. }
  1646. }
  1647. }
  1648. }
  1649. /* store MV using signed modulus of MV range defined in 4.11 */
  1650. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1651. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1652. if(mv1) { /* duplicate motion data for 1-MV block */
  1653. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1654. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1655. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1656. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1657. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1658. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1659. }
  1660. }
  1661. /** Motion compensation for direct or interpolated blocks in B-frames
  1662. */
  1663. static void vc1_interp_mc(VC1Context *v)
  1664. {
  1665. MpegEncContext *s = &v->s;
  1666. DSPContext *dsp = &v->s.dsp;
  1667. uint8_t *srcY, *srcU, *srcV;
  1668. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1669. if(!v->s.next_picture.data[0])return;
  1670. mx = s->mv[1][0][0];
  1671. my = s->mv[1][0][1];
  1672. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1673. uvmy = (my + ((my & 3) == 3)) >> 1;
  1674. if(v->fastuvmc) {
  1675. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1676. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1677. }
  1678. srcY = s->next_picture.data[0];
  1679. srcU = s->next_picture.data[1];
  1680. srcV = s->next_picture.data[2];
  1681. src_x = s->mb_x * 16 + (mx >> 2);
  1682. src_y = s->mb_y * 16 + (my >> 2);
  1683. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1684. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1685. if(v->profile != PROFILE_ADVANCED){
  1686. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1687. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1688. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1689. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1690. }else{
  1691. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1692. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1693. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1694. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1695. }
  1696. srcY += src_y * s->linesize + src_x;
  1697. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1698. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1699. /* for grayscale we should not try to read from unknown area */
  1700. if(s->flags & CODEC_FLAG_GRAY) {
  1701. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1702. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1703. }
  1704. if(v->rangeredfrm
  1705. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1706. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1707. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1708. srcY -= s->mspel * (1 + s->linesize);
  1709. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1710. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1711. srcY = s->edge_emu_buffer;
  1712. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1713. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1714. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1715. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1716. srcU = uvbuf;
  1717. srcV = uvbuf + 16;
  1718. /* if we deal with range reduction we need to scale source blocks */
  1719. if(v->rangeredfrm) {
  1720. int i, j;
  1721. uint8_t *src, *src2;
  1722. src = srcY;
  1723. for(j = 0; j < 17 + s->mspel*2; j++) {
  1724. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1725. src += s->linesize;
  1726. }
  1727. src = srcU; src2 = srcV;
  1728. for(j = 0; j < 9; j++) {
  1729. for(i = 0; i < 9; i++) {
  1730. src[i] = ((src[i] - 128) >> 1) + 128;
  1731. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1732. }
  1733. src += s->uvlinesize;
  1734. src2 += s->uvlinesize;
  1735. }
  1736. }
  1737. srcY += s->mspel * (1 + s->linesize);
  1738. }
  1739. mx >>= 1;
  1740. my >>= 1;
  1741. dxy = ((my & 1) << 1) | (mx & 1);
  1742. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1743. if(s->flags & CODEC_FLAG_GRAY) return;
  1744. /* Chroma MC always uses qpel blilinear */
  1745. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1746. uvmx = (uvmx&3)<<1;
  1747. uvmy = (uvmy&3)<<1;
  1748. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1749. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1750. }
  1751. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1752. {
  1753. int n = bfrac;
  1754. #if B_FRACTION_DEN==256
  1755. if(inv)
  1756. n -= 256;
  1757. if(!qs)
  1758. return 2 * ((value * n + 255) >> 9);
  1759. return (value * n + 128) >> 8;
  1760. #else
  1761. if(inv)
  1762. n -= B_FRACTION_DEN;
  1763. if(!qs)
  1764. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1765. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1766. #endif
  1767. }
  1768. /** Reconstruct motion vector for B-frame and do motion compensation
  1769. */
  1770. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1771. {
  1772. if(v->use_ic) {
  1773. v->mv_mode2 = v->mv_mode;
  1774. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1775. }
  1776. if(direct) {
  1777. vc1_mc_1mv(v, 0);
  1778. vc1_interp_mc(v);
  1779. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1780. return;
  1781. }
  1782. if(mode == BMV_TYPE_INTERPOLATED) {
  1783. vc1_mc_1mv(v, 0);
  1784. vc1_interp_mc(v);
  1785. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1786. return;
  1787. }
  1788. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1789. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1790. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1791. }
  1792. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1793. {
  1794. MpegEncContext *s = &v->s;
  1795. int xy, wrap, off = 0;
  1796. int16_t *A, *B, *C;
  1797. int px, py;
  1798. int sum;
  1799. int r_x, r_y;
  1800. const uint8_t *is_intra = v->mb_type[0];
  1801. r_x = v->range_x;
  1802. r_y = v->range_y;
  1803. /* scale MV difference to be quad-pel */
  1804. dmv_x[0] <<= 1 - s->quarter_sample;
  1805. dmv_y[0] <<= 1 - s->quarter_sample;
  1806. dmv_x[1] <<= 1 - s->quarter_sample;
  1807. dmv_y[1] <<= 1 - s->quarter_sample;
  1808. wrap = s->b8_stride;
  1809. xy = s->block_index[0];
  1810. if(s->mb_intra) {
  1811. s->current_picture.motion_val[0][xy][0] =
  1812. s->current_picture.motion_val[0][xy][1] =
  1813. s->current_picture.motion_val[1][xy][0] =
  1814. s->current_picture.motion_val[1][xy][1] = 0;
  1815. return;
  1816. }
  1817. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1818. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1819. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1820. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1821. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1822. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1823. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1824. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1825. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1826. if(direct) {
  1827. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1828. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1829. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1830. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1831. return;
  1832. }
  1833. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1834. C = s->current_picture.motion_val[0][xy - 2];
  1835. A = s->current_picture.motion_val[0][xy - wrap*2];
  1836. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1837. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1838. if(!s->mb_x) C[0] = C[1] = 0;
  1839. if(!s->first_slice_line) { // predictor A is not out of bounds
  1840. if(s->mb_width == 1) {
  1841. px = A[0];
  1842. py = A[1];
  1843. } else {
  1844. px = mid_pred(A[0], B[0], C[0]);
  1845. py = mid_pred(A[1], B[1], C[1]);
  1846. }
  1847. } else if(s->mb_x) { // predictor C is not out of bounds
  1848. px = C[0];
  1849. py = C[1];
  1850. } else {
  1851. px = py = 0;
  1852. }
  1853. /* Pullback MV as specified in 8.3.5.3.4 */
  1854. {
  1855. int qx, qy, X, Y;
  1856. if(v->profile < PROFILE_ADVANCED) {
  1857. qx = (s->mb_x << 5);
  1858. qy = (s->mb_y << 5);
  1859. X = (s->mb_width << 5) - 4;
  1860. Y = (s->mb_height << 5) - 4;
  1861. if(qx + px < -28) px = -28 - qx;
  1862. if(qy + py < -28) py = -28 - qy;
  1863. if(qx + px > X) px = X - qx;
  1864. if(qy + py > Y) py = Y - qy;
  1865. } else {
  1866. qx = (s->mb_x << 6);
  1867. qy = (s->mb_y << 6);
  1868. X = (s->mb_width << 6) - 4;
  1869. Y = (s->mb_height << 6) - 4;
  1870. if(qx + px < -60) px = -60 - qx;
  1871. if(qy + py < -60) py = -60 - qy;
  1872. if(qx + px > X) px = X - qx;
  1873. if(qy + py > Y) py = Y - qy;
  1874. }
  1875. }
  1876. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1877. if(0 && !s->first_slice_line && s->mb_x) {
  1878. if(is_intra[xy - wrap])
  1879. sum = FFABS(px) + FFABS(py);
  1880. else
  1881. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1882. if(sum > 32) {
  1883. if(get_bits1(&s->gb)) {
  1884. px = A[0];
  1885. py = A[1];
  1886. } else {
  1887. px = C[0];
  1888. py = C[1];
  1889. }
  1890. } else {
  1891. if(is_intra[xy - 2])
  1892. sum = FFABS(px) + FFABS(py);
  1893. else
  1894. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1895. if(sum > 32) {
  1896. if(get_bits1(&s->gb)) {
  1897. px = A[0];
  1898. py = A[1];
  1899. } else {
  1900. px = C[0];
  1901. py = C[1];
  1902. }
  1903. }
  1904. }
  1905. }
  1906. /* store MV using signed modulus of MV range defined in 4.11 */
  1907. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1908. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1909. }
  1910. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1911. C = s->current_picture.motion_val[1][xy - 2];
  1912. A = s->current_picture.motion_val[1][xy - wrap*2];
  1913. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1914. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1915. if(!s->mb_x) C[0] = C[1] = 0;
  1916. if(!s->first_slice_line) { // predictor A is not out of bounds
  1917. if(s->mb_width == 1) {
  1918. px = A[0];
  1919. py = A[1];
  1920. } else {
  1921. px = mid_pred(A[0], B[0], C[0]);
  1922. py = mid_pred(A[1], B[1], C[1]);
  1923. }
  1924. } else if(s->mb_x) { // predictor C is not out of bounds
  1925. px = C[0];
  1926. py = C[1];
  1927. } else {
  1928. px = py = 0;
  1929. }
  1930. /* Pullback MV as specified in 8.3.5.3.4 */
  1931. {
  1932. int qx, qy, X, Y;
  1933. if(v->profile < PROFILE_ADVANCED) {
  1934. qx = (s->mb_x << 5);
  1935. qy = (s->mb_y << 5);
  1936. X = (s->mb_width << 5) - 4;
  1937. Y = (s->mb_height << 5) - 4;
  1938. if(qx + px < -28) px = -28 - qx;
  1939. if(qy + py < -28) py = -28 - qy;
  1940. if(qx + px > X) px = X - qx;
  1941. if(qy + py > Y) py = Y - qy;
  1942. } else {
  1943. qx = (s->mb_x << 6);
  1944. qy = (s->mb_y << 6);
  1945. X = (s->mb_width << 6) - 4;
  1946. Y = (s->mb_height << 6) - 4;
  1947. if(qx + px < -60) px = -60 - qx;
  1948. if(qy + py < -60) py = -60 - qy;
  1949. if(qx + px > X) px = X - qx;
  1950. if(qy + py > Y) py = Y - qy;
  1951. }
  1952. }
  1953. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1954. if(0 && !s->first_slice_line && s->mb_x) {
  1955. if(is_intra[xy - wrap])
  1956. sum = FFABS(px) + FFABS(py);
  1957. else
  1958. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1959. if(sum > 32) {
  1960. if(get_bits1(&s->gb)) {
  1961. px = A[0];
  1962. py = A[1];
  1963. } else {
  1964. px = C[0];
  1965. py = C[1];
  1966. }
  1967. } else {
  1968. if(is_intra[xy - 2])
  1969. sum = FFABS(px) + FFABS(py);
  1970. else
  1971. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1972. if(sum > 32) {
  1973. if(get_bits1(&s->gb)) {
  1974. px = A[0];
  1975. py = A[1];
  1976. } else {
  1977. px = C[0];
  1978. py = C[1];
  1979. }
  1980. }
  1981. }
  1982. }
  1983. /* store MV using signed modulus of MV range defined in 4.11 */
  1984. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1985. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1986. }
  1987. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1988. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1989. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1990. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1991. }
  1992. /** Get predicted DC value for I-frames only
  1993. * prediction dir: left=0, top=1
  1994. * @param s MpegEncContext
  1995. * @param[in] n block index in the current MB
  1996. * @param dc_val_ptr Pointer to DC predictor
  1997. * @param dir_ptr Prediction direction for use in AC prediction
  1998. */
  1999. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2000. int16_t **dc_val_ptr, int *dir_ptr)
  2001. {
  2002. int a, b, c, wrap, pred, scale;
  2003. int16_t *dc_val;
  2004. static const uint16_t dcpred[32] = {
  2005. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2006. 114, 102, 93, 85, 79, 73, 68, 64,
  2007. 60, 57, 54, 51, 49, 47, 45, 43,
  2008. 41, 39, 38, 37, 35, 34, 33
  2009. };
  2010. /* find prediction - wmv3_dc_scale always used here in fact */
  2011. if (n < 4) scale = s->y_dc_scale;
  2012. else scale = s->c_dc_scale;
  2013. wrap = s->block_wrap[n];
  2014. dc_val= s->dc_val[0] + s->block_index[n];
  2015. /* B A
  2016. * C X
  2017. */
  2018. c = dc_val[ - 1];
  2019. b = dc_val[ - 1 - wrap];
  2020. a = dc_val[ - wrap];
  2021. if (pq < 9 || !overlap)
  2022. {
  2023. /* Set outer values */
  2024. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2025. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2026. }
  2027. else
  2028. {
  2029. /* Set outer values */
  2030. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2031. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2032. }
  2033. if (abs(a - b) <= abs(b - c)) {
  2034. pred = c;
  2035. *dir_ptr = 1;//left
  2036. } else {
  2037. pred = a;
  2038. *dir_ptr = 0;//top
  2039. }
  2040. /* update predictor */
  2041. *dc_val_ptr = &dc_val[0];
  2042. return pred;
  2043. }
  2044. /** Get predicted DC value
  2045. * prediction dir: left=0, top=1
  2046. * @param s MpegEncContext
  2047. * @param[in] n block index in the current MB
  2048. * @param dc_val_ptr Pointer to DC predictor
  2049. * @param dir_ptr Prediction direction for use in AC prediction
  2050. */
  2051. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2052. int a_avail, int c_avail,
  2053. int16_t **dc_val_ptr, int *dir_ptr)
  2054. {
  2055. int a, b, c, wrap, pred, scale;
  2056. int16_t *dc_val;
  2057. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2058. int q1, q2 = 0;
  2059. /* find prediction - wmv3_dc_scale always used here in fact */
  2060. if (n < 4) scale = s->y_dc_scale;
  2061. else scale = s->c_dc_scale;
  2062. wrap = s->block_wrap[n];
  2063. dc_val= s->dc_val[0] + s->block_index[n];
  2064. /* B A
  2065. * C X
  2066. */
  2067. c = dc_val[ - 1];
  2068. b = dc_val[ - 1 - wrap];
  2069. a = dc_val[ - wrap];
  2070. /* scale predictors if needed */
  2071. q1 = s->current_picture.qscale_table[mb_pos];
  2072. if(c_avail && (n!= 1 && n!=3)) {
  2073. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2074. if(q2 && q2 != q1)
  2075. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2076. }
  2077. if(a_avail && (n!= 2 && n!=3)) {
  2078. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2079. if(q2 && q2 != q1)
  2080. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2081. }
  2082. if(a_avail && c_avail && (n!=3)) {
  2083. int off = mb_pos;
  2084. if(n != 1) off--;
  2085. if(n != 2) off -= s->mb_stride;
  2086. q2 = s->current_picture.qscale_table[off];
  2087. if(q2 && q2 != q1)
  2088. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2089. }
  2090. if(a_avail && c_avail) {
  2091. if(abs(a - b) <= abs(b - c)) {
  2092. pred = c;
  2093. *dir_ptr = 1;//left
  2094. } else {
  2095. pred = a;
  2096. *dir_ptr = 0;//top
  2097. }
  2098. } else if(a_avail) {
  2099. pred = a;
  2100. *dir_ptr = 0;//top
  2101. } else if(c_avail) {
  2102. pred = c;
  2103. *dir_ptr = 1;//left
  2104. } else {
  2105. pred = 0;
  2106. *dir_ptr = 1;//left
  2107. }
  2108. /* update predictor */
  2109. *dc_val_ptr = &dc_val[0];
  2110. return pred;
  2111. }
  2112. /**
  2113. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2114. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2115. * @{
  2116. */
  2117. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2118. {
  2119. int xy, wrap, pred, a, b, c;
  2120. xy = s->block_index[n];
  2121. wrap = s->b8_stride;
  2122. /* B C
  2123. * A X
  2124. */
  2125. a = s->coded_block[xy - 1 ];
  2126. b = s->coded_block[xy - 1 - wrap];
  2127. c = s->coded_block[xy - wrap];
  2128. if (b == c) {
  2129. pred = a;
  2130. } else {
  2131. pred = c;
  2132. }
  2133. /* store value */
  2134. *coded_block_ptr = &s->coded_block[xy];
  2135. return pred;
  2136. }
  2137. /**
  2138. * Decode one AC coefficient
  2139. * @param v The VC1 context
  2140. * @param last Last coefficient
  2141. * @param skip How much zero coefficients to skip
  2142. * @param value Decoded AC coefficient value
  2143. * @see 8.1.3.4
  2144. */
  2145. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2146. {
  2147. GetBitContext *gb = &v->s.gb;
  2148. int index, escape, run = 0, level = 0, lst = 0;
  2149. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2150. if (index != vc1_ac_sizes[codingset] - 1) {
  2151. run = vc1_index_decode_table[codingset][index][0];
  2152. level = vc1_index_decode_table[codingset][index][1];
  2153. lst = index >= vc1_last_decode_table[codingset];
  2154. if(get_bits1(gb))
  2155. level = -level;
  2156. } else {
  2157. escape = decode210(gb);
  2158. if (escape != 2) {
  2159. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2160. run = vc1_index_decode_table[codingset][index][0];
  2161. level = vc1_index_decode_table[codingset][index][1];
  2162. lst = index >= vc1_last_decode_table[codingset];
  2163. if(escape == 0) {
  2164. if(lst)
  2165. level += vc1_last_delta_level_table[codingset][run];
  2166. else
  2167. level += vc1_delta_level_table[codingset][run];
  2168. } else {
  2169. if(lst)
  2170. run += vc1_last_delta_run_table[codingset][level] + 1;
  2171. else
  2172. run += vc1_delta_run_table[codingset][level] + 1;
  2173. }
  2174. if(get_bits1(gb))
  2175. level = -level;
  2176. } else {
  2177. int sign;
  2178. lst = get_bits1(gb);
  2179. if(v->s.esc3_level_length == 0) {
  2180. if(v->pq < 8 || v->dquantfrm) { // table 59
  2181. v->s.esc3_level_length = get_bits(gb, 3);
  2182. if(!v->s.esc3_level_length)
  2183. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2184. } else { //table 60
  2185. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  2186. }
  2187. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2188. }
  2189. run = get_bits(gb, v->s.esc3_run_length);
  2190. sign = get_bits1(gb);
  2191. level = get_bits(gb, v->s.esc3_level_length);
  2192. if(sign)
  2193. level = -level;
  2194. }
  2195. }
  2196. *last = lst;
  2197. *skip = run;
  2198. *value = level;
  2199. }
  2200. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2201. * @param v VC1Context
  2202. * @param block block to decode
  2203. * @param coded are AC coeffs present or not
  2204. * @param codingset set of VLC to decode data
  2205. */
  2206. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2207. {
  2208. GetBitContext *gb = &v->s.gb;
  2209. MpegEncContext *s = &v->s;
  2210. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2211. int run_diff, i;
  2212. int16_t *dc_val;
  2213. int16_t *ac_val, *ac_val2;
  2214. int dcdiff;
  2215. /* Get DC differential */
  2216. if (n < 4) {
  2217. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2218. } else {
  2219. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2220. }
  2221. if (dcdiff < 0){
  2222. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2223. return -1;
  2224. }
  2225. if (dcdiff)
  2226. {
  2227. if (dcdiff == 119 /* ESC index value */)
  2228. {
  2229. /* TODO: Optimize */
  2230. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2231. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2232. else dcdiff = get_bits(gb, 8);
  2233. }
  2234. else
  2235. {
  2236. if (v->pq == 1)
  2237. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2238. else if (v->pq == 2)
  2239. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2240. }
  2241. if (get_bits1(gb))
  2242. dcdiff = -dcdiff;
  2243. }
  2244. /* Prediction */
  2245. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2246. *dc_val = dcdiff;
  2247. /* Store the quantized DC coeff, used for prediction */
  2248. if (n < 4) {
  2249. block[0] = dcdiff * s->y_dc_scale;
  2250. } else {
  2251. block[0] = dcdiff * s->c_dc_scale;
  2252. }
  2253. /* Skip ? */
  2254. run_diff = 0;
  2255. i = 0;
  2256. if (!coded) {
  2257. goto not_coded;
  2258. }
  2259. //AC Decoding
  2260. i = 1;
  2261. {
  2262. int last = 0, skip, value;
  2263. const int8_t *zz_table;
  2264. int scale;
  2265. int k;
  2266. scale = v->pq * 2 + v->halfpq;
  2267. if(v->s.ac_pred) {
  2268. if(!dc_pred_dir)
  2269. zz_table = wmv1_scantable[2];
  2270. else
  2271. zz_table = wmv1_scantable[3];
  2272. } else
  2273. zz_table = wmv1_scantable[1];
  2274. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2275. ac_val2 = ac_val;
  2276. if(dc_pred_dir) //left
  2277. ac_val -= 16;
  2278. else //top
  2279. ac_val -= 16 * s->block_wrap[n];
  2280. while (!last) {
  2281. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2282. i += skip;
  2283. if(i > 63)
  2284. break;
  2285. block[zz_table[i++]] = value;
  2286. }
  2287. /* apply AC prediction if needed */
  2288. if(s->ac_pred) {
  2289. if(dc_pred_dir) { //left
  2290. for(k = 1; k < 8; k++)
  2291. block[k << 3] += ac_val[k];
  2292. } else { //top
  2293. for(k = 1; k < 8; k++)
  2294. block[k] += ac_val[k + 8];
  2295. }
  2296. }
  2297. /* save AC coeffs for further prediction */
  2298. for(k = 1; k < 8; k++) {
  2299. ac_val2[k] = block[k << 3];
  2300. ac_val2[k + 8] = block[k];
  2301. }
  2302. /* scale AC coeffs */
  2303. for(k = 1; k < 64; k++)
  2304. if(block[k]) {
  2305. block[k] *= scale;
  2306. if(!v->pquantizer)
  2307. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2308. }
  2309. if(s->ac_pred) i = 63;
  2310. }
  2311. not_coded:
  2312. if(!coded) {
  2313. int k, scale;
  2314. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2315. ac_val2 = ac_val;
  2316. scale = v->pq * 2 + v->halfpq;
  2317. memset(ac_val2, 0, 16 * 2);
  2318. if(dc_pred_dir) {//left
  2319. ac_val -= 16;
  2320. if(s->ac_pred)
  2321. memcpy(ac_val2, ac_val, 8 * 2);
  2322. } else {//top
  2323. ac_val -= 16 * s->block_wrap[n];
  2324. if(s->ac_pred)
  2325. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2326. }
  2327. /* apply AC prediction if needed */
  2328. if(s->ac_pred) {
  2329. if(dc_pred_dir) { //left
  2330. for(k = 1; k < 8; k++) {
  2331. block[k << 3] = ac_val[k] * scale;
  2332. if(!v->pquantizer && block[k << 3])
  2333. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2334. }
  2335. } else { //top
  2336. for(k = 1; k < 8; k++) {
  2337. block[k] = ac_val[k + 8] * scale;
  2338. if(!v->pquantizer && block[k])
  2339. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2340. }
  2341. }
  2342. i = 63;
  2343. }
  2344. }
  2345. s->block_last_index[n] = i;
  2346. return 0;
  2347. }
  2348. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2349. * @param v VC1Context
  2350. * @param block block to decode
  2351. * @param coded are AC coeffs present or not
  2352. * @param codingset set of VLC to decode data
  2353. */
  2354. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2355. {
  2356. GetBitContext *gb = &v->s.gb;
  2357. MpegEncContext *s = &v->s;
  2358. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2359. int run_diff, i;
  2360. int16_t *dc_val;
  2361. int16_t *ac_val, *ac_val2;
  2362. int dcdiff;
  2363. int a_avail = v->a_avail, c_avail = v->c_avail;
  2364. int use_pred = s->ac_pred;
  2365. int scale;
  2366. int q1, q2 = 0;
  2367. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2368. /* Get DC differential */
  2369. if (n < 4) {
  2370. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2371. } else {
  2372. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2373. }
  2374. if (dcdiff < 0){
  2375. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2376. return -1;
  2377. }
  2378. if (dcdiff)
  2379. {
  2380. if (dcdiff == 119 /* ESC index value */)
  2381. {
  2382. /* TODO: Optimize */
  2383. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2384. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2385. else dcdiff = get_bits(gb, 8);
  2386. }
  2387. else
  2388. {
  2389. if (mquant == 1)
  2390. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2391. else if (mquant == 2)
  2392. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2393. }
  2394. if (get_bits1(gb))
  2395. dcdiff = -dcdiff;
  2396. }
  2397. /* Prediction */
  2398. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2399. *dc_val = dcdiff;
  2400. /* Store the quantized DC coeff, used for prediction */
  2401. if (n < 4) {
  2402. block[0] = dcdiff * s->y_dc_scale;
  2403. } else {
  2404. block[0] = dcdiff * s->c_dc_scale;
  2405. }
  2406. /* Skip ? */
  2407. run_diff = 0;
  2408. i = 0;
  2409. //AC Decoding
  2410. i = 1;
  2411. /* check if AC is needed at all */
  2412. if(!a_avail && !c_avail) use_pred = 0;
  2413. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2414. ac_val2 = ac_val;
  2415. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  2416. if(dc_pred_dir) //left
  2417. ac_val -= 16;
  2418. else //top
  2419. ac_val -= 16 * s->block_wrap[n];
  2420. q1 = s->current_picture.qscale_table[mb_pos];
  2421. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2422. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2423. if(dc_pred_dir && n==1) q2 = q1;
  2424. if(!dc_pred_dir && n==2) q2 = q1;
  2425. if(n==3) q2 = q1;
  2426. if(coded) {
  2427. int last = 0, skip, value;
  2428. const int8_t *zz_table;
  2429. int k;
  2430. if(v->s.ac_pred) {
  2431. if(!dc_pred_dir)
  2432. zz_table = wmv1_scantable[2];
  2433. else
  2434. zz_table = wmv1_scantable[3];
  2435. } else
  2436. zz_table = wmv1_scantable[1];
  2437. while (!last) {
  2438. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2439. i += skip;
  2440. if(i > 63)
  2441. break;
  2442. block[zz_table[i++]] = value;
  2443. }
  2444. /* apply AC prediction if needed */
  2445. if(use_pred) {
  2446. /* scale predictors if needed*/
  2447. if(q2 && q1!=q2) {
  2448. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2449. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2450. if(dc_pred_dir) { //left
  2451. for(k = 1; k < 8; k++)
  2452. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2453. } else { //top
  2454. for(k = 1; k < 8; k++)
  2455. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2456. }
  2457. } else {
  2458. if(dc_pred_dir) { //left
  2459. for(k = 1; k < 8; k++)
  2460. block[k << 3] += ac_val[k];
  2461. } else { //top
  2462. for(k = 1; k < 8; k++)
  2463. block[k] += ac_val[k + 8];
  2464. }
  2465. }
  2466. }
  2467. /* save AC coeffs for further prediction */
  2468. for(k = 1; k < 8; k++) {
  2469. ac_val2[k] = block[k << 3];
  2470. ac_val2[k + 8] = block[k];
  2471. }
  2472. /* scale AC coeffs */
  2473. for(k = 1; k < 64; k++)
  2474. if(block[k]) {
  2475. block[k] *= scale;
  2476. if(!v->pquantizer)
  2477. block[k] += (block[k] < 0) ? -mquant : mquant;
  2478. }
  2479. if(use_pred) i = 63;
  2480. } else { // no AC coeffs
  2481. int k;
  2482. memset(ac_val2, 0, 16 * 2);
  2483. if(dc_pred_dir) {//left
  2484. if(use_pred) {
  2485. memcpy(ac_val2, ac_val, 8 * 2);
  2486. if(q2 && q1!=q2) {
  2487. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2488. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2489. for(k = 1; k < 8; k++)
  2490. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2491. }
  2492. }
  2493. } else {//top
  2494. if(use_pred) {
  2495. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2496. if(q2 && q1!=q2) {
  2497. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2498. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2499. for(k = 1; k < 8; k++)
  2500. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2501. }
  2502. }
  2503. }
  2504. /* apply AC prediction if needed */
  2505. if(use_pred) {
  2506. if(dc_pred_dir) { //left
  2507. for(k = 1; k < 8; k++) {
  2508. block[k << 3] = ac_val2[k] * scale;
  2509. if(!v->pquantizer && block[k << 3])
  2510. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2511. }
  2512. } else { //top
  2513. for(k = 1; k < 8; k++) {
  2514. block[k] = ac_val2[k + 8] * scale;
  2515. if(!v->pquantizer && block[k])
  2516. block[k] += (block[k] < 0) ? -mquant : mquant;
  2517. }
  2518. }
  2519. i = 63;
  2520. }
  2521. }
  2522. s->block_last_index[n] = i;
  2523. return 0;
  2524. }
  2525. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2526. * @param v VC1Context
  2527. * @param block block to decode
  2528. * @param coded are AC coeffs present or not
  2529. * @param mquant block quantizer
  2530. * @param codingset set of VLC to decode data
  2531. */
  2532. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2533. {
  2534. GetBitContext *gb = &v->s.gb;
  2535. MpegEncContext *s = &v->s;
  2536. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2537. int run_diff, i;
  2538. int16_t *dc_val;
  2539. int16_t *ac_val, *ac_val2;
  2540. int dcdiff;
  2541. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2542. int a_avail = v->a_avail, c_avail = v->c_avail;
  2543. int use_pred = s->ac_pred;
  2544. int scale;
  2545. int q1, q2 = 0;
  2546. /* XXX: Guard against dumb values of mquant */
  2547. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2548. /* Set DC scale - y and c use the same */
  2549. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2550. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2551. /* Get DC differential */
  2552. if (n < 4) {
  2553. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2554. } else {
  2555. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2556. }
  2557. if (dcdiff < 0){
  2558. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2559. return -1;
  2560. }
  2561. if (dcdiff)
  2562. {
  2563. if (dcdiff == 119 /* ESC index value */)
  2564. {
  2565. /* TODO: Optimize */
  2566. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2567. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2568. else dcdiff = get_bits(gb, 8);
  2569. }
  2570. else
  2571. {
  2572. if (mquant == 1)
  2573. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2574. else if (mquant == 2)
  2575. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  2576. }
  2577. if (get_bits1(gb))
  2578. dcdiff = -dcdiff;
  2579. }
  2580. /* Prediction */
  2581. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2582. *dc_val = dcdiff;
  2583. /* Store the quantized DC coeff, used for prediction */
  2584. if (n < 4) {
  2585. block[0] = dcdiff * s->y_dc_scale;
  2586. } else {
  2587. block[0] = dcdiff * s->c_dc_scale;
  2588. }
  2589. /* Skip ? */
  2590. run_diff = 0;
  2591. i = 0;
  2592. //AC Decoding
  2593. i = 1;
  2594. /* check if AC is needed at all and adjust direction if needed */
  2595. if(!a_avail) dc_pred_dir = 1;
  2596. if(!c_avail) dc_pred_dir = 0;
  2597. if(!a_avail && !c_avail) use_pred = 0;
  2598. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2599. ac_val2 = ac_val;
  2600. scale = mquant * 2 + v->halfpq;
  2601. if(dc_pred_dir) //left
  2602. ac_val -= 16;
  2603. else //top
  2604. ac_val -= 16 * s->block_wrap[n];
  2605. q1 = s->current_picture.qscale_table[mb_pos];
  2606. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2607. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2608. if(dc_pred_dir && n==1) q2 = q1;
  2609. if(!dc_pred_dir && n==2) q2 = q1;
  2610. if(n==3) q2 = q1;
  2611. if(coded) {
  2612. int last = 0, skip, value;
  2613. const int8_t *zz_table;
  2614. int k;
  2615. zz_table = wmv1_scantable[0];
  2616. while (!last) {
  2617. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2618. i += skip;
  2619. if(i > 63)
  2620. break;
  2621. block[zz_table[i++]] = value;
  2622. }
  2623. /* apply AC prediction if needed */
  2624. if(use_pred) {
  2625. /* scale predictors if needed*/
  2626. if(q2 && q1!=q2) {
  2627. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2628. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2629. if(dc_pred_dir) { //left
  2630. for(k = 1; k < 8; k++)
  2631. block[k << 3] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2632. } else { //top
  2633. for(k = 1; k < 8; k++)
  2634. block[k] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2635. }
  2636. } else {
  2637. if(dc_pred_dir) { //left
  2638. for(k = 1; k < 8; k++)
  2639. block[k << 3] += ac_val[k];
  2640. } else { //top
  2641. for(k = 1; k < 8; k++)
  2642. block[k] += ac_val[k + 8];
  2643. }
  2644. }
  2645. }
  2646. /* save AC coeffs for further prediction */
  2647. for(k = 1; k < 8; k++) {
  2648. ac_val2[k] = block[k << 3];
  2649. ac_val2[k + 8] = block[k];
  2650. }
  2651. /* scale AC coeffs */
  2652. for(k = 1; k < 64; k++)
  2653. if(block[k]) {
  2654. block[k] *= scale;
  2655. if(!v->pquantizer)
  2656. block[k] += (block[k] < 0) ? -mquant : mquant;
  2657. }
  2658. if(use_pred) i = 63;
  2659. } else { // no AC coeffs
  2660. int k;
  2661. memset(ac_val2, 0, 16 * 2);
  2662. if(dc_pred_dir) {//left
  2663. if(use_pred) {
  2664. memcpy(ac_val2, ac_val, 8 * 2);
  2665. if(q2 && q1!=q2) {
  2666. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2667. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2668. for(k = 1; k < 8; k++)
  2669. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2670. }
  2671. }
  2672. } else {//top
  2673. if(use_pred) {
  2674. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2675. if(q2 && q1!=q2) {
  2676. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2677. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2678. for(k = 1; k < 8; k++)
  2679. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2680. }
  2681. }
  2682. }
  2683. /* apply AC prediction if needed */
  2684. if(use_pred) {
  2685. if(dc_pred_dir) { //left
  2686. for(k = 1; k < 8; k++) {
  2687. block[k << 3] = ac_val2[k] * scale;
  2688. if(!v->pquantizer && block[k << 3])
  2689. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2690. }
  2691. } else { //top
  2692. for(k = 1; k < 8; k++) {
  2693. block[k] = ac_val2[k + 8] * scale;
  2694. if(!v->pquantizer && block[k])
  2695. block[k] += (block[k] < 0) ? -mquant : mquant;
  2696. }
  2697. }
  2698. i = 63;
  2699. }
  2700. }
  2701. s->block_last_index[n] = i;
  2702. return 0;
  2703. }
  2704. /** Decode P block
  2705. */
  2706. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  2707. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  2708. {
  2709. MpegEncContext *s = &v->s;
  2710. GetBitContext *gb = &s->gb;
  2711. int i, j;
  2712. int subblkpat = 0;
  2713. int scale, off, idx, last, skip, value;
  2714. int ttblk = ttmb & 7;
  2715. int pat = 0;
  2716. if(ttmb == -1) {
  2717. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2718. }
  2719. if(ttblk == TT_4X4) {
  2720. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2721. }
  2722. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2723. subblkpat = decode012(gb);
  2724. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2725. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2726. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2727. }
  2728. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  2729. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2730. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2731. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2732. ttblk = TT_8X4;
  2733. }
  2734. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2735. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2736. ttblk = TT_4X8;
  2737. }
  2738. switch(ttblk) {
  2739. case TT_8X8:
  2740. pat = 0xF;
  2741. i = 0;
  2742. last = 0;
  2743. while (!last) {
  2744. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2745. i += skip;
  2746. if(i > 63)
  2747. break;
  2748. idx = wmv1_scantable[0][i++];
  2749. block[idx] = value * scale;
  2750. if(!v->pquantizer)
  2751. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2752. }
  2753. if(!skip_block){
  2754. s->dsp.vc1_inv_trans_8x8(block);
  2755. s->dsp.add_pixels_clamped(block, dst, linesize);
  2756. if(apply_filter && cbp_top & 0xC)
  2757. vc1_loop_filter(dst, 1, linesize, 8, mquant);
  2758. if(apply_filter && cbp_left & 0xA)
  2759. vc1_loop_filter(dst, linesize, 1, 8, mquant);
  2760. }
  2761. break;
  2762. case TT_4X4:
  2763. pat = ~subblkpat & 0xF;
  2764. for(j = 0; j < 4; j++) {
  2765. last = subblkpat & (1 << (3 - j));
  2766. i = 0;
  2767. off = (j & 1) * 4 + (j & 2) * 16;
  2768. while (!last) {
  2769. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2770. i += skip;
  2771. if(i > 15)
  2772. break;
  2773. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  2774. block[idx + off] = value * scale;
  2775. if(!v->pquantizer)
  2776. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2777. }
  2778. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  2779. s->dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  2780. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  2781. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, 1, linesize, 4, mquant);
  2782. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  2783. vc1_loop_filter(dst + (j&1)*4 + (j&2)*2*linesize, linesize, 1, 4, mquant);
  2784. }
  2785. }
  2786. break;
  2787. case TT_8X4:
  2788. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  2789. for(j = 0; j < 2; j++) {
  2790. last = subblkpat & (1 << (1 - j));
  2791. i = 0;
  2792. off = j * 32;
  2793. while (!last) {
  2794. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2795. i += skip;
  2796. if(i > 31)
  2797. break;
  2798. idx = v->zz_8x4[i++]+off;
  2799. block[idx] = value * scale;
  2800. if(!v->pquantizer)
  2801. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2802. }
  2803. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2804. s->dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  2805. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  2806. vc1_loop_filter(dst + j*4*linesize, 1, linesize, 8, mquant);
  2807. if(apply_filter && cbp_left & (2 << j))
  2808. vc1_loop_filter(dst + j*4*linesize, linesize, 1, 4, mquant);
  2809. }
  2810. }
  2811. break;
  2812. case TT_4X8:
  2813. pat = ~(subblkpat*5) & 0xF;
  2814. for(j = 0; j < 2; j++) {
  2815. last = subblkpat & (1 << (1 - j));
  2816. i = 0;
  2817. off = j * 4;
  2818. while (!last) {
  2819. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2820. i += skip;
  2821. if(i > 31)
  2822. break;
  2823. idx = v->zz_4x8[i++]+off;
  2824. block[idx] = value * scale;
  2825. if(!v->pquantizer)
  2826. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2827. }
  2828. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  2829. s->dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  2830. if(apply_filter && cbp_top & (2 << j))
  2831. vc1_loop_filter(dst + j*4, 1, linesize, 4, mquant);
  2832. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  2833. vc1_loop_filter(dst + j*4, linesize, 1, 8, mquant);
  2834. }
  2835. }
  2836. break;
  2837. }
  2838. return pat;
  2839. }
  2840. /** Decode one P-frame MB (in Simple/Main profile)
  2841. */
  2842. static int vc1_decode_p_mb(VC1Context *v)
  2843. {
  2844. MpegEncContext *s = &v->s;
  2845. GetBitContext *gb = &s->gb;
  2846. int i, j;
  2847. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2848. int cbp; /* cbp decoding stuff */
  2849. int mqdiff, mquant; /* MB quantization */
  2850. int ttmb = v->ttfrm; /* MB Transform type */
  2851. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2852. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2853. int mb_has_coeffs = 1; /* last_flag */
  2854. int dmv_x, dmv_y; /* Differential MV components */
  2855. int index, index1; /* LUT indexes */
  2856. int val, sign; /* temp values */
  2857. int first_block = 1;
  2858. int dst_idx, off;
  2859. int skipped, fourmv;
  2860. int block_cbp = 0, pat;
  2861. int apply_loop_filter;
  2862. mquant = v->pq; /* Loosy initialization */
  2863. if (v->mv_type_is_raw)
  2864. fourmv = get_bits1(gb);
  2865. else
  2866. fourmv = v->mv_type_mb_plane[mb_pos];
  2867. if (v->skip_is_raw)
  2868. skipped = get_bits1(gb);
  2869. else
  2870. skipped = v->s.mbskip_table[mb_pos];
  2871. s->dsp.clear_blocks(s->block[0]);
  2872. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  2873. if (!fourmv) /* 1MV mode */
  2874. {
  2875. if (!skipped)
  2876. {
  2877. GET_MVDATA(dmv_x, dmv_y);
  2878. if (s->mb_intra) {
  2879. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2880. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2881. }
  2882. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2883. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2884. /* FIXME Set DC val for inter block ? */
  2885. if (s->mb_intra && !mb_has_coeffs)
  2886. {
  2887. GET_MQUANT();
  2888. s->ac_pred = get_bits1(gb);
  2889. cbp = 0;
  2890. }
  2891. else if (mb_has_coeffs)
  2892. {
  2893. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  2894. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2895. GET_MQUANT();
  2896. }
  2897. else
  2898. {
  2899. mquant = v->pq;
  2900. cbp = 0;
  2901. }
  2902. s->current_picture.qscale_table[mb_pos] = mquant;
  2903. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2904. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  2905. VC1_TTMB_VLC_BITS, 2);
  2906. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2907. dst_idx = 0;
  2908. for (i=0; i<6; i++)
  2909. {
  2910. s->dc_val[0][s->block_index[i]] = 0;
  2911. dst_idx += i >> 2;
  2912. val = ((cbp >> (5 - i)) & 1);
  2913. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2914. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2915. if(s->mb_intra) {
  2916. /* check if prediction blocks A and C are available */
  2917. v->a_avail = v->c_avail = 0;
  2918. if(i == 2 || i == 3 || !s->first_slice_line)
  2919. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2920. if(i == 1 || i == 3 || s->mb_x)
  2921. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2922. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2923. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2924. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2925. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2926. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2927. if(v->pq >= 9 && v->overlap) {
  2928. if(v->c_avail)
  2929. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2930. if(v->a_avail)
  2931. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2932. }
  2933. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2934. int left_cbp, top_cbp;
  2935. if(i & 4){
  2936. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2937. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2938. }else{
  2939. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2940. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2941. }
  2942. if(left_cbp & 0xC)
  2943. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  2944. if(top_cbp & 0xA)
  2945. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  2946. }
  2947. block_cbp |= 0xF << (i << 2);
  2948. } else if(val) {
  2949. int left_cbp = 0, top_cbp = 0, filter = 0;
  2950. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2951. filter = 1;
  2952. if(i & 4){
  2953. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2954. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2955. }else{
  2956. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2957. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2958. }
  2959. }
  2960. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2961. block_cbp |= pat << (i << 2);
  2962. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2963. first_block = 0;
  2964. }
  2965. }
  2966. }
  2967. else //Skipped
  2968. {
  2969. s->mb_intra = 0;
  2970. for(i = 0; i < 6; i++) {
  2971. v->mb_type[0][s->block_index[i]] = 0;
  2972. s->dc_val[0][s->block_index[i]] = 0;
  2973. }
  2974. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2975. s->current_picture.qscale_table[mb_pos] = 0;
  2976. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2977. vc1_mc_1mv(v, 0);
  2978. return 0;
  2979. }
  2980. } //1MV mode
  2981. else //4MV mode
  2982. {
  2983. if (!skipped /* unskipped MB */)
  2984. {
  2985. int intra_count = 0, coded_inter = 0;
  2986. int is_intra[6], is_coded[6];
  2987. /* Get CBPCY */
  2988. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2989. for (i=0; i<6; i++)
  2990. {
  2991. val = ((cbp >> (5 - i)) & 1);
  2992. s->dc_val[0][s->block_index[i]] = 0;
  2993. s->mb_intra = 0;
  2994. if(i < 4) {
  2995. dmv_x = dmv_y = 0;
  2996. s->mb_intra = 0;
  2997. mb_has_coeffs = 0;
  2998. if(val) {
  2999. GET_MVDATA(dmv_x, dmv_y);
  3000. }
  3001. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3002. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3003. intra_count += s->mb_intra;
  3004. is_intra[i] = s->mb_intra;
  3005. is_coded[i] = mb_has_coeffs;
  3006. }
  3007. if(i&4){
  3008. is_intra[i] = (intra_count >= 3);
  3009. is_coded[i] = val;
  3010. }
  3011. if(i == 4) vc1_mc_4mv_chroma(v);
  3012. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3013. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3014. }
  3015. // if there are no coded blocks then don't do anything more
  3016. if(!intra_count && !coded_inter) return 0;
  3017. dst_idx = 0;
  3018. GET_MQUANT();
  3019. s->current_picture.qscale_table[mb_pos] = mquant;
  3020. /* test if block is intra and has pred */
  3021. {
  3022. int intrapred = 0;
  3023. for(i=0; i<6; i++)
  3024. if(is_intra[i]) {
  3025. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3026. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3027. intrapred = 1;
  3028. break;
  3029. }
  3030. }
  3031. if(intrapred)s->ac_pred = get_bits1(gb);
  3032. else s->ac_pred = 0;
  3033. }
  3034. if (!v->ttmbf && coded_inter)
  3035. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3036. for (i=0; i<6; i++)
  3037. {
  3038. dst_idx += i >> 2;
  3039. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3040. s->mb_intra = is_intra[i];
  3041. if (is_intra[i]) {
  3042. /* check if prediction blocks A and C are available */
  3043. v->a_avail = v->c_avail = 0;
  3044. if(i == 2 || i == 3 || !s->first_slice_line)
  3045. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3046. if(i == 1 || i == 3 || s->mb_x)
  3047. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3048. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3049. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3050. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3051. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3052. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3053. if(v->pq >= 9 && v->overlap) {
  3054. if(v->c_avail)
  3055. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3056. if(v->a_avail)
  3057. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3058. }
  3059. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3060. int left_cbp, top_cbp;
  3061. if(i & 4){
  3062. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3063. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3064. }else{
  3065. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3066. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3067. }
  3068. if(left_cbp & 0xC)
  3069. vc1_loop_filter(s->dest[dst_idx] + off, 1, i & 4 ? s->uvlinesize : s->linesize, 8, mquant);
  3070. if(top_cbp & 0xA)
  3071. vc1_loop_filter(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, 1, 8, mquant);
  3072. }
  3073. block_cbp |= 0xF << (i << 2);
  3074. } else if(is_coded[i]) {
  3075. int left_cbp = 0, top_cbp = 0, filter = 0;
  3076. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  3077. filter = 1;
  3078. if(i & 4){
  3079. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  3080. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  3081. }else{
  3082. left_cbp = (i & 1) ? (pat >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  3083. top_cbp = (i & 2) ? (pat >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  3084. }
  3085. }
  3086. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  3087. block_cbp |= pat << (i << 2);
  3088. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3089. first_block = 0;
  3090. }
  3091. }
  3092. return 0;
  3093. }
  3094. else //Skipped MB
  3095. {
  3096. s->mb_intra = 0;
  3097. s->current_picture.qscale_table[mb_pos] = 0;
  3098. for (i=0; i<6; i++) {
  3099. v->mb_type[0][s->block_index[i]] = 0;
  3100. s->dc_val[0][s->block_index[i]] = 0;
  3101. }
  3102. for (i=0; i<4; i++)
  3103. {
  3104. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3105. vc1_mc_4mv_luma(v, i);
  3106. }
  3107. vc1_mc_4mv_chroma(v);
  3108. s->current_picture.qscale_table[mb_pos] = 0;
  3109. return 0;
  3110. }
  3111. }
  3112. v->cbp[s->mb_x] = block_cbp;
  3113. /* Should never happen */
  3114. return -1;
  3115. }
  3116. /** Decode one B-frame MB (in Main profile)
  3117. */
  3118. static void vc1_decode_b_mb(VC1Context *v)
  3119. {
  3120. MpegEncContext *s = &v->s;
  3121. GetBitContext *gb = &s->gb;
  3122. int i, j;
  3123. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3124. int cbp = 0; /* cbp decoding stuff */
  3125. int mqdiff, mquant; /* MB quantization */
  3126. int ttmb = v->ttfrm; /* MB Transform type */
  3127. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3128. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3129. int mb_has_coeffs = 0; /* last_flag */
  3130. int index, index1; /* LUT indexes */
  3131. int val, sign; /* temp values */
  3132. int first_block = 1;
  3133. int dst_idx, off;
  3134. int skipped, direct;
  3135. int dmv_x[2], dmv_y[2];
  3136. int bmvtype = BMV_TYPE_BACKWARD;
  3137. mquant = v->pq; /* Loosy initialization */
  3138. s->mb_intra = 0;
  3139. if (v->dmb_is_raw)
  3140. direct = get_bits1(gb);
  3141. else
  3142. direct = v->direct_mb_plane[mb_pos];
  3143. if (v->skip_is_raw)
  3144. skipped = get_bits1(gb);
  3145. else
  3146. skipped = v->s.mbskip_table[mb_pos];
  3147. s->dsp.clear_blocks(s->block[0]);
  3148. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3149. for(i = 0; i < 6; i++) {
  3150. v->mb_type[0][s->block_index[i]] = 0;
  3151. s->dc_val[0][s->block_index[i]] = 0;
  3152. }
  3153. s->current_picture.qscale_table[mb_pos] = 0;
  3154. if (!direct) {
  3155. if (!skipped) {
  3156. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3157. dmv_x[1] = dmv_x[0];
  3158. dmv_y[1] = dmv_y[0];
  3159. }
  3160. if(skipped || !s->mb_intra) {
  3161. bmvtype = decode012(gb);
  3162. switch(bmvtype) {
  3163. case 0:
  3164. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3165. break;
  3166. case 1:
  3167. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3168. break;
  3169. case 2:
  3170. bmvtype = BMV_TYPE_INTERPOLATED;
  3171. dmv_x[0] = dmv_y[0] = 0;
  3172. }
  3173. }
  3174. }
  3175. for(i = 0; i < 6; i++)
  3176. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3177. if (skipped) {
  3178. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3179. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3180. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3181. return;
  3182. }
  3183. if (direct) {
  3184. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3185. GET_MQUANT();
  3186. s->mb_intra = 0;
  3187. mb_has_coeffs = 0;
  3188. s->current_picture.qscale_table[mb_pos] = mquant;
  3189. if(!v->ttmbf)
  3190. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3191. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3192. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3193. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3194. } else {
  3195. if(!mb_has_coeffs && !s->mb_intra) {
  3196. /* no coded blocks - effectively skipped */
  3197. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3198. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3199. return;
  3200. }
  3201. if(s->mb_intra && !mb_has_coeffs) {
  3202. GET_MQUANT();
  3203. s->current_picture.qscale_table[mb_pos] = mquant;
  3204. s->ac_pred = get_bits1(gb);
  3205. cbp = 0;
  3206. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3207. } else {
  3208. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3209. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3210. if(!mb_has_coeffs) {
  3211. /* interpolated skipped block */
  3212. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3213. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3214. return;
  3215. }
  3216. }
  3217. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3218. if(!s->mb_intra) {
  3219. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3220. }
  3221. if(s->mb_intra)
  3222. s->ac_pred = get_bits1(gb);
  3223. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3224. GET_MQUANT();
  3225. s->current_picture.qscale_table[mb_pos] = mquant;
  3226. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3227. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3228. }
  3229. }
  3230. dst_idx = 0;
  3231. for (i=0; i<6; i++)
  3232. {
  3233. s->dc_val[0][s->block_index[i]] = 0;
  3234. dst_idx += i >> 2;
  3235. val = ((cbp >> (5 - i)) & 1);
  3236. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3237. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3238. if(s->mb_intra) {
  3239. /* check if prediction blocks A and C are available */
  3240. v->a_avail = v->c_avail = 0;
  3241. if(i == 2 || i == 3 || !s->first_slice_line)
  3242. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3243. if(i == 1 || i == 3 || s->mb_x)
  3244. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3245. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3246. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3247. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3248. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3249. s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3250. } else if(val) {
  3251. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  3252. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3253. first_block = 0;
  3254. }
  3255. }
  3256. }
  3257. /** Decode blocks of I-frame
  3258. */
  3259. static void vc1_decode_i_blocks(VC1Context *v)
  3260. {
  3261. int k, j;
  3262. MpegEncContext *s = &v->s;
  3263. int cbp, val;
  3264. uint8_t *coded_val;
  3265. int mb_pos;
  3266. /* select codingmode used for VLC tables selection */
  3267. switch(v->y_ac_table_index){
  3268. case 0:
  3269. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3270. break;
  3271. case 1:
  3272. v->codingset = CS_HIGH_MOT_INTRA;
  3273. break;
  3274. case 2:
  3275. v->codingset = CS_MID_RATE_INTRA;
  3276. break;
  3277. }
  3278. switch(v->c_ac_table_index){
  3279. case 0:
  3280. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3281. break;
  3282. case 1:
  3283. v->codingset2 = CS_HIGH_MOT_INTER;
  3284. break;
  3285. case 2:
  3286. v->codingset2 = CS_MID_RATE_INTER;
  3287. break;
  3288. }
  3289. /* Set DC scale - y and c use the same */
  3290. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3291. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3292. //do frame decode
  3293. s->mb_x = s->mb_y = 0;
  3294. s->mb_intra = 1;
  3295. s->first_slice_line = 1;
  3296. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3297. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3298. ff_init_block_index(s);
  3299. ff_update_block_index(s);
  3300. s->dsp.clear_blocks(s->block[0]);
  3301. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3302. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3303. s->current_picture.qscale_table[mb_pos] = v->pq;
  3304. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3305. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3306. // do actual MB decoding and displaying
  3307. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3308. v->s.ac_pred = get_bits1(&v->s.gb);
  3309. for(k = 0; k < 6; k++) {
  3310. val = ((cbp >> (5 - k)) & 1);
  3311. if (k < 4) {
  3312. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3313. val = val ^ pred;
  3314. *coded_val = val;
  3315. }
  3316. cbp |= val << (5 - k);
  3317. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3318. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3319. if(v->pq >= 9 && v->overlap) {
  3320. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3321. }
  3322. }
  3323. vc1_put_block(v, s->block);
  3324. if(v->pq >= 9 && v->overlap) {
  3325. if(s->mb_x) {
  3326. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3327. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3328. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3329. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3330. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3331. }
  3332. }
  3333. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3334. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3335. if(!s->first_slice_line) {
  3336. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3337. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3338. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3339. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3340. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3341. }
  3342. }
  3343. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3344. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3345. }
  3346. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3347. if(get_bits_count(&s->gb) > v->bits) {
  3348. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3349. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3350. return;
  3351. }
  3352. }
  3353. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3354. s->first_slice_line = 0;
  3355. }
  3356. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3357. }
  3358. /** Decode blocks of I-frame for advanced profile
  3359. */
  3360. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3361. {
  3362. int k, j;
  3363. MpegEncContext *s = &v->s;
  3364. int cbp, val;
  3365. uint8_t *coded_val;
  3366. int mb_pos;
  3367. int mquant = v->pq;
  3368. int mqdiff;
  3369. int overlap;
  3370. GetBitContext *gb = &s->gb;
  3371. /* select codingmode used for VLC tables selection */
  3372. switch(v->y_ac_table_index){
  3373. case 0:
  3374. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3375. break;
  3376. case 1:
  3377. v->codingset = CS_HIGH_MOT_INTRA;
  3378. break;
  3379. case 2:
  3380. v->codingset = CS_MID_RATE_INTRA;
  3381. break;
  3382. }
  3383. switch(v->c_ac_table_index){
  3384. case 0:
  3385. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3386. break;
  3387. case 1:
  3388. v->codingset2 = CS_HIGH_MOT_INTER;
  3389. break;
  3390. case 2:
  3391. v->codingset2 = CS_MID_RATE_INTER;
  3392. break;
  3393. }
  3394. //do frame decode
  3395. s->mb_x = s->mb_y = 0;
  3396. s->mb_intra = 1;
  3397. s->first_slice_line = 1;
  3398. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3399. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3400. ff_init_block_index(s);
  3401. ff_update_block_index(s);
  3402. s->dsp.clear_blocks(s->block[0]);
  3403. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3404. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3405. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3406. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3407. // do actual MB decoding and displaying
  3408. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3409. if(v->acpred_is_raw)
  3410. v->s.ac_pred = get_bits1(&v->s.gb);
  3411. else
  3412. v->s.ac_pred = v->acpred_plane[mb_pos];
  3413. if(v->condover == CONDOVER_SELECT) {
  3414. if(v->overflg_is_raw)
  3415. overlap = get_bits1(&v->s.gb);
  3416. else
  3417. overlap = v->over_flags_plane[mb_pos];
  3418. } else
  3419. overlap = (v->condover == CONDOVER_ALL);
  3420. GET_MQUANT();
  3421. s->current_picture.qscale_table[mb_pos] = mquant;
  3422. /* Set DC scale - y and c use the same */
  3423. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3424. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3425. for(k = 0; k < 6; k++) {
  3426. val = ((cbp >> (5 - k)) & 1);
  3427. if (k < 4) {
  3428. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3429. val = val ^ pred;
  3430. *coded_val = val;
  3431. }
  3432. cbp |= val << (5 - k);
  3433. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3434. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3435. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3436. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3437. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3438. }
  3439. vc1_put_block(v, s->block);
  3440. if(overlap) {
  3441. if(s->mb_x) {
  3442. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3443. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3444. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3445. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3446. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3447. }
  3448. }
  3449. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3450. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3451. if(!s->first_slice_line) {
  3452. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3453. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3454. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3455. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3456. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3457. }
  3458. }
  3459. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3460. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3461. }
  3462. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[mb_pos]);
  3463. if(get_bits_count(&s->gb) > v->bits) {
  3464. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3465. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3466. return;
  3467. }
  3468. }
  3469. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3470. s->first_slice_line = 0;
  3471. }
  3472. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3473. }
  3474. static void vc1_decode_p_blocks(VC1Context *v)
  3475. {
  3476. MpegEncContext *s = &v->s;
  3477. /* select codingmode used for VLC tables selection */
  3478. switch(v->c_ac_table_index){
  3479. case 0:
  3480. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3481. break;
  3482. case 1:
  3483. v->codingset = CS_HIGH_MOT_INTRA;
  3484. break;
  3485. case 2:
  3486. v->codingset = CS_MID_RATE_INTRA;
  3487. break;
  3488. }
  3489. switch(v->c_ac_table_index){
  3490. case 0:
  3491. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3492. break;
  3493. case 1:
  3494. v->codingset2 = CS_HIGH_MOT_INTER;
  3495. break;
  3496. case 2:
  3497. v->codingset2 = CS_MID_RATE_INTER;
  3498. break;
  3499. }
  3500. s->first_slice_line = 1;
  3501. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  3502. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3503. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3504. ff_init_block_index(s);
  3505. ff_update_block_index(s);
  3506. s->dsp.clear_blocks(s->block[0]);
  3507. vc1_decode_p_mb(v);
  3508. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3509. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3510. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3511. return;
  3512. }
  3513. }
  3514. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  3515. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3516. s->first_slice_line = 0;
  3517. }
  3518. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3519. }
  3520. static void vc1_decode_b_blocks(VC1Context *v)
  3521. {
  3522. MpegEncContext *s = &v->s;
  3523. /* select codingmode used for VLC tables selection */
  3524. switch(v->c_ac_table_index){
  3525. case 0:
  3526. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3527. break;
  3528. case 1:
  3529. v->codingset = CS_HIGH_MOT_INTRA;
  3530. break;
  3531. case 2:
  3532. v->codingset = CS_MID_RATE_INTRA;
  3533. break;
  3534. }
  3535. switch(v->c_ac_table_index){
  3536. case 0:
  3537. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3538. break;
  3539. case 1:
  3540. v->codingset2 = CS_HIGH_MOT_INTER;
  3541. break;
  3542. case 2:
  3543. v->codingset2 = CS_MID_RATE_INTER;
  3544. break;
  3545. }
  3546. s->first_slice_line = 1;
  3547. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3548. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3549. ff_init_block_index(s);
  3550. ff_update_block_index(s);
  3551. s->dsp.clear_blocks(s->block[0]);
  3552. vc1_decode_b_mb(v);
  3553. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3554. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  3555. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3556. return;
  3557. }
  3558. if(v->s.loop_filter) vc1_loop_filter_iblk(s, s->current_picture.qscale_table[s->mb_x + s->mb_y *s->mb_stride]);
  3559. }
  3560. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3561. s->first_slice_line = 0;
  3562. }
  3563. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3564. }
  3565. static void vc1_decode_skip_blocks(VC1Context *v)
  3566. {
  3567. MpegEncContext *s = &v->s;
  3568. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3569. s->first_slice_line = 1;
  3570. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3571. s->mb_x = 0;
  3572. ff_init_block_index(s);
  3573. ff_update_block_index(s);
  3574. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3575. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3576. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3577. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3578. s->first_slice_line = 0;
  3579. }
  3580. s->pict_type = FF_P_TYPE;
  3581. }
  3582. static void vc1_decode_blocks(VC1Context *v)
  3583. {
  3584. v->s.esc3_level_length = 0;
  3585. if(v->x8_type){
  3586. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  3587. }else{
  3588. switch(v->s.pict_type) {
  3589. case FF_I_TYPE:
  3590. if(v->profile == PROFILE_ADVANCED)
  3591. vc1_decode_i_blocks_adv(v);
  3592. else
  3593. vc1_decode_i_blocks(v);
  3594. break;
  3595. case FF_P_TYPE:
  3596. if(v->p_frame_skipped)
  3597. vc1_decode_skip_blocks(v);
  3598. else
  3599. vc1_decode_p_blocks(v);
  3600. break;
  3601. case FF_B_TYPE:
  3602. if(v->bi_type){
  3603. if(v->profile == PROFILE_ADVANCED)
  3604. vc1_decode_i_blocks_adv(v);
  3605. else
  3606. vc1_decode_i_blocks(v);
  3607. }else
  3608. vc1_decode_b_blocks(v);
  3609. break;
  3610. }
  3611. }
  3612. }
  3613. /** Find VC-1 marker in buffer
  3614. * @return position where next marker starts or end of buffer if no marker found
  3615. */
  3616. static av_always_inline const uint8_t* find_next_marker(const uint8_t *src, const uint8_t *end)
  3617. {
  3618. uint32_t mrk = 0xFFFFFFFF;
  3619. if(end-src < 4) return end;
  3620. while(src < end){
  3621. mrk = (mrk << 8) | *src++;
  3622. if(IS_MARKER(mrk))
  3623. return src-4;
  3624. }
  3625. return end;
  3626. }
  3627. static av_always_inline int vc1_unescape_buffer(const uint8_t *src, int size, uint8_t *dst)
  3628. {
  3629. int dsize = 0, i;
  3630. if(size < 4){
  3631. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3632. return size;
  3633. }
  3634. for(i = 0; i < size; i++, src++) {
  3635. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3636. dst[dsize++] = src[1];
  3637. src++;
  3638. i++;
  3639. } else
  3640. dst[dsize++] = *src;
  3641. }
  3642. return dsize;
  3643. }
  3644. /** Initialize a VC1/WMV3 decoder
  3645. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3646. * @todo TODO: Decypher remaining bits in extra_data
  3647. */
  3648. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  3649. {
  3650. VC1Context *v = avctx->priv_data;
  3651. MpegEncContext *s = &v->s;
  3652. GetBitContext gb;
  3653. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3654. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3655. avctx->pix_fmt = PIX_FMT_YUV420P;
  3656. else
  3657. avctx->pix_fmt = PIX_FMT_GRAY8;
  3658. v->s.avctx = avctx;
  3659. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3660. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3661. if(avctx->idct_algo==FF_IDCT_AUTO){
  3662. avctx->idct_algo=FF_IDCT_WMV2;
  3663. }
  3664. if(ff_h263_decode_init(avctx) < 0)
  3665. return -1;
  3666. if (vc1_init_common(v) < 0) return -1;
  3667. avctx->coded_width = avctx->width;
  3668. avctx->coded_height = avctx->height;
  3669. if (avctx->codec_id == CODEC_ID_WMV3)
  3670. {
  3671. int count = 0;
  3672. // looks like WMV3 has a sequence header stored in the extradata
  3673. // advanced sequence header may be before the first frame
  3674. // the last byte of the extradata is a version number, 1 for the
  3675. // samples we can decode
  3676. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3677. if (decode_sequence_header(avctx, &gb) < 0)
  3678. return -1;
  3679. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3680. if (count>0)
  3681. {
  3682. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3683. count, get_bits(&gb, count));
  3684. }
  3685. else if (count < 0)
  3686. {
  3687. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3688. }
  3689. } else { // VC1/WVC1
  3690. const uint8_t *start = avctx->extradata;
  3691. uint8_t *end = avctx->extradata + avctx->extradata_size;
  3692. const uint8_t *next;
  3693. int size, buf2_size;
  3694. uint8_t *buf2 = NULL;
  3695. int seq_initialized = 0, ep_initialized = 0;
  3696. if(avctx->extradata_size < 16) {
  3697. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3698. return -1;
  3699. }
  3700. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3701. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3702. next = start;
  3703. for(; next < end; start = next){
  3704. next = find_next_marker(start + 4, end);
  3705. size = next - start - 4;
  3706. if(size <= 0) continue;
  3707. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3708. init_get_bits(&gb, buf2, buf2_size * 8);
  3709. switch(AV_RB32(start)){
  3710. case VC1_CODE_SEQHDR:
  3711. if(decode_sequence_header(avctx, &gb) < 0){
  3712. av_free(buf2);
  3713. return -1;
  3714. }
  3715. seq_initialized = 1;
  3716. break;
  3717. case VC1_CODE_ENTRYPOINT:
  3718. if(decode_entry_point(avctx, &gb) < 0){
  3719. av_free(buf2);
  3720. return -1;
  3721. }
  3722. ep_initialized = 1;
  3723. break;
  3724. }
  3725. }
  3726. av_free(buf2);
  3727. if(!seq_initialized || !ep_initialized){
  3728. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3729. return -1;
  3730. }
  3731. }
  3732. avctx->has_b_frames= !!(avctx->max_b_frames);
  3733. s->low_delay = !avctx->has_b_frames;
  3734. s->mb_width = (avctx->coded_width+15)>>4;
  3735. s->mb_height = (avctx->coded_height+15)>>4;
  3736. /* Allocate mb bitplanes */
  3737. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3738. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3739. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3740. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3741. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  3742. v->cbp = v->cbp_base + s->mb_stride;
  3743. /* allocate block type info in that way so it could be used with s->block_index[] */
  3744. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3745. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3746. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3747. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3748. /* Init coded blocks info */
  3749. if (v->profile == PROFILE_ADVANCED)
  3750. {
  3751. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3752. // return -1;
  3753. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3754. // return -1;
  3755. }
  3756. ff_intrax8_common_init(&v->x8,s);
  3757. return 0;
  3758. }
  3759. /** Decode a VC1/WMV3 frame
  3760. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3761. */
  3762. static int vc1_decode_frame(AVCodecContext *avctx,
  3763. void *data, int *data_size,
  3764. const uint8_t *buf, int buf_size)
  3765. {
  3766. VC1Context *v = avctx->priv_data;
  3767. MpegEncContext *s = &v->s;
  3768. AVFrame *pict = data;
  3769. uint8_t *buf2 = NULL;
  3770. /* no supplementary picture */
  3771. if (buf_size == 0) {
  3772. /* special case for last picture */
  3773. if (s->low_delay==0 && s->next_picture_ptr) {
  3774. *pict= *(AVFrame*)s->next_picture_ptr;
  3775. s->next_picture_ptr= NULL;
  3776. *data_size = sizeof(AVFrame);
  3777. }
  3778. return 0;
  3779. }
  3780. /* We need to set current_picture_ptr before reading the header,
  3781. * otherwise we cannot store anything in there. */
  3782. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3783. int i= ff_find_unused_picture(s, 0);
  3784. s->current_picture_ptr= &s->picture[i];
  3785. }
  3786. //for advanced profile we may need to parse and unescape data
  3787. if (avctx->codec_id == CODEC_ID_VC1) {
  3788. int buf_size2 = 0;
  3789. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3790. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3791. const uint8_t *start, *end, *next;
  3792. int size;
  3793. next = buf;
  3794. for(start = buf, end = buf + buf_size; next < end; start = next){
  3795. next = find_next_marker(start + 4, end);
  3796. size = next - start - 4;
  3797. if(size <= 0) continue;
  3798. switch(AV_RB32(start)){
  3799. case VC1_CODE_FRAME:
  3800. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3801. break;
  3802. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3803. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3804. init_get_bits(&s->gb, buf2, buf_size2*8);
  3805. decode_entry_point(avctx, &s->gb);
  3806. break;
  3807. case VC1_CODE_SLICE:
  3808. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3809. av_free(buf2);
  3810. return -1;
  3811. }
  3812. }
  3813. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3814. const uint8_t *divider;
  3815. divider = find_next_marker(buf, buf + buf_size);
  3816. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3817. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3818. av_free(buf2);
  3819. return -1;
  3820. }
  3821. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3822. // TODO
  3823. av_free(buf2);return -1;
  3824. }else{
  3825. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3826. }
  3827. init_get_bits(&s->gb, buf2, buf_size2*8);
  3828. } else
  3829. init_get_bits(&s->gb, buf, buf_size*8);
  3830. // do parse frame header
  3831. if(v->profile < PROFILE_ADVANCED) {
  3832. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3833. av_free(buf2);
  3834. return -1;
  3835. }
  3836. } else {
  3837. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3838. av_free(buf2);
  3839. return -1;
  3840. }
  3841. }
  3842. if(s->pict_type != FF_I_TYPE && !v->res_rtm_flag){
  3843. av_free(buf2);
  3844. return -1;
  3845. }
  3846. // for hurry_up==5
  3847. s->current_picture.pict_type= s->pict_type;
  3848. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  3849. /* skip B-frames if we don't have reference frames */
  3850. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  3851. av_free(buf2);
  3852. return -1;//buf_size;
  3853. }
  3854. /* skip b frames if we are in a hurry */
  3855. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  3856. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  3857. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  3858. || avctx->skip_frame >= AVDISCARD_ALL) {
  3859. av_free(buf2);
  3860. return buf_size;
  3861. }
  3862. /* skip everything if we are in a hurry>=5 */
  3863. if(avctx->hurry_up>=5) {
  3864. av_free(buf2);
  3865. return -1;//buf_size;
  3866. }
  3867. if(s->next_p_frame_damaged){
  3868. if(s->pict_type==FF_B_TYPE)
  3869. return buf_size;
  3870. else
  3871. s->next_p_frame_damaged=0;
  3872. }
  3873. if(MPV_frame_start(s, avctx) < 0) {
  3874. av_free(buf2);
  3875. return -1;
  3876. }
  3877. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3878. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3879. ff_er_frame_start(s);
  3880. v->bits = buf_size * 8;
  3881. vc1_decode_blocks(v);
  3882. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3883. // if(get_bits_count(&s->gb) > buf_size * 8)
  3884. // return -1;
  3885. ff_er_frame_end(s);
  3886. MPV_frame_end(s);
  3887. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3888. assert(s->current_picture.pict_type == s->pict_type);
  3889. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3890. *pict= *(AVFrame*)s->current_picture_ptr;
  3891. } else if (s->last_picture_ptr != NULL) {
  3892. *pict= *(AVFrame*)s->last_picture_ptr;
  3893. }
  3894. if(s->last_picture_ptr || s->low_delay){
  3895. *data_size = sizeof(AVFrame);
  3896. ff_print_debug_info(s, pict);
  3897. }
  3898. /* Return the Picture timestamp as the frame number */
  3899. /* we subtract 1 because it is added on utils.c */
  3900. avctx->frame_number = s->picture_number - 1;
  3901. av_free(buf2);
  3902. return buf_size;
  3903. }
  3904. /** Close a VC1/WMV3 decoder
  3905. * @warning Initial try at using MpegEncContext stuff
  3906. */
  3907. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3908. {
  3909. VC1Context *v = avctx->priv_data;
  3910. av_freep(&v->hrd_rate);
  3911. av_freep(&v->hrd_buffer);
  3912. MPV_common_end(&v->s);
  3913. av_freep(&v->mv_type_mb_plane);
  3914. av_freep(&v->direct_mb_plane);
  3915. av_freep(&v->acpred_plane);
  3916. av_freep(&v->over_flags_plane);
  3917. av_freep(&v->mb_type_base);
  3918. av_freep(&v->cbp_base);
  3919. ff_intrax8_common_end(&v->x8);
  3920. return 0;
  3921. }
  3922. AVCodec vc1_decoder = {
  3923. "vc1",
  3924. CODEC_TYPE_VIDEO,
  3925. CODEC_ID_VC1,
  3926. sizeof(VC1Context),
  3927. vc1_decode_init,
  3928. NULL,
  3929. vc1_decode_end,
  3930. vc1_decode_frame,
  3931. CODEC_CAP_DELAY,
  3932. NULL,
  3933. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3934. };
  3935. AVCodec wmv3_decoder = {
  3936. "wmv3",
  3937. CODEC_TYPE_VIDEO,
  3938. CODEC_ID_WMV3,
  3939. sizeof(VC1Context),
  3940. vc1_decode_init,
  3941. NULL,
  3942. vc1_decode_end,
  3943. vc1_decode_frame,
  3944. CODEC_CAP_DELAY,
  3945. NULL,
  3946. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3947. };