You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2048 lines
68KB

  1. /*
  2. * QDM2 compatible decoder
  3. * Copyright (c) 2003 Ewald Snel
  4. * Copyright (c) 2005 Benjamin Larsson
  5. * Copyright (c) 2005 Alex Beregszaszi
  6. * Copyright (c) 2005 Roberto Togni
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. /**
  25. * @file qdm2.c
  26. * QDM2 decoder
  27. * @author Ewald Snel, Benjamin Larsson, Alex Beregszaszi, Roberto Togni
  28. * The decoder is not perfect yet, there are still some distortions
  29. * especially on files encoded with 16 or 8 subbands.
  30. */
  31. #include <math.h>
  32. #include <stddef.h>
  33. #include <stdio.h>
  34. #define ALT_BITSTREAM_READER_LE
  35. #include "avcodec.h"
  36. #include "bitstream.h"
  37. #include "dsputil.h"
  38. #ifdef CONFIG_MPEGAUDIO_HP
  39. #define USE_HIGHPRECISION
  40. #endif
  41. #include "mpegaudio.h"
  42. #include "qdm2data.h"
  43. #undef NDEBUG
  44. #include <assert.h>
  45. #define SOFTCLIP_THRESHOLD 27600
  46. #define HARDCLIP_THRESHOLD 35716
  47. #define QDM2_LIST_ADD(list, size, packet) \
  48. do { \
  49. if (size > 0) { \
  50. list[size - 1].next = &list[size]; \
  51. } \
  52. list[size].packet = packet; \
  53. list[size].next = NULL; \
  54. size++; \
  55. } while(0)
  56. // Result is 8, 16 or 30
  57. #define QDM2_SB_USED(sub_sampling) (((sub_sampling) >= 2) ? 30 : 8 << (sub_sampling))
  58. #define FIX_NOISE_IDX(noise_idx) \
  59. if ((noise_idx) >= 3840) \
  60. (noise_idx) -= 3840; \
  61. #define SB_DITHERING_NOISE(sb,noise_idx) (noise_table[(noise_idx)++] * sb_noise_attenuation[(sb)])
  62. #define BITS_LEFT(length,gb) ((length) - get_bits_count ((gb)))
  63. #define SAMPLES_NEEDED \
  64. av_log (NULL,AV_LOG_INFO,"This file triggers some untested code. Please contact the developers.\n");
  65. #define SAMPLES_NEEDED_2(why) \
  66. av_log (NULL,AV_LOG_INFO,"This file triggers some missing code. Please contact the developers.\nPosition: %s\n",why);
  67. typedef int8_t sb_int8_array[2][30][64];
  68. /**
  69. * Subpacket
  70. */
  71. typedef struct {
  72. int type; ///< subpacket type
  73. unsigned int size; ///< subpacket size
  74. const uint8_t *data; ///< pointer to subpacket data (points to input data buffer, it's not a private copy)
  75. } QDM2SubPacket;
  76. /**
  77. * A node in the subpacket list
  78. */
  79. typedef struct QDM2SubPNode {
  80. QDM2SubPacket *packet; ///< packet
  81. struct QDM2SubPNode *next; ///< pointer to next packet in the list, NULL if leaf node
  82. } QDM2SubPNode;
  83. typedef struct {
  84. float level;
  85. float *samples_im;
  86. float *samples_re;
  87. const float *table;
  88. int phase;
  89. int phase_shift;
  90. int duration;
  91. short time_index;
  92. short cutoff;
  93. } FFTTone;
  94. typedef struct {
  95. int16_t sub_packet;
  96. uint8_t channel;
  97. int16_t offset;
  98. int16_t exp;
  99. uint8_t phase;
  100. } FFTCoefficient;
  101. typedef struct {
  102. float re;
  103. float im;
  104. } QDM2Complex;
  105. typedef struct {
  106. DECLARE_ALIGNED_16(QDM2Complex, complex[256 + 1]);
  107. float samples_im[MPA_MAX_CHANNELS][256];
  108. float samples_re[MPA_MAX_CHANNELS][256];
  109. } QDM2FFT;
  110. /**
  111. * QDM2 decoder context
  112. */
  113. typedef struct {
  114. /// Parameters from codec header, do not change during playback
  115. int nb_channels; ///< number of channels
  116. int channels; ///< number of channels
  117. int group_size; ///< size of frame group (16 frames per group)
  118. int fft_size; ///< size of FFT, in complex numbers
  119. int checksum_size; ///< size of data block, used also for checksum
  120. /// Parameters built from header parameters, do not change during playback
  121. int group_order; ///< order of frame group
  122. int fft_order; ///< order of FFT (actually fftorder+1)
  123. int fft_frame_size; ///< size of fft frame, in components (1 comples = re + im)
  124. int frame_size; ///< size of data frame
  125. int frequency_range;
  126. int sub_sampling; ///< subsampling: 0=25%, 1=50%, 2=100% */
  127. int coeff_per_sb_select; ///< selector for "num. of coeffs. per subband" tables. Can be 0, 1, 2
  128. int cm_table_select; ///< selector for "coding method" tables. Can be 0, 1 (from init: 0-4)
  129. /// Packets and packet lists
  130. QDM2SubPacket sub_packets[16]; ///< the packets themselves
  131. QDM2SubPNode sub_packet_list_A[16]; ///< list of all packets
  132. QDM2SubPNode sub_packet_list_B[16]; ///< FFT packets B are on list
  133. int sub_packets_B; ///< number of packets on 'B' list
  134. QDM2SubPNode sub_packet_list_C[16]; ///< packets with errors?
  135. QDM2SubPNode sub_packet_list_D[16]; ///< DCT packets
  136. /// FFT and tones
  137. FFTTone fft_tones[1000];
  138. int fft_tone_start;
  139. int fft_tone_end;
  140. FFTCoefficient fft_coefs[1000];
  141. int fft_coefs_index;
  142. int fft_coefs_min_index[5];
  143. int fft_coefs_max_index[5];
  144. int fft_level_exp[6];
  145. FFTContext fft_ctx;
  146. FFTComplex exptab[128];
  147. QDM2FFT fft;
  148. /// I/O data
  149. const uint8_t *compressed_data;
  150. int compressed_size;
  151. float output_buffer[1024];
  152. /// Synthesis filter
  153. DECLARE_ALIGNED_16(MPA_INT, synth_buf[MPA_MAX_CHANNELS][512*2]);
  154. int synth_buf_offset[MPA_MAX_CHANNELS];
  155. DECLARE_ALIGNED_16(int32_t, sb_samples[MPA_MAX_CHANNELS][128][SBLIMIT]);
  156. /// Mixed temporary data used in decoding
  157. float tone_level[MPA_MAX_CHANNELS][30][64];
  158. int8_t coding_method[MPA_MAX_CHANNELS][30][64];
  159. int8_t quantized_coeffs[MPA_MAX_CHANNELS][10][8];
  160. int8_t tone_level_idx_base[MPA_MAX_CHANNELS][30][8];
  161. int8_t tone_level_idx_hi1[MPA_MAX_CHANNELS][3][8][8];
  162. int8_t tone_level_idx_mid[MPA_MAX_CHANNELS][26][8];
  163. int8_t tone_level_idx_hi2[MPA_MAX_CHANNELS][26];
  164. int8_t tone_level_idx[MPA_MAX_CHANNELS][30][64];
  165. int8_t tone_level_idx_temp[MPA_MAX_CHANNELS][30][64];
  166. // Flags
  167. int has_errors; ///< packet has errors
  168. int superblocktype_2_3; ///< select fft tables and some algorithm based on superblock type
  169. int do_synth_filter; ///< used to perform or skip synthesis filter
  170. int sub_packet;
  171. int noise_idx; ///< index for dithering noise table
  172. } QDM2Context;
  173. static uint8_t empty_buffer[FF_INPUT_BUFFER_PADDING_SIZE];
  174. static VLC vlc_tab_level;
  175. static VLC vlc_tab_diff;
  176. static VLC vlc_tab_run;
  177. static VLC fft_level_exp_alt_vlc;
  178. static VLC fft_level_exp_vlc;
  179. static VLC fft_stereo_exp_vlc;
  180. static VLC fft_stereo_phase_vlc;
  181. static VLC vlc_tab_tone_level_idx_hi1;
  182. static VLC vlc_tab_tone_level_idx_mid;
  183. static VLC vlc_tab_tone_level_idx_hi2;
  184. static VLC vlc_tab_type30;
  185. static VLC vlc_tab_type34;
  186. static VLC vlc_tab_fft_tone_offset[5];
  187. static uint16_t softclip_table[HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1];
  188. static float noise_table[4096];
  189. static uint8_t random_dequant_index[256][5];
  190. static uint8_t random_dequant_type24[128][3];
  191. static float noise_samples[128];
  192. static DECLARE_ALIGNED_16(MPA_INT, mpa_window[512]);
  193. static void softclip_table_init(void) {
  194. int i;
  195. double dfl = SOFTCLIP_THRESHOLD - 32767;
  196. float delta = 1.0 / -dfl;
  197. for (i = 0; i < HARDCLIP_THRESHOLD - SOFTCLIP_THRESHOLD + 1; i++)
  198. softclip_table[i] = SOFTCLIP_THRESHOLD - ((int)(sin((float)i * delta) * dfl) & 0x0000FFFF);
  199. }
  200. // random generated table
  201. static void rnd_table_init(void) {
  202. int i,j;
  203. uint32_t ldw,hdw;
  204. uint64_t tmp64_1;
  205. uint64_t random_seed = 0;
  206. float delta = 1.0 / 16384.0;
  207. for(i = 0; i < 4096 ;i++) {
  208. random_seed = random_seed * 214013 + 2531011;
  209. noise_table[i] = (delta * (float)(((int32_t)random_seed >> 16) & 0x00007FFF)- 1.0) * 1.3;
  210. }
  211. for (i = 0; i < 256 ;i++) {
  212. random_seed = 81;
  213. ldw = i;
  214. for (j = 0; j < 5 ;j++) {
  215. random_dequant_index[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  216. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  217. tmp64_1 = (random_seed * 0x55555556);
  218. hdw = (uint32_t)(tmp64_1 >> 32);
  219. random_seed = (uint64_t)(hdw + (ldw >> 31));
  220. }
  221. }
  222. for (i = 0; i < 128 ;i++) {
  223. random_seed = 25;
  224. ldw = i;
  225. for (j = 0; j < 3 ;j++) {
  226. random_dequant_type24[i][j] = (uint8_t)((ldw / random_seed) & 0xFF);
  227. ldw = (uint32_t)ldw % (uint32_t)random_seed;
  228. tmp64_1 = (random_seed * 0x66666667);
  229. hdw = (uint32_t)(tmp64_1 >> 33);
  230. random_seed = hdw + (ldw >> 31);
  231. }
  232. }
  233. }
  234. static void init_noise_samples(void) {
  235. int i;
  236. int random_seed = 0;
  237. float delta = 1.0 / 16384.0;
  238. for (i = 0; i < 128;i++) {
  239. random_seed = random_seed * 214013 + 2531011;
  240. noise_samples[i] = (delta * (float)((random_seed >> 16) & 0x00007fff) - 1.0);
  241. }
  242. }
  243. static void qdm2_init_vlc(void)
  244. {
  245. init_vlc (&vlc_tab_level, 8, 24,
  246. vlc_tab_level_huffbits, 1, 1,
  247. vlc_tab_level_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  248. init_vlc (&vlc_tab_diff, 8, 37,
  249. vlc_tab_diff_huffbits, 1, 1,
  250. vlc_tab_diff_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  251. init_vlc (&vlc_tab_run, 5, 6,
  252. vlc_tab_run_huffbits, 1, 1,
  253. vlc_tab_run_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  254. init_vlc (&fft_level_exp_alt_vlc, 8, 28,
  255. fft_level_exp_alt_huffbits, 1, 1,
  256. fft_level_exp_alt_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  257. init_vlc (&fft_level_exp_vlc, 8, 20,
  258. fft_level_exp_huffbits, 1, 1,
  259. fft_level_exp_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  260. init_vlc (&fft_stereo_exp_vlc, 6, 7,
  261. fft_stereo_exp_huffbits, 1, 1,
  262. fft_stereo_exp_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  263. init_vlc (&fft_stereo_phase_vlc, 6, 9,
  264. fft_stereo_phase_huffbits, 1, 1,
  265. fft_stereo_phase_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  266. init_vlc (&vlc_tab_tone_level_idx_hi1, 8, 20,
  267. vlc_tab_tone_level_idx_hi1_huffbits, 1, 1,
  268. vlc_tab_tone_level_idx_hi1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  269. init_vlc (&vlc_tab_tone_level_idx_mid, 8, 24,
  270. vlc_tab_tone_level_idx_mid_huffbits, 1, 1,
  271. vlc_tab_tone_level_idx_mid_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  272. init_vlc (&vlc_tab_tone_level_idx_hi2, 8, 24,
  273. vlc_tab_tone_level_idx_hi2_huffbits, 1, 1,
  274. vlc_tab_tone_level_idx_hi2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  275. init_vlc (&vlc_tab_type30, 6, 9,
  276. vlc_tab_type30_huffbits, 1, 1,
  277. vlc_tab_type30_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  278. init_vlc (&vlc_tab_type34, 5, 10,
  279. vlc_tab_type34_huffbits, 1, 1,
  280. vlc_tab_type34_huffcodes, 1, 1, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  281. init_vlc (&vlc_tab_fft_tone_offset[0], 8, 23,
  282. vlc_tab_fft_tone_offset_0_huffbits, 1, 1,
  283. vlc_tab_fft_tone_offset_0_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  284. init_vlc (&vlc_tab_fft_tone_offset[1], 8, 28,
  285. vlc_tab_fft_tone_offset_1_huffbits, 1, 1,
  286. vlc_tab_fft_tone_offset_1_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  287. init_vlc (&vlc_tab_fft_tone_offset[2], 8, 32,
  288. vlc_tab_fft_tone_offset_2_huffbits, 1, 1,
  289. vlc_tab_fft_tone_offset_2_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  290. init_vlc (&vlc_tab_fft_tone_offset[3], 8, 35,
  291. vlc_tab_fft_tone_offset_3_huffbits, 1, 1,
  292. vlc_tab_fft_tone_offset_3_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  293. init_vlc (&vlc_tab_fft_tone_offset[4], 8, 38,
  294. vlc_tab_fft_tone_offset_4_huffbits, 1, 1,
  295. vlc_tab_fft_tone_offset_4_huffcodes, 2, 2, INIT_VLC_USE_STATIC | INIT_VLC_LE);
  296. }
  297. /* for floating point to fixed point conversion */
  298. static const float f2i_scale = (float) (1 << (FRAC_BITS - 15));
  299. static int qdm2_get_vlc (GetBitContext *gb, VLC *vlc, int flag, int depth)
  300. {
  301. int value;
  302. value = get_vlc2(gb, vlc->table, vlc->bits, depth);
  303. /* stage-2, 3 bits exponent escape sequence */
  304. if (value-- == 0)
  305. value = get_bits (gb, get_bits (gb, 3) + 1);
  306. /* stage-3, optional */
  307. if (flag) {
  308. int tmp = vlc_stage3_values[value];
  309. if ((value & ~3) > 0)
  310. tmp += get_bits (gb, (value >> 2));
  311. value = tmp;
  312. }
  313. return value;
  314. }
  315. static int qdm2_get_se_vlc (VLC *vlc, GetBitContext *gb, int depth)
  316. {
  317. int value = qdm2_get_vlc (gb, vlc, 0, depth);
  318. return (value & 1) ? ((value + 1) >> 1) : -(value >> 1);
  319. }
  320. /**
  321. * QDM2 checksum
  322. *
  323. * @param data pointer to data to be checksum'ed
  324. * @param length data length
  325. * @param value checksum value
  326. *
  327. * @return 0 if checksum is OK
  328. */
  329. static uint16_t qdm2_packet_checksum (const uint8_t *data, int length, int value) {
  330. int i;
  331. for (i=0; i < length; i++)
  332. value -= data[i];
  333. return (uint16_t)(value & 0xffff);
  334. }
  335. /**
  336. * Fills a QDM2SubPacket structure with packet type, size, and data pointer.
  337. *
  338. * @param gb bitreader context
  339. * @param sub_packet packet under analysis
  340. */
  341. static void qdm2_decode_sub_packet_header (GetBitContext *gb, QDM2SubPacket *sub_packet)
  342. {
  343. sub_packet->type = get_bits (gb, 8);
  344. if (sub_packet->type == 0) {
  345. sub_packet->size = 0;
  346. sub_packet->data = NULL;
  347. } else {
  348. sub_packet->size = get_bits (gb, 8);
  349. if (sub_packet->type & 0x80) {
  350. sub_packet->size <<= 8;
  351. sub_packet->size |= get_bits (gb, 8);
  352. sub_packet->type &= 0x7f;
  353. }
  354. if (sub_packet->type == 0x7f)
  355. sub_packet->type |= (get_bits (gb, 8) << 8);
  356. sub_packet->data = &gb->buffer[get_bits_count(gb) / 8]; // FIXME: this depends on bitreader internal data
  357. }
  358. av_log(NULL,AV_LOG_DEBUG,"Subpacket: type=%d size=%d start_offs=%x\n",
  359. sub_packet->type, sub_packet->size, get_bits_count(gb) / 8);
  360. }
  361. /**
  362. * Return node pointer to first packet of requested type in list.
  363. *
  364. * @param list list of subpackets to be scanned
  365. * @param type type of searched subpacket
  366. * @return node pointer for subpacket if found, else NULL
  367. */
  368. static QDM2SubPNode* qdm2_search_subpacket_type_in_list (QDM2SubPNode *list, int type)
  369. {
  370. while (list != NULL && list->packet != NULL) {
  371. if (list->packet->type == type)
  372. return list;
  373. list = list->next;
  374. }
  375. return NULL;
  376. }
  377. /**
  378. * Replaces 8 elements with their average value.
  379. * Called by qdm2_decode_superblock before starting subblock decoding.
  380. *
  381. * @param q context
  382. */
  383. static void average_quantized_coeffs (QDM2Context *q)
  384. {
  385. int i, j, n, ch, sum;
  386. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1;
  387. for (ch = 0; ch < q->nb_channels; ch++)
  388. for (i = 0; i < n; i++) {
  389. sum = 0;
  390. for (j = 0; j < 8; j++)
  391. sum += q->quantized_coeffs[ch][i][j];
  392. sum /= 8;
  393. if (sum > 0)
  394. sum--;
  395. for (j=0; j < 8; j++)
  396. q->quantized_coeffs[ch][i][j] = sum;
  397. }
  398. }
  399. /**
  400. * Build subband samples with noise weighted by q->tone_level.
  401. * Called by synthfilt_build_sb_samples.
  402. *
  403. * @param q context
  404. * @param sb subband index
  405. */
  406. static void build_sb_samples_from_noise (QDM2Context *q, int sb)
  407. {
  408. int ch, j;
  409. FIX_NOISE_IDX(q->noise_idx);
  410. if (!q->nb_channels)
  411. return;
  412. for (ch = 0; ch < q->nb_channels; ch++)
  413. for (j = 0; j < 64; j++) {
  414. q->sb_samples[ch][j * 2][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  415. q->sb_samples[ch][j * 2 + 1][sb] = (int32_t)(f2i_scale * SB_DITHERING_NOISE(sb,q->noise_idx) * q->tone_level[ch][sb][j] + .5);
  416. }
  417. }
  418. /**
  419. * Called while processing data from subpackets 11 and 12.
  420. * Used after making changes to coding_method array.
  421. *
  422. * @param sb subband index
  423. * @param channels number of channels
  424. * @param coding_method q->coding_method[0][0][0]
  425. */
  426. static void fix_coding_method_array (int sb, int channels, sb_int8_array coding_method)
  427. {
  428. int j,k;
  429. int ch;
  430. int run, case_val;
  431. int switchtable[23] = {0,5,1,5,5,5,5,5,2,5,5,5,5,5,5,5,3,5,5,5,5,5,4};
  432. for (ch = 0; ch < channels; ch++) {
  433. for (j = 0; j < 64; ) {
  434. if((coding_method[ch][sb][j] - 8) > 22) {
  435. run = 1;
  436. case_val = 8;
  437. } else {
  438. switch (switchtable[coding_method[ch][sb][j]-8]) {
  439. case 0: run = 10; case_val = 10; break;
  440. case 1: run = 1; case_val = 16; break;
  441. case 2: run = 5; case_val = 24; break;
  442. case 3: run = 3; case_val = 30; break;
  443. case 4: run = 1; case_val = 30; break;
  444. case 5: run = 1; case_val = 8; break;
  445. default: run = 1; case_val = 8; break;
  446. }
  447. }
  448. for (k = 0; k < run; k++)
  449. if (j + k < 128)
  450. if (coding_method[ch][sb + (j + k) / 64][(j + k) % 64] > coding_method[ch][sb][j])
  451. if (k > 0) {
  452. SAMPLES_NEEDED
  453. //not debugged, almost never used
  454. memset(&coding_method[ch][sb][j + k], case_val, k * sizeof(int8_t));
  455. memset(&coding_method[ch][sb][j + k], case_val, 3 * sizeof(int8_t));
  456. }
  457. j += run;
  458. }
  459. }
  460. }
  461. /**
  462. * Related to synthesis filter
  463. * Called by process_subpacket_10
  464. *
  465. * @param q context
  466. * @param flag 1 if called after getting data from subpacket 10, 0 if no subpacket 10
  467. */
  468. static void fill_tone_level_array (QDM2Context *q, int flag)
  469. {
  470. int i, sb, ch, sb_used;
  471. int tmp, tab;
  472. // This should never happen
  473. if (q->nb_channels <= 0)
  474. return;
  475. for (ch = 0; ch < q->nb_channels; ch++)
  476. for (sb = 0; sb < 30; sb++)
  477. for (i = 0; i < 8; i++) {
  478. if ((tab=coeff_per_sb_for_dequant[q->coeff_per_sb_select][sb]) < (last_coeff[q->coeff_per_sb_select] - 1))
  479. tmp = q->quantized_coeffs[ch][tab + 1][i] * dequant_table[q->coeff_per_sb_select][tab + 1][sb]+
  480. q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  481. else
  482. tmp = q->quantized_coeffs[ch][tab][i] * dequant_table[q->coeff_per_sb_select][tab][sb];
  483. if(tmp < 0)
  484. tmp += 0xff;
  485. q->tone_level_idx_base[ch][sb][i] = (tmp / 256) & 0xff;
  486. }
  487. sb_used = QDM2_SB_USED(q->sub_sampling);
  488. if ((q->superblocktype_2_3 != 0) && !flag) {
  489. for (sb = 0; sb < sb_used; sb++)
  490. for (ch = 0; ch < q->nb_channels; ch++)
  491. for (i = 0; i < 64; i++) {
  492. q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  493. if (q->tone_level_idx[ch][sb][i] < 0)
  494. q->tone_level[ch][sb][i] = 0;
  495. else
  496. q->tone_level[ch][sb][i] = fft_tone_level_table[0][q->tone_level_idx[ch][sb][i] & 0x3f];
  497. }
  498. } else {
  499. tab = q->superblocktype_2_3 ? 0 : 1;
  500. for (sb = 0; sb < sb_used; sb++) {
  501. if ((sb >= 4) && (sb <= 23)) {
  502. for (ch = 0; ch < q->nb_channels; ch++)
  503. for (i = 0; i < 64; i++) {
  504. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  505. q->tone_level_idx_hi1[ch][sb / 8][i / 8][i % 8] -
  506. q->tone_level_idx_mid[ch][sb - 4][i / 8] -
  507. q->tone_level_idx_hi2[ch][sb - 4];
  508. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  509. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  510. q->tone_level[ch][sb][i] = 0;
  511. else
  512. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  513. }
  514. } else {
  515. if (sb > 4) {
  516. for (ch = 0; ch < q->nb_channels; ch++)
  517. for (i = 0; i < 64; i++) {
  518. tmp = q->tone_level_idx_base[ch][sb][i / 8] -
  519. q->tone_level_idx_hi1[ch][2][i / 8][i % 8] -
  520. q->tone_level_idx_hi2[ch][sb - 4];
  521. q->tone_level_idx[ch][sb][i] = tmp & 0xff;
  522. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  523. q->tone_level[ch][sb][i] = 0;
  524. else
  525. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  526. }
  527. } else {
  528. for (ch = 0; ch < q->nb_channels; ch++)
  529. for (i = 0; i < 64; i++) {
  530. tmp = q->tone_level_idx[ch][sb][i] = q->tone_level_idx_base[ch][sb][i / 8];
  531. if ((tmp < 0) || (!q->superblocktype_2_3 && !tmp))
  532. q->tone_level[ch][sb][i] = 0;
  533. else
  534. q->tone_level[ch][sb][i] = fft_tone_level_table[tab][tmp & 0x3f];
  535. }
  536. }
  537. }
  538. }
  539. }
  540. return;
  541. }
  542. /**
  543. * Related to synthesis filter
  544. * Called by process_subpacket_11
  545. * c is built with data from subpacket 11
  546. * Most of this function is used only if superblock_type_2_3 == 0, never seen it in samples
  547. *
  548. * @param tone_level_idx
  549. * @param tone_level_idx_temp
  550. * @param coding_method q->coding_method[0][0][0]
  551. * @param nb_channels number of channels
  552. * @param c coming from subpacket 11, passed as 8*c
  553. * @param superblocktype_2_3 flag based on superblock packet type
  554. * @param cm_table_select q->cm_table_select
  555. */
  556. static void fill_coding_method_array (sb_int8_array tone_level_idx, sb_int8_array tone_level_idx_temp,
  557. sb_int8_array coding_method, int nb_channels,
  558. int c, int superblocktype_2_3, int cm_table_select)
  559. {
  560. int ch, sb, j;
  561. int tmp, acc, esp_40, comp;
  562. int add1, add2, add3, add4;
  563. int64_t multres;
  564. // This should never happen
  565. if (nb_channels <= 0)
  566. return;
  567. if (!superblocktype_2_3) {
  568. /* This case is untested, no samples available */
  569. SAMPLES_NEEDED
  570. for (ch = 0; ch < nb_channels; ch++)
  571. for (sb = 0; sb < 30; sb++) {
  572. for (j = 1; j < 63; j++) { // The loop only iterates to 63 so the code doesn't overflow the buffer
  573. add1 = tone_level_idx[ch][sb][j] - 10;
  574. if (add1 < 0)
  575. add1 = 0;
  576. add2 = add3 = add4 = 0;
  577. if (sb > 1) {
  578. add2 = tone_level_idx[ch][sb - 2][j] + tone_level_idx_offset_table[sb][0] - 6;
  579. if (add2 < 0)
  580. add2 = 0;
  581. }
  582. if (sb > 0) {
  583. add3 = tone_level_idx[ch][sb - 1][j] + tone_level_idx_offset_table[sb][1] - 6;
  584. if (add3 < 0)
  585. add3 = 0;
  586. }
  587. if (sb < 29) {
  588. add4 = tone_level_idx[ch][sb + 1][j] + tone_level_idx_offset_table[sb][3] - 6;
  589. if (add4 < 0)
  590. add4 = 0;
  591. }
  592. tmp = tone_level_idx[ch][sb][j + 1] * 2 - add4 - add3 - add2 - add1;
  593. if (tmp < 0)
  594. tmp = 0;
  595. tone_level_idx_temp[ch][sb][j + 1] = tmp & 0xff;
  596. }
  597. tone_level_idx_temp[ch][sb][0] = tone_level_idx_temp[ch][sb][1];
  598. }
  599. acc = 0;
  600. for (ch = 0; ch < nb_channels; ch++)
  601. for (sb = 0; sb < 30; sb++)
  602. for (j = 0; j < 64; j++)
  603. acc += tone_level_idx_temp[ch][sb][j];
  604. if (acc)
  605. tmp = c * 256 / (acc & 0xffff);
  606. multres = 0x66666667 * (acc * 10);
  607. esp_40 = (multres >> 32) / 8 + ((multres & 0xffffffff) >> 31);
  608. for (ch = 0; ch < nb_channels; ch++)
  609. for (sb = 0; sb < 30; sb++)
  610. for (j = 0; j < 64; j++) {
  611. comp = tone_level_idx_temp[ch][sb][j]* esp_40 * 10;
  612. if (comp < 0)
  613. comp += 0xff;
  614. comp /= 256; // signed shift
  615. switch(sb) {
  616. case 0:
  617. if (comp < 30)
  618. comp = 30;
  619. comp += 15;
  620. break;
  621. case 1:
  622. if (comp < 24)
  623. comp = 24;
  624. comp += 10;
  625. break;
  626. case 2:
  627. case 3:
  628. case 4:
  629. if (comp < 16)
  630. comp = 16;
  631. }
  632. if (comp <= 5)
  633. tmp = 0;
  634. else if (comp <= 10)
  635. tmp = 10;
  636. else if (comp <= 16)
  637. tmp = 16;
  638. else if (comp <= 24)
  639. tmp = -1;
  640. else
  641. tmp = 0;
  642. coding_method[ch][sb][j] = ((tmp & 0xfffa) + 30 )& 0xff;
  643. }
  644. for (sb = 0; sb < 30; sb++)
  645. fix_coding_method_array(sb, nb_channels, coding_method);
  646. for (ch = 0; ch < nb_channels; ch++)
  647. for (sb = 0; sb < 30; sb++)
  648. for (j = 0; j < 64; j++)
  649. if (sb >= 10) {
  650. if (coding_method[ch][sb][j] < 10)
  651. coding_method[ch][sb][j] = 10;
  652. } else {
  653. if (sb >= 2) {
  654. if (coding_method[ch][sb][j] < 16)
  655. coding_method[ch][sb][j] = 16;
  656. } else {
  657. if (coding_method[ch][sb][j] < 30)
  658. coding_method[ch][sb][j] = 30;
  659. }
  660. }
  661. } else { // superblocktype_2_3 != 0
  662. for (ch = 0; ch < nb_channels; ch++)
  663. for (sb = 0; sb < 30; sb++)
  664. for (j = 0; j < 64; j++)
  665. coding_method[ch][sb][j] = coding_method_table[cm_table_select][sb];
  666. }
  667. return;
  668. }
  669. /**
  670. *
  671. * Called by process_subpacket_11 to process more data from subpacket 11 with sb 0-8
  672. * Called by process_subpacket_12 to process data from subpacket 12 with sb 8-sb_used
  673. *
  674. * @param q context
  675. * @param gb bitreader context
  676. * @param length packet length in bits
  677. * @param sb_min lower subband processed (sb_min included)
  678. * @param sb_max higher subband processed (sb_max excluded)
  679. */
  680. static void synthfilt_build_sb_samples (QDM2Context *q, GetBitContext *gb, int length, int sb_min, int sb_max)
  681. {
  682. int sb, j, k, n, ch, run, channels;
  683. int joined_stereo, zero_encoding, chs;
  684. int type34_first;
  685. float type34_div = 0;
  686. float type34_predictor;
  687. float samples[10], sign_bits[16];
  688. if (length == 0) {
  689. // If no data use noise
  690. for (sb=sb_min; sb < sb_max; sb++)
  691. build_sb_samples_from_noise (q, sb);
  692. return;
  693. }
  694. for (sb = sb_min; sb < sb_max; sb++) {
  695. FIX_NOISE_IDX(q->noise_idx);
  696. channels = q->nb_channels;
  697. if (q->nb_channels <= 1 || sb < 12)
  698. joined_stereo = 0;
  699. else if (sb >= 24)
  700. joined_stereo = 1;
  701. else
  702. joined_stereo = (BITS_LEFT(length,gb) >= 1) ? get_bits1 (gb) : 0;
  703. if (joined_stereo) {
  704. if (BITS_LEFT(length,gb) >= 16)
  705. for (j = 0; j < 16; j++)
  706. sign_bits[j] = get_bits1 (gb);
  707. for (j = 0; j < 64; j++)
  708. if (q->coding_method[1][sb][j] > q->coding_method[0][sb][j])
  709. q->coding_method[0][sb][j] = q->coding_method[1][sb][j];
  710. fix_coding_method_array(sb, q->nb_channels, q->coding_method);
  711. channels = 1;
  712. }
  713. for (ch = 0; ch < channels; ch++) {
  714. zero_encoding = (BITS_LEFT(length,gb) >= 1) ? get_bits1(gb) : 0;
  715. type34_predictor = 0.0;
  716. type34_first = 1;
  717. for (j = 0; j < 128; ) {
  718. switch (q->coding_method[ch][sb][j / 2]) {
  719. case 8:
  720. if (BITS_LEFT(length,gb) >= 10) {
  721. if (zero_encoding) {
  722. for (k = 0; k < 5; k++) {
  723. if ((j + 2 * k) >= 128)
  724. break;
  725. samples[2 * k] = get_bits1(gb) ? dequant_1bit[joined_stereo][2 * get_bits1(gb)] : 0;
  726. }
  727. } else {
  728. n = get_bits(gb, 8);
  729. for (k = 0; k < 5; k++)
  730. samples[2 * k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  731. }
  732. for (k = 0; k < 5; k++)
  733. samples[2 * k + 1] = SB_DITHERING_NOISE(sb,q->noise_idx);
  734. } else {
  735. for (k = 0; k < 10; k++)
  736. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  737. }
  738. run = 10;
  739. break;
  740. case 10:
  741. if (BITS_LEFT(length,gb) >= 1) {
  742. float f = 0.81;
  743. if (get_bits1(gb))
  744. f = -f;
  745. f -= noise_samples[((sb + 1) * (j +5 * ch + 1)) & 127] * 9.0 / 40.0;
  746. samples[0] = f;
  747. } else {
  748. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  749. }
  750. run = 1;
  751. break;
  752. case 16:
  753. if (BITS_LEFT(length,gb) >= 10) {
  754. if (zero_encoding) {
  755. for (k = 0; k < 5; k++) {
  756. if ((j + k) >= 128)
  757. break;
  758. samples[k] = (get_bits1(gb) == 0) ? 0 : dequant_1bit[joined_stereo][2 * get_bits1(gb)];
  759. }
  760. } else {
  761. n = get_bits (gb, 8);
  762. for (k = 0; k < 5; k++)
  763. samples[k] = dequant_1bit[joined_stereo][random_dequant_index[n][k]];
  764. }
  765. } else {
  766. for (k = 0; k < 5; k++)
  767. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  768. }
  769. run = 5;
  770. break;
  771. case 24:
  772. if (BITS_LEFT(length,gb) >= 7) {
  773. n = get_bits(gb, 7);
  774. for (k = 0; k < 3; k++)
  775. samples[k] = (random_dequant_type24[n][k] - 2.0) * 0.5;
  776. } else {
  777. for (k = 0; k < 3; k++)
  778. samples[k] = SB_DITHERING_NOISE(sb,q->noise_idx);
  779. }
  780. run = 3;
  781. break;
  782. case 30:
  783. if (BITS_LEFT(length,gb) >= 4)
  784. samples[0] = type30_dequant[qdm2_get_vlc(gb, &vlc_tab_type30, 0, 1)];
  785. else
  786. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  787. run = 1;
  788. break;
  789. case 34:
  790. if (BITS_LEFT(length,gb) >= 7) {
  791. if (type34_first) {
  792. type34_div = (float)(1 << get_bits(gb, 2));
  793. samples[0] = ((float)get_bits(gb, 5) - 16.0) / 15.0;
  794. type34_predictor = samples[0];
  795. type34_first = 0;
  796. } else {
  797. samples[0] = type34_delta[qdm2_get_vlc(gb, &vlc_tab_type34, 0, 1)] / type34_div + type34_predictor;
  798. type34_predictor = samples[0];
  799. }
  800. } else {
  801. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  802. }
  803. run = 1;
  804. break;
  805. default:
  806. samples[0] = SB_DITHERING_NOISE(sb,q->noise_idx);
  807. run = 1;
  808. break;
  809. }
  810. if (joined_stereo) {
  811. float tmp[10][MPA_MAX_CHANNELS];
  812. for (k = 0; k < run; k++) {
  813. tmp[k][0] = samples[k];
  814. tmp[k][1] = (sign_bits[(j + k) / 8]) ? -samples[k] : samples[k];
  815. }
  816. for (chs = 0; chs < q->nb_channels; chs++)
  817. for (k = 0; k < run; k++)
  818. if ((j + k) < 128)
  819. q->sb_samples[chs][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[chs][sb][((j + k)/2)] * tmp[k][chs] + .5);
  820. } else {
  821. for (k = 0; k < run; k++)
  822. if ((j + k) < 128)
  823. q->sb_samples[ch][j + k][sb] = (int32_t)(f2i_scale * q->tone_level[ch][sb][(j + k)/2] * samples[k] + .5);
  824. }
  825. j += run;
  826. } // j loop
  827. } // channel loop
  828. } // subband loop
  829. }
  830. /**
  831. * Init the first element of a channel in quantized_coeffs with data from packet 10 (quantized_coeffs[ch][0]).
  832. * This is similar to process_subpacket_9, but for a single channel and for element [0]
  833. * same VLC tables as process_subpacket_9 are used.
  834. *
  835. * @param q context
  836. * @param quantized_coeffs pointer to quantized_coeffs[ch][0]
  837. * @param gb bitreader context
  838. * @param length packet length in bits
  839. */
  840. static void init_quantized_coeffs_elem0 (int8_t *quantized_coeffs, GetBitContext *gb, int length)
  841. {
  842. int i, k, run, level, diff;
  843. if (BITS_LEFT(length,gb) < 16)
  844. return;
  845. level = qdm2_get_vlc(gb, &vlc_tab_level, 0, 2);
  846. quantized_coeffs[0] = level;
  847. for (i = 0; i < 7; ) {
  848. if (BITS_LEFT(length,gb) < 16)
  849. break;
  850. run = qdm2_get_vlc(gb, &vlc_tab_run, 0, 1) + 1;
  851. if (BITS_LEFT(length,gb) < 16)
  852. break;
  853. diff = qdm2_get_se_vlc(&vlc_tab_diff, gb, 2);
  854. for (k = 1; k <= run; k++)
  855. quantized_coeffs[i + k] = (level + ((k * diff) / run));
  856. level += diff;
  857. i += run;
  858. }
  859. }
  860. /**
  861. * Related to synthesis filter, process data from packet 10
  862. * Init part of quantized_coeffs via function init_quantized_coeffs_elem0
  863. * Init tone_level_idx_hi1, tone_level_idx_hi2, tone_level_idx_mid with data from packet 10
  864. *
  865. * @param q context
  866. * @param gb bitreader context
  867. * @param length packet length in bits
  868. */
  869. static void init_tone_level_dequantization (QDM2Context *q, GetBitContext *gb, int length)
  870. {
  871. int sb, j, k, n, ch;
  872. for (ch = 0; ch < q->nb_channels; ch++) {
  873. init_quantized_coeffs_elem0(q->quantized_coeffs[ch][0], gb, length);
  874. if (BITS_LEFT(length,gb) < 16) {
  875. memset(q->quantized_coeffs[ch][0], 0, 8);
  876. break;
  877. }
  878. }
  879. n = q->sub_sampling + 1;
  880. for (sb = 0; sb < n; sb++)
  881. for (ch = 0; ch < q->nb_channels; ch++)
  882. for (j = 0; j < 8; j++) {
  883. if (BITS_LEFT(length,gb) < 1)
  884. break;
  885. if (get_bits1(gb)) {
  886. for (k=0; k < 8; k++) {
  887. if (BITS_LEFT(length,gb) < 16)
  888. break;
  889. q->tone_level_idx_hi1[ch][sb][j][k] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi1, 0, 2);
  890. }
  891. } else {
  892. for (k=0; k < 8; k++)
  893. q->tone_level_idx_hi1[ch][sb][j][k] = 0;
  894. }
  895. }
  896. n = QDM2_SB_USED(q->sub_sampling) - 4;
  897. for (sb = 0; sb < n; sb++)
  898. for (ch = 0; ch < q->nb_channels; ch++) {
  899. if (BITS_LEFT(length,gb) < 16)
  900. break;
  901. q->tone_level_idx_hi2[ch][sb] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_hi2, 0, 2);
  902. if (sb > 19)
  903. q->tone_level_idx_hi2[ch][sb] -= 16;
  904. else
  905. for (j = 0; j < 8; j++)
  906. q->tone_level_idx_mid[ch][sb][j] = -16;
  907. }
  908. n = QDM2_SB_USED(q->sub_sampling) - 5;
  909. for (sb = 0; sb < n; sb++)
  910. for (ch = 0; ch < q->nb_channels; ch++)
  911. for (j = 0; j < 8; j++) {
  912. if (BITS_LEFT(length,gb) < 16)
  913. break;
  914. q->tone_level_idx_mid[ch][sb][j] = qdm2_get_vlc(gb, &vlc_tab_tone_level_idx_mid, 0, 2) - 32;
  915. }
  916. }
  917. /**
  918. * Process subpacket 9, init quantized_coeffs with data from it
  919. *
  920. * @param q context
  921. * @param node pointer to node with packet
  922. */
  923. static void process_subpacket_9 (QDM2Context *q, QDM2SubPNode *node)
  924. {
  925. GetBitContext gb;
  926. int i, j, k, n, ch, run, level, diff;
  927. init_get_bits(&gb, node->packet->data, node->packet->size*8);
  928. n = coeff_per_sb_for_avg[q->coeff_per_sb_select][QDM2_SB_USED(q->sub_sampling) - 1] + 1; // same as averagesomething function
  929. for (i = 1; i < n; i++)
  930. for (ch=0; ch < q->nb_channels; ch++) {
  931. level = qdm2_get_vlc(&gb, &vlc_tab_level, 0, 2);
  932. q->quantized_coeffs[ch][i][0] = level;
  933. for (j = 0; j < (8 - 1); ) {
  934. run = qdm2_get_vlc(&gb, &vlc_tab_run, 0, 1) + 1;
  935. diff = qdm2_get_se_vlc(&vlc_tab_diff, &gb, 2);
  936. for (k = 1; k <= run; k++)
  937. q->quantized_coeffs[ch][i][j + k] = (level + ((k*diff) / run));
  938. level += diff;
  939. j += run;
  940. }
  941. }
  942. for (ch = 0; ch < q->nb_channels; ch++)
  943. for (i = 0; i < 8; i++)
  944. q->quantized_coeffs[ch][0][i] = 0;
  945. }
  946. /**
  947. * Process subpacket 10 if not null, else
  948. *
  949. * @param q context
  950. * @param node pointer to node with packet
  951. * @param length packet length in bits
  952. */
  953. static void process_subpacket_10 (QDM2Context *q, QDM2SubPNode *node, int length)
  954. {
  955. GetBitContext gb;
  956. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  957. if (length != 0) {
  958. init_tone_level_dequantization(q, &gb, length);
  959. fill_tone_level_array(q, 1);
  960. } else {
  961. fill_tone_level_array(q, 0);
  962. }
  963. }
  964. /**
  965. * Process subpacket 11
  966. *
  967. * @param q context
  968. * @param node pointer to node with packet
  969. * @param length packet length in bit
  970. */
  971. static void process_subpacket_11 (QDM2Context *q, QDM2SubPNode *node, int length)
  972. {
  973. GetBitContext gb;
  974. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  975. if (length >= 32) {
  976. int c = get_bits (&gb, 13);
  977. if (c > 3)
  978. fill_coding_method_array (q->tone_level_idx, q->tone_level_idx_temp, q->coding_method,
  979. q->nb_channels, 8*c, q->superblocktype_2_3, q->cm_table_select);
  980. }
  981. synthfilt_build_sb_samples(q, &gb, length, 0, 8);
  982. }
  983. /**
  984. * Process subpacket 12
  985. *
  986. * @param q context
  987. * @param node pointer to node with packet
  988. * @param length packet length in bits
  989. */
  990. static void process_subpacket_12 (QDM2Context *q, QDM2SubPNode *node, int length)
  991. {
  992. GetBitContext gb;
  993. init_get_bits(&gb, ((node == NULL) ? empty_buffer : node->packet->data), ((node == NULL) ? 0 : node->packet->size*8));
  994. synthfilt_build_sb_samples(q, &gb, length, 8, QDM2_SB_USED(q->sub_sampling));
  995. }
  996. /*
  997. * Process new subpackets for synthesis filter
  998. *
  999. * @param q context
  1000. * @param list list with synthesis filter packets (list D)
  1001. */
  1002. static void process_synthesis_subpackets (QDM2Context *q, QDM2SubPNode *list)
  1003. {
  1004. QDM2SubPNode *nodes[4];
  1005. nodes[0] = qdm2_search_subpacket_type_in_list(list, 9);
  1006. if (nodes[0] != NULL)
  1007. process_subpacket_9(q, nodes[0]);
  1008. nodes[1] = qdm2_search_subpacket_type_in_list(list, 10);
  1009. if (nodes[1] != NULL)
  1010. process_subpacket_10(q, nodes[1], nodes[1]->packet->size << 3);
  1011. else
  1012. process_subpacket_10(q, NULL, 0);
  1013. nodes[2] = qdm2_search_subpacket_type_in_list(list, 11);
  1014. if (nodes[0] != NULL && nodes[1] != NULL && nodes[2] != NULL)
  1015. process_subpacket_11(q, nodes[2], (nodes[2]->packet->size << 3));
  1016. else
  1017. process_subpacket_11(q, NULL, 0);
  1018. nodes[3] = qdm2_search_subpacket_type_in_list(list, 12);
  1019. if (nodes[0] != NULL && nodes[1] != NULL && nodes[3] != NULL)
  1020. process_subpacket_12(q, nodes[3], (nodes[3]->packet->size << 3));
  1021. else
  1022. process_subpacket_12(q, NULL, 0);
  1023. }
  1024. /*
  1025. * Decode superblock, fill packet lists.
  1026. *
  1027. * @param q context
  1028. */
  1029. static void qdm2_decode_super_block (QDM2Context *q)
  1030. {
  1031. GetBitContext gb;
  1032. QDM2SubPacket header, *packet;
  1033. int i, packet_bytes, sub_packet_size, sub_packets_D;
  1034. unsigned int next_index = 0;
  1035. memset(q->tone_level_idx_hi1, 0, sizeof(q->tone_level_idx_hi1));
  1036. memset(q->tone_level_idx_mid, 0, sizeof(q->tone_level_idx_mid));
  1037. memset(q->tone_level_idx_hi2, 0, sizeof(q->tone_level_idx_hi2));
  1038. q->sub_packets_B = 0;
  1039. sub_packets_D = 0;
  1040. average_quantized_coeffs(q); // average elements in quantized_coeffs[max_ch][10][8]
  1041. init_get_bits(&gb, q->compressed_data, q->compressed_size*8);
  1042. qdm2_decode_sub_packet_header(&gb, &header);
  1043. if (header.type < 2 || header.type >= 8) {
  1044. q->has_errors = 1;
  1045. av_log(NULL,AV_LOG_ERROR,"bad superblock type\n");
  1046. return;
  1047. }
  1048. q->superblocktype_2_3 = (header.type == 2 || header.type == 3);
  1049. packet_bytes = (q->compressed_size - get_bits_count(&gb) / 8);
  1050. init_get_bits(&gb, header.data, header.size*8);
  1051. if (header.type == 2 || header.type == 4 || header.type == 5) {
  1052. int csum = 257 * get_bits(&gb, 8) + 2 * get_bits(&gb, 8);
  1053. csum = qdm2_packet_checksum(q->compressed_data, q->checksum_size, csum);
  1054. if (csum != 0) {
  1055. q->has_errors = 1;
  1056. av_log(NULL,AV_LOG_ERROR,"bad packet checksum\n");
  1057. return;
  1058. }
  1059. }
  1060. q->sub_packet_list_B[0].packet = NULL;
  1061. q->sub_packet_list_D[0].packet = NULL;
  1062. for (i = 0; i < 6; i++)
  1063. if (--q->fft_level_exp[i] < 0)
  1064. q->fft_level_exp[i] = 0;
  1065. for (i = 0; packet_bytes > 0; i++) {
  1066. int j;
  1067. q->sub_packet_list_A[i].next = NULL;
  1068. if (i > 0) {
  1069. q->sub_packet_list_A[i - 1].next = &q->sub_packet_list_A[i];
  1070. /* seek to next block */
  1071. init_get_bits(&gb, header.data, header.size*8);
  1072. skip_bits(&gb, next_index*8);
  1073. if (next_index >= header.size)
  1074. break;
  1075. }
  1076. /* decode subpacket */
  1077. packet = &q->sub_packets[i];
  1078. qdm2_decode_sub_packet_header(&gb, packet);
  1079. next_index = packet->size + get_bits_count(&gb) / 8;
  1080. sub_packet_size = ((packet->size > 0xff) ? 1 : 0) + packet->size + 2;
  1081. if (packet->type == 0)
  1082. break;
  1083. if (sub_packet_size > packet_bytes) {
  1084. if (packet->type != 10 && packet->type != 11 && packet->type != 12)
  1085. break;
  1086. packet->size += packet_bytes - sub_packet_size;
  1087. }
  1088. packet_bytes -= sub_packet_size;
  1089. /* add subpacket to 'all subpackets' list */
  1090. q->sub_packet_list_A[i].packet = packet;
  1091. /* add subpacket to related list */
  1092. if (packet->type == 8) {
  1093. SAMPLES_NEEDED_2("packet type 8");
  1094. return;
  1095. } else if (packet->type >= 9 && packet->type <= 12) {
  1096. /* packets for MPEG Audio like Synthesis Filter */
  1097. QDM2_LIST_ADD(q->sub_packet_list_D, sub_packets_D, packet);
  1098. } else if (packet->type == 13) {
  1099. for (j = 0; j < 6; j++)
  1100. q->fft_level_exp[j] = get_bits(&gb, 6);
  1101. } else if (packet->type == 14) {
  1102. for (j = 0; j < 6; j++)
  1103. q->fft_level_exp[j] = qdm2_get_vlc(&gb, &fft_level_exp_vlc, 0, 2);
  1104. } else if (packet->type == 15) {
  1105. SAMPLES_NEEDED_2("packet type 15")
  1106. return;
  1107. } else if (packet->type >= 16 && packet->type < 48 && !fft_subpackets[packet->type - 16]) {
  1108. /* packets for FFT */
  1109. QDM2_LIST_ADD(q->sub_packet_list_B, q->sub_packets_B, packet);
  1110. }
  1111. } // Packet bytes loop
  1112. /* **************************************************************** */
  1113. if (q->sub_packet_list_D[0].packet != NULL) {
  1114. process_synthesis_subpackets(q, q->sub_packet_list_D);
  1115. q->do_synth_filter = 1;
  1116. } else if (q->do_synth_filter) {
  1117. process_subpacket_10(q, NULL, 0);
  1118. process_subpacket_11(q, NULL, 0);
  1119. process_subpacket_12(q, NULL, 0);
  1120. }
  1121. /* **************************************************************** */
  1122. }
  1123. static void qdm2_fft_init_coefficient (QDM2Context *q, int sub_packet,
  1124. int offset, int duration, int channel,
  1125. int exp, int phase)
  1126. {
  1127. if (q->fft_coefs_min_index[duration] < 0)
  1128. q->fft_coefs_min_index[duration] = q->fft_coefs_index;
  1129. q->fft_coefs[q->fft_coefs_index].sub_packet = ((sub_packet >= 16) ? (sub_packet - 16) : sub_packet);
  1130. q->fft_coefs[q->fft_coefs_index].channel = channel;
  1131. q->fft_coefs[q->fft_coefs_index].offset = offset;
  1132. q->fft_coefs[q->fft_coefs_index].exp = exp;
  1133. q->fft_coefs[q->fft_coefs_index].phase = phase;
  1134. q->fft_coefs_index++;
  1135. }
  1136. static void qdm2_fft_decode_tones (QDM2Context *q, int duration, GetBitContext *gb, int b)
  1137. {
  1138. int channel, stereo, phase, exp;
  1139. int local_int_4, local_int_8, stereo_phase, local_int_10;
  1140. int local_int_14, stereo_exp, local_int_20, local_int_28;
  1141. int n, offset;
  1142. local_int_4 = 0;
  1143. local_int_28 = 0;
  1144. local_int_20 = 2;
  1145. local_int_8 = (4 - duration);
  1146. local_int_10 = 1 << (q->group_order - duration - 1);
  1147. offset = 1;
  1148. while (1) {
  1149. if (q->superblocktype_2_3) {
  1150. while ((n = qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2)) < 2) {
  1151. offset = 1;
  1152. if (n == 0) {
  1153. local_int_4 += local_int_10;
  1154. local_int_28 += (1 << local_int_8);
  1155. } else {
  1156. local_int_4 += 8*local_int_10;
  1157. local_int_28 += (8 << local_int_8);
  1158. }
  1159. }
  1160. offset += (n - 2);
  1161. } else {
  1162. offset += qdm2_get_vlc(gb, &vlc_tab_fft_tone_offset[local_int_8], 1, 2);
  1163. while (offset >= (local_int_10 - 1)) {
  1164. offset += (1 - (local_int_10 - 1));
  1165. local_int_4 += local_int_10;
  1166. local_int_28 += (1 << local_int_8);
  1167. }
  1168. }
  1169. if (local_int_4 >= q->group_size)
  1170. return;
  1171. local_int_14 = (offset >> local_int_8);
  1172. if (q->nb_channels > 1) {
  1173. channel = get_bits1(gb);
  1174. stereo = get_bits1(gb);
  1175. } else {
  1176. channel = 0;
  1177. stereo = 0;
  1178. }
  1179. exp = qdm2_get_vlc(gb, (b ? &fft_level_exp_vlc : &fft_level_exp_alt_vlc), 0, 2);
  1180. exp += q->fft_level_exp[fft_level_index_table[local_int_14]];
  1181. exp = (exp < 0) ? 0 : exp;
  1182. phase = get_bits(gb, 3);
  1183. stereo_exp = 0;
  1184. stereo_phase = 0;
  1185. if (stereo) {
  1186. stereo_exp = (exp - qdm2_get_vlc(gb, &fft_stereo_exp_vlc, 0, 1));
  1187. stereo_phase = (phase - qdm2_get_vlc(gb, &fft_stereo_phase_vlc, 0, 1));
  1188. if (stereo_phase < 0)
  1189. stereo_phase += 8;
  1190. }
  1191. if (q->frequency_range > (local_int_14 + 1)) {
  1192. int sub_packet = (local_int_20 + local_int_28);
  1193. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, channel, exp, phase);
  1194. if (stereo)
  1195. qdm2_fft_init_coefficient(q, sub_packet, offset, duration, (1 - channel), stereo_exp, stereo_phase);
  1196. }
  1197. offset++;
  1198. }
  1199. }
  1200. static void qdm2_decode_fft_packets (QDM2Context *q)
  1201. {
  1202. int i, j, min, max, value, type, unknown_flag;
  1203. GetBitContext gb;
  1204. if (q->sub_packet_list_B[0].packet == NULL)
  1205. return;
  1206. /* reset minimum indexes for FFT coefficients */
  1207. q->fft_coefs_index = 0;
  1208. for (i=0; i < 5; i++)
  1209. q->fft_coefs_min_index[i] = -1;
  1210. /* process subpackets ordered by type, largest type first */
  1211. for (i = 0, max = 256; i < q->sub_packets_B; i++) {
  1212. QDM2SubPacket *packet= NULL;
  1213. /* find subpacket with largest type less than max */
  1214. for (j = 0, min = 0; j < q->sub_packets_B; j++) {
  1215. value = q->sub_packet_list_B[j].packet->type;
  1216. if (value > min && value < max) {
  1217. min = value;
  1218. packet = q->sub_packet_list_B[j].packet;
  1219. }
  1220. }
  1221. max = min;
  1222. /* check for errors (?) */
  1223. if (!packet)
  1224. return;
  1225. if (i == 0 && (packet->type < 16 || packet->type >= 48 || fft_subpackets[packet->type - 16]))
  1226. return;
  1227. /* decode FFT tones */
  1228. init_get_bits (&gb, packet->data, packet->size*8);
  1229. if (packet->type >= 32 && packet->type < 48 && !fft_subpackets[packet->type - 16])
  1230. unknown_flag = 1;
  1231. else
  1232. unknown_flag = 0;
  1233. type = packet->type;
  1234. if ((type >= 17 && type < 24) || (type >= 33 && type < 40)) {
  1235. int duration = q->sub_sampling + 5 - (type & 15);
  1236. if (duration >= 0 && duration < 4)
  1237. qdm2_fft_decode_tones(q, duration, &gb, unknown_flag);
  1238. } else if (type == 31) {
  1239. for (j=0; j < 4; j++)
  1240. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1241. } else if (type == 46) {
  1242. for (j=0; j < 6; j++)
  1243. q->fft_level_exp[j] = get_bits(&gb, 6);
  1244. for (j=0; j < 4; j++)
  1245. qdm2_fft_decode_tones(q, j, &gb, unknown_flag);
  1246. }
  1247. } // Loop on B packets
  1248. /* calculate maximum indexes for FFT coefficients */
  1249. for (i = 0, j = -1; i < 5; i++)
  1250. if (q->fft_coefs_min_index[i] >= 0) {
  1251. if (j >= 0)
  1252. q->fft_coefs_max_index[j] = q->fft_coefs_min_index[i];
  1253. j = i;
  1254. }
  1255. if (j >= 0)
  1256. q->fft_coefs_max_index[j] = q->fft_coefs_index;
  1257. }
  1258. static void qdm2_fft_generate_tone (QDM2Context *q, FFTTone *tone)
  1259. {
  1260. float level, f[6];
  1261. int i;
  1262. QDM2Complex c;
  1263. const double iscale = 2.0*M_PI / 512.0;
  1264. tone->phase += tone->phase_shift;
  1265. /* calculate current level (maximum amplitude) of tone */
  1266. level = fft_tone_envelope_table[tone->duration][tone->time_index] * tone->level;
  1267. c.im = level * sin(tone->phase*iscale);
  1268. c.re = level * cos(tone->phase*iscale);
  1269. /* generate FFT coefficients for tone */
  1270. if (tone->duration >= 3 || tone->cutoff >= 3) {
  1271. tone->samples_im[0] += c.im;
  1272. tone->samples_re[0] += c.re;
  1273. tone->samples_im[1] -= c.im;
  1274. tone->samples_re[1] -= c.re;
  1275. } else {
  1276. f[1] = -tone->table[4];
  1277. f[0] = tone->table[3] - tone->table[0];
  1278. f[2] = 1.0 - tone->table[2] - tone->table[3];
  1279. f[3] = tone->table[1] + tone->table[4] - 1.0;
  1280. f[4] = tone->table[0] - tone->table[1];
  1281. f[5] = tone->table[2];
  1282. for (i = 0; i < 2; i++) {
  1283. tone->samples_re[fft_cutoff_index_table[tone->cutoff][i]] += c.re * f[i];
  1284. tone->samples_im[fft_cutoff_index_table[tone->cutoff][i]] += c.im *((tone->cutoff <= i) ? -f[i] : f[i]);
  1285. }
  1286. for (i = 0; i < 4; i++) {
  1287. tone->samples_re[i] += c.re * f[i+2];
  1288. tone->samples_im[i] += c.im * f[i+2];
  1289. }
  1290. }
  1291. /* copy the tone if it has not yet died out */
  1292. if (++tone->time_index < ((1 << (5 - tone->duration)) - 1)) {
  1293. memcpy(&q->fft_tones[q->fft_tone_end], tone, sizeof(FFTTone));
  1294. q->fft_tone_end = (q->fft_tone_end + 1) % 1000;
  1295. }
  1296. }
  1297. static void qdm2_fft_tone_synthesizer (QDM2Context *q, int sub_packet)
  1298. {
  1299. int i, j, ch;
  1300. const double iscale = 0.25 * M_PI;
  1301. for (ch = 0; ch < q->channels; ch++) {
  1302. memset(q->fft.samples_im[ch], 0, q->fft_size * sizeof(float));
  1303. memset(q->fft.samples_re[ch], 0, q->fft_size * sizeof(float));
  1304. }
  1305. /* apply FFT tones with duration 4 (1 FFT period) */
  1306. if (q->fft_coefs_min_index[4] >= 0)
  1307. for (i = q->fft_coefs_min_index[4]; i < q->fft_coefs_max_index[4]; i++) {
  1308. float level;
  1309. QDM2Complex c;
  1310. if (q->fft_coefs[i].sub_packet != sub_packet)
  1311. break;
  1312. ch = (q->channels == 1) ? 0 : q->fft_coefs[i].channel;
  1313. level = (q->fft_coefs[i].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[i].exp & 63];
  1314. c.re = level * cos(q->fft_coefs[i].phase * iscale);
  1315. c.im = level * sin(q->fft_coefs[i].phase * iscale);
  1316. q->fft.samples_re[ch][q->fft_coefs[i].offset + 0] += c.re;
  1317. q->fft.samples_im[ch][q->fft_coefs[i].offset + 0] += c.im;
  1318. q->fft.samples_re[ch][q->fft_coefs[i].offset + 1] -= c.re;
  1319. q->fft.samples_im[ch][q->fft_coefs[i].offset + 1] -= c.im;
  1320. }
  1321. /* generate existing FFT tones */
  1322. for (i = q->fft_tone_end; i != q->fft_tone_start; ) {
  1323. qdm2_fft_generate_tone(q, &q->fft_tones[q->fft_tone_start]);
  1324. q->fft_tone_start = (q->fft_tone_start + 1) % 1000;
  1325. }
  1326. /* create and generate new FFT tones with duration 0 (long) to 3 (short) */
  1327. for (i = 0; i < 4; i++)
  1328. if (q->fft_coefs_min_index[i] >= 0) {
  1329. for (j = q->fft_coefs_min_index[i]; j < q->fft_coefs_max_index[i]; j++) {
  1330. int offset, four_i;
  1331. FFTTone tone;
  1332. if (q->fft_coefs[j].sub_packet != sub_packet)
  1333. break;
  1334. four_i = (4 - i);
  1335. offset = q->fft_coefs[j].offset >> four_i;
  1336. ch = (q->channels == 1) ? 0 : q->fft_coefs[j].channel;
  1337. if (offset < q->frequency_range) {
  1338. if (offset < 2)
  1339. tone.cutoff = offset;
  1340. else
  1341. tone.cutoff = (offset >= 60) ? 3 : 2;
  1342. tone.level = (q->fft_coefs[j].exp < 0) ? 0.0 : fft_tone_level_table[q->superblocktype_2_3 ? 0 : 1][q->fft_coefs[j].exp & 63];
  1343. tone.samples_im = &q->fft.samples_im[ch][offset];
  1344. tone.samples_re = &q->fft.samples_re[ch][offset];
  1345. tone.table = fft_tone_sample_table[i][q->fft_coefs[j].offset - (offset << four_i)];
  1346. tone.phase = 64 * q->fft_coefs[j].phase - (offset << 8) - 128;
  1347. tone.phase_shift = (2 * q->fft_coefs[j].offset + 1) << (7 - four_i);
  1348. tone.duration = i;
  1349. tone.time_index = 0;
  1350. qdm2_fft_generate_tone(q, &tone);
  1351. }
  1352. }
  1353. q->fft_coefs_min_index[i] = j;
  1354. }
  1355. }
  1356. static void qdm2_calculate_fft (QDM2Context *q, int channel, int sub_packet)
  1357. {
  1358. const int n = 1 << (q->fft_order - 1);
  1359. const int n2 = n >> 1;
  1360. const float gain = (q->channels == 1 && q->nb_channels == 2) ? 0.25f : 0.50f;
  1361. float c, s, f0, f1, f2, f3;
  1362. int i, j;
  1363. /* prerotation (or something like that) */
  1364. for (i=1; i < n2; i++) {
  1365. j = (n - i);
  1366. c = q->exptab[i].re;
  1367. s = -q->exptab[i].im;
  1368. f0 = (q->fft.samples_re[channel][i] - q->fft.samples_re[channel][j]) * gain;
  1369. f1 = (q->fft.samples_im[channel][i] + q->fft.samples_im[channel][j]) * gain;
  1370. f2 = (q->fft.samples_re[channel][i] + q->fft.samples_re[channel][j]) * gain;
  1371. f3 = (q->fft.samples_im[channel][i] - q->fft.samples_im[channel][j]) * gain;
  1372. q->fft.complex[i].re = s * f0 - c * f1 + f2;
  1373. q->fft.complex[i].im = c * f0 + s * f1 + f3;
  1374. q->fft.complex[j].re = -s * f0 + c * f1 + f2;
  1375. q->fft.complex[j].im = c * f0 + s * f1 - f3;
  1376. }
  1377. q->fft.complex[ 0].re = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1378. q->fft.complex[ 0].im = q->fft.samples_re[channel][ 0] * gain * 2.0;
  1379. q->fft.complex[n2].re = q->fft.samples_re[channel][n2] * gain * 2.0;
  1380. q->fft.complex[n2].im = -q->fft.samples_im[channel][n2] * gain * 2.0;
  1381. ff_fft_permute(&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1382. ff_fft_calc (&q->fft_ctx, (FFTComplex *) q->fft.complex);
  1383. /* add samples to output buffer */
  1384. for (i = 0; i < ((q->fft_frame_size + 15) & ~15); i++)
  1385. q->output_buffer[q->channels * i + channel] += ((float *) q->fft.complex)[i];
  1386. }
  1387. /**
  1388. * @param q context
  1389. * @param index subpacket number
  1390. */
  1391. static void qdm2_synthesis_filter (QDM2Context *q, int index)
  1392. {
  1393. OUT_INT samples[MPA_MAX_CHANNELS * MPA_FRAME_SIZE];
  1394. int i, k, ch, sb_used, sub_sampling, dither_state = 0;
  1395. /* copy sb_samples */
  1396. sb_used = QDM2_SB_USED(q->sub_sampling);
  1397. for (ch = 0; ch < q->channels; ch++)
  1398. for (i = 0; i < 8; i++)
  1399. for (k=sb_used; k < SBLIMIT; k++)
  1400. q->sb_samples[ch][(8 * index) + i][k] = 0;
  1401. for (ch = 0; ch < q->nb_channels; ch++) {
  1402. OUT_INT *samples_ptr = samples + ch;
  1403. for (i = 0; i < 8; i++) {
  1404. ff_mpa_synth_filter(q->synth_buf[ch], &(q->synth_buf_offset[ch]),
  1405. mpa_window, &dither_state,
  1406. samples_ptr, q->nb_channels,
  1407. q->sb_samples[ch][(8 * index) + i]);
  1408. samples_ptr += 32 * q->nb_channels;
  1409. }
  1410. }
  1411. /* add samples to output buffer */
  1412. sub_sampling = (4 >> q->sub_sampling);
  1413. for (ch = 0; ch < q->channels; ch++)
  1414. for (i = 0; i < q->frame_size; i++)
  1415. q->output_buffer[q->channels * i + ch] += (float)(samples[q->nb_channels * sub_sampling * i + ch] >> (sizeof(OUT_INT)*8-16));
  1416. }
  1417. /**
  1418. * Init static data (does not depend on specific file)
  1419. *
  1420. * @param q context
  1421. */
  1422. static void qdm2_init(QDM2Context *q) {
  1423. static int initialized = 0;
  1424. if (initialized != 0)
  1425. return;
  1426. initialized = 1;
  1427. qdm2_init_vlc();
  1428. ff_mpa_synth_init(mpa_window);
  1429. softclip_table_init();
  1430. rnd_table_init();
  1431. init_noise_samples();
  1432. av_log(NULL, AV_LOG_DEBUG, "init done\n");
  1433. }
  1434. #if 0
  1435. static void dump_context(QDM2Context *q)
  1436. {
  1437. int i;
  1438. #define PRINT(a,b) av_log(NULL,AV_LOG_DEBUG," %s = %d\n", a, b);
  1439. PRINT("compressed_data",q->compressed_data);
  1440. PRINT("compressed_size",q->compressed_size);
  1441. PRINT("frame_size",q->frame_size);
  1442. PRINT("checksum_size",q->checksum_size);
  1443. PRINT("channels",q->channels);
  1444. PRINT("nb_channels",q->nb_channels);
  1445. PRINT("fft_frame_size",q->fft_frame_size);
  1446. PRINT("fft_size",q->fft_size);
  1447. PRINT("sub_sampling",q->sub_sampling);
  1448. PRINT("fft_order",q->fft_order);
  1449. PRINT("group_order",q->group_order);
  1450. PRINT("group_size",q->group_size);
  1451. PRINT("sub_packet",q->sub_packet);
  1452. PRINT("frequency_range",q->frequency_range);
  1453. PRINT("has_errors",q->has_errors);
  1454. PRINT("fft_tone_end",q->fft_tone_end);
  1455. PRINT("fft_tone_start",q->fft_tone_start);
  1456. PRINT("fft_coefs_index",q->fft_coefs_index);
  1457. PRINT("coeff_per_sb_select",q->coeff_per_sb_select);
  1458. PRINT("cm_table_select",q->cm_table_select);
  1459. PRINT("noise_idx",q->noise_idx);
  1460. for (i = q->fft_tone_start; i < q->fft_tone_end; i++)
  1461. {
  1462. FFTTone *t = &q->fft_tones[i];
  1463. av_log(NULL,AV_LOG_DEBUG,"Tone (%d) dump:\n", i);
  1464. av_log(NULL,AV_LOG_DEBUG," level = %f\n", t->level);
  1465. // PRINT(" level", t->level);
  1466. PRINT(" phase", t->phase);
  1467. PRINT(" phase_shift", t->phase_shift);
  1468. PRINT(" duration", t->duration);
  1469. PRINT(" samples_im", t->samples_im);
  1470. PRINT(" samples_re", t->samples_re);
  1471. PRINT(" table", t->table);
  1472. }
  1473. }
  1474. #endif
  1475. /**
  1476. * Init parameters from codec extradata
  1477. */
  1478. static int qdm2_decode_init(AVCodecContext *avctx)
  1479. {
  1480. QDM2Context *s = avctx->priv_data;
  1481. uint8_t *extradata;
  1482. int extradata_size;
  1483. int tmp_val, tmp, size;
  1484. int i;
  1485. float alpha;
  1486. /* extradata parsing
  1487. Structure:
  1488. wave {
  1489. frma (QDM2)
  1490. QDCA
  1491. QDCP
  1492. }
  1493. 32 size (including this field)
  1494. 32 tag (=frma)
  1495. 32 type (=QDM2 or QDMC)
  1496. 32 size (including this field, in bytes)
  1497. 32 tag (=QDCA) // maybe mandatory parameters
  1498. 32 unknown (=1)
  1499. 32 channels (=2)
  1500. 32 samplerate (=44100)
  1501. 32 bitrate (=96000)
  1502. 32 block size (=4096)
  1503. 32 frame size (=256) (for one channel)
  1504. 32 packet size (=1300)
  1505. 32 size (including this field, in bytes)
  1506. 32 tag (=QDCP) // maybe some tuneable parameters
  1507. 32 float1 (=1.0)
  1508. 32 zero ?
  1509. 32 float2 (=1.0)
  1510. 32 float3 (=1.0)
  1511. 32 unknown (27)
  1512. 32 unknown (8)
  1513. 32 zero ?
  1514. */
  1515. if (!avctx->extradata || (avctx->extradata_size < 48)) {
  1516. av_log(avctx, AV_LOG_ERROR, "extradata missing or truncated\n");
  1517. return -1;
  1518. }
  1519. extradata = avctx->extradata;
  1520. extradata_size = avctx->extradata_size;
  1521. while (extradata_size > 7) {
  1522. if (!memcmp(extradata, "frmaQDM", 7))
  1523. break;
  1524. extradata++;
  1525. extradata_size--;
  1526. }
  1527. if (extradata_size < 12) {
  1528. av_log(avctx, AV_LOG_ERROR, "not enough extradata (%i)\n",
  1529. extradata_size);
  1530. return -1;
  1531. }
  1532. if (memcmp(extradata, "frmaQDM", 7)) {
  1533. av_log(avctx, AV_LOG_ERROR, "invalid headers, QDM? not found\n");
  1534. return -1;
  1535. }
  1536. if (extradata[7] == 'C') {
  1537. // s->is_qdmc = 1;
  1538. av_log(avctx, AV_LOG_ERROR, "stream is QDMC version 1, which is not supported\n");
  1539. return -1;
  1540. }
  1541. extradata += 8;
  1542. extradata_size -= 8;
  1543. size = AV_RB32(extradata);
  1544. if(size > extradata_size){
  1545. av_log(avctx, AV_LOG_ERROR, "extradata size too small, %i < %i\n",
  1546. extradata_size, size);
  1547. return -1;
  1548. }
  1549. extradata += 4;
  1550. av_log(avctx, AV_LOG_DEBUG, "size: %d\n", size);
  1551. if (AV_RB32(extradata) != MKBETAG('Q','D','C','A')) {
  1552. av_log(avctx, AV_LOG_ERROR, "invalid extradata, expecting QDCA\n");
  1553. return -1;
  1554. }
  1555. extradata += 8;
  1556. avctx->channels = s->nb_channels = s->channels = AV_RB32(extradata);
  1557. extradata += 4;
  1558. avctx->sample_rate = AV_RB32(extradata);
  1559. extradata += 4;
  1560. avctx->bit_rate = AV_RB32(extradata);
  1561. extradata += 4;
  1562. s->group_size = AV_RB32(extradata);
  1563. extradata += 4;
  1564. s->fft_size = AV_RB32(extradata);
  1565. extradata += 4;
  1566. s->checksum_size = AV_RB32(extradata);
  1567. extradata += 4;
  1568. s->fft_order = av_log2(s->fft_size) + 1;
  1569. s->fft_frame_size = 2 * s->fft_size; // complex has two floats
  1570. // something like max decodable tones
  1571. s->group_order = av_log2(s->group_size) + 1;
  1572. s->frame_size = s->group_size / 16; // 16 iterations per super block
  1573. s->sub_sampling = s->fft_order - 7;
  1574. s->frequency_range = 255 / (1 << (2 - s->sub_sampling));
  1575. switch ((s->sub_sampling * 2 + s->channels - 1)) {
  1576. case 0: tmp = 40; break;
  1577. case 1: tmp = 48; break;
  1578. case 2: tmp = 56; break;
  1579. case 3: tmp = 72; break;
  1580. case 4: tmp = 80; break;
  1581. case 5: tmp = 100;break;
  1582. default: tmp=s->sub_sampling; break;
  1583. }
  1584. tmp_val = 0;
  1585. if ((tmp * 1000) < avctx->bit_rate) tmp_val = 1;
  1586. if ((tmp * 1440) < avctx->bit_rate) tmp_val = 2;
  1587. if ((tmp * 1760) < avctx->bit_rate) tmp_val = 3;
  1588. if ((tmp * 2240) < avctx->bit_rate) tmp_val = 4;
  1589. s->cm_table_select = tmp_val;
  1590. if (s->sub_sampling == 0)
  1591. tmp = 7999;
  1592. else
  1593. tmp = ((-(s->sub_sampling -1)) & 8000) + 20000;
  1594. /*
  1595. 0: 7999 -> 0
  1596. 1: 20000 -> 2
  1597. 2: 28000 -> 2
  1598. */
  1599. if (tmp < 8000)
  1600. s->coeff_per_sb_select = 0;
  1601. else if (tmp <= 16000)
  1602. s->coeff_per_sb_select = 1;
  1603. else
  1604. s->coeff_per_sb_select = 2;
  1605. // Fail on unknown fft order, if it's > 9 it can overflow s->exptab[]
  1606. if ((s->fft_order < 7) || (s->fft_order > 9)) {
  1607. av_log(avctx, AV_LOG_ERROR, "Unknown FFT order (%d), contact the developers!\n", s->fft_order);
  1608. return -1;
  1609. }
  1610. ff_fft_init(&s->fft_ctx, s->fft_order - 1, 1);
  1611. for (i = 1; i < (1 << (s->fft_order - 2)); i++) {
  1612. alpha = 2 * M_PI * (float)i / (float)(1 << (s->fft_order - 1));
  1613. s->exptab[i].re = cos(alpha);
  1614. s->exptab[i].im = sin(alpha);
  1615. }
  1616. qdm2_init(s);
  1617. avctx->sample_fmt = SAMPLE_FMT_S16;
  1618. // dump_context(s);
  1619. return 0;
  1620. }
  1621. static int qdm2_decode_close(AVCodecContext *avctx)
  1622. {
  1623. QDM2Context *s = avctx->priv_data;
  1624. ff_fft_end(&s->fft_ctx);
  1625. return 0;
  1626. }
  1627. static void qdm2_decode (QDM2Context *q, const uint8_t *in, int16_t *out)
  1628. {
  1629. int ch, i;
  1630. const int frame_size = (q->frame_size * q->channels);
  1631. /* select input buffer */
  1632. q->compressed_data = in;
  1633. q->compressed_size = q->checksum_size;
  1634. // dump_context(q);
  1635. /* copy old block, clear new block of output samples */
  1636. memmove(q->output_buffer, &q->output_buffer[frame_size], frame_size * sizeof(float));
  1637. memset(&q->output_buffer[frame_size], 0, frame_size * sizeof(float));
  1638. /* decode block of QDM2 compressed data */
  1639. if (q->sub_packet == 0) {
  1640. q->has_errors = 0; // zero it for a new super block
  1641. av_log(NULL,AV_LOG_DEBUG,"Superblock follows\n");
  1642. qdm2_decode_super_block(q);
  1643. }
  1644. /* parse subpackets */
  1645. if (!q->has_errors) {
  1646. if (q->sub_packet == 2)
  1647. qdm2_decode_fft_packets(q);
  1648. qdm2_fft_tone_synthesizer(q, q->sub_packet);
  1649. }
  1650. /* sound synthesis stage 1 (FFT) */
  1651. for (ch = 0; ch < q->channels; ch++) {
  1652. qdm2_calculate_fft(q, ch, q->sub_packet);
  1653. if (!q->has_errors && q->sub_packet_list_C[0].packet != NULL) {
  1654. SAMPLES_NEEDED_2("has errors, and C list is not empty")
  1655. return;
  1656. }
  1657. }
  1658. /* sound synthesis stage 2 (MPEG audio like synthesis filter) */
  1659. if (!q->has_errors && q->do_synth_filter)
  1660. qdm2_synthesis_filter(q, q->sub_packet);
  1661. q->sub_packet = (q->sub_packet + 1) % 16;
  1662. /* clip and convert output float[] to 16bit signed samples */
  1663. for (i = 0; i < frame_size; i++) {
  1664. int value = (int)q->output_buffer[i];
  1665. if (value > SOFTCLIP_THRESHOLD)
  1666. value = (value > HARDCLIP_THRESHOLD) ? 32767 : softclip_table[ value - SOFTCLIP_THRESHOLD];
  1667. else if (value < -SOFTCLIP_THRESHOLD)
  1668. value = (value < -HARDCLIP_THRESHOLD) ? -32767 : -softclip_table[-value - SOFTCLIP_THRESHOLD];
  1669. out[i] = value;
  1670. }
  1671. }
  1672. static int qdm2_decode_frame(AVCodecContext *avctx,
  1673. void *data, int *data_size,
  1674. const uint8_t *buf, int buf_size)
  1675. {
  1676. QDM2Context *s = avctx->priv_data;
  1677. if(!buf)
  1678. return 0;
  1679. if(buf_size < s->checksum_size)
  1680. return -1;
  1681. *data_size = s->channels * s->frame_size * sizeof(int16_t);
  1682. av_log(avctx, AV_LOG_DEBUG, "decode(%d): %p[%d] -> %p[%d]\n",
  1683. buf_size, buf, s->checksum_size, data, *data_size);
  1684. qdm2_decode(s, buf, data);
  1685. // reading only when next superblock found
  1686. if (s->sub_packet == 0) {
  1687. return s->checksum_size;
  1688. }
  1689. return 0;
  1690. }
  1691. AVCodec qdm2_decoder =
  1692. {
  1693. .name = "qdm2",
  1694. .type = CODEC_TYPE_AUDIO,
  1695. .id = CODEC_ID_QDM2,
  1696. .priv_data_size = sizeof(QDM2Context),
  1697. .init = qdm2_decode_init,
  1698. .close = qdm2_decode_close,
  1699. .decode = qdm2_decode_frame,
  1700. .long_name = NULL_IF_CONFIG_SMALL("QDesign Music Codec 2"),
  1701. };